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Abstract

Topic models infer latent topic distributions based on observed word co-occurrences
in a text corpus. While typically a corpus contains documents of variable lengths,
most previous topic models treat documents of different lengths uniformly, assum-
ing that each document is sufficiently informative. However, shorter documents
may have only a few word co-occurrences, resulting in inferior topic quality. Some
other previous works assume that all documents are short, and leverage external
auxiliary data, e.g., pretrained word embeddings and document connectivity. Or-
thogonal to existing works, we remedy this problem within the corpus itself by
proposing a Meta-Complement Topic Model, which improves topic quality of
short texts by transferring the semantic knowledge learned on long documents
to complement semantically limited short texts. As a self-contained module, our
framework is agnostic to auxiliary data and can be further improved by flexibly
integrating them into our framework. Specifically, when incorporating document
connectivity, we further extend our framework to complement documents with
limited edges. Experiments demonstrate the advantage of our framework.

1 Introduction

Much of the data on the Web can be represented as text documents. Topic models help to understand
the main themes within documents, i.e., each document is represented by a topic distribution, and
each topic is interpreted by its key words. The quality of topic distribution of each document depends
on sufficient word co-occurrences. However, many real-word corpora contain documents of variable
lengths. Academic papers vary from journal manuscripts to conference papers to extended abstracts.
News articles could be headlines, short or full articles, or detailed commentaries. Fig. 1(a) illustrates
an academic paper corpus where the distribution of document lengths exhibits a long-tail distribution.
Despite variable lengths (with different degrees of sufficiency of word co-occurrences), existing
works, e.g., ProdLDA [31] and GATON [37], treat documents uniformly, resulting in inferior topic
quality for short texts. Evidentially, Fig. 1(b) presents document classification accuracy on four
subsets of corpus with descending lengths. Accuracies gradually drop as the length decreases. The
inferior topic quality of short texts limits the overall performance of a topic model.
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Figure 1: Illustration of (a) a paper corpus with various-length documents, (b) classification accuracy
on four subsets of the corpus by descending length, and (c) semantic transfer and complement.

Challenges. Most existing topic models optimize the learning process by averaging the generative
losses of different documents, without paying special attention to semantically limited short texts.
A few studies, e.g., OTLDA [15], take weighted summation of losses based on document lengths,
they compute the weights by dividing the length of each document by the length of the whole corpus,
which further deemphasizes the importance of short text modeling. Thus, we seek to improve short
text topic modeling within a variable-length corpus, without hurting topic quality of long documents.

To mitigate the scarcity of word co-occurrences in short texts, some works leverage auxiliary
knowledge to enhance topic modeling. ETM [8] exploits pretrained word embeddings [27, 29] to
capture word similarities. RTM [5] constructs a document network, e.g., paper citation network, to
aggregate topics of connected documents. However, they rely on the availability of auxiliary data.

Approach. We propose Meta-Complement Topic Model (MCTM). Since a corpus contains variable
lengths of documents, we are motivated to learn the transferable semantic knowledge on long docu-
ments, and complement the semantics-scarce short texts and enhance the latter’s topic distributions.
As illustrated by Fig. 1(c), we learn a function g on long document A with abundant content, and use
it to predict missing semantics (red box) for short document B to complement its content for a more
expressive topic distribution. Since meta-learning [10] is emerging to improve model performance
with few labeled observations, but no one explores its design in topic modeling. We are thus motivated
to integrate it and optimize the proposed MCTM by a meta-learning objective.

Orthogonal to existing works relying on auxiliary data, our framework is self-contained, assuming
only in-corpus information, which offers a new direction to improve short text topic modeling. When
auxiliary data are available, our framework can be further improved by flexibly incorporating them.
In particular, when incorporating document network structure, we discover that document degrees
also exhibit a similar long-tail distribution, i.e., some structure-abundant documents link to sufficient
neighbors as auxiliary, while others contain scarce links. Besides textual semantic complement at Fig.
1(c), we extend MCTM to further complement structural semantics on the document network.

Contributions. Our contributions are as follows. First, we propose MCTM, which learns how to
complement textual semantics by semantic knowledge transfer. Second, we derive two alternatives to
implement missing semantics prediction function g to capture document similarities. Third, although
agnostic to auxiliary data, MCTM can also flexibly integrate them to further improve the performance.
We demonstrate our adaptability by modeling pretrained word embeddings and document networks.
For the latter, we extend MCTM to further complement structural semantics. Fourth, extensive
experiments verify the effectiveness of MCTM.

2 Problem Formulation and Preliminaries

We are given a corpus of N documents D = {di}Ni=1. Each document d ∈ R|V| is a vector in the
vocabulary space V . ld =

∑
w∈V dw is the length of document d where dw is the word count of w

in d. When word embeddings are available, we have H = {hw}w∈V where hw is the embedding of
word w. Documents may link to others in a document network G = {D, E}, with documents D and
network connectivity E = {eij}Ni,j=1. If document d links to d′, ed,d′ = 1, otherwise ed,d′ = 0. N (d)
is the set of neighbors of d. We consider an undirected network, ed,d′ = ed′,d. Corpus D contains
documents of variable lengths {li}Ni=1. We introduce a hyperparameter L as the threshold where
short documents are those with fewer observed words, Dshort = {di|li < L }, and long documents
are defined symmetrically, Dlong = {di|li ≥ L }. We consider L as a predefined hyperparameter
and leave other designs as future work. See Table 1 for a summary of math notations.
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Table 1: Summary of math notations.
Notation Description

