
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

4-2023 

Morphologically-aware vocabulary reduction of word embeddings Morphologically-aware vocabulary reduction of word embeddings 

Chong Cher CHIA 
Singapore Management University, ccchia.2018@phdis.smu.edu.sg 

Maksim TKACHENKO 
Singapore Management University, mtkachenko@smu.edu.sg 

Hady Wirawan LAUW 
Singapore Management University, hadywlauw@smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Databases and Information Systems Commons, Numerical Analysis and Scientific 

Computing Commons, and the Theory and Algorithms Commons 

Citation Citation 
CHIA, Chong Cher; TKACHENKO, Maksim; and LAUW, Hady Wirawan. Morphologically-aware vocabulary 
reduction of word embeddings. (2023). WI-IAT '22: Proceedings of the IEEE/WIC/ACM International 
Conference on Web Intelligence and Intelligent Agent Technology 2022, Niagara Falls, Canada, November 
17-20. 56-63. 
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7608 

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and 
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for 
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of 
Institutional Knowledge at Singapore Management University. For more information, please email 
cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7608&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


Morphologically-Aware Vocabulary Reduction of
Word Embeddings

Chong Cher Chia
Singapore Management University

ccchia.2018@smu.edu.sg

Maksim Tkachenko
Singapore Management University

maksim.tkatchenko@gmail.com

Hady W. Lauw
Singapore Management University

hadywlauw@smu.edu.sg

Abstract—We propose SubText, a compression mechanism via
vocabulary reduction. The crux is to judiciously select a subset
of word embeddings which support the reconstruction of the
remaining word embeddings based on their form alone. The
proposed algorithm considers the preservation of the original
embeddings, as well as a word’s relationship to other words that
are morphologically or semantically similar. Comprehensive eval-
uation of the compressed vocabulary reveals SubText’s efficacy on
diverse tasks over traditional vocabulary reduction techniques, as
validated on English, as well as a collection of inflected languages.

Index Terms—word embeddings, compression, vocabulary re-
duction

I. INTRODUCTION

Word embeddings (Word2Vec [1], GloVe [2]) have found
widespread adoption in various NLP tasks such as text classi-
fication [3], speech recognition [4], semantic relatedness [5],
sentiment analysis [6], question answering [7], etc. NLP-based
applications which require pretrained word embeddings are
moving ever closer to end-users; for instance, voice recog-
nition on smart devices is now commonplace. The emerging
trends of edge computing and on-device AI [8] lead to storing
and processing data on the device itself. Advantages include
greater responsiveness by avoiding network latencies, untether-
ing from the network when desired, and privacy preservation
with less data movement. Models stored and run on-device
would thus be small(er) due to small device memory sizes.

Our objective in this paper is reducing the storage size
of a given set of word embeddings while limiting NLP task
performance loss. Moreover, the intent is to do so in a task-
agnostic way to increase reusability, as multiple tasks on the
same device could then share the word embeddings. Efforts
at reducing the size of word embeddings must necessarily
target one of the following: the vocabulary size, embedding
dimensionality, or the numerical precision of each dimension
(see Section II). These factors are orthogonal and can be used
in conjunction. In this work, we focus on the relatively less
explored strategy of vocabulary reduction, keeping the original
dimensionality and precision as-is.

Our proposed framework, SubText1, retains a small subset
of the original vocabulary, thus reducing the memory footprint
proportionately. The size can be specified, and we experiment
with sizes two orders of magnitude smaller than the full

1 https://github.com/preferredAI/subtext

embedding vocabulary. As any other word not retained is
reconstructed from the retained subset, the core issue thus rests
on a judicious selection of which of subset of the vocabulary
ought to be retained.

The rest of the paper is organized as follows. Sec-
tion III formally defines the problem. Section IV describes
a morphologically-informed reconstruction of an out-of-
vocabulary word from the retained words which does not
feature vocabulary-specific parameters, and does not grow in
size with the retained vocabulary. Hence, the memory footprint
lies only within the proportion of the words retained. To select
the subset of words that optimize the reconstruction objective,
in Section V we propose SubText, which preserves morpho-
logical and semantic neighborhoods, and outline how to run its
computation efficiently. Section VI compares SubText to other
word selection approaches, on various tasks such as word re-
construction, word similarity and word classification as well as
intent classification. We further experiment on a collection of
12 inflected languages that consistently outperform baselines,
signifying a broader applicability of our proposed approach.
Lastly, while the focus of the work is primarily on learnt word
embeddings, we conduct a preliminary study on the potential
applicability of SubText for compressing word pieces in deep
learning models such as BERT [9] in Section VII.

As a statement of contributions, this work advances the
literature on word embeddings compression by proposing
SubText for vocabulary reduction, and showing its efficacy
on various tasks involving multiple languages.

II. RELATED WORK

The memory footprint of word embeddings X ∈ Rn×d is
proportional to vocabulary size n, word vector dimensionality
d, and precision of real-valued dimension (assumed 32 bits),
i.e., 32dn bits. Compressing X necessarily involves a reduc-
tion of these factors. We focus on vocabulary reduction, i.e.,
retaining a subset of n′ ≪ n word vectors. Below, we survey
other orthogonal approaches.

Dimensionality Reduction To reduce d, a common way
is to learn low-dimensional basis vectors to reconstruct high-
dimensional word vectors. A linear formulation factorizes X
into DA, where A ∈ Rk×d is a dictionary of k basis vectors
and D ∈ Rn×k is a code matrix aligning each word to a linear
combination of k basis vectors. The reduction in size comes
from (kn+dk) ≪ dn. For further efficiency, one could factor



in sparsity [10] or discretization [11], [12]. [13] organizes the
k basis vectors into m blocks of k

m basis vectors; savings come
from fewer effective basis vectors (m ≪ k) and fewer bits to
encode the weight of each (log k

m ≪ 32). [14] uses a neural
decoder. [15] allows variable-length codes. [16] uses common
words as basis vectors. This is not vocabulary reduction per
se, as a code matrix still has to be learnt. The compression
can be supervised [17], but our concern is unsupervised, with
tasks yet unknown.

