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Dynamic Topic Models for Temporal Document Networks

Delvin Ce Zhang 1 Hady W. Lauw 1

Abstract
Dynamic topic models explore the time evolu-
tion of topics in temporally accumulative cor-
pora. While existing topic models focus on the
dynamics of individual documents, we propose
two neural topic models aimed at learning unified
topic distributions that incorporate both document
dynamics and network structure. For the first
model, by adding a time dimension, we propose
Time-Aware Optimal Transport, which measures
the probability of a link between two differently
timestamped documents using their semantic dis-
tance. Since the gradually evolving topological
structure of network may also influence the estab-
lishment of a new link, for the second model, we
further design a Temporal Point Process to capture
the impact of historical neighbors on the current
link formation at the network level. Experiments
on four dynamic document networks demonstrate
the advantage of our models in jointly modeling
document dynamics and network adjacency.

1. Introduction
Textual documents represent an important class of data,
including academic papers, Web pages, etc. Usually these
documents link to one another, forming a network structure,
such as paper citation network, Web page hyperlink network.
To derive latent semantics from such a corpus, we may
employ a topic model, such as RTM (Chang & Blei, 2009)
that leverages the interconnection between documents.

A document network does not emerge suddenly in its en-
tirety. Rather, it is an accumulation of documents created
over time. The latent themes in a corpus may also evolve
over time, e.g., academic papers track the development of
research across years, news articles track the chronology
of events. Early attempts to capture document dynamics
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Figure 1. Illustration of a temporal document network.

(DTM (Blei & Lafferty, 2006)) ignore the network aspect.

We postulate that the temporal nature relates not only to
when a document is created, but also to how documents cre-
ated at different times may form linkages. Fig. 1 illustrates
the formation of a temporal document network. Initially at
time ti−1, the network contains four documents (A, B, C,
and D) and links among them. At time ti, two new docu-
ments, E and F , are published, and bring links to documents
B and D, respectively. We use red documents and links
to denote the newly appearing data. Moving to time ti+1,
document G is published and connected to documents D
and F . As time goes by, we observe the growth in terms of
both corpus size and network connectivity. Modeling time
could better preserve text semantics and network topology.
Moreover, time also reveals the possibility of connection.
Indicatively, newly published documents are likely to con-
nect to recent neighbors rather than previous ones. Existing
topic models for document networks, e.g., RTM (Chang &
Blei, 2009), focus on the static network. As a result, it may
predict a past link using documents published in future time.

Our strategy to better model topics in temporal document
networks is a confluence of three factors. First, most dy-
namic topic models (Blei & Lafferty, 2006) deal with the
plain text within documents and ignore the network con-
nectivity across documents. However, links constitute addi-
tional information on documents’ similarities, and modeling
them could reveal insightful semantics. Second, models for
networked documents (Chang & Blei, 2009) mainly focus
on static networks without considering time. Dynamic pro-
cess showcases topic evolution and network generation over
the time. By modeling it, we may better preserve text seman-
tics and network topology. Third, most topic models (Chang
& Blei, 2009; Bai et al., 2018) preserve network structure
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by modeling first-order neighborhood only, a limited use of
network adjacency. The generation of a link between two
documents may be influenced by their common historical
neighbors, which is higher-order proximity.

Contributions. We propose neural topic models for dy-
namic document networks that jointly preserve document
dynamics and network adjacency. Optimal Transport (OT)
(Cuturi, 2013) measures the distance between two distri-
butions and was adopted in topic modeling (Zhao et al.,
2020), but none explored OT in a dynamic setting. In this
work, we incorporate time into OT and propose two dynamic
topic models, NetDTM and NetDTM++, for Dynamic Topic
Modeling on Networked documents (first contribution).

Specifically for NetDTM, as the second contribution, in
addition to the topic and word dimension, we add one more
time dimension to OT and develop a Time-Aware Optimal
Transport, which measures the probability of a link between
two differently timestamped documents using their semantic
distance. OT benefits our model by incorporating semanti-
cally related word embeddings in cost matrix.

Besides the semantic-level modeling by NetDTM, we dis-
cover that the generation of a link is also influenced by the
evolving topological structure of network. While NetDTM
accounts for semantic modeling, as the third contribution,
we further propose NetDTM++ for network-level model-
ing, which designs a Temporal Point Process to capture the
impact of network structure on the current link.

Fourth, extensive experiments on four datasets demonstrate
the advantage of our models over comparable baselines.

2. Related Work
Classical topic models are graphical models (Hofmann,
1999; Blei et al., 2003). Recent ones are neural models,
e.g., ProdLDA (Srivastava & Sutton, 2017), NVDM (Miao
et al., 2016), DVAE (Burkhardt & Kramer, 2019), WHAI
(Zhang et al., 2018), KATE (Chen & Zaki, 2017), which
extend VAE (Kingma & Welling, 2013) for topic modeling.
For short texts (Das et al., 2015; Li et al., 2016; Dieng et al.,
2020), some use pre-trained word embeddings (Mikolov
et al., 2013; Pennington et al., 2014). However, these mod-
els do not explore document dynamics or network structure.

Optimal transport (Cuturi, 2013) has been used in topic mod-
eling, including NSTM (Zhao et al., 2020), DWL (Xu et al.,
2018), and OTLDA (Huynh et al., 2020). Others (Nan et al.,
2019; Patrini et al., 2020) measure Wasserstein distance
between predicted and ground-truth word distribution. They
do not capture time information or network connectivity.

For documents with publication time, dynamic models use
time to improve topic modeling. DTM (Blei & Lafferty,
2006) uses a Markov chain (Bishop, 2006) for semantic evo-

lution. cDTM (Wang et al., 2008) uses Brownian motion.
DETM (Dieng et al., 2019) incorporates word embeddings.
MDTM (Iwata et al., 2010) allows online update of its pa-
rameters. Others (Bhadury et al., 2016; Jähnichen et al.,
2018) speed up the inference by sampling. They incorporate
time, but ignore the network adjacency across documents.