D a corpus of N documents, D = {di}Ni=1

d a document representation in the word space, d ∈ R|V|

V vocabulary
ld length of document d
H a set of pretrained word embeddings
hw pretrained word embedding of word w
G a document network
E a set of links connecting documents

N (d) the neighbor set of document d
Dlong the subset of long documents in corpus D
Dshort the subset of short documents in corpus D
Td the task of document d, i.e., generating observed words of document d
Sd a set of support words of document d
Qd a set of query words of document d
θ a collection of parameters of encoder fθ
zd topic distribution of document d, zd ∈ RK

K number of topics
md missing semantics of document d
µ a collection of parameters of semantics prediction function gµ

SN (d) a set of support neighbors of document d
QN (d) a set of query neighbors of document d

Given a variable-length corpus D (as well as word embeddings H and network E if observed) as
input, we aim to output topic distributions for documents where the topic quality of short documents
is improved, without hurting long documents. Note that our goal is not to allow short texts to reach
the performance of long documents, but to improve short text topic modeling as much as possible.

Meta-Learning. Meta-learning [10] optimizes globally shared parameters, a.k.a. prior knowledge,
over meta-training tasks, so as to rapidly adapt the model to previously unseen meta-testing tasks with
only a few observed data. Since topic models generally learn topics by a content generative process,
here we consider generating observed words for a document d as a task Td. A meta-training task Td
corresponds to a training document d and consists of a support set and a query set, Td = {Sd,Qd}.
Each set contains randomly sampled words from document d, such that support words and query
words are mutually exclusive, Sd ∩Qd = ∅ and Sd ∪Qd = d. Meta-training has two steps:

1. Local update. Given a topic model fθ with parameter θ, fθ is first updated from the globally shared
parameter θ to document-specific local parameter θd w.r.t. loss on d’s support words Sd.

θd = θ − α∇θL(θ,Sd) where Td = {Sd,Qd} ∈ Ttr. (1)
α is meta-learning rate, ∇ is gradient, L is loss function, Ttr is a set of meta-training tasks (documents).

2. Global update. After obtaining θd for each document d, we compute the loss on query words
L(θd,Qd). Together with other training tasks, we optimize the globally shared parameter θ.

θ∗ = min
θ

∑
Td∈Ttr

L(θd,Qd) = min
θ

∑
Td∈Ttr

L(θ − α∇θL(θ,Sd),Qd). (2)

θ∗ is the new globally shared parameter and will replace θ at Eq. 1–2 for the next iteration. After
convergence, the final global parameter θ∗ can easily be adapted to meta-testing tasks.

Meta-testing tasks Tte are unseen test documents. All the observed words are support words, Td =
Sd = d. During meta-testing, topic model fθ∗ with optimized global parameter θ∗ is updated w.r.t.
Sd by Eq. 1 and obtain θ∗d. The topic distribution of testing document is inferred by zd = fθ∗

d
(d).

3 Methodology

We introduce Meta-Complement Topic-Model (MCTM) at Fig. 2. Below we elaborate three compo-
nents, graph convolutional encoder, missing semantics prediction, and meta-learning optimization.
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Figure 2: Model architecture of Meta-Complementing Topic Model, MCTM.

3.1 Graph Convolutional Topic Encoding

We follow GATON [37] and first present a graph convolutional encoder fθ (Fig. 2(a)), which projects
documents to K-dimensional topic distributions. We defer the discussion on short text modeling to the
following subsections. Given a corpus D, considering documents and words as vertices, we construct
a bipartite graph, the links represent word occurrences in the documents. Since documents and words
preserve heterogeneous feature spaces, we project them to the same topic space by learnable matrix,

z̃(l+1)
d = W(l+1)

1 z(l)d , z̃(l+1)
w = W(l+1)

2 z(l)w , where d ∈ D, w ∈ V. (3)

l is the l-th convolutional layer. z(0)d and z(0)w are inputs, i.e., Bag-of-Words and one-hot, respectively.

To differentiate the importance of words, we evaluate attention between document d and its observed
support words at Eq. 4 and aggregate words at Eq. 5 where [·||·] is concatenation.

ad,w = softmax
(

tanh(b(l+1)⊤
1 [z̃(l+1)

d ||z̃(l+1)
w ])

)
where w ∈ Sd (4)

z(l+1)
d = tanh

(1
2
(z̃(l+1)

d +
∑
w∈Sd

ad,w z̃(l+1)
w )

)
. (5)

Symmetrically, we modify Eq. 4 and obtain aw,d, i.e., the attention between word w and documents
it appears in. After symmetric aggregation at Eq. 5, we obtain z(l+1)

w for word w. So far, we complete
the convolution from l-th to (l + 1)-th layer. For simplicity, we summarize aggregation at Eq. 3–5 by

z(l+1)
d = AGG(W(l+1)

1 z(l)d ,W(l+1)
2 z(l)w |w ∈ Sd), z(l+1)

w = AGG(W(l+1)
2 z(l)w ,W(l+1)

1 z(l)d |∀d : w ∈ Sd).
(6)

We repeat Eq. 6 for maximum L layers and obtain K-dimensional topics zd = z(L)
d for document d

and zw = z(L)
w for word w. The complete encoder is Eq. 7. θ is the set of all encoding parameters.

zd, zw = fθ(z
(l=0)
d , z(l=0)

w |d ∈ D, w ∈ V). (7)