Precision Reduction This reduces the numerical preci-
sion of each word vector dimension. Truncation [18] rounds
floating-point numbers to an arbitrary number of bits (4 to 8
bits). Another avenue is quantization, where each word vector
dimension is limited to one of k discrete ‘steps’. If each
dimension has its own independent quantization, the reduction
in size is given by (nd log k + 32dk) ≪ 32nd. Product
quantization [19], [20] generalizes the scheme above, splitting
the dimensionality d into s segments. Within a segment,
words are clustered by the relevant dimensions. The gain over
quantizing individual dimensions comes from there being only
s ≪ d segments. Yet another angle is iterative quantization
[21], [22], which seeks similarity-preserving binary codes.

Others There are other works whose objectives are not
compression. To generate embeddings for out-of-vocabulary
(OOV) words, FastText [23] expands the vocabulary, violating
the compression objective. [24] employs a similar idea, hence
retaining a large number of subwords embeddings. [25] does
not seek vocabulary reduction. [26], [27] requires separate
models to represent OOV words.

WordPiece [28], BPE [29] and SentencePiece [30] generate
vocabulary of a user-specified size and could represent OOV
words as segments of the learnt pieces. Morfessor [31] finds
morphological segmentations of words but do not allow spec-
ifying the compression rate. LMVR [32] extends Morfessor
FlatCat [33] to give more control over the output lexicon size.
These methods can be thought as text tokenizers and require
to learn embeddings post-factum, while SubText preserves the
original embedding space and allows graceful compression by
dropping words from the vocabulary iteratively. Orthogonal to
many approaches, SubText can be applied to aforementioned
methods to further reduce their memory footprint.

Others use context vectors to improve task performance
[7], [34], bring similar words closer [35], adapt to sentiment
lexicon [6], [36], sparsify the representation for interpretability
[37]. Techniques like inverted index pruning [38], [39] are not
compatible with word embeddings.

III. PROBLEM FORMULATION

As input, we consider pretrained word embeddings (e.g.,
Word2Vec). W = {w1, . . . , wn} denotes the vocabulary, and
xw ∈ Rd represents d-dimensional embedding for each w ∈
W . Alternatively, we use index notation to relate embedding
xi to its associated word wi. Our objective is to select a
subset W ′ ⊂ W to be used to reconstruct embeddings of
the discarded words W \W ′.

Let fW ′(w) be a reconstruction function that outputs an ap-
proximation of xw based on selected subset W ′. Our objective,
thus, is to minimize any information loss between fW ′(w) and
original embedding xw. As word embeddings often serve as
building blocks for a variety of NLP applications, we aim
to maximize in vivo performance across several tasks and
datasets (see Section VI), assuming that the target task is
not yet known. To perform in vitro analysis and to estimate
the information loss of reconstruction, we can use any stan-
dard Rd measures. In general, the quality of reconstruction
by fW ′ with respect to a specific word w is expressed as
some notion of reconstruction loss, denoted as q(xw, fW ′(w)).
Lower values indicate better reconstruction, with 0 being
perfect reconstruction. A reconstruction function itself may
incur storage cost by, for example, memorizing word-to-word
correspondence or certain embedding parameters. As this may
ultimately defy the purpose of compressing, we restrict our
search to functions independent of the vocabulary size and
negligible in the context of selected embeddings. We discuss
such reconstructions in Section IV.

With the overall objective being the reconstruction of W ,
we can express our problem as finding a subset W ′ ⊂ W that
minimizes the aggregated loss.

argmin
W ′⊂W

∑n

i=1
q(xi, fW ′(wi)). (1)

In turn, in Section V, we develop more concrete definitions
for q(xw, fW ′(w)) and offer a word selection algorithm to-
wards the above optimization problem.

IV. WORD RECONSTRUCTION

For compression, fW ′( · ) should be compact. If |fW ′ |
denotes the number of bits required to encode fW ′ , then |fW ′ |
should be negligible in the context of the selected embeddings.
We postulate |fW ′ | = O(1) and |fW ′ | ≪ repr(W ′), where
repr(W ′) is the number of bits required to store the word
embeddings for W ′.

A naïve candidate may ignore word-specific information,
returning the embedding of a predefined “unknown” word (i.e.,
〈UNK〉) for any w /∈ W ′. Formally,

fW ′(w) =

{
xw, when w ∈ W ′

x<UNK>, otherwise.
(2)

Words made up of common morphemes may overlap in
meaning, as they may share similar contexts within a corpus.
With a string distance (e.g., Levenshtein) function g( · , · ),
one may define a reconstruction function yielding the embed-
ding of an orthographically close word:

fW ′(w) = xw⋆ for w⋆ = argmin
w̄∈W ′

g(w, w̄), (3)

However, single-word approximations seem limiting for
inflected words, e.g., ‘countercheck’ with a prefix (‘counter’)
modifying its stem (‘check’). Though both morphemes are
critical to the meaning, the orthographic approach only selects
one. This limitation can be overcome by approximating the
target with some composition of embeddings. After the target
word is broken into known strings w̄i ∈ W ′, w = w̄1⊕· · ·⊕w̄k



(⊕ is the string concatenation operator), the approximation (we
focus on linear compositions in this work) is as follows:

fW ′(w) =
∑k

i=1
θww̄ixw̄i (4)

for some composition parameters {θww̄i
}ki=1. Since we are

unable to memorize these parameters within the function defi-
nition, they must be computable during inference. We observe
that longer morphemes usually capture dominant semantics of
the word, and tie the composition parameters to its length:
θww̄i

= |w̄i|
|w| .

