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Weaning patients from mechanical ventilators is a crucial decision in intensive care units (ICUs), significantly

affecting patient outcomes and the throughput of ICUs. This study aims to improve the current extubation

protocols by incorporating predictive information on patient health conditions. We develop a discrete-time,

finite-horizon Markov decision process with predictions of future state to support extubation decisions.

We characterize the structure of the optimal policy and provide important insights into how predictive

information can lead to different decision protocols. We demonstrate that adding predictive information is

always beneficial, even if physicians place excessive trust in the predictions, as long as the predictive model

is moderately accurate. Using a comprehensive dataset from an ICU in a tertiary hospital in Singapore, we

evaluate the effectiveness of various policies and demonstrate that incorporating predictive information can

reduce ICU length of stay by up to 3.4% and, simultaneously, decrease the extubation failure rate by up to

20.3%, compared to the optimal policy that does not utilize prediction. These benefits are more significant

for patients with poor initial conditions upon ICU admission. Both our analytical and numerical findings

suggest that predictive information is particularly valuable in identifying patients who could benefit from

continued intubation, thereby allowing for personalized and delayed extubation for these patients.

Key words : Intensive care unit; mechanical ventilation; extubation; predictive information; treatment effect

1. Introduction

In recent years, healthcare-related costs have escalated significantly, with considerable wastage

noted in areas such as failures in care delivery, lack of care coordination, overtreatment, and low-

value care practices (Shrank et al. 2019). Concurrently, the rising healthcare demand drives service

providers to adopt fast-track management, which requires swift and precise decision-making at

every stage of patient care, including the services provided by intensive care units (ICUs) (Wilmore

and Kehlet 2001, Zhu et al. 2012). On the other hand, with growing data availability, advances
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2 Cheng, Xie, Zheng, Luo, Ooi: Extubation with Predictive Information

in machine learning techniques, and enhanced computational power, highly accurate predictive

models are becoming more attainable. Although significant efforts have been made to develop

predictive models in the healthcare context, how to leverage predictive information to improve the

quality of medical decisions remains underexplored. In this paper, we aim to integrate predictive

information with prescriptive analytics to assess how predictive information can enhance decision-

making quality in healthcare service delivery. In particular, we investigate how and to what extent

predictive information can improve the outcomes of the extubation decision—i.e., weaning patients

from mechanical ventilators—in ICUs.

In ICUs, patients who cannot breathe spontaneously may require invasive mechanical ventilation

(MV) to assist with breathing. Patients are not allowed to be discharged from ICUs while intubated

(i.e., receiving MV support). Since critical care is expensive for both patients and hospitals (Barrett

et al. 2014, Halpern and Pastores 2015), the decision to extubate is vital for patients, and the

time to extubation is usually considered the primary service outcome for surgical care in hospitals

(Wong et al. 2016). On one hand, early extubation poses the risk of extubation failure (defined

as the need for re-intubation or other breathing support measures) if the patient is unable to

breathe spontaneously. Extubation failure is significantly associated with a longer ICU length of

stay (LOS) and a higher mortality rate (Epstein et al. 1997, Thille et al. 2013). On the other

hand, prolonged ventilation wastes limited ICU resources and capacity, leading to congestion in

the units. Moreover, due to endotracheal tube placement, invasive ventilation is painful for patients

and can lead to ventilator-associated complications, including airway injury, alveolar damage, and

ventilator-associated pneumonia, which exacerbate patients’ respiratory conditions (Hess 2011).