There are some models for networked documents. RTM
(Chang & Blei, 2009) and PLANE (Le & Lauw, 2014) are
graphical models. NRTM (Bai et al., 2018) applies VAE
and multi-layer perceptron (Bishop, 2006) to predict the
links. Adjacent-Encoder (Zhang & Lauw, 2020) captures
network by neighbor reconstruction. SemiVN (Zhang &
Lauw, 2021) models links with document labels. They
model the effect of network, but ignore the dynamic process
of network generation. Other models for attributed graph
embedding (Kipf & Welling, 2016; Veličković et al., 2018)
and temporal graph embedding (Zuo et al., 2018; Xu et al.,
2020) are not comparable, since they are not topic models.

3. Preliminaries
Definition 3.1 (Temporal Document Network). Let a tempo-
ral document network G be a tuple {D, E , T }. D = {di}Ni=1

contains documents. Each document di ∈ R|V| is a vector in
the vocabulary space V . E = {Et}Tt=1 is a set of adjacency
matrices. Et ∈ RN×N is the adjacency matrix at timestamp
t, where eijt = 1 if there is a link between document i and
j at timestamp t, eijt = 0 otherwise. T is the maximum
timestamp. In this paper we consider an undirected network,
eijt = ejit. For a document i, its cumulative neighbors
observed at timestamp t are those directly linked to i from
the initial timestamp to t, denoted as Nt(i). We consider
i as its own neighbor, i ∈ Nt(i). T = {ti}Ni=1 contains
timestamps, ti is the publication time of document i. If i
and j are published at the same time, ti = tj .

Given G as input, we propose a neural topic model and
derive topic distributions that preserve document semantics
D, evolved network structure E , and dynamics T .

Definition 3.2 (Optimal Transport). Optimal transport mea-
sures the distance between two probabilities. Given r ∈
RDr and q ∈ RDq , where their respective dimension Dr

and Dq may not be the same, their OT distance is

dC(r,q) = min
P∈U(r,q)

< P,C >= min
P∈U(r,q)

Dr∑
u=1

Dq∑
v=1

puvcuv.

(1)
C ∈ RDr×Dq

≥0 is cost matrix, each element cuv measures the

cost of transport between ru and qv. P ∈ RDr×Dq

>0 is trans-
port plan. U(r,q) = {P ∈ RDr×Dq

>0 |P1Dq
= r,P⊤1Dr

=
q} is the transport polytope with r and q as marginals. 1D

is a D-dimensional vector with ones. Thus, each element
puv ∈ P is the probability of transport between ru and qv.



Dynamic Topic Models for Temporal Document Networks

Given a cost matrix C, OT distance between r and q is to
find the optimal plan P∗ and obtain dC(r,q) =< P∗,C >.

We will extend OT to incorporate time and use it to measure
the semantic distance between two differently timestamped
documents i and j as the probability of the link eijt.

Definition 3.3 (Temporal Point Process). Temporal point
process models the discrete sequential events. It measures
the conditional probability λϵ(t)∆t of an event ϵ happening
in a tiny window [t, t + ∆t) by assuming that historical
events before timestamp t can influence the occurrence of
the current event. Here, λϵ(t) is conditional intensity func-
tion of event ϵ at timestamp t. Hawkes process is a typical
temporal point process. Given historical events {ϵh|th < t}
before timestamp t, its conditional intensity function models
the arrival rate of the current event ϵ at timestamp t.

λϵ(t) = µϵ(t) +
∑

ϵh:th<t

βϵh,ϵκ(t− th), (2)

µϵ(t) is base intensity (the spontaneous arrival rate of the
current event ϵ at timestamp t). βϵh,ϵ is the influence of the
historical event ϵh on the current ϵ. κ(t− th) is time decay.

We will use Hawkes process to capture the influence of
historical neighbors on the current link formation eijt.

4. Model Architecture and Analysis
Here, we describe the technical details of our models. See
Appendix A (Table 4) for the summary of math notations.

4.1. NetDTM for Semantic-Level Modeling

We first present NetDTM for semantic-level modeling, and
defer the modeling of NetDTM++ to the next subsection.
Each document d ∈ R|V| is a distribution in the word space,
where each element dw = nw∑

w′∈V nw′
is normalized by the

length of the document. Here, nw is the word count of w in
the document. Given document i with its content di on the
network, as in (Burkhardt & Kramer, 2019), we encode it
into a K-dimensional topic distribution by zi = θ(di), i.e.,

zi := dropout(ReLU(W1di + b1)),

zi :=softmax(batch norm(W2zi + b2)).
(3)

W1 ∈ R200×|V|, W2 ∈ RK×200, b1 ∈ R200, b2 ∈ RK

are parameters. We follow (Burkhardt & Kramer, 2019)
to choose 200 as intermediate dimension. ReLU(x) =

max(0, x) and softmax(x) = exp(xk)∑K
k′=1

exp(xk′ )
.

Time-Aware Attention. We seek an attention mechanism
to evaluate the importance of neighbors. For one, neighbors
with similar semantics should be assigned high attention.
For another, two linked documents with close publication

timestamps are more likely to share similar topics, and
should preserve higher attention values. Taking both as-
pects into account, we design a time-aware attention with
both semantic similarity and timestamp difference.

ãij = tanh([Watt(zi||hti)]
⊤[Watt(zj ||htj )]),

aij =
exp(ãij)∑

j′∈Nt(i)
exp(ãij′)

.
(4)

(·||·) is concatenation, Watt ∈ RK×3K is parameter. Atten-
tion values are jointly determined by topic distribution z at
Eq. 3 and time embedding ht to be discussed shortly. Thus,
two documents i and j present a high attention if their topics
are similar, and their publication timestamps are close.