Still, there are multiple ways to break up a target word
into pieces, each leading to different approximations. One way
to determine the ‘best’ decomposition would be to minimize
Equation 4 by comparing all possible target decompositions
to the original word embedding (observed during training):

fW ′(w) = argmin
x

1≤k≤|w|
w̄1⊕···⊕w̄k=w

d (xw, x),where x =

k∑
i=1

|w̄i|
|w| xw̄i (5)

The measure d (xw, x) indicates how close x is to the
original xw. We employ cosine distance in our experiments,
and alternative measures include L2 distance.

As the main objective is to evaluate the selected vocabulary
W ′, for the purpose of evaluation, Section VI uses such
reconstruction unless otherwise stated.

V. VOCABULARY REDUCTION

Optimizing the embedding reconstruction loss in Equation 1
directly by fully evaluating all

(
n
k

)
subsets where k = |W ′|

is computationally challenging. We therefore employ a greedy
approach for approximation, by removing the word incurring
minimal loss every iteration until the desired target size is
achieved. In order to preferentially remove uncommon pieces
at each iteration, we weigh the reconstruction cost for each
word w by how frequently it appears within other words in
the training vocabulary (γw):

h(W ′) = argmin
w∈W ′

(
γw × q

(
xw, fW ′\w(w)

))
(6)

Word Selection Next, we define of the per-word reconstruc-
tion loss.

Self-Reconstruction An intuitive starting point is for the
reconstruction to be close to its original embedding (i.e.,
q
(
xw, fW ′\w(w)

)
= d

(
xw, fW ′\w(w)

)
). While useful, this

criterion alone is myopically focused on one word at a time.
Morphological Neighbours The removal of w from W ′

renders it unavailable as a building block for other words.
Given wi, wj ∈ W ′, we say wj is a morphological neighbor
of wi if wi is a substring of wj or vice versa. Let CW ′(w)
be the set of all morphological neighbors of w within W ′. To
remove w from W ′, we consider how xw and morphological
neighbors CW ′(w) will now be reconstructed.

The removal of words with either few or easily recon-
structed neighbors is encouraged by updating the selection
criterion thus:

q
(
xw, fW ′\w(w)

)
= d

(
xw, fW ′\w(w)

)
+

∑
u∈CW ′ (w)

d
(
xu, fW ′\{w,u}(u)

)
. (7)

Semantic Neighbors Words with similar embeddings are
likely to be semantically related [1]. For each word w in W ,
we define its set of positive (N+

w ) and negative (N−
w ) semantic

neighbours (as elaborated below). To preserve the “meaning”
of w post-reconstruction, we further seek to preserve the
closeness between the reconstruction of w and those of its
positive semantic neighbors while keeping w apart from its
negative neighbours. We obtain an updated word selection
criterion below. α ∈ [0, 1] is a parameter controlling the
relative importance of semantic neighbourhood.

q
(
xw, fW ′\w(w)

)
= α

( ∑
u∈N+

w

d(fW ′(w), fW ′(u))−

∑
v∈N−

w

d(fW ′(w), fW ′(v))
)
+ (1− α)

(
d(xw, fW ′(w))+

∑
u∈CW ′ (w)

d
(
xu, fW ′\{w,u}(u)

))
. (8)

We postulate that semantic neighbours should constitute a
small portion of vocabulary W and possibly capture important
traits of the target word. Considering words that contain
the target w, we subsequently identify the top m closest
candidates (as determined by cosine distance) to w to form
the positive neighbors, and randomly sample m from the
remaining words as negative neighbors. If there are insufficient
negative candidates, we pad them randomly.

Optimization Algorithm The greedy approximate opti-
mizer (as described in Section V), while seemingly straight-
forward, is not tractable for large vocabularies as fW ′\w( · ) in
Equation 6 has to be recomputed at each pass of the loop. This
is due to the active vocabulary changing from W ′ to W ′ \w,
affecting the reconstruction of other words. We employ an
inverted index to look up the set of words a word part is in-
volved in. At the earlier stages of optimization, SubText tends
to remove longer words with few morphological neighbours,
and the optimizer performs only a handful of updates. Later, as
SubText begins removing smaller words (with potentially more
morphological neighbours), the vocabulary size is considerably
smaller and the algorithm remains tractable.

We employ a min-heap data structure to identify the word
with minimal reconstruction cost for each round. Thus, updat-
ing the word reconstruction cost uses O(log(|W ′|)) operations.

Lazy Optimization To realize a further gain in computational
efficiency, we develop a lazy optimization scheme. The sum-
mation over CW ′(w) in Equation 8 iterates over a large subset
of W ′ when w is short and thus a potential reconstruction
building block to many other words. Since |CW ′(w)| reduces
as words are removed from W ′, we avoid computing the full
summation for some words. We rewrite Equation 8 as follows:

q
(
xw, fW ′\w(w)

)
= L(w,W ′) +G(w,W ′), where

G(w,W ′) = (1− α)
∑

u∈CW ′ (w)
d
(
xu, fW ′\{w,u}(u)

)
,

L(w,W ′) = (1− α) d(xw, fW ′(w))

+ α
(∑

u∈N+
w

d(xu, fW ′(u))

−
∑

v∈N−
w

d(xv, fW ′(v))
)
.



Since G(w,W ′) is always non-negative, L(w,W ′) repre-
sents a lower bound of the minimized condition: L(w,W ′) +
G(w,W ′) ≥ L(w,W ′).