Typically, healthcare decisions follow standard protocols that consider current physiological data

or historical clinical events based on clinical trials and experience. However, this approach can be

shortsighted in medical decision-making, especially in critical care. For instance, a patient could

deteriorate rapidly without intervention, and it can be too late to act once the patient’s condition

worsens. Early detection of imminent deterioration and preventive interventions can help save lives

in critical care settings (Blum 2018). In practice, physicians often make predictions of patients’

future conditions based on their own experience. However, the accuracy of subjective prediction is

limited and can vary significantly among individuals. Massive amounts of data are underutilized,

and important signals hidden in the data can be easily overlooked. By using appropriately validated

and accurate predictive models, we aim to shed light on the creation of medical decision protocols

that incorporate predictive information. As we will demonstrate in the subsequent case study, these

protocols can potentially outperform prevailing decision-making practices, particularly in reducing

both ICU LOS and extubation failures.
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Motivated by this, our goal is to investigate the optimal time to extubate patients under MV. In

recent years, advancements in machine learning and econometric analysis have made predictions

of patients’ future conditions and treatment effects more accessible and accurate. In this paper, we

develop models that leverage predictive information to prescribe when to extubate patients. We

formulate a Markov Decision Process (MDP) model to characterize the optimal stopping problem

with predictive information, which is then applied to the extubation problem. The proposed model

can be extended to many crucial decisions in ICUs, such as stopping continuous renal replacement

therapy (also known as dialysis) for patients who develop acute kidney injury after major opera-

tions. The entirety of ICU service can be viewed as a medical intervention, and discharge can be

seen as an optimal stopping problem. It is noteworthy that potential ethical issues may arise from

these guidelines. While ethical considerations are an essential part of the discussion in developing

practical policies, they fall outside the scope of this paper.

The main contributions and findings of our work are summarized as follows.

• We demonstrate that the classic MDP model can be adapted to incorporate predictions of

future states into extubation decisions, and we characterize the structure of the optimal policy.

Through this proposed modeling framework, we theoretically explore the value derived from inte-

grating predictive information. We establish that predictive information is always valuable if the

misclassification matrix, which will be defined later in the model development, is known.

• We investigate the conditions under which predictive information is strictly beneficial in a

special case involving two patient classes. We derive the necessary and sufficient condition for this

when the misclassification matrix is fully known to the physicians. We show that the benefit of

predictive information increases concavely with sensitivity and linearly with specificity. We also

characterize the condition under which the rate of benefit increase from sensitivity is greater than

that from specificity. We provide an upper bound and a lower bound on the benefit of predictive

information, serving as a rule of thumb for deciding whether to invest in a prediction model.

When the misclassification matrix is unknown, we determine the necessary and sufficient condition

under which predictive information can still be beneficial even when decisions are made under the

assumption that the noisy prediction is perfectly accurate—i.e., the optimal policy with perfect

prediction is applied in an environment with noisy predictions. This intuitively suggests that when

prediction accuracy is high, benefits can be derived from using predictive information, even if

prediction errors are completely disregarded.

• We apply our models to the extubation problem in ICUs, a crucial component of fast-

track management, to assess the effectiveness of incorporating predictive information into medical

decision-making. We calibrate the models using a comprehensive set of medical data collected from
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an ICU and demonstrate that predictive information effectively reduces both the ICU LOS and

extubation failure rate—a measure closely related to in-hospital mortality. We further analyze the

impact of prediction accuracy and show that even moderately accurate forecasts can substantially

improve decision quality. These results provide support for more precise and personalized fast-track

management in ICUs.

The rest of the paper is organized as follows. We review the related literature in Section 2. Section

3 introduces the clinical settings and data. In Section 4, we introduce our modeling framework and

derive the structural results of the optimal policy for extubation decisions with predictions. We

further discuss the clinical settings and data, based on which, we estimate the parameters in the

proposed model. In Section 5, we present the performance of our model to evaluate the effectiveness

of predictive information in extubation decisions, and Section 6 concludes.

2. Literature Review

Our work is related to four streams of literature: (1) ICU extubation decision-making; (2) integra-

tion of predictive and prescriptive analytics; (3) MDP and its applications in healthcare; and (4)

optimal stopping and its applications.