We now define time embedding. The relative difference
between two timestamps, rather than the absolute value of
any timestamp, reveals attention values, since the relative
timespan informs how close two documents are. Further-
more, the attention at Eq. 4 involves the product of two
time embeddings of ti and tj . A desirable time embedding
should capture timestamp difference when taking product.

ht =

√
1

K
[cos(ω1t), sin(ω1t), ..., cos(ωKt), sin(ωKt)]⊤.

(5)
{ωk}Kk=1 are parameters. The reason behind such design is

h⊤
tihtj =

1

K
[cos(ω1ti) cos(ω1tj) + sin(ω1ti) sin(ω1tj) + ...

+ cos(ωKti) cos(ωKtj) + sin(ωKti) sin(ωKtj)]

=
1

K
[cos(ω1(ti − tj)) + ...+ cos(ωK(ti − tj))]

≈ Eω[cos(ω(ti − tj))].
(6)

The product of two time embeddings is transformed into the
timestamp difference, which aligns with our requirement.

Linked documents tend to share similar topics, e.g., cited
papers discuss similar research problems. We thus aggregate
topics of document i’s neighbors to itself and obtain

z̃i =
∑

j∈Nt(i)

aijzj . (7)

At Fig. 2(a), document G is published at time tj . We model
link eDGtj for illustration. Fig. 2(b) shows time-aware
attention. We aggregate topics of neighbors to document D.

Time-Aware Optimal Transport. OT has achieved promis-
ing results in topic modeling (Zhao et al., 2020), but none
designs its dynamic version. We are motivated to incor-
porate time into OT. A document i is represented by two
distributions, latent topic distribution z̃i and observed con-
tent di. They should consistently reflect the same document.
We thus seek to minimize the OT semantic distance between
topic z̃i and word distribution di, i.e., min dC(z̃i,di).
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Figure 2. Illustration of modeling process.

Since links indicate a similar latent semantics of two doc-
uments, we allow OT to push topic distribution z̃i to doc-
ument i’s neighbors j ∈ Nt(i), i.e., min dC(z̃i,dj). Since
documents are sequential, with recently published docu-
ments linking to previous ones, the publication timestamps
ti and tj may not be the same. However, original optimal
transport at Eq. 1 does not preserve such time information.
To model document dynamics, we now propose Time-Aware
Optimal Transport, which also takes timestamps as inputs.

min dC(z̃i,dj , ti, tj), (8)

where j ∈ Nt(i) is document i’s neighbors at timestamp t.

Definition 4.1 (Time-Aware Optimal Transport). Given
z̃i ∈ RK with time ti, and dj ∈ R|V| with time tj (without
loss of generality, tj ≥ ti), the time-aware OT distance is

dC(z̃i,dj , ti, tj) = min
P∈U(z̃i,dj ,ti,tj)

tj∑
t=ti

K∑
k=1

|V|∑
w=1

ptkwctkw.

(9)
C ∈ R(tj−ti+1)×K×|V|

≥0 is cost matrix, each el-
ement ctkw measures the cost of transport be-
tween topic k and word w at timestamp t.
P ∈ R(tj−ti+1)×K×|V|

>0 is transport plan. U(z̃i,dj , ti, tj) =

{P ∈ R(tj−ti+1)×K×|V|
>0 |1(tj−ti+1)P1|V| =

z̃i, (1(tj−ti+1)P)⊤1K = dj} is the transport polytope with
z̃i and dj as marginals. 1D is a D-dimensional vector with
ones. Each element ptkw ∈ P is the probability of transport
between topic k and word w at time t. Given a cost matrix
C, time-aware OT distance between z̃i and dj is to find the
optimal plan P∗ and obtain dC(z̃i,dj , ti, tj) =< P∗,C >.

Comparing Eq. 9 with original OT at Eq. 1, in addition to
the summation over topics and words, we further add one
more time dimension for summation across the timespan
tj − ti + 1. Thus, time-aware OT measures the semantic
distance between topic z̃i and word distribution dj across
the timespan. Original OT becomes a special case of time-
aware OT when document i and j are published at the same

Algorithm 1 Time-Aware Sinkhorn Iteration
Input: Document i’s topic distribution z̃i, neighbor j’s
word distribution dj , timestamp ti and tj , cost matrix C, γ.
Output: Time-aware OT distance dC(z̃i,dj , ti, tj).

1: Initialize Ψ1 = 1K
K , t =

1(tj−ti+1)

tj−ti+1 , Φ = exp(−C
γ ).

2: while not converged do

3: Ψ2 =
dj

(tΦ)⊤Ψ1
, Ψ1 =

z̃i
(tΦ)Ψ2

.

4: end while
5: Obtain OT plan P∗ = diag(Ψ1)(tΦ)diag(Ψ2)
6: Obtain time-aware OT dC(z̃i,dj , ti, tj) =< P∗,C >.

timestamp with no timespan. Intuitively, two documents
that are semantically similar and published closely should
present a low OT distance, since they do not transport with
much semantic cost across a long timespan, and vice versa.
Thus, we can use time-aware OT to measure the probability
of link eijt. Lower the distance, higher the probability.

We now define the semantic cost matrix C. Each element
ctkw is the semantic dissimilarity between topic k and word
w at time t. We choose cosine dissimilarity, ctkw = 1 −
cos(gtk, ew). gtk is the randomly initialized embedding for
topic k at time t, and ew is the pre-trained word embedding.
External knowledge is incorporated into our model.

OT distance can be calculated by Sinkhorn iteration (Cuturi,
2013). Since we extend the original OT for time information,
we propose Time-Aware Sinkhorn Iteration at Algo. 1.