3.2 Missing Semantics Prediction with Contrastive Learning

A short document with few words leaves some content poorly described, resulting in incomplete topic
distribution zd. As a toy example, document B at Fig. 1(c) contains limited words, e.g., gene and
clone, and leaves other contents, e.g., protein and cell, uncovered. We aim to complement the topics
of short documents. For a document d, regardless of long or short, we complement its semantics by

z∗d = zd + md. (8)

We name md ∈ RK missing semantics of document d. If d is a long document with complete
semantics, md is a zero vector. A function gµ predicts missing semantics at Eq. 9 with topic
distributions of d and its support words as inputs. We will elaborate the design of function gµ shortly.

md = gµ(zd, zw|w ∈ Sd). (9)

Contrastive Learning. Long documents contain relatively more sufficient word co-occurrences than
short documents. Thus, we learn missing semantics prediction function gµ on long documents, and
then transfer the learned semantic knowledge to complement short documents. On one hand, a long
document d with enough content does not need semantic complement. Thus we have below constraint

md → 0 where d ∈ Dlong. (10)
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On the other hand, although we aim to transfer the semantic knowledge from long to short documents,
there does not exist a one-to-one correspondence in corpus D. As a result, we may transfer semantics
of a long document (e.g., machine learning concepts) to a short one describing completely distinct
content (e.g., biology). To overcome this limitation, we introduce another constraint with contrastive
objective. For a long document d with support words Sd, we randomly hide a proportion of words to
mimic a short document, denoted as d′ with remaining observed words Sd′ ⊂ Sd and length ld′ < L .
For both long text d and its short version d′, we predict their missing semantics by Eq. 9, and obtain
md and md′ , respectively. md′ should complement the previously hidden semantics, i.e., Sd − Sd′ ,

zd′ + md′ → zd + md ⇒ z∗d′ → z∗d where d ∈ Dlong. (11)

Together with above Eq. 10, which forces z∗d = zd + md to approach zd, Eq. 11 actually has

zd′ + md′ → zd ⇒ md′ → zd − zd′ where d ∈ Dlong. (12)

To summarize, we arrive at the following constraint loss.

Lcon(d) = − log σ(cos(md′ , zd − zd′)) where d ∈ Dlong. (13)

σ(x) = 1
1+exp(−x) is sigmoid function, and cos(·, ·) is cosine similarity. We here use cosine similarity,

mainly due to its superior performance on our datasets. Besides cosine, other similarity metrics, such
as inner product and Euclidean distance, are also possible, depending on different datasets.

Missing Semantics Prediction. We now define the function of missing semantics prediction gµ.
Given topic distributions of a document and its observed support words as input, a desirable function
should aggregate them and output a single missing semantics vector. We propose two alternatives.

1. GNN function. The first is to implement gµ using a graph neural network, see Fig. 2(b).

md = gµ(zd, zw|w ∈ Sd) = AGG(U1zd,U2zw|w ∈ Sd). (14)

A corpus D contains documents with diverse themes. For example, some documents discuss machine
learning, while others describe biology. However, the assumption of corpus-level shared parameter
U1 and U2 is not flexible to model diverse documents for missing semantics prediction, since different
documents may have distinct optimal parameters, which are sometimes even in opposing direction.
As a result, the predicted missing semantics md centers its mass around the most frequent topics and
leaves other distinct topics uncovered. We seek to personalize U1 and U2 for each document d to
recover the distinct missing semantics. Formally, we introduce a function ϕ, which transforms U1 and
U2 to document-specific parameters Ud,1 and Ud,2 by scaling and shifting. Taking U1 as example,

Ud,1 = ϕ(U1, zd, zw|w ∈ Sd) = U1 ⊙
[
(γd + 1)×K

]
+

[
(βd)×K

]
. (15)

γd and βd are document-specific vectors for scaling and shifting shared parameter U1. ⊙ is element-
wise product. [(x)×K ] is a matrix with K identical column vector x. 1 is a vector of ones, ensuring
the scaling matrix centers around one. Ud,2 is similarly defined. Eq. 15 allows each document d to
have its own parameters, while all documents still share the common knowledge. Similar documents
scale and shift U1 and U2 to similar directions. Different documents push them to distinct directions.

We define scaling γd and shifting βd, parameterized by topics of document d and its support words.

γd = tanh(Wγzd + W′
γ z̄Sd

), βd = tanh(Wβzd + W′
β z̄Sd

). (16)

z̄Sd
= 1

|Sd|
∑

w∈Sd
zw is the average of d’s words. In summary, we use Eq. 14 to predict d’s missing

semantics, except that shared parameters U1 and U2 are replaced by d-specific ones, Ud,1 and Ud,2.

2. Clustering function. We propose an alternative method by semantic clustering to recover distinct
missing semantics, Fig. 2(c). Documents with similar content fall into related clusters, while unique
documents belong to different ones. If we assign each cluster a set of parameters for missing semantics
prediction, similar documents would recover their own distinct topics. Specifically, we introduce R
centroids {cr}Rr=1, each corresponding to one cluster. Given topic distributions of document d and its
support words, we first evaluate the assignment probability between document d and each cluster by

Pr(r) = softmax(−1

2
||h0 − cr||22) =

exp(− 1
2 ||h0 − cr||22)∑R

r′=1 exp(−
1
2 ||h0 − cr′ ||22)

. (17)
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h0 = [zd||z̄Sd
] is the concatenation of zd and z̄Sd

. We then assign parameters to each cluster,

md = h1 =

R∑
r=1

Pr(r)× ReLU(Wrh0 + br). (18)

Therefore, related documents obtain similar clustering probabilities and missing semantics.