Instead of fully calculating Equation 8, we compute its
lower bound L(w,W ′) for every word w ∈ W ′ and iteratively
update it with the actual minimized condition. Assuming that
the words are indexed in ascending order (L(wi,W

′) <
L(wi+1,W

′) for any i), we observe that some computa-
tions become redundant when the updated bound becomes
lower than the next lower bound: L(wj ,W

′) +G(wj ,W
′) <

L(wj+1,W
′) (i.e., we have sufficient information to remove

wj or a predecessor ahead of wj+1 without computing
G(wj+1,W

′)). As such, we only keep track of words (among
those with updated bounds) which satisfies the following
condition (as well as minimizing Equation 8):

w = argmin
wi: i<j

[
L(wi,W

′) +G(wi,W
′)
]

Running Time We focus on the quality of the compressed
word embeddings instead of the computational efficiency of
the compression process, which can be done offline. Indica-
tively, on Intel Xeon 2.20GHz CPU and Nvidia Tesla P100
GPU, SubText requires approximately 9.5 hours to compress
the training Word2Vec embeddings, as compared to 10 hours
for Semantic Clustering. However, Semantic Clustering has to
be run once for each compression level. In contrast, SubText
stores the word removal sequence after the first run, and can
repeat the word removals for any desired level of compression
within minutes.

VI. EXPERIMENTS

Datasets We involve public datasets as outlined below.
Word2Vec We use Word2Vec [1] embeddings trained on the

English Wikipedia due to its large size and wide adoption.
We use the top 10% most frequent words (from 1,463,808
unique words) to constitute our observed (training vocabulary)
W , from which we select W ′. We also select the 1,000 most
frequent words from the remaining 90% to form a dedicated
testing vocabulary.

Polyglot We also use Polyglot [40] embeddings, which pro-
vides 64-dimensional word embeddings trained on Wikipedia
corpora of different languages. We focus on inflected/fusional
languages [41] that possess at least 50,000 vocabulary words.
Table I shows the language code, name and embedding
vocabulary size for the 12 selected languages. We use the
top 25,000 most frequent words as our training vocabulary
W , from which we select W ′, and the 1,000 most frequent
words never seen during training as our testing vocabulary. We
do not present Polyglot English embeddings, as their results
substantially mirror those of (English) Word2Vec.

Baselines Vocabulary reduction as a technique is rather
novel, we look to traditional vocabulary reduction baselines
for an apple-to-apple comparison.

Corpus Frequency memorizes the most frequent word types,
as they are most likely to be encountered later.

Morphological Clustering attempts to minimize Equation 1
assuming an orthographic reconstruction function as defined
in Equation 3 (Section IV). We use Levenshtein distance and
use Voronoi iteration method [42] to induce clustering.

TABLE I: Language code, name and vocabulary sizes for
Polyglot embeddings

Code
Language Name

(in English)
Vocabulary

Size
bn Bengali 55,004
de German 100,004
el Greek, Modern (1453-) 100,004
es Spanish; Castilian 100,004
fr French 100,004
hi Hindi 94,004
is Icelandic 55,004
it Italian 100,004
la Latin 64,004
pt Portuguese 100,004
ro Romanian 100,004
sq Albanian 82,004

Semantic Clustering is a variant of k-medoid selection,
where the words are selected via the embeddings space rather
than orthographically. We use cosine distance to assess embed-
ding closeness, so as to evenly cover the embedding space and
approximate discarded embeddings with the closest selected
embedding.

To arrive at the selection W ′ ⊂ W of a given size, all
baseline algorithms start from the same base of 66 word types,
comprising one-character words present in the corpus (‘a’, ‘b’,
etc.) as well as the 〈UNK〉 token. The selection methods would
add words to match the target size (10,000 to 25,000 words).

Since we focus on evaluating the selection methodologies,
we employ the method-agnostic reconstruction scheme as
defined in Section IV.

A. English Language Embeddings

Word Reconstruction We measure the ability of the se-
lected W ′ to reconstruct word embeddings. Following Equa-
tion 1, we compute the reconstruction error: average cosine
distance over the set of fixed vocabulary W (lower is better).
SubText requires parameter setting (Section V), and we set
α = 0.9 after grid search. α > 0 performs well indicating the
contribution of semantic neighborhood. Table II shows results
of reconstruction on different target sizes for training and
testing vocabularies. On both counts, SubText outperforms the
baselines with a steady margin. Corpus Frequency outperforms
the clustering baselines that only slightly improves upon
random.The low reconstruction error of SubText on training
vocabulary validates greedy optimization algorithm as an
approximate minimizer for Equation 1. The low reconstruction
error on the testing vocabulary suggests potential for SubText
to handle out-of-vocabulary words.

Word Relatedness To assess if the proximity between
semantically-related words in the original embedding space is
preserved in the reconstructed embedding space, we compute
pairwise distances between testing vocabulary words in both
the original and reconstructed spaces. We then evaluate the
selection methods according to standard word relatedness
measure by the Pearson correlation coefficient r (higher is bet-
ter).Table III shows that SubText consistently outperforms the
baselines, more so on smaller vocabulary sizes. While larger
vocabulary sizes generally lead to increasing positive correla-
tions, both clustering methods yield marginal improvements.



TABLE II: Word reconstruction (lower is better)

Size
Training Vocabulary Testing Vocabulary

Corpus
Frequency

Morphological
Clustering

Semantic
Clustering SubText Corpus

Frequency
Morphological

Clustering
Semantic
Clustering SubText

10K 0.837 0.958 0.957 0.785 0.855 0.943 0.941 0.800
15K 0.815 0.942 0.939 0.768 0.835 0.929 0.925 0.787
20K 0.802 0.922 0.923 0.752 0.820 0.910 0.910 0.778
25K 0.792 0.911 0.912 0.739 0.809 0.906 0.903 0.772

TABLE III: Word relatedness (higher is better)

Size
Corpus

Frequency
Morphological

Clustering
Semantic
Clustering SubText

10K 0.113 0.029 0.033 0.160
15K 0.136 0.030 0.033 0.159
20K 0.144 0.036 0.041 0.167
25K 0.152 0.047 0.045 0.173

When the vocabulary size is large, there are more common
words between any two selections, diminishing differences.