Decoding. Time-aware optimal transport at Eq. 8 pushes
topic distribution z̃i to neighboring word distribution dj ,
which is similar to a decoding process. We further explicitly
design a decoder below to generate the content of neighbors.

d̂j =
1

tj − ti + 1

tj∑
t=ti

softmax((2− Ct)
⊤z̃i). (10)

Here, Ct ∈ RK×|V| is the tth slice of semantic cost ma-
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trix C, which captures topic-word distribution and is used
as decoding parameter. We average the output across the
timespan tj− ti+1 as the generated content. We obtain log-
likelihood, l(dj , d̂j) = d⊤

j log d̂j , of the generative process.
Finally, as in (Zhao et al., 2020), combining log-likelihood
and time-aware OT, we have the following loss function.

µeijt = l(dj , d̂j)− ηOT dC(z̃i,dj , ti, tj),

LNetDTM =−
T∑

t=1

∑
eijt∈Et

µeijt + ηpLp.
(11)

ηOT balances log-likelihood and time-aware OT. µeijt is the
probability of link eijt. Fig. 2(c), we generate G’s content.

Different timestamps have their own topic embeddings
{gtk}Tt=1 and topic-word distributions {Ct}Tt=1. To asso-
ciate the modeling of different timestamps and capture topic
evolution across the whole time period, we seek to chrono-
logically chain the topics. Following (Dieng et al., 2019),
we draw topic embeddings using a Markov chain with Gaus-
sian distribution, gtk ∼ p(gtk|gt−1,k) = N (gt−1,k, σ

2I)
for t = 2, ..., T and k = 1, ...,K. Its log-likelihood is

log p(gtk|gt−1,k) ∝ − 1

2σ2
||gtk − gt−1,k||2 (12)

We set ηp = − 1
2σ2 for simplicity. Summing all the times-

tamps and topics, we obtain ηpLp = ηp
∑T

t=2

∑K
k=1 ||gtk−

gt−1,k||2. Adding such a prior term to the loss function at
Eq. 11 as a regularizer, we obtain multiple topic embeddings
{gtk}Tt=1, which capture topic evolution.

4.2. NetDTM++ for Network-Level Modeling

The above process captures network structure by generating
content of neighbors. Such a process measures the semantic
similarity of two documents, which is also the spontaneous
probability of an event (the natural formation of link eijt),
without the impact of historical events. Besides the inter-
nal semantics, we discover that link eijt is also externally
influenced by the existing network topology generated so
far. Two papers with a lot of common citations also likely
cite each other, and such common citations enhance the
possibility of their similar research topics. While NetDTM
captures semantic modeling, here we propose an extended
model, NetDTM++, to also model the impact of network
topology. Thus, we model the impact of previous links.

Hawkes Process Modeling. For a document i, we apply the
same encoding process at Eq. 3 and time-aware attention
at Eq. 4 to obtain its aggregated topics z̃i. To model the
effect of previous links {eth}th≤t on the establishment of
the current link eijt, we design a Hawkes Process, i.e.,

λeijt = µeijt + ηHP

∑
eth :th≤t

βeth ,eijtκ(t− th). (13)

µeijt is base intensity obtained at Eq. 11, with time-aware
OT and log-likelihood. The second term models the impact
of previous links. βeth ,eijt is the influence of a previous link
eth on the current eijt, κ(t− th) is time decay term. Hyper-
parameter ηHP balances semantic and network modeling.
NetDTM becomes a special case when ηHP = 0.

However, the second term requires the summation over
the entire link set generated so far, which is inefficient in
computation. Moreover, usually neighbors of document
i influence the formation of eijt the most; links multiple
hops away from eijt almost have no impact, but likely bring
noisy information. Thus, we modify Eq. 13 to only consider
links between i and its neighbors, but not all the links. This
process models the second-order proximity at Fig. 2(d).

λeijt = µeijt︸︷︷︸
semantic modeling

+ηHP

∑
p∈Nt(i)

βpjaip︸ ︷︷ ︸
network modeling

. (14)

βpj models the influence of second-order proximity p,
which represents the surrounding network context between
i and j. As mentioned, two documents sharing similar con-
textual vertices should preserve a high semantic similarity.
At Fig. 2(d), document F is a common context of D and G.
Such network structure forms a triangle, which tightens the
link between D and G and enhances their semantic similar-
ity. As in LINE (Tang et al., 2015), to model second-order
proximity, we introduce a context embedding wp ∈ RK .

βpj = log σ(w⊤
p z̃j) +

M∑
m=1

Ed∼Prn(d)[log σ(−w⊤
d z̃j)].

(15)
σ(x) = 1

1+exp(−x) , M is the number of negative samples,
Prn(d) is a noise distribution. A high value of βpj increases
λeijt , the log-likelihood of the link. At Fig. 2(d), besides
the semantic decoding, D’s neighbors also influence G by
adding context β·,G. Higher-order proximity is modeled.

Time-aware attention aip at Eq. 14 measures the importance
of neighbors, including semantic similarity and time differ-
ence. Since aip already contains time difference, we do not
add an extra time decay. Finally, the loss of NetDTM++ is

LNetDTM++ = −
T∑

t=1

∑
eijt∈Et

λeijt + ηpLp. (16)

After training convergence, we infer the topic distribution
of a previously unseen document d′ by z′ = θ(d′).

Complexity. Encoding is O(200(|V| +K)). Time-aware
attention is O(K2 + degmax K). degmax is the maximum
degree. Time-aware OT is O(WK|V|T ). W is the di-
mension of word embeddings. Decoding is O(K|V|T ).
Hawkes process is O(K2 +KN). To summarize, we have
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Table 1. Dataset statistics.
Name #Documents #Links Vocabulary #Labels #Timestamps

ML 1,489 3,474 3,302 7 10
PL 1,424 3,955 3,062 9 13

HEP-TH 27,770 352,285 3,027 N.A. 12
Web 188,741 207,963 5,000 N.A. 10

O(200(|V| + K) + K2 + WK|V|T ) for NetDTM, and
O(200(|V|+K)+K2+WK|V|T +KN) for NetDTM++.
Our focus is effectiveness, not efficiency. We briefly report
running time. On the largest data Web, NetDTM takes 100
min to converge, NetDTM++ takes 124 min. Experiments
were done on a Tesla K80 GPU with 11441MiB. Speeding
up the training with possibly online learning is future work.