2.1. ICU Extubation Problem

Being one of the most critical decisions in ICUs, the extubation problem has received substantial

attention in the medical literature (Thille et al. 2013, Randolph et al. 2002, Xie et al. 2019, Chung

et al. 2020), most of which focus on understanding the risk factors associated with extubation

failures and the impact of different extubation protocols on patient outcomes. A growing body

of studies has begun to apply machine learning models to the extubation decision problem in

recent years. The majority of these studies aim to predict extubation outcomes using machine

learning methods. For instance, Wang et al. (2010) employed the adaptive neuro-fuzzy inference

system to predict blood gas exchange for the management of ventilated patients in ICUs, and Kuo

et al. (2015) applied an artificial neural network to predict extubation outcomes for mechanically

ventilated patients. Tsai et al. (2019) integrated machine learning techniques with Bayesian decision

analysis. They first predicted extubation outcomes, and then used Bayes’ rule to update beliefs

about patients’ health conditions. However, as Kwong et al. (2019) noted, only a limited number

of studies have started to assess the efficacy and effectiveness of machine learning techniques for

MV in ICUs. Pursuing this direction, Prasad et al. (2017) and Jagannatha et al. (2018) applied

reinforcement learning to determine the sedation prescription and extubation decision for ventilated

patients. They assumed a Markov transition for the patient’s health condition and formulated the

reinforcement learning model as an MDP. Using the fitted Q-iteration algorithm (Riedmiller 2005),
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they learned the reward function from the data and then selected the policy with the maximum

reward. However, the policy thus learned only indicates the probability of choosing a specific dosage

level for sedation and whether to extubate the patient, which is difficult to interpret and challenging

to implement in practice. Moreover, Prasad et al. (2017) acknowledged the issue of selection bias

in the data, and the reinforcement learning model fails to account for this in policy learning.

More recently, Grand-Clément et al. (2021) examined a sequential decision-making problem of

ventilator triage and reassessment for coronavirus (COVID-19) patients. They aimed to establish

guidelines that are both data-driven and interpretable, and they developed optimal policies for

MDP models based on decision trees. Their results emphasized the importance of tailoring the

guidelines specifically to COVID-19 for better outcomes.

Unlike this body of literature, our work aims to leverage the predictive information to make more

precise and personalized extubation decisions, which is not considered in existing models. We also

seek to derive a policy that is interpretable and implementable in practice. Therefore, we adopt the

classical MDP model, which is widely used in medical research and known for its interpretability

among physicians. Additionally, we attempt to handle the selection bias for parameter estimation

using advanced econometric methods. The policy we derive is a personalized extubation recommen-

dation based on both the current health condition and the predicted treatment effect of continued

intubation for each patient. In this sense, our work broadly relates to numerous studies that apply

operations research techniques to personalized medical decision-making (Mǐsić et al. 2010, Akan

et al. 2012, Chan et al. 2013, Bertsimas et al. 2017, Hu et al. 2018, Ayer et al. 2019). Unlike these

studies, we focus on how to incorporate predictive information into sequential decision-making to

provide personalized recommendations for treatment continuation decisions.

2.2. Integration of Predictive and Prescriptive Analytics

The recent surge in the integration of predictive information into prescriptive analytics has drawn

significant attention in the operations research and management science community. Bertsimas and

Kallus (2020) demonstrated that traditional models led to inadequate solutions in the big data era

and proposed a framework that combined traditional optimization models with predictive infor-

mation to prescribe more efficient solutions for single-stage decision problems. They argued that

the parameters conventionally computed using the sample mean were insufficient. These parame-

ters could be more accurately predicted using machine learning methods, and thus they used the

results from a predictive model as input parameters in optimization models. Spencer et al. (2014)

conducted a pilot study on an admission control problem with predicted future arrivals. Formu-

lating this problem as a queueing model, they showed that future information could significantly

reduce the system delay. However, the improvement came at the expense of a lengthy look-ahead
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window, which required more sophisticated and accurate predictive models. To assess whether less

future information could still yield significant improvement, Xu (2015) discussed the necessity of

a nontrivial forecast window for arrivals in queueing models. The results showed that the perfor-

mance would be no better than an online policy if the forecast windows were not sufficiently long.