Token Classification We introduce a token classification
task spanning three different domains: 20News, BioASQ, and
arXiv. 20News2 contains news documents, and each sample
contains 20 classes with 200 train and 300 test words per class.
BioASQ Task 7a [43] contains biomedical paper abstracts and
Medical Subject Headings, which we use as classes. Each
sample contains 16 classes with 100 train and 300 test words
per class. arXiv3 contains Computer Science paper abstracts
and subject classes for each paper, which we use as classes.
Each sample contains 6 classes of 300 train and 200 test words
per class.

Since we focus on evaluating embedding reconstruction, we
use k-nearest neighbors algorithm (k-NN), a non-parametric
classification model. As metric, we use mean reciprocal rank
(MRR) over word classes with the words being queries. To
obtain ranks from k-NN, we estimate class probabilities and
sort predictions in descending order. Ties are resolved by
awarding the lowest possible rank for predictions of the same
probability. We use k = 100 for all k-NN experiments.

The baseline column in Table IV shows the average MRR
for Corpus Frequency across five data samples, and other
columns show percentage performance with respect to the
baseline (100% for Corpus Frequency). Due to size con-
straints, we only show results at 25,000, but observe similar
trends up to 10,000. We indicate statistically significant im-
provement over baseline (via paired t-test over all samples)
at p = 0.05 with †, and at p = 0.1 with ‡. SubText outper-
forms the baselines across datasets and sizes with statistically
significant improvements.

Sentence Completion We introduce a sentence completion
task. The task represents a multiple choice question: given a
sentence with a skipped word, which provided choice best fills
the gap? The number of choices corresponds to the number
of classes. For each incorrect class, we uniformly sample a
word of that class from the testing vocabulary. We fix the
context window size on either side by experimenting on sizes
{3, 5, 7}, and select 7 for best performance on the baseline.
To mitigate gains attributed to the classification model, we

2 qwone.com/~jason/20Newsgroups/ 3 kaggle.com/neelshah18/arxivdataset

solely utilize embeddings for prediction. We average all word
embeddings in the context window (context embedding), and
rank choices by the cosine similarity between the context
embedding and the reconstructed choice embeddings.Table
IV also shows average MRR for the baseline, and relative
performance in the remaining columns. The results largely
mirror the trends reported on the token classification task,
and SubText outperforms the baselines on all the datasets
across sizes with an improvement rate of 2-4%. Note that we
repeated this experiment with English Polyglot embeddings,
and observed similar trends.

Alternative Reconstruction Function So far, we focus on
reconstruction-agnostic evaluation. To experiment with another
possible approach, we hypothesize that longer word pieces are
better at differentiating word meaning, and rank all composi-
tions by the length of the longest word piece, favouring those
with the longest piece nearest to the start of the word in case of
ties. We then use Equation 4 to compute the top composition’s
reconstruction. We report results on word classification and
sentence completion (Table V), but we observe the same trend
on the word reconstruction and relatedness tasks. The target
vocabulary size is 25,000. SubText continues to outperform the
baseline, indicating that the selected vocabulary is important
regardless of the reconstruction method.

Intent Classification To evaluate the compressed embed-
dings in vivo, we look at a potential application for a smart
device. The CLINC150 dataset [44] contains sentences anno-
tated with 151 intent classes (e.g., play music). We control
the proportion of tokens that must be reconstructed. For each
sentence, we mask tokens longer than 2 characters with a
probability of P. To derive an embedding for each masked
token, we temporarily remove it from the compressed vocab-
ulary and place it back thereafter. Samples are generated by
repeating this masking process 5 times. We use the average
of word embeddings as the sentence embedding and k-NN
as a classifier. Table VI shows the average MRR. SubText
outperforms the baseline, and the margin of improvement
increases with P.

B. Inflected Language Embeddings

We repeat the above experiments with pretrained Polyglot
embeddings, compressed by SubText to 5,000 words due to
the smaller training vocabulary sizes.

Word Reconstruction Table VII shows the reconstruction
error for each language, for both the Polyglot training and
testing vocabulary. SubText outperforms the baselines consis-
tently, similar to the experiment using Word2Vec embeddings
(Table II). We note that the reconstruction error for the



TABLE IV: Evaluation Tasks at 25K (higher is better), relative to baseline (100%)

Token Classification Sentence Completion

Dataset
(Baseline)

Corpus
Frequency

Morpho-
logical

Clustering

Semantic
Cluster-

ing
SubText

(Baseline)
Corpus

Frequency

Morpho-
logical

Clustering

Semantic
Cluster-

ing
SubText

20News 0.242 82.50 82.84 105.52† 0.288 86.15 86.04 102.66†

BioASQ 0.273 90.13 90.08 102.91† 0.263 95.52 95.37 103.70†

arXiv 0.451 95.21 95.81 101.05† 0.452 96.23 96.09 102.21‡

TABLE V: Alternative reconstruction (higher is better), relative to baseline (100%)

Word Classification Sentence Completion

Dataset
(Baseline)

Corpus Frequency SubText(%)
(Baseline)

Corpus Frequency SubText(%)

20News 0.227 105.36† 0.268 101.28‡

BioASQ 0.258 101.35† 0.252 102.65†

arXiv 0.447 102.17† 0.442 100.76

TABLE VI: Intent classification (higher is better), relative to
baseline (100%)

P (Baseline) Corpus Frequency SubText(%)
0.25 0.567 100.48‡

0.50 0.501 101.82†

0.75 0.491 104.73†

training vocabulary is relatively lower for Polyglot embeddings
as compared to Word2Vec embeddings. This is possibly due
to Polyglot embeddings having a smaller vocabulary, thus
requiring less compression to reach the target size.

Word Relatedness Next, we calculate the word pair sim-
ilarities from each Polyglot testing vocabulary using original
and reconstructed word embeddings, and show the embedding
distance correlation in Table VIII. SubText shows higher
correlation as compared to the baseline methods, between
the original and reconstructed embedding distances for all
selected languages. This suggests that SubText is better able
to preserve the proximity of semantically-related words in the
reconstructed embedding space.

Case Study Next, we analyse the reconstruction
choices Corpus Frequency and SubText made for a
sample of four languages in Table IX. From the
German (de) examples, we observe SubText reconstructing
the target word herrenmannschaften (men’s teams)
as a combination of the words herren (men’s)
and mannschaften (teams), as opposed to mainly
herrenmannschaft (men’s team) when using Corpus
Frequency. While the SubText reconstruction may be slightly
further away from the target word, the word pieces herren
and mannschaften can then be used to reconstruct
other target words containing either of these wordpieces, as
opposed to only those containing herrenmannschaft.
Using fewer wordpieces to cover a larger range of target
words with common morphemes also benefits the ability of
SubText to reconstruct rare words, as it can now memorize
more uncommon morphemes that occur in these rare words.
Note that this relies on sematically related words sharing
morphemes, a feature of inflected languages.

From the French examples, we observe individualisé

(individualized) being reconstructed with the morpheme
individu (individual) by SubText. In contrast, Corpus Fre-
quency mostly relies on unigrams, with the longest wordpiece
being dual. This example highlights a failure mode for Cor-
pus Frequency; morphemes that best reconstruct the target may
be unpopular, and thus not available for use in reconstruction.

We observe similar cases in the Icelandic and Por-
tuguese examples as well. For example, SubText reconstructs
helgidagur (holiday) by helgi (weekend) and dagur
(day), which is more informative as compared to the Cor-
pus Frequency reconstruction of hel.g.i.dagur. A sim-
ilar Portuguese example is referenciação (referencing),
which is reconstructed using the morphemes referencia
(reference) and ação (action) by SubText and Corpus Fre-
quency respectively.

VII. INQUIRY INTO PRETRAINED LANGUAGE MODELS

While our work focuses on learnt word representations, we
note the recent popularity of approaches which jointly train
the word embeddings and classification layers, such as [45].
In this section, we explore the applicability of SubText on such
deep learning models.

We first fine-tune4 the "bert-base-uncased" base model
(from HuggingFace Transformers [46]) on the Intent Classifi-
cation task described in Section VI-A. We adopt the same
training, validation and testing splits as per the original
Intent Classification dataset. The "bert-base-uncased" model
contains 30,522 WordPiece [47] tokens in embedding layer,
from which we remove 994 tokens matching the pattern
"[unused[0-9]*]". We adopt all of the remaining 29528
tokens (inclusive of special tokens i.e., [UNK], [PAD]) as
training vocabulary.

As the WordPiece algorithm already seeks to reduce the
corpus to its constituent substrings, we modify the defini-
tion of morphological neighbours (Section V) to wj being
a morphological neighbor of wi if and only if wi is a
substring of wj . As the actual corpus counts of each Word-
Piece token are not provided, we estimate (via Zipf’s Law)

4 200 epochs, batch size of 250



TABLE VII: Polyglot: word reconstruction for inflected languages (lower is better)

Training Vocabulary Testing Vocabulary

Code
Corpus

Frequency
Morphological

Clustering
Semantic
Clustering SubText Corpus

Frequency
Morphological

Clustering
Semantic
Clustering SubText

bn 0.643 0.702 0.709 0.551 0.910 0.952 0.954 0.854
de 0.630 0.683 0.690 0.578 0.840 0.921 0.923 0.795
el 0.665 0.680 0.681 0.606 0.878 0.909 0.909 0.835
es 0.654 0.693 0.700 0.597 0.870 0.918 0.924 0.803
fr 0.641 0.675 0.681 0.572 0.862 0.900 0.897 0.788
hi 0.561 0.585 0.586 0.512 0.803 0.857 0.860 0.755
is 0.630 0.639 0.643 0.549 0.968 1.008 1.010 0.868
it 0.616 0.665 0.667 0.561 0.837 0.901 0.901 0.769
la 0.622 0.605 0.606 0.551 0.956 0.991 0.993 0.865
pt 0.623 0.659 0.663 0.570 0.856 0.904 0.906 0.786
ro 0.611 0.647 0.650 0.560 0.839 0.884 0.886 0.787
sq 0.586 0.593 0.597 0.539 0.865 0.900 0.907 0.809

TABLE VIII: Polyglot: word relatedness for inflected lan-
guages (higher is better)

Code Corpus
Frequency

Morphological
Clustering

Semantic
Clustering SubText

bn 0.047 0.044 0.043 0.091
de 0.042 0.011 0.013 0.069
el 0.021 0.018 0.017 0.034
es 0.024 0.010 0.006 0.056
fr 0.030 0.019 0.017 0.058
hi 0.095 0.087 0.093 0.159
is 0.084 0.029 0.032 0.180
it 0.045 0.035 0.036 0.093
la 0.086 0.019 0.023 0.125
pt 0.048 0.017 0.019 0.087
ro 0.054 0.040 0.041 0.087
sq 0.077 0.029 0.028 0.115

TABLE IX: Polyglot: ORIGINAL RECONSTRUCTION Exam-
ples

Language Target Word Corpus Frequency SubText

German
(de)

weltcupspringen weltcups.p.ringe.n weltcup.spring.en
herrenmannschaften herrenmannschaft.e.n herren.mannschaften
aufgezeichneten auf.g.e.zeichneten auf.gezeichnet.en
verfassungs v.erfassung.s verfassung.s
opernhauses opernhaus.e.s opern.hauses
herausbrachte her.ausbrach.te heraus.brachte

French
(fr)

individualisé i.n.d.i.v.i.dual.i.s.é individu.al.i.s.é
qu’environ qu’en.v.i.r.o.n qu.’.environ
languette la.n.guet.t.e langue.t.te
abandons a.b.an.dons abandon.s
l’équipement l’équipe.m.en.t l.’.équipement
découpés d.é.coupés découpé.s

Icelandic
(is)

hugverkarétt hug.verkar.é.t.t hug.verka.rétt
helgidagur hel.g.i.dagur helgi.dagur
skipulagður sk.i.p.u.lagður skipulag.ð.ur
meðferðarinnar me.ð.ferðarinnar meðferðar.innar
algengum al.g.engum algeng.u.m
flokkakerfi f.lokka.kerfi flokka.ker.f.i

Portuguese
(pt)

referenciação r.e.f.e.r.e.n.c.i.ação referencia.ç.ã.o
reavaliar r.ea.v.aliar re.avaliar
desembarques de.s.embarque.s desembarque.s
sustentando su.s.tentando sustenta.n.do
reproduzindo r.e.produzindo reproduz.indo
aculturação a.cult.ur.ação a.cultura.ç.ã.o

γw = (1/Rw) /
(∑N

n=1(1/n)
)

, where Rw is the rank of w

and N = 3× 109 (approximate size of BERT training corpus
[45]). We also conduct a grid search for parameter setting
using the validation dataset, and set α = 0.3.

Next, we select W ′ from the training vocabulary, and use
them to replace the embeddings in the base model Token
Embedding layer with reconstructed embeddings (Equation 5)
as required. Figure 1 illustrates this (in orange), where the
embedding for Tok 2 (i.e, E′

2) is replaced by combining em-

Fig. 1: SubText Reconstruction in Pretrained Language Models

beddings from other tokens. We then calculate the evaluation
task MRR for the updated model at different sizes, stopping
once the model is below 90% of the original performance.

We compare SubText to Morphological Clustering and
Semantic Clustering baselines as previously described in Sec-
tion VI. However, we are unable to use Corpus Frequency,
as it would require the corpus used for training "bert-base-
uncased". To simulate this, we instead select the top k tokens
from the training vocabulary, in the order that they appear
in the Word Embedding layer of the base model, with the as-
sumption that these tokens are ordered by frequency (Frequent
Pieces). The results are reported in Table X.

We first observe that the MRR when using all WordPieces
in the baseline model is 0.971. At size 25K (approximately
85% of baseline), both SubText and Frequent Pieces perform
similarly with an MRR of 0.966. However, the Morphologi-
cal Clustering and Semantic Clustering baselines already show
significant performance degradation, with a MRR of 0.889 and
0.891 respectively.

For subsequently smaller sizes, we observe that Frequent
Pieces consistently performs worse than SubText; at 10K
tokens (approximately 34% of baseline), Frequent Pieces
achieved a MRR of 0.879 while SubText achieved 0.905.
This suggests that the Word Embedding reconstructions using
WordPieces selected by SubText are better able to capture the
semantic meaning of the underlying words.



TABLE X: Pretrained Transformer Intent Classification

Size
Frequent

Pieces
Morphological

Clustering
Semantic
Clustering SubText

10K 0.879 0.321 0.306 0.905
15K 0.926 0.558 0.559 0.943
20K 0.955 0.762 0.777 0.959
25K 0.966 0.889 0.891 0.966
Full 0.971

VIII. CONCLUSION

SubText compresses word embeddings via vocabulary re-
duction, and preserves original embeddings as well as a word’s
morphological or semantic neighborhood. Its efficacy is vali-
dated on diverse tasks (word reconstruction, word relatedness,
word classification, sentence completion and intent classifica-
tion), demonstrating significant improvements over baselines.
Further explorations beyond English into a collection of 12
inflected languages as well as effectiveness in pretrained
language models show its potential for broader applicability.

REFERENCES

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in ICLR Workshop, 2013.

[2] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in EMNLP, 2014, pp. 1532–1543.

[3] X. Yang, C. Macdonald, and I. Ounis, “Using word embeddings in
twitter election classification,” Information Retrieval Journal, vol. 21,
no. 2-3, pp. 183–207, 2018.

[4] S. Bengio and G. Heigold, “Word embeddings for speech recognition,”
in INTERSPEECH, 2014.

[5] H. T. Nguyen, P. H. Duong, and E. Cambria, “Learning short-text
semantic similarity with word embeddings and external knowledge
sources,” KBS, vol. 182, p. 104842, 2019.

[6] M. Tkachenko, C. C. Chia, and H. Lauw, “Searching for the X-factor:
Exploring corpus subjectivity for word embeddings,” in ACL, 2018, pp.
1212–1221.

[7] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in transla-
tion: Contextualized word vectors,” in NeurIPS, 2017, pp. 6294–6305.

[8] N. I. Mowla, I. Doh, and K. Chae, “On-device ai-based cognitive
detection of bio-modality spoofing in medical cyber physical system,”
IEEE Access, vol. 7, 2018.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[10] D. Yogatama, M. Faruqui, C. Dyer, and N. Smith, “Learning word
representations with hierarchical sparse coding,” in ICML, 2015, pp.
87–96.

[11] J. Tissier, C. Gravier, and A. Habrard, “Near-lossless binarization of
word embeddings,” in AAAI, vol. 33, 2019, pp. 7104–7111.

[12] M. Faruqui, Y. Tsvetkov, D. Yogatama, C. Dyer, and N. A. Smith,
“Sparse overcomplete word vector representations,” in ACL-IJCNLP,
2015, pp. 1491–1500.

[13] R. Shu and H. Nakayama, “Compressing word embeddings via deep
compositional code learning,” in ICLR, 2018.

[14] T. Chen, M. R. Min, and Y. Sun, “Learning k-way d-dimensional discrete
codes for compact embedding representations,” in ICML, 2018, pp. 853–
862.

[15] Y. Kim, K.-M. Kim, and S. Lee, “Adaptive compression of word
embeddings,” in ACL, 2020, pp. 3950–3959.

[16] Y. Chen, L. Mou, Y. Xu, G. Li, and Z. Jin, “Compressing neural language
models by sparse word representations,” in ACL, 2016, pp. 226–235.

[17] L. Mou, R. Jia, Y. Xu, G. Li, L. Zhang, and Z. Jin, “Distilling word
embeddings: An encoding approach,” in CIKM, 2016, pp. 1977–1980.

[18] S. Ling, Y. Song, and D. Roth, “Word embeddings with limited mem-
ory,” in ACL, 2016, pp. 387–392.

[19] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization,”
IEEE TPAMI, vol. 36, no. 4, pp. 744–755, 2013.

[20] K. Shi and K. Yu, “Structured word embedding for low memory neural
network language model.” in INTERSPEECH, 2018, pp. 1254–1258.

[21] S. Liao, J. Chen, Y. Wang, Q. Qiu, and B. Yuan, “Embedding compres-
sion with isotropic iterative quantization,” in AAAI, 2020, pp. 8336–
8343.

[22] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE TPAMI, vol. 35, no. 12, pp. 2916–2929, 2012.

[23] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” TACL, vol. 5, pp. 135–146, 2017.

[24] J. Zhao, S. Mudgal, and Y. Liang, “Generalizing word embeddings using
bag of subwords,” in EMNLP, 2018, pp. 601–606.

[25] T. Luong, R. Socher, and C. Manning, “Better word representations with
recursive neural networks for morphology,” in CoNLL, 2013, pp. 104–
113.

[26] Y. Pinter, R. Guthrie, and J. Eisenstein, “Mimicking word embeddings
using subword RNNs,” in EMNLP, 2017, pp. 102–112.

[27] S. Kumar and Y. Tsvetkov, “Von mises-fisher loss for training sequence
to sequence models with continuous outputs,” in ICLR, 2018.

[28] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in
ICASSP. IEEE, 2012, pp. 5149–5152.

[29] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” in ACL, 2016, pp. 1715–1725.

[30] T. Kudo and J. Richardson, “SentencePiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
in EMNLP, 2018, pp. 66–71.

[31] P. Smit, S. Virpioja, S.-A. Grönroos, and M. Kurimo, “Morfessor 2.0:
Toolkit for statistical morphological segmentation,” in EACL, 2014, pp.
21–24.

[32] D. Ataman and M. Federico, “An evaluation of two vocabulary reduction
methods for neural machine translation,” in AMTA, 2018, pp. 97–110.

[33] S.-A. Grönroos, S. Virpioja, P. Smit, and M. Kurimo, “Morfessor
FlatCat: An HMM-based method for unsupervised and semi-supervised
learning of morphology,” in COLING, 2014, pp. 1177–1185.

[34] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” in NAACL-
HLT, 2018, pp. 2227–2237.

[35] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith,
“Retrofitting word vectors to semantic lexicons,” in NAACL-HLT, 2015,
pp. 1606–1615.

[36] L.-C. Yu, J. Wang, K. R. Lai, and X. Zhang, “Refining word embeddings
using intensity scores for sentiment analysis,” TASLP, vol. 26, no. 3, pp.
671–681, 2017.

[37] F. Sun, J. Guo, Y. Lan, J. Xu, and X. Cheng, “Sparse word embeddings
using l1 regularized online learning,” in IJCAI, 2016, pp. 2915–2921.

[38] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. S. Maarek,
and A. Soffer, “Static index pruning for information retrieval systems,”
in SIGIR, 2001, pp. 43–50.

[39] A. Ntoulas and J. Cho, “Pruning policies for two-tiered inverted index
with correctness guarantee,” in SIGIR, 2007, pp. 191–198.

[40] R. Al-Rfou, B. Perozzi, and S. Skiena, “Polyglot: Distributed word
representations for multilingual nlp,” in CoNLL, 2013, pp. 183–192.

[41] A. Y. Aikhenvald et al., “Typological distinctions in word-formation,”
Language typology and syntactic description, vol. 3, pp. 1–65, 2007.

[42] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” Expert systems with applications, vol. 36, no. 2, pp. 3336–
3341, 2009.

[43] G. Tsatsaronis, G. Balikas, P. Malakasiotis, I. Partalas, M. Zschunke,
M. R. Alvers, D. Weissenborn, A. Krithara, S. Petridis, D. Poly-
chronopoulos et al., “An overview of the bioasq large-scale biomedical
semantic indexing and question answering competition,” BMC bioinfor-
matics, vol. 16, no. 1, p. 138, 2015.

[44] S. Larson, A. Mahendran, J. J. Peper, C. Clarke, A. Lee, P. Hill, J. K.
Kummerfeld, K. Leach, M. A. Laurenzano, L. Tang, and J. Mars, “An
evaluation dataset for intent classification and out-of-scope prediction,”
in EMNLP-IJCNLP, 2019.

[45] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in NAACL-HLT, 2019, pp. 4171–4186.

[46] T. Wolf et al., “Transformers: State-of-the-art natural language process-
ing,” in EMNLP, Oct. 2020, pp. 38–45.

[47] Y. Wu et al., “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation,” arXiv preprint
arXiv:1609.08144, 2016.


	Morphologically-aware vocabulary reduction of word embeddings
	Citation

	tmp.1671679803.pdf.naVg7