Above process is a flat clustering. Our function can be extended to multiple clustering layers. Each
layer s consists of R(s) centroids. After obtaining the output from previous layer, hs−1, we repeat Eq.
17–18 by replacing h0 with hs−1, and obtain the output of the current layer s, i.e., hs. For maximum
S layers, we get md = hS . We leave adaptive learning of number of clusters R as future work.

3.3 Probabilistic Decoding with Meta-Learning Optimization

After semantic complement, we obtain {z∗d}d∈D at Sec. 3.2. We use ZV =
[
zw1

; zw2
; ...; zw|V|

]
∈

RK×|V| to represent topic-word distribution, each column zw is topic distribution of a word w, and
each row is to the distribution of a topic over the vocabulary. As in previous topic models [3, 31], we
generate the observed support words Sd by d̂Sd

= σ(ZVz∗d). Compared to the ground-truth support
words dSd

, we follow [37] and obtain generative loss Lgen = ||dSd
− d̂Sd

||22. However, this loss
requires inefficient computation over the whole vocabulary. We instead use negative sampling [27].

Lgen(d) =
∑
w∈Sd

[
(dw − d̂w)

2 +

M∑
m=1

Ew′∼Prn(w)(dw′ − d̂w′)2
]
. (19)

M is the number of negative samples, and Prn(w) is a noise distribution over vocabulary. d̂w =
σ(z∗⊤d zw). dw = 1 if w ∈ Sd, otherwise dw = 0. In addition, if d is a long document d ∈ Dlong, we
also created its corresponding pruned short version d′ with a subset of support words Sd′ ⊂ Sd at Sec.
3.2. Although we do not observe the complete support words for d′, its complete topic distribution
z∗d′ after semantic complement at Eq. 8 should be able to generate the complete support words Sd.
Therefore, together with semantic complement constraint at Eq. 13, we arrive at the complete loss.

L(d) = Lgen(d) + Lcon(d) + λregLreg(θ)

where Lgen(d) = Lgen(d) + I(d ∈ Dlong)λgenLgen(d
′), Lcon(d) = I(d ∈ Dlong)Lcon(d).

(20)

Lgen(d) is generative loss, consisting of document d in the corpus d ∈ D = Dlong ∪ Dshort and the
corresponding pruned short version d′ (if d ∈ Dlong). I(d ∈ Dlong) = 1 if d ∈ Dlong, otherwise 0.
Lreg(θ) is L2 regularizer for encoding parameters θ. λgen and λreg are hyperparameters.

Optimization. Finally, with the objective of meta-learning at Sec. 2, we reach the optimization:

1. Local update. Given topic encoder fθ defined at Sec. 3.1, we optimize encoding parameter θ w.r.t.
the generative loss Lgen(d) on support words Sd by Eq. 1 and obtain θd for each document.

2. Global update. With encoding parameter θd, we compute the overall loss L(d) on query words
Qd and optimize all parameters Φ = {θ, µ}, including encoder parameters θ and parameters µ of
missing semantics prediction function gµ. α1 and α2 are local and global learning rate, respectively.

Φ∗ = minΦ
∑

d∈D L({θd, µ},Qd) ⇒ Φ∗ = Φ− α2∇Φ

∑
d∈D L(θ − α1∇θLgen({θ, µ},Sd),Qd).

(21)
With new parameter Φ∗ = {θ∗, µ∗}, we substitute it for Φ for the next iteration. In contrast to
previous topic models that generate the content of given documents only, we further create the short
version of long documents for semantic complement, and jointly optimize them. See supplementary
materials for learning algorithm.

3.4 Extensions with Auxiliary Data

MCTM with Pretrained Word Embeddings. Pretrained word embeddings [27, 29] encode word
similarity. As in previous works [7, 45], we incorporate them into topic-word distribution ZV = [zk,w]
to improve topic modeling. We introduce topic embedding {tk}Kk=1 and evaluate cosine similarity
between topic k and word w by cos(tk,hw). We then combine it with topic-word distribution by
z′k,w = 1

2 (zk,w + cos(tk,hw)) and obtain a new topic-word distribution Z′
V = [z′k,w] for decoding.

6



Table 2: Dataset statistics.

Name #Documents #Links Vocabulary #Labels Avg.
#words/doc

Std.Dev. of
#words/doc

ML 2,947 8,146 5,814 7 66.7 34.0
PL 2,449 7,274 5,066 9 66.0 36.9

HEP-TH 20,151 234,193 5,001 N.A. 48.4 22.9
Web 116,544 309,499 5,021 N.A. 34.1 70.0

MCTM with Document Network. A document network (e.g., citation network) reveals semantic
similarities between connected documents (cited papers discuss related research). A document’s
degree or number of links exhibits a long-tail distribution. Some link to many neighbors, others to a
few. Previously focus was on textual semantic complement. We extend MCTM to model structural
semantic complement for link-scarce documents. We consider generating both observed words and
neighbors as a task Td. As for words, we split the neighbors N (d) of a document d into support and
query neighbors Td = {Sd,SN (d),Qd,QN (d)}, Sd and SN (d) denote support words and neighbors,
respectively, and ditto for query sets. We correspondingly extend three modeling components.

1. Encoding. Previously, we inferred topic distribution zd of document d by its textual words at Eq. 6.
Here, we extend this process by designing a structural convolutional module.