5. Experiments
The goal of experiments is to evaluate the topics learned by
our models against baselines by evaluation tasks, such as
document classification, link prediction, topic analysis, etc.

Datasets. Cora (McCallum et al., 2000) is a citation net-
work with abstracts as content and citations as links. Each
paper has a publication year. As in (Zhu et al., 2007), we
create two independent datasets, Machine Learning (ML)
and Programming Language (PL). ML papers are published
between 1989 and 1998, and PL between 1987 and 1999.
HEP-TH (Leskovec et al., 2005) is a citation network of
Physics papers from January 1993 to April 2003. Times-
tamp can be defined by season, half year, or year, with 46,
23, or 12 timestamps, respectively. Web (Leskovec et al.,
2009) is a Web page hyperlink network. Each page contains
frequent phrases of a news article between August and De-
cember 2008. Timestamp can be defined by semimonthly
or monthly, with 10 or 5 timestamps. For the following
experiments, we use yearly timestamp for ML, PL, and
HEP-TH, since academic conferences are usually held an-
nually. For Web, we use semimonthly as timestamp, due to
the transience of news articles. Table 1 shows the statistics.

Baselines. We compare to four categories of baselines. i)
Static topic models without networks, ProdLDA (Srivas-
tava & Sutton, 2017), WLDA (Nan et al., 2019), and NSTM
(Zhao et al., 2020). WLDA applies Wesserstein distance.
NSTM uses optimal transport. They do not model document
dynamics or network connectivity. ii) Dynamic topic mod-
els, DTM (Blei & Lafferty, 2006) and DETM (Dieng et al.,
2019). DTM extends LDA in a dynamic setting. DETM
extends VAE and uses pre-trained word embeddings for
dynamic modeling. They incorporate time, but ignore the
document adjacency. By comparing to them, we highlight
the advantage of jointly modeling dynamics and network
structure. iii) Topic models for document networks, RTM
(Chang & Blei, 2009), NRTM (Bai et al., 2018), Adjacent-
Encoder (Zhang & Lauw, 2020), and LANTM (Wang et al.,

2021). They consider texts and network structure, but ignore
dynamic process. By comparison, we show the utility of
dynamic modeling. iv) Temporal graph embedding learns
node embeddings on temporal graphs. Strictly speaking,
they are not topic models, nor baselines. For completeness,
we still compare to M2DNE (Lu et al., 2019).

Implementation Details. We set 2 as Dirichlet prior for
RTM. We use 300D GloVe embeddings. For our models,
ηOT = ηHP = ηp = 1 after searching in [0.5, 1, 2, 4, 10].
Dropout rate is 0.75, γ = 20, M = 5. Each result is
obtained by 5 independent runs, with average and std.dev.

5.1. Quantitative Evaluation

Document Classification. As in LDA (Blei et al., 2003),
we conduct document classification to evaluate topic quality.
Since we observe network evolution, we split the datasets
using timestamps. We split documents before timestamp T
(inclusive) for training (10% are for validation). T is the
maximum timestamp in the training set. We observe training
documents and links among them for training. Labels are
never involved for training. After convergence, we infer
topics of test documents after T (exclusive). We apply kNN
for classification. We input topics of training documents to
the classifier, and predict the labels of test documents.

We vary the number of topics K and report classification ac-
curacy with 5NN on ML and PL dataset at Fig. 3(a-b). Here,
we train the models using documents and links generated
before year T = 1996 (inclusive), and predict the labels
of documents after T = 1996 (exclusive). Such timestamp
provides around 80/20 split. Our models and M2DNE show
better results than others, since network connectivity indi-
cates similarities among documents. Ours and M2DNE are
generally better than Adjacent-Encoder, due to the modeling
of dynamic process. Since most models peak their results at
64 topics, we keep K = 64 for the following experiments.

We then vary the observed timestamps T from 1993 to 1997,
and present the accuracy with 5NN and 64 topics at Fig. 3(c-
d). Horizontal axis contain different years T . The goal is to
test how models perform when we observe different number
of timestamps. As time goes by, the network becomes
larger and we observe more timestamps for training, thus
the accuracy of most models is increasing. At T = 1993
where only a few timestamps are observed, our models show
a competitive performance with Adjacent-Encoder, since we
can not make full use of time. After moving to recent years,
we discover a significant improvement of our models, due
to the benefit of document dynamics. NetDTM++ generally
classifies documents more accurately than NetDTM, due to
Hawkes process modeling the influence of historical events.

We also vary the number of nearest neighbors k for kNN,
and put the results in Appendix B.1 (Fig. 6).
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Figure 3. Classification accuracy w.r.t. (a-b) different number of topics, and (c-d) different years.

Table 2. Link prediction MAP (left), perplexity (middle), and topic coherence NPMI (right) at K = 64 (results are in percentage).

Model Link Prediction Perplexity Topic Coherence
ML PL HEP-TH Web ML PL HEP-TH Web ML PL HEP-TH Web

ProdLDA 20.1±1.1 19.3±1.2 1.3±0.2 10.7±0.3 8.07±0.00 8.02±0.00 8.71±0.00 8.52±0.00 8.4±0.4 10.2±0.3 11.2±1.0 0.6±0.6
WLDA 7.0±1.0 7.0±2.1 2.1±0.2 11.7±0.2 8.63±0.10 8.62±0.16 42.98±0.07 44.09±0.06 9.4±0.2 11.0±0.5 14.6±0.4 24.2±0.7
NSTM 10.1±2.2 12.1±0.7 1.7±0.1 1.7±0.0 7.97±0.00 7.89±0.00 7.93±0.00 8.28±0.00 16.8±0.9 18.5±0.4 18.3±0.7 24.8±1.5
DTM 13.8±2.9 13.5±1.5 6.5±0.3 4.4±0.0 8.10±0.00 8.02±0.00 8.01±0.00 11.61±0.10 10.2±0.3 12.5±0.3 14.2±0.1 13.7±0.4