Building on these findings, Xu and Chan (2016) developed a proactive admission control policy for

emergency departments based on the assumption that arrivals for several future time slots can be

predicted. Simulation results showed that the proposed proactive policy outperformed the online

policy, even when the predictions contained noise. Bertsimas et al. (2016) developed a statistical

model to predict the outcomes under different chemotherapy regimens for patients with cancer and

used the predictive results to parameterize an optimization model to recommend chemotherapy

regimens. Dai and Shi (2019) developed a framework that supported inpatient overflow decisions

in hospitals. They formulated the multi-class parallel-queue system as an MDP, where the system

state included the count of waiting patients and patients who would be discharged on the same day.

They assumed that the to-be-discharged information was prior knowledge and solved the problem

using an approximate dynamic programming approach due to the curse of dimensionality. Shi et al.

(2021) formulated an MDP that prescribed ICU discharge decisions. In their model, the state vari-

able was the number of patients within each class, corresponding to a particular readmission risk.

The evolution of readmission risk was assumed to depend solely on prior ICU stays. They pro-

posed a heuristic policy that minimized total ICU LOS. In their case study, a model that predicted

personalized readmission risk was embedded, with each patient viewed as a patient class. More

recently, Chen et al. (2023) explored how to integrate future demand arrival rates in the formula-

tion of routing strategies for queueing systems experiencing demand surges. Using transient fluid

control analysis, they proposed a two-stage index-based look-ahead routing policy, which excels in

balancing operational costs and delivers superior performance, even in the presence of prediction

errors. An increasing number of studies have incorporated predictive information into prescriptive

analytics with applications across various domains (Chen and Farias 2013, Huang et al. 2019). Our

research, while sharing similarities with the aforementioned literature regarding leveraging future

predictive information in decision-making, differs with respect to problem formulation and method-

ology. In particular, to our knowledge, this paper is among the first to incorporate the predictive

information into the state space of an MDP, while others use prediction information differently.

2.3. MDP and Its Applications in Healthcare

Our model builds on the theory of MDP (Bellman 1957). Markov chain models have been used

extensively in the medical community for modeling disease progression, forming the backbone of

many healthcare decision-making problems. MDP models enable the decision maker (DM) to select
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actions that balance immediate rewards with uncertain future gains, taking into consideration the

current situation, to yield the most optimal solution. MDP has seen widespread use in the health-

care domain when dealing with dynamic and stochastic decision-making problems (Schaefer et al.

2005). For instance, Alagoz et al. (2004) employed an MDP model to determine the optimal timing

for living-donor liver transplantation. Likewise, MDP was leveraged to obtain optimal policies for

choosing between living-donor and cadaveric livers (Alagoz et al. 2007a), and deciding whether

to accept or reject a cadaveric liver for a patient in need of liver transplantation (Alagoz et al.

2007b). MDP has also been applied in HIV therapy decisions (Shechter et al. 2008), initiating

cholesterol-lowering medication for patients with diabetes (Denton et al. 2009), biopsy decisions

(Chhatwal et al. 2010), and post-mammography diagnosis decisions (Ayvaci et al. 2012).

In recent years, robust MDP models have been developed and employed to handle parameter

uncertainty in healthcare problems (Zhang et al. 2017, Goh et al. 2018, Grand-Clément et al. 2020).

The robust MDP primarily focuses on the uncertainty in the transition probability matrix. Strong

technical assumptions on the structure of the uncertainty set are often imposed for tractability,

e.g., the rectangularity condition that mandates parameters of different states to be unrelated

(Givan et al. 2000, Iyengar 2005, Nilim and El Ghaoui 2005, Wiesemann et al. 2013, Zhang et al.

2017), or a row-wise structure that demands each row of a possible transition matrix is a convex

combination of a given set of probability vectors (Goh et al. 2018, Grand-Clément et al. 2020, Goyal

and Grand-Clément 2022). Verifying the applicability of these assumptions in our problem context

is not trivial. Moreover, our problem is further complicated by the uncertainty originating from

the misclassification matrix, which is not addressed in traditional robust MDP models. Therefore,

following the approach used in the literature (Chan et al. 2012, Xu and Chan 2016, Hu et al. 2018),

we perform more sensitivity analyses to assess the robustness of our policies. We will leave the

development of robust extubation policies with predictive information for future research.