κ
(l+1)
d = AGG(W(l+1)

3 κ
(l)
d ,W(l+1)

3 κ
(l)
d′ |d′ ∈ SN (d)). (22)

The topic distribution from encoder fθ is zd := 1
2 (zd + κd), with both texts Sd and structure SN (d).

2. Semantics complement. For a long document d, in addition to randomly hiding some words, we
also drop some neighbors and create a pruned version d′. Now the missing semantics md should
contain both textual and structural information. For GNN function gµ, we extend Eq. 14 by

md = gµ(zd, zw, zd′ |w ∈ Sd, d
′ ∈ SN (d)) = AGG(Ud,1zd,Ud,2zw,Ud,3zd′ |w ∈ Sd, d

′ ∈ SN (d)).
(23)

Scaling has extra input, γd = tanh(Wγzd + W′
γ z̄Sd

+ W′′
γ z̄SN(d)

), ditto for shifting. z̄SN(d)
=

1
|SN(d)|

∑
d′∈SN(d)

zd′ . For Clustering gµ, we extend input by h0 = [zd||z̄Sd
||z̄SN(d)

].

3. Decoding with meta-learning. In addition to generating support words using complemented z∗d, we
also generate support neighbors. The generative loss is similar to Eq. 19 except that i) we replace
dw with ed,d′ , the ground-truth link between d and d′; ii) êd,d′ = σ(z∗⊤d z∗d′). Finally, meta-learning
learns how to accurately predict missing semantics md for both textual and structural complement.

4 Experiments

The goal of experiments is to evaluate if our model MCTM can improve short text topic modeling
through evaluative tasks, e.g., document classification, link prediction, topic analysis.

Datasets. Since our model is flexible to incorporate auxiliary data, we rely on four datasets with
textual documents, auxiliary word embeddings, and auxiliary network links for experiments. Cora
[24] is corpus of academic papers with citations as links. We created two independent datasets,
Machine Learning (ML) and Programming Language (PL). In addition, HEP-TH [21] is a corpus of
Physics papers with their citations. Web [20] is a Web page hyperlink network where each page is a
news article, and the hyperlinks connect related articles. See Table 2 for details.

Baselines. Since our model has three variants, i.e., MCTM with plain texts, with auxiliary word
embeddings, and with auxiliary document networks, we correspondingly compare to three categories
of baselines. i) Topic models with plain texts, ProdLDA [31], WLDA [28], and GATON [37]. They
model all documents uniformly without dealing with short texts. We compare to them and show the
advantage of MCTM on improving short texts. ii) Topic models with word embeddings, ETM
[8] and NSTM [45]. Since our model is built on top of GATON, we also compare to GATON with
word embeddings, denoted as GATON+WE. By comparing to them, we verify the effectiveness
of semantic complement meta-learning to further improve topic quality. iii) Topic models with
document networks, RTM [5], Adjacent-Encoder [40], LANTM [35], and GATON+DN, which is
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Table 3: Classification accuracy (in percentage) on four subsets of test set with descending length.
Best baselines are underlined. We show improvement of MCTM (G) over GATON and best baseline.

Category Model ML PL
Overall 0-25% 25%-50% 50%-75% 75%-100% Overall 0-25% 25%-50% 50%-75% 75%-100%

ProdLDA 58.5±3.2 69.7±1.0 59.1±4.6 55.8±5.0 48.7±4.6 45.0±2.1 51.4±6.0 48.7±3.6 41.6±2.3 40.1±3.9
Models WLDA 31.3±0.7 30.9±2.9 31.6±2.2 34.3±1.2 28.2±2.2 33.2±1.8 37.4±1.5 40.0±5.3 28.1±3.9 23.8±1.8

with GATON 60.3±2.0 69.3±2.7 62.8±2.5 57.4±1.8 50.8±6.6 47.6±1.5 53.8±3.1 52.4±3.9 44.5±4.9 39.0±3.4
plain text MCTM (G) 67.1±2.1 73.7±3.6 68.7±4.3 66.4±3.0 60.1±1.9 53.5±0.8 59.8±3.5 57.3±2.8 52.9±5.7 45.5±2.0

MCTM (C) 66.9±1.4 73.6±1.5 68.3±2.0 65.2±1.9 58.9±1.8 53.4±0.9 60.6±3.1 56.3±1.6 52.5±2.0 42.9±1.3
improvement 11.4%* 11.4%* 6.3%* 5.7%* 9.4%* 9.4%* 15.7%* 15.7%* 18.3%* 18.3%* 12.3%* 12.3%* 11.2%* 11.2%* 9.3%* 9.3%* 18.8%* 18.8%* 16.8%* 13.6%*

ETM 50.6±2.2 60.4±3.3 52.9±2.5 48.8±2.1 39.4±3.0 43.8±2.0 48.5±2.8 47.9±2.7 42.4±1.9 35.9±4.1
Models NSTM 45.2±2.6 53.6±1.9 42.4±7.5 43.0±2.3 41.1±4.7 41.3±3.2 47.2±5.3 45.0±5.1 39.8±4.6 33.1±2.4

with GATON+WE 63.8±1.5 72.4±2.3 67.0±3.2 60.5±2.2 54.8±2.3 50.2±1.5 57.4±2.3 53.7±3.3 48.7±2.7 40.2±3.1
word MCTM+WE (G) 66.8±2.0 72.9±5.1 67.7±2.4 65.3±3.8 61.6±4.9 52.7±1.7 60.7±6.1 53.9±3.1 51.8±1.6 43.8±2.6

embeddings MCTM+WE (C) 66.0±1.4 70.9±1.9 67.1±3.1 67.1±2.8 58.3±2.7 52.1±1.5 60.7±2.7 53.1±2.8 50.5±4.8 43.6±3.6
improvement 4.6%* 4.6%* 0.7% 0.7% 1.0% 1.0% 7.9%* 7.9%* 12.3%* 12.3%* 5.0%* 5.0%* 5.7%* 5.7%* 0.3% 0.3% 6.3%* 16.3%* 9.0%* 9.0%*