DETM 15.6±2.8 8.0±1.7 5.3±0.2 16.1±0.0 9.63±0.16 8.06±0.05 7.91±0.06 8.84±0.14 8.3±0.5 8.4±0.4 11.4±0.3 21.1±0.3
RTM 24.3±0.7 21.3±0.8 7.0±0.2 13.8±0.0 7.90±0.02 7.65±0.02 7.81±0.00 9.87±0.12 7.1±0.6 8.9±0.3 6.9±0.3 20.1±0.8

NRTM 10.6±1.6 9.0±0.3 1.2±0.0 1.0±0.3 22.72±0.27 30.19±0.14 21.21±0.34 38.43±1.33 6.9±0.4 9.2±0.4 11.6±0.4 19.9±1.7
Adjacent-Encoder 26.3±0.7 22.2±0.4 13.3±0.2 14.8±0.1 8.07±0.03 7.97±0.04 7.89±0.07 8.72±0.09 11.8±0.8 13.4±0.6 17.6±0.0 1.4±0.0

LANTM 24.4±2.1 23.8±1.2 — — 8.05±0.00 7.98±0.00 — — 5.4±0.2 6.7±0.7 — —
M2DNE 16.4±0.2 16.1±0.2 10.1±0.0 1.0±0.0 — — — — — — — —
NetDTM 25.8±0.7 24.0±0.4 11.4±0.1 16.7±0.1 7.89±0.04 7.89±0.05 7.96±0.19 8.69±0.05 18.9±0.6 19.4±0.5 17.3±0.5 29.3±0.9

NetDTM++ 28.3±1.0 26.8±0.8 14.0±0.3 16.7±0.1 7.79±0.02 7.72±0.03 7.77±0.01 8.11±0.21 16.6±0.6 19.4±0.6 17.8±0.3 29.0±1.2

Link Prediction. A topic model should well preserve net-
work structure. As in RTM (Chang & Blei, 2009), we pre-
dict network links. We observe training documents and links
within them for training. We infer topics of test documents
and predict the links among them. As in (Wang et al., 2021),
the probability of a link is p(eij |zi, zj) ∝ exp(−||zi−zj ||2).
We use mean average precision (MAP) (Zhang & Lauw,
2020) as metric. Again, we split datasets using timestamps.
Since different datasets have different timespan, some cross
years, others cross a few months, for consistency purpose,
we split datasets by 80% timestamps. Here, 80% means we
observe documents and links in previous 80% timestamps,
and predict links among documents in the future.

Table 2(left) shows that network models perform better than
others, since network reveals document relatedness. DTM
performs better than WLDA and NSTM, due to dynamic
modeling. Compared to them, our models show a signifi-
cant improvement. This enhances the advantage of jointly
modeling dynamics and network. LANTM cannot run on
large datasets even on a machine with 256GB memory.

We also vary the number of observed timestamps for link
prediction and put the results in Appendix B.2 (Table 5).

5.2. Topic Analysis

Perplexity. Following LDA (Blei et al., 2003) and DTM
(Blei & Lafferty, 2006), we conduct perplexity to evaluate
topic quality. For dynamic topic models, we obtain a se-
ries of topic-word distributions {2− Ct}Tt=1, which capture

89 91 93 95 97
Topic evolution over the years

89 91 93 95 97
Topic evolution over the years

(a) Topic evolution of NetDTM (b) Topic evolution of NetDTM++

compression

text

indexing

algorithm
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Topic “Information Compression” Topic “Bayesian Inference”

Figure 4. Topic evolution on ML dataset.

topic evolution over the time. The latest distribution 2−CT

can best represent the current topic-word distribution. To
generalize to future documents published after timestamp
T , we should use 2 − CT . This is consistent with (Blei &
Lafferty, 2006). Because perplexity, exp{− log Pr(Dtest)∑

d′∈Dtest
Nd′

},
is exponential and varies w.r.t. its power, we show the power,
− log Pr(Dtest)∑

d′∈Dtest
Nd′

. Lower is better. Again, we split datasets
using 80% timestamps and show the results at Table 2(mid-
dle). M2DNE is not a topic model, thus cannot evaluate
perplexity. Network models perform the best among base-
lines. Network indicates document similarity, thus modeling
it helps semantic learning. Due to dynamic modeling, DTM
provides decent results. By combining both network and
dynamics, our models outperform baselines significantly.
NetDTM++ is generally better than NetDTM, since Hawkes
process incorporating historical events better encode seman-
tically similar document closely. Perplexity with varying the
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Figure 5. Model analysis on ML dataset.

Table 3. Time granularity on link prediction (in percentage).

Model HEP-TH Web
Quarterly Semianually Annually Semimonthly Monthly

NetDTM 9.55±0.09 9.06±0.11 11.42±0.15 16.72±0.06 16.70±0.06
NetDTM++ 11.51±0.25 10.81±0.09 13.96±0.33 16.73±0.11 16.66±0.04

number of observed timestamps is found in Appendix B.3.

Topic Coherence. Decoding parameter 2− Ct ∈ RK×|V |

captures the keywords of each topic. Each row is the dis-
tribution of a topic over the vocabulary. The keywords of
that topic are those with the highest values on that row. Fol-
lowing ProdLDA (Srivastava & Sutton, 2017), we evaluate
the coherence of top-10 keywords of each topic and report
NPMI. We use Google Web 1T 5-gram Version 1 (Evert,
2010) as external corpus. Table 2(right) shows the results.
M2DNE is not a topic model and is excluded. Benefiting
from optimal transport, NSTM is the best model among
baselines. By comparing to it, our models extend OT to
incorporate time information, and improve the performance.