It is worth mentioning that our model can also be formulated as a partially observable Markov

decision process (POMDP), which is a generalization of MDP that accommodates states that

are not completely observable. POMDP has garnered considerable attention in the healthcare

community recently and has been successfully applied to design personalized screening policies for

breast cancer (Ayer et al. 2012, 2016), prostate cancer (Zhang et al. 2012), and colorectal cancer

(Erenay et al. 2014).

Our model distinguishes itself from classical MDP and POMDP models by incorporating pre-

dictions of future states into the state space. In practice, these predictions are typically generated

from machine learning models constructed and validated using historical data. From this perspec-

tive, our model shares similarities with higher-order Markov chains, wherein system transition is

contingent upon historical states (Raftery 1985, Ching et al. 2008, 2013). However, higher-order
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Markov chains require that exponential numbers of parameters be characterized; otherwise, restric-

tive assumptions must be made on the dependence structure to reduce the parameter count. As

such, higher-order Markov decision processes (HMDP) are not straightforward to optimize and

have limited application in practice (Ching et al. 2004). Our approach permits greater flexibility,

both in capturing historical information—not confined to state information as in HMDP—and in

using advanced machine learning methods to project historical information onto a single prediction

state. Thus, our model can efficiently reduce both the number of parameters and the computational

complexity, which HMDP encounters.

2.4. Optimal Stopping and Its Applications

Our model also connects to the literature on the optimal stopping problem (Chow et al. 1971),

which arises in numerous applications, such as finance (Haugh and Kogan 2004, Detemple 2005,

Boyarchenko and Levendorskii 2007, Sturt 2021), healthcare (Alagoz et al. 2004), and marketing

(Feng and Gallego 1995, Erat and Kavadias 2008). Contemporary work on the optimal stop-

ping problem involves approximating value functions and pinpointing greedy policies by means

of approximate dynamic programming, simulation, and duality (Goldberg and Chen 2018). For

instance, Desai et al. (2012) used the pathwise optimization method to calculate upper and lower

bounds on the value function of an optimal stopping problem. Li and Linetsky (2013) solved a class

of optimal stopping problems via eigenfunction expansion. More recently, Ciocan and Mǐsić (2022)

proposed a binary tree-based greedy policy for the optimal stopping problem and characterized

the depth required for a tree policy to approximate any optimal policy to a specified precision.

They framed the problem of learning such policies from data as a sample average approximation

problem. The advantage of their approach is its data-driven and interpretable nature, making it

easy to implement in practice. The proposed policy outperformed other methods when applied to

an option pricing problem. In a different vein, Iancu et al. (2020) considered a robust optimal stop-

ping problem in continuous time, in which the system state cannot be observed except for a limited

number of monitoring times, which the DM must select along with a suitable stopping policy.

Rather than using conventional models that depict system evolution through specified stochastic

processes, they applied a robust optimization framework and described the system states using

an uncertainty set that captures possible system values at future monitoring times. The system

evolution was modeled by updating the bounding functions—which place lower and upper bounds

on future system values in the uncertainty set—after each observation. The DM’s objective was to

maximize the worst-case total reward. Our work adopts the conventional approach in which system

evolution is characterized by a Markov process but diverges from the typical optimal stopping

problem by incorporating predictions regarding future information into the state space.
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3. Clinical Settings and Data

Our study is based on data collected from a cardiothoracic ICU of a tertiary hospital in Singa-

pore. The dataset comprises 5,566 ICU admissions from March 2010 to October 2016. For each

ICU admission, we compiled patient-level admission data such as age, gender, race, and time of

admission. During the ICU stay, comprehensive physiological data, such as body temperature,

heart rate, and blood pressure, were documented by a digital tracking system. Laboratory test

outcomes, medications, procedures, and nursing care notes were also integrated into the dataset.

Clinical variables were typically updated every 15 minutes to 4 hours, except for laboratory tests,

which were often updated daily. The dataset provides detailed information about MV. The nursing

staff documented the time of intubation and extubation, the type of endotracheal tube, and the

ventilator mode at MV initiation. Patient conditions were recorded every 15 minutes to 4 hours on

a ventilator. Based on this rich dataset, we can identify patients who received MV, observe the ven-

tilation duration and the outcomes of extubation, monitor a patient’s respiratory condition—which

is associated with the risk of extubation failure—and construct a model that predicts a patient’s

future condition. Following previous medical studies (Demling et al. 1988, Girault et al. 2011)

and the practice in our partner ICU, we define extubation failure as the need for re-intubation or

noninvasive ventilation (NIV) within 7 days after extubation.

The data contains 4,026 cases with MV initiation. We apply the same set of exclusion criteria

as those used in both the medical literature and reinforcement learning models (Epstein et al.

1997, Fontela et al. 2005, Prasad et al. 2017, Chen et al. 2019). First, we eliminate readmitted

cases within 30 days (n = 648). Note that we keep the first admission in this step. Due to the

unavailability of historical data for patients admitted to the ICU in the initial month of our study

period, i.e., March 2010, these patients cannot be classified as new admissions or readmissions.

Hence, they must be excluded from our analysis. Nevertheless, our dataset does not include any

patients requiring MV during March 2010. Patients with excessively long LOS typically have rare

conditions and their treatment plans could be far from standard protocols. Hence, patients with

over a 30-day ICU LOS (n= 37) are excluded from our study. Similarly, patients with more than

one week of ventilation (n = 32) are more complicated and should be handled on a case-by-case

basis, depending on the physician’s discretion. Thus, we do not consider these cases. We also find

a few patients who have simultaneous records for intubation and extubation (n= 13), which are

likely incorrect and are thus excluded. Cases with an NIV record during MV (n= 14) are excluded

since their exact extubation times cannot be determined. Patients who died within 7 days after

extubation (n = 135) are excluded since identifying their extubation outcomes is difficult. These

patients do not count toward extubation failures in our numerical experiments. In our study ICU,

patients are not allowed to be discharged within 6 hours after extubation. There are a few violations
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in the data (n = 18), and we exclude these cases because the cause of the violations cannot be

determined. We also remove cases without records of respiratory rate and tidal volume (n= 11)

since these are necessary variables used in assessing patients’ health conditions under MV. We

will elaborate later in detail on how we assess and classify patient health conditions. Cases of

unplanned extubation (i.e., accidental or patient-induced endotracheal tube removal, n= 51) are

excluded from our analysis because they are not the result of regular extubation decisions. Finally,

3,067 separate entries are included in our study sample. Details of our data selection process are

provided in Table EC.1 in Appendix EC.5.

Table 1 Summary statistics of the study sample.

Variable Mean SD Variable Count Percentage

Demographics
Age (year) 60.1 11.5 Gender: male 2,361 77.0
Weight (kg) 66.1 13.7 Race

Chinese 2,016 65.7
Malay 468 15.3
Indian 262 8.5
Others 321 10.5

Clinical information
HR (beats/min) 87.6 13.1 Cardiac rhythm
RR (times/min) 14.7 4.1 Paced 1,083 35.3
GCS 3.8 2.7 Sinus rhythm 2,678 87.3
Creatinine (µmol/L) 108.8 110.7 Sinus tachycardia 345 11.2
Haematocrit (%) 34.6 6.7 Nursing assessment
Haemoglobin (g/dL) 11.7 2.3 Cardiac 2,005 65.4
Potassium (mEq/L) 4.1 0.6 Respiratory 1,011 33.0
Sodium (mEq/L) 137.9 4.1 Vascular 1,789 58.3
Platelets (×109/L) 216.5 86.5 Musculoskeletal 948 30.9
WBC (×109/L) 10.4 4.9 Neurological 1,874 61.1
Systolic BP (mmHg) 126.1 22.6 Nutrition 1,812 59.1
Diastolic BP (mmHg) 64.0 14.9 Initial class
Temperature (◦C) 34.9 3.1 1 22 0.7
Arterial pO2 (mmHg) 169.9 113.0 2 87 2.8
Arterial pCO2 (mmHg) 41.6 7.4 3 289 9.4
Arterial pH 7.4 0.1 4 705 23.0
Arterial SaO2 (%) 92.5 10.8 5 1,964 64.0
FiO2 (%) 75.2 11.4
Tidal volume (L) 0.5 0.1