RTM 64.2±2.3 72.9±3.6 71.0±1.7 61.5±4.0 50.6±3.4 53.3±1.1 58.7±3.5 58.9±3.0 52.4±3.4 42.6±2.0
Adj-Enc 71.0±0.4 78.9±0.7 74.6±1.9 72.4±2.1 57.8±1.4 60.4±1.1 63.6±1.9 63.8±1.5 62.6±2.1 52.1±3.7

Models LANTM 72.1±1.6 74.9±3.1 77.2±1.3 71.6±2.2 64.5±4.5 60.8±0.9 66.5±3.1 61.4±1.5 62.4±1.7 52.4±3.7
with GATON+DN 67.7±1.2 74.7±3.3 71.5±3.1 67.8±4.2 58.2±4.7 58.5±2.0 65.4±2.0 62.2±3.1 61.0±1.7 44.3±3.8

document meta-tail2vec 58.7±1.6 65.8±4.5 62.0±2.9 59.0±3.7 47.2±4.0 44.9±3.0 51.9±2.6 48.7±3.1 46.6±4.1 31.4±6.8
networks MCTM+DN (G) 83.3±1.7 86.2±2.9 82.7±2.1 81.9±2.6 82.1±2.4 72.9±1.0 77.2±4.3 73.9±3.8 71.9±3.9 68.1±2.8

MCTM+DN (C) 83.0±1.2 85.9±0.7 82.0±1.3 81.2±1.1 82.8±3.9 71.9±0.7 73.7±3.3 72.9±3.0 71.0±2.1 70.0±2.5
improvement 22.9%* 15.4%* 15.3%* 9.2%* 15.6%* 7.1%* 20.9%* 13.1%* 41.1%* 27.3%* 24.6%* 19.8%* 18.2%* 16.1%* 18.7%* 15.7%* 18.0%* 14.9%* 53.7%* 29.9%*

the extension of GATON with document networks. For document network scenario, we include a
graph embedding model, meta-tail2vec [23], which uses meta-learning to improve nodes with low
degrees, but is not a topic model and ignores variable lengths of node attributes, i.e., texts.

We set L = 2 convolutional layers. λgen = 2 and λreg = 0.05. Number of negative samples M = 5
and number of semantic clusters R = 5. L is the median length of the corpus. Local and global
learning rates are α1 = 0.001 and α2 = 0.0005. We use 300D Glove embeddings. We experiment
with 5 independent runs, report mean and std.dev. All the experiments were done on Linux server
with a Tesla K80 GPU with 11441MiB.

4.1 Quantitative Evaluation

Document Classification. Documents from the same category discuss related topics. As in LDA [3],
we conduct classification to evaluate topic quality. We split 80% documents for training (10% are for
validation). Labels are not involved during training. After convergence, we train a kNN classifier
(k = 5) [2] with training documents and predict the labels of test documents. We set 64 topics. We
compare our models within each category of baselines and report classification accuracy at Table 3.
We split the test set into four subsets with descending document length and report the result of both
overall test and each subset. 0-25% at Table 3 means the subset with the longest 25% test documents.
MCTM (G) and MCTM (C) denote our model with GNN and Clustering function, respectively. We
use “*” to represent statistically significant improvement with paired t-test at 0.05 significance level.

Our models significantly outperform baselines within each category. We outperform GATON, the best
baseline in the plain text and word embedding category, since textual semantic complement improves
short texts, and the overall test set is also improved. MCTM (G) performs slightly better than MCTM
(C), potentially because GNN recognizes importance of words with attention, while the Clustering
function takes simple average. To show our models indeed improve short text quality, we present the
improvement of MCTM (G) over both GATON and the best baseline. Our performance generally
improves more as the length decreases, which verifies the advantage of semantic complement.

Table 5: Topic interpretability.

Topic Key words of MCTM (G)
1 variance, probability, generalize, covariance, approximation
2 non-genetic, rnn, stimulus-response, epistasis, mismatch

Topic Key words of MCTM (C)
1 scalability, multiprocessor, obviate, compute, algorithm
2 sphere, tangent, three-dimensional, vector, geometrical

Topic Coherence. Each row of topic-word
distribution ZV ∈ RK×|V| is the distri-
bution of one topic over the vocabulary,
and the key words of this topic correspond
to the highest values on this row. As in
ProdLDA [31], we evaluate the coherence
of key words by Google Web 1T 5-gram
Version 1 [9], with NPMI as metric. Table
4 (left) summarizes the results. Topic-word
distribution ZV is model parameter and is
separate from document length, thus we can not report results of different lengths. LANTM cannot
run on large dataset Web. Meta-tail2vec is not a topic model, thus is excluded. Overall, our models
outperform baselines on ML and PL and are competitive with the best baseline on HEP-TH and Web.
This indicates that our models at least do not hurt topic coherence, but can significantly improve other
tasks, e.g., classification. Compared to GATON, our models significantly improve it, verifying the
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Table 4: Topic coherence NPMI (left, in percentage) and perplexity (right) at K = 64.