Topic Evolution. To intuitively understand how our models
capture topic evolution, Fig. 4 shows the plot on ML dataset.
Horizontal axis is different years, and vertical axis is the
word probability in {2−Ct}1998t=1989. Four lines are randomly
selected words of the same topic. For NetDTM, “algorithm”
remained a popular research over years. Researchers grad-
ually shifted their focus away from “text indexing”, poten-
tially because topic models (PLSA (Hofmann, 1999)) were
proposed, and traditional indexing became inefficient. For
NetDTM++, “bayesian inference” attracted much attention,
while “regression” gradually decayed, possibly because neu-
ral network started to present as a universal approximator,
and traditional regression models became less interesting.

5.3. Model Analysis

Effect of Network Structure. To verify network structure
brings useful information, we randomly remove a propor-
tion of links on the network. We vary the percentage of
remaining observed links and report the classification accu-
racy on ML dataset at Fig. 5(a). As we observe more links,
the accuracy increases. Compared to the case with no links,
adding a small proportion of links can significantly boost
the results, which verifies that network reveals document

similarities, and modeling it can improve semantic learning.

Effect of Time. We analyze if modeling dynamics benefits
topic modeling. We set the time of all the documents to be
the same, i.e., we observe the whole static network without
any evolution. We show classification with and without time
at Fig. 5(b). Both models increase accuracy when consider-
ing time. NetDTM does not improve much, since it mainly
models semantics without historical events. NetDTM++
improves significantly, since previous links reveal network
evolution, and ignoring time leads to worse accuracy.

Effect of Optimal Transport. To investigate the effec-
tiveness of optimal transport, we vary ηOT at Eq. 11. For
classification at Fig. 5(c), as ηOT increases, the accuracy
keeps flat or even becomes higher at the beginning, after
which both models decrease the results. For topic coherence
at Fig. 5(d), OT can significantly enhance the coherence.
Combining Fig. 5(c) and (d), we conclude that compared to
the case with no OT, an appropriate value of ηOT maintains
or even boosts the result, while an overly high value hurts
some tasks. Taking the trade-off between two tasks, we set
ηOT = 1 to combine both OT and log-likelihood.

Effect of Timestamp Granularity. Thus far, we set annu-
ally and semimonthly as one timestamp period for HEP-TH
and Web, respectively. Here, we use different periods to
test the effect of timestamp granularity. Table 3 shows link
prediction results. For HEP-TH, a short period of timestamp
(quarterly and semiannually) may not observe a significant
change of research topics, but brings more parameters. Over-
fitting problem may decrease the results. For Web, due to
the short effective period of news, a long period (monthly)
contains too much change of news storyline, and cannot cap-
ture the transient topic evolution, thus the results decrease.
We follow DTM (Blei & Lafferty, 2006) and set granularity
as hyperparameter. Adaptively learning it is a future work.

6. Conclusion
We propose two neural topic models for dynamic document
networks. NetDTM designs time-aware OT for neighbor
generation. NetDTM++ incorporates the effect of historical
links. Experiments verify the effectiveness of our models.
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Table 4. Summary of math notations.

Notation Description
G a document network
D a corpus of documents, D = {di}Ni=1

N number of documents in the corpus, N = |D|
E a set of adjacency matrices, E = {Et}Tt=1, Et ∈ RN×N

T maximum timestamp observed in training set
d a document representation in the word space, d ∈ R|V|

V vocabulary
Nt(i) the neighbor set of document i at time t
T a set of timestamps, T = {ti}Nt=1

zi topic distribution of document i, zi ∈ RK

K number of topics
aij attention value between document i and j
ht time embedding of timestamp t, ht ∈ R2K

C cost matrix of time-aware OT, C ∈ RT×K×|V|

P transport plan of time-aware OT
gtk topic embedding of topic k at timestamp t
ew word embedding of word w
M number of negative samples
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Figure 6. Classification accuracy w.r.t. different number of nearest neighbors k for kNN.

A. Summary of Notations
We provide a summary of math notations used in the main paper.

B. Additional Experiments
B.1. Document Classification with Different Number of Nearest Neighbors k

In the main paper, we use k = 5 nearest neighbors for kNN classification. Here, we vary the value of k and report
classification accuracy for ML and PL at Fig. 6. Overall, our models present a stable performance across different number
of nearest neighbors. NetDTM is competitive with Adjacent-Encoder on ML, but outperforms the latter on PL. M2DNE
generally deteriorates the results when more nearest neighbors are considered. NetDTM++ classifies documents more
accurately than NetDTM, since Hawkes process benefits the model by considering the impact of historical neighbors.
Comparing our models against network models, including Adjacent-Encoder, we highlight that modeling dynamics is
indeed useful to improve topic modeling. Compared to dynamic models without network structure, we verify that network
connectivity uncovers semantic similarities across documents, and modeling it improves topic quality.
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Table 5. Link prediction MAP at K = 64 (results are in percentage) when varying the percentage of total timestamps.

Model ML PL HEP-TH Web
40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80%

ProdLDA 6.5±0.4 10.8±0.3 20.1±1.1 6.9±0.3 11.7±0.8 19.3±1.2 0.4±0.0 0.5±0.0 1.3±0.2 10.7±0.3 10.7±0.3 10.7±0.3
WLDA 3.2±0.5 3.4±0.3 7.0±1.0 2.9±0.2 4.3±0.5 7.0±2.1 0.5±0.0 0.7±0.1 2.1±0.2 7.0±0.0 9.6±0.1 11.7±0.2
NSTM 3.6±0.4 5.7±0.4 10.1±2.2 3.9±0.1 7.2±0.4 12.1±0.7 0.6±0.0 0.8±0.0 1.7±0.1 1.1±0.1 1.3±0.1 1.7±0.0
DTM 6.9±0.3 7.9±0.6 13.8±2.9 7.1±0.2 10.2±0.8 13.5±1.5 2.1±0.0 3.3±0.0 6.5±0.3 3.7±0.0 4.1±0.0 4.4±0.0