Outcomes
Ventilation duration (hr) 11.5 14.8 Extubation failure 481 16.0
ICU LOS (hr) 97.6 73.1 Mortality 22 0.9

SD: standard deviation; HR: heart rate; RR: respiratory rate; GCS: Glasgow Coma Scale; WBC:
white blood cell; BP: blood pressure.

Table 1 provides summary statistics of our study sample at MV initiation. First, we have demo-

graphic information documented at ICU admission. The average age was 60.1 years old, and most
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of the patients were male (77.0%) and Chinese (65.7%). We extracted most of the relevant clin-

ical variables for our study based on the literature and discussions with the physicians. Detailed

descriptions of clinical variables are provided in Table EC.2 in Appendix EC.6. These variables were

updated frequently, from every 15 minutes to daily, which allows us to train a real-time predictive

model for the patient’s future condition. Finally, in our study sample, patients were ventilated for

an average of 11.7 hours. There were 481 (16.0%) cases of extubation failures. The mean ICU LOS

was 97.6 hours, and the mortality rate was 0.9%.

4. Model Formulation and Analysis

In this section, we describe the ICU extubation problem and formulate the problem as an MDP

with perfect or imperfect predictive information, which we term the MDP-P model. We also present

an MDP formulation that disregards predictions of future states, referred to as the MDP-B model,

in Appendix EC.1 for benchmarking purposes. We derive structural results for the optimal policy

and compare optimal value functions across different scenarios. Lastly, we outline the methodology

for estimating parameters based on our dataset. We will use the terms ventilation and treatment

interchangeably for the remainder of the paper.

The extubation decision-making process is graphically represented in Figure 1. Suppose a patient

is initiated on MV. The DM, usually a physician, routinely monitors the patient’s condition and

determines at every checkpoint (or decision epoch) whether to extubate the patient. The decision

problem concludes once the patient is taken off the ventilator.

Figure 1 An illustration of the extubation problem.

4.1. Model Formulation and Theoretical Results

In this section, we formulate a mathematical model to characterize the extubation problem with

predictive information (i.e., the MDP-P model) and derive the optimal policy. We assume that the

DM has access to predictive information, which could potentially be erroneous. We first elaborate

on the basic components of the MDP-P model.

Time horizon. We assume that extubation decisions are made within finite and discrete-time

epochs indexed by t∈ T = {1, . . . , T}, where T represents a predefined upper limit on the ventila-

tion epoch. The decision process for patients ventilated for more than a week is highly complex,

significantly deviating from routine procedures. In our ICU dataset, only 1.6% of patients (n= 67)
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were on ventilators for more than a week. Hence, we cap the maximum ventilation duration at one

week (168 hours) for this study. In our study ICU, physicians assess a patient’s condition every

six hours to decide on extubation. Therefore, the decision interval is set to six hours, and conse-

quently, there are a total of 28 epochs—i.e., T = 28, with the final epoch being terminal, meaning

all patients are extubated.

States. To capture the patient’s breathing condition, we categorize patients into one of C classes

based on observed clinical variables, with each class c∈ C = {1,2, . . . ,C} corresponding to a distinct

respiratory condition. The worst condition is represented by class 1, while class C indicates the

best. We denote the patient’s class at epoch t as ct. Given access to predictive information, the

DM can observe not only the current class ct but also a prediction for the patient’s class at the

subsequent epoch, denoted as ĉt+1 ∈ C. Consequently, the state at epoch t is (ct, ĉt+1) and the state

space is C ×C.