Category Model Topic Coherence NPMI Perplexity
ML PL HEP-TH Web ML PL HEP-TH Web

ProdLDA 6.3±0.2 9.4±0.5 10.3±0.6 16.2±1.4 7.19±0.00 7.21±0.00 7.72±0.00 8.34±0.00
Models WLDA 9.7±0.2 11.6±0.1 13.7±0.4 23.9±0.8 18.90±0.73 19.57±0.30 44.31±0.18 45.22±0.00

with GATON 9.9±0.9 8.4±1.5 8.9±1.5 4.8±1.1 9.64±0.27 9.17±0.10 8.79±0.57 8.52±0.12
plain text MCTM (G) 10.0±1.4 12.1±1.2* 13.7±1.7 13.5±2.5 3.81±0.24 3.60±0.51* 3.98±0.29* 3.27±0.41

MCTM (C) 9.9±2.0 12.0±1.8 13.2±2.1 16.1±1.1 3.76±0.17* 3.63±0.20 4.12±0.30 3.13±0.13*

ETM 5.5±0.1 7.7±0.2 7.2±0.4 16.4±0.7 8.67±0.00 8.52±0.00 8.51±0.00 8.52±0.00
Models with NSTM 16.0±1.0 18.6±0.6 18.2±0.5 27.9±0.6 8.46±0.00 8.34±0.00 8.39±0.00 8.30±0.00

word GATON+WE 16.1±1.4 12.9±1.5 16.9±1.1 12.4±1.1 5.50±0.21 5.56±0.48 8.36±0.02 7.98±0.02
embeddings MCTM+WE (G) 17.6±1.2* 19.1±2.8 18.2±1.3 23.6±0.4 4.43±0.17* 4.23±0.56* 3.36±0.10* 3.18±0.12

MCTM+WE (C) 16.8±1.1 20.3±1.5* 18.7±0.9 23.8±1.0 4.62±0.16 4.62±0.24 3.50±0.17 3.04±0.12*

RTM 7.3±0.2 8.9±0.5 6.6±0.3 18.0±0.4 8.07±0.01 7.93±0.01 8.04±0.00 8.96±0.13
Models Adj-Enc 8.4±0.4 10.5±0.1 6.4±0.4 7.2±0.5 7.41±0.01 7.34±0.13 7.45±0.19 7.65±0.00

with LANTM 9.9±1.2 9.8±0.7 10.4±1.5 N.A. 8.63±0.00 8.48±0.00 8.50±0.00 N.A.
document GATON+DN 10.3±0.7 10.7±1.1 9.7±0.8 7.7±2.0 8.58±0.02 8.43±0.00 8.33±0.01 8.13±0.02
networks MCTM+DN (G) 11.9±2.0* 11.1±2.0* 10.6±1.7 15.5±1.1 4.07±0.27 4.12±0.31 3.99±0.40* 3.21±0.25*

MCTM+DN (C) 11.6±1.5 10.3±1.4 10.4±1.5 17.0±1.1 3.41±0.36* 3.63±0.46* 4.13±0.23 3.75±0.43

Table 6: Link prediction (in percentage) on overall test set and the shorter half of the test set. Best
baselines are underlined. We show the improvement of MCTM (G) over GATON and best baseline.

Model ML PL HEP-TH Web
Overall Short Overall Short Overall Short Overall Short

RTM 71.4±0.9 67.0±0.6 68.2±0.4 62.2±0.3 69.7±0.8 65.1±0.6 69.9±0.1 75.3±0.1
Adj-Enc 88.1±0.2 86.2±0.3 79.6±0.3 73.8±0.2 88.9±0.1 88.4±0.1 82.7±0.1 78.5±0.2
LANTM 76.5±1.2 76.1±1.6 73.9±0.9 70.5±1.1 86.6±0.0 85.2±0.0 N.A. N.A.

GATON+DN 74.2±0.4 71.6±0.9 71.6±0.8 65.8±0.6 90.1±0.2 89.1±1.2 74.3±0.2 71.7±0.3
meta-tail2vec 69.7±2.3 66.5±1.5 68.7±1.7 64.3±1.5 N.A. N.A. N.A. N.A.

MCTM+DN (G) 94.0±0.5 91.9±1.4 91.5±0.1 90.6±0.8 93.9±0.2 93.9±0.1 83.4±0.1 80.5±0.1
MCTM+DN (C) 93.4±0.5 92.7±0.7 91.2±0.8 90.2±0.9 92.5±0.3 92.4±0.4 80.6±0.2 77.5±0.2

improvement 26.6%* 6.7%* 28.4%* 6.6%* 27.9%* 15.0%* 37.7%* 22.8%* 4.2%* 4.2%* 5.4%* 5.4%* 12.2%* 0.8%* 12.3%* 2.5%*

advantage of semantic complement. To understand what topics our models capture, we randomly
present two topics with top-5 key words at Table 5. MCTM (G) captures statistics and computational
genetics, while MCTM (C) reveals scalability and geometric learning.

Perplexity. Topic model should generalize to unseen documents. Following [3], we evaluate
perplexity. Since perplexity is exponential and varies much w.r.t. its power, we report its power,
− log Pr(Dtest)∑

d∈Dtest
ld

(lower is better). Table 4 (right) reveals that our models generate high likelihood to
unseen documents, which we attribute to semantic complement meta-learning module.