DETM 1.7±0.0 9.6±0.4 15.6±2.8 4.5±0.4 6.9±1.5 8.0±1.7 2.7±0.0 3.2±0.0 5.3±0.2 13.5±0.0 14.7±0.0 16.1±0.0
RTM 10.4±0.2 15.0±0.4 24.3±0.7 9.5±0.2 15.1±0.5 21.3±0.8 3.3±0.1 4.1±0.1 7.0±0.2 11.1±0.1 12.4±0.0 13.8±0.0

NRTM 6.2±0.4 7.0±0.6 10.6±1.6 6.2±0.5 8.3±0.6 9.0±0.3 0.6±0.0 0.6±0.0 1.2±0.0 0.5±0.0 0.5±0.0 1.0±0.3
Adjacent-Encoder 10.3±0.4 16.3±0.6 26.3±0.7 7.8±0.5 18.9±0.4 22.2±0.4 6.1±0.1 7.9±0.2 13.3±0.2 13.5±0.0 14.5±0.0 14.8±0.1

LANTM 13.2±0.4 17.2±0.6 24.4±2.1 15.0±0.4 19.1±0.3 23.8±1.2 — — — — — —
M2DNE 3.1±0.0 7.2±0.0 16.4±0.2 3.5±0.0 12.2±0.0 16.1±0.2 4.3±0.0 5.6±0.0 10.1±0.0 0.5±0.0 0.7±0.0 1.0±0.0
NetDTM 12.2±0.4 17.3±0.8 25.8±0.7 11.2±0.4 17.8±0.5 24.0±0.4 4.8±0.1 6.2±0.1 11.4±0.1 13.5±0.0 14.9±0.0 16.7±0.1

NetDTM++ 12.0±0.3 18.0±0.2 28.3±1.0 11.5±0.3 19.9±0.3 26.8±0.8 5.7±0.0 7.3±0.1 14.0±0.3 13.5±0.0 15.0±0.0 16.7±0.1

Table 6. Perplexity experiment at K = 64 when varying the percentage of total timestamps. Lower is better.

Model ML PL HEP-TH Web
40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80%

ProdLDA 8.16±0.00 8.07±0.00 8.07±0.00 8.15±0.00 8.03±0.00 8.02±0.00 8.58±0.05 8.60±0.00 8.71±0.00 8.52±0.00 8.52±0.00 8.52±0.00
WLDA 8.63±0.10 8.60±0.14 8.12±0.99 8.62±0.16 8.34±0.03 8.49±0.44 44.30±0.24 44.50±0.33 42.98±0.07 44.43±0.02 43.73±0.04 44.09±0.06
NSTM 8.05±0.00 7.99±0.00 7.97±0.00 7.97±0.00 7.90±0.00 7.89±0.00 7.93±0.00 7.93±0.00 7.93±0.00 8.28±0.00 8.27±0.00 8.28±0.00
DTM 8.10±0.00 8.10±0.00 8.10±0.00 8.02±0.00 8.02±0.00 8.02±0.00 8.01±0.00 8.01±0.00 8.01±0.00 11.61±0.07 11.59±0.07 11.61±0.10

DETM 11.66±0.18 11.63±0.25 9.63±0.16 8.78±0.09 8.20±0.07 8.06±0.05 8.28±0.09 8.09±0.05 7.91±0.06 10.39±0.19 9.46±0.05 8.84±0.14
RTM 7.99±0.02 7.97±0.01 7.90±0.02 7.84±0.03 7.72±0.05 7.65±0.02 7.81±0.00 7.81±0.00 7.81±0.00 20.68±1.51 18.73±0.95 9.87±0.12

NRTM 33.10±0.44 28.99±0.13 22.72±0.27 38.61±2.32 33.43±0.16 30.19±0.14 22.17±0.12 21.32±0.13 21.21±0.34 33.56±0.76 33.56±0.76 38.43±1.33
Adjacent-Encoder 7.94±0.01 7.99±0.02 8.07±0.03 7.82±0.08 7.76±0.09 7.97±0.04 7.86±0.03 7.86±0.03 7.89±0.07 8.72±0.09 8.72±0.09 8.72±0.09

LANTM 8.05±0.00 8.05±0.00 8.05±0.00 7.98±0.00 7.98±0.00 7.98±0.00 — — — — — —
NetDTM 7.90±0.02 7.89±0.05 7.89±0.04 7.78±0.01 7.81±0.03 7.89±0.05 7.79±0.06 7.81±0.06 7.96±0.19 8.79±0.22 8.79±0.06 8.69±0.05

NetDTM++ 7.90±0.02 7.80±0.02 7.79±0.02 7.72±0.01 7.69±0.02 7.72±0.03 7.77±0.02 7.79±0.02 7.77±0.01 8.13±0.11 7.92±0.08 8.11±0.21

B.2. Link Prediction When Varying Observed Timestamps

In the main paper, we report link prediction results when we split datasets using 80% timestamps. Here, we further vary the
percentage of observed timestamps from 40% to 80%. The goal is to investigate how our models perform when we observe
different number of timestamps.

Table 5 shows that as the percentage of timestamps increases, most models improve their results, because they observe
more documents and links for training. Note that we do not report LANTM on large datasets, since it cannot run even on a
machine with 256GB memory. When we observe only 40% timestamps, our models are competitive with LANTM, since
we do not observe too many timestamps and our models cannot make full use of time information. When the observed
timestamps accumulate to 80%, our models present a significant improvement over LANTM. This enhances the benefit
of dynamics in our models as compared to static network models. Compared to models without network structure, we
emphasize that incorporating network can bring useful information.

B.3. Perplexity When Varying Observed Timestamps

Similar to document classification and link prediction, we also vary the number of observed timestamps for perplexity
experiment. Table 6 shows the results. Our models generally perform better than baseline models. NetDTM++ shows more
satisfying results than NetDTM, since the former models higher-order proximity at the network-level using Hawkes process.
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