For the extubation problem, clinicians have developed early extubation protocols in recent years

based on the Rapid Shallow Breathing Index (RSBI), a well-established predictor for extubation

failure (Fitch et al. 2014, Mahle et al. 2016, Yang and Tobin 1991). Defined as the ratio of respira-

tory rate to tidal volume—i.e., RSBI =RR/VT , where RR is the respiratory rate (times/min) and

VT is the tidal volume (L)—a lower RSBI value implies better respiratory function. The real-time

monitoring of patients’ respiratory conditions is facilitated by ventilators, which regularly record

the respiratory rate and tidal volume of intubated patients. Various studies have suggested differ-

ent RSBI cut-off points for predicting extubation outcomes. For instance, Yang and Tobin (1991)

proposed an RSBI of 105, while Meade et al. (2001) suggested an RSBI of less than 65 for extuba-

tion. Another study by Chao and Scheinhorn (2007) concluded that an RSBI cut-off of less than

80 was overly conservative and that a higher threshold could enable more patients to benefit from

successful early extubation. Recently, McConville and Kress (2012) reaffirmed the RSBI threshold

of 105 proposed by Yang and Tobin (1991) while proposing a set of early extubation strategies.

In this study, we adhere to the medical literature by using RSBI as the classification criterion to

stratify patients into different risk groups for extubation. Ventilators record respiratory rate and

tidal volume, which are updated in our dataset every 15 minutes to 1 hour. We divide RSBI into

five classes {[105,+∞), [65,105), [45,65), [35,45), (0,35)} based on threshold values derived from

the medical literature reviewed above, and physicians’ suggestions from our study ICU. Thus, C = 5

in our case. A sensitivity analysis conducted with alternative, more granular patient classification

schemes in Appendix EC.7.4 provides findings consistent with those reported here in the base case.

Actions. At each decision epoch, the DM must decide whether to extubate the patient. The

action at epoch t∈ T is at ∈A= {0,1}, with 0 indicating continuation and 1 indicating extubation.
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As previously stated, we assume the treatment is discontinued, regardless of the patient’s health

condition at the final epoch, i.e., aT = 1.

Transitions. If the DM chooses to continue at epoch t, i.e., at = 0, the patient in class i will

transition to class j at epoch t+1 with a probability of P (i, j), where i, j ∈ C. On the other hand,

if the treatment is terminated, i.e., at = 1, the decision problem concludes. In the machine learning

community, a confusion matrix is typically used to evaluate the performance of predictive models in

binary classification problems. To capture prediction errors, we introduce a misclassification matrix,

Q, an analog to the confusion matrix for multi-class classification problems. Each component of

the misclassification matrix Q(i, j) := P(ĉ = j | c = i) represents the probability that a patient

transitioning to class i at the next epoch is predicted to transition to class j when the prediction is

made at the current epoch. Note that the misclassification matrix is stationary, meaning prediction

errors do not depend on time. The diagonal elements of Q represent the probabilities that the

corresponding class of patients in the next epoch can be correctly predicted. If the prediction is

perfectly accurate, Q is the identity matrix, denoted as I. Based on the law of total probability,

given the current class ct, the probability that the predictive model will yield a prediction ĉt+1

on the patient class at epoch t+1 can be computed as Q̃(ct, ĉt+1) =
∑

c∈C P (ct, c)Q(c, ĉt+1). Using

Bayes’ rule, given the current state (ct, ĉt+1), the probability that the true class at epoch t+1 is

ct+1 can be written as

π (ct+1 | ct, ĉt+1) =
P (ct, ct+1)Q(ct+1, ĉt+1)

Q̃(ct, ĉt+1)
. (1)

Here π can be interpreted as a belief vector of the DM on the patient’s future condition given

the current class ct and the predicted class ĉt+1. Therefore, the transition probability from state

(ct, ĉt+1) to (ct+1, ĉt+2) can be written as

P (ct+1, ĉt+2 | ct, ĉt+1) = π (ct+1 | ct, ĉt+1) Q̃(ct+1, ĉt+2). (2)

Costs. At each epoch, the associated cost depends on the patient’s current class and the DM’s

action, while the predicted class does not affect the immediate cost. We set our objective to

minimize the