Link Prediction. A good model should infer similar topics for potentially linked documents. Since
we model document network as auxiliary data, we follow RTM [5] and predict links. As in [40], the
probability of a link is p(ed,d′) ∝ exp(−||z∗d − z∗d′ ||22). We predict the links within test documents
and compare with the ground-truth links with AUC as metric. Since only the third category (network
models) incorporate links, we mainly compare the MCTM+DN version to these network baselines.
Table 6 indicates that our models predict links more accurately than baselines. The comparison to
network baselines demonstrates the effectiveness of both textual and structural semantic complement.

4.2 Model Analysis

To better understand our model, we conduct model analysis here.

Effect of Semantic Complement. To see if semantic complement helps short texts, we remove it
from the complete model and present classification accuracy at Table 7 (left). We show the plain
text results, and put the auxiliary data version in supplementary. Models do better with semantic
complement than without. The accuracy on short subset declines more than the overall test set, which
reveals that semantic complement improves short texts, and removing it hurts short documents more.

Effect of Meta-Learning. To analyze if meta-learning benefits the optimization with a few observed
words, we replace it with the commonly used stochastic gradient descend. Table 7 (middle) shows
that result drops more on short subset than on the overall test set, which verifies that meta-learning is
good at optimization with only a few observed words and improves short text modeling. We further
remove both semantic complement and meta-learning, and report the result at Table 7 (right), which
presents the worst accuracy. This observation further verifies that both components are important.
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Table 7: Effect of semantic complement and meta-learning on document classification on ML.

Model
Effect of Semantic Complement Effect of Meta-Learning Effect of both

Overall test set Short subset Overall test set Short subset Test Short
with without with without with without with without without without

MCTM (G) 67.1±2.1 58.2±2.4 60.1±1.9 50.8±3.8 67.1±2.1 65.9±1.3 60.1±1.9 57.0±3.5 52.1±4.1 44.5±5.5
(decline) (13.3%*) (15.5%*) (1.8%) (5.2%*) (22.4%*) (26.0%*)

MCTM (C) 66.9±1.4 56.7±3.1 58.9±1.8 49.4±2.9 66.9±1.4 65.6±1.0 58.9±1.8 56.1±2.4 52.5±2.4 46.9±4.8
(decline) (15.2%*) (16.1%*) (1.9%) (4.8%*) (21.5%*) (20.4%*)

Effect of Scaling and Shifting. The GNN version of our model uses scaling-and-shifting method to
recover distinct topics. To test its usefulness, we disregard it and summarize classification accuracy
on ML at Table 8 (left). Removing scaling and shifting leads to worse performance, since we can not
personalize shared parameters to each document to recover its distinct missing topics for complement.

Table 8: Effect of scaling-and-shifting and clustering.

Model Scaling and Shifting Effect of Clustering
with without with without

MCTM 67.1±2.1 65.7±2.9 66.9±1.4* 62.7±1.6
MCTM+WE 66.8±2.0 65.9±1.0 66.0±1.4* 62.4±1.9
MCTM+DN 83.3±1.7 82.4±1.4 83.0±1.2* 81.0±1.3

Effect of Clustering. We set the number of
clusters R to 1, all documents share the same
parameters for missing semantics prediction
with no clustering. Table 8(right) concludes
that clustering is helpful to share common
semantics for related documents and distin-
guish documents of different clusters.

5 Related Work

Traditional topic models are graphical models [3, 13]. Recent ones are neural models [26], mainly
variants of VAE [17]. ProdLDA [31] and DVAE [4] analyze Dirichlet prior. WHAI [43] looks into
Gamma prior. The variational divergence metric also attracts attention. WLDA [28] and WAE [32]
apply mean maximum discrepancy and generative adversarial network [12]. KATE [6] increases
topic sparsity. More recently, topic models are built with graph neural networks [18], e.g., GATON
[37], GraphBTM [46], etc. They average losses of all documents regardless of lengths. MCTM
designs semantic complement to predict missing semantics for short texts to improve topic quality.

To alleviate scarce word co-occurrences of short texts, existing works leverage auxiliary data, such
as word embeddings [27, 29]. Graphical models include GLDA [7], GPUMM [22], LCTM [14],
MetaLDA [44], WDL [36], and OTLDA [15]. Neural models include ETM [8] and NSTM [45].
Another category improves short text modeling with document networks, e.g., citation network. RTM
[5] and NetPLSA [25] are graphical models. Neural models include NRTM [1], Adjacent-Encoder
[40], LANTM [35], NetDTM [42], SemiVN [41]. In contrast, our semantic complement module is
agnostic to auxiliary data.

Here, we also briefly review meta-learning works. One category is metric-based, e.g., ProtoNet [30]
and MatchingNet [33], which learn a metric function over tasks. Gradient-based meta-learning works
optimize model parameters for quick adaptation to new tasks [10, 16, 11, 34, 19, 38, 39].

6 Conclusion

We improve short text topic modeling with semantic complement meta-learning. We complement
the semantics for short documents by contrastive learning and design two alternatives for missing
semantics prediction. Meta-learning helps to optimize and predict the missing semantics. Experiments
on document classification, topic coherence, perplexity, and link prediction verify the effectiveness of
our model. One limitation is to assume a variable-length corpus with both long and short documents
for semantic transfer. We also assume the content is truthful. If the corpus is infiltrated by fake news,
those may appear in some topics. A future work is exploring online learning to speed up training.
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short text topic modeling with semantic complement meta-learning. The Methodology
section and Experiments section reflect these claims.

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 6.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] We do not
have theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We do not have
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source code, datasets, and a readme file for reproducibility.
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 3–8.
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reseatch with human subjects.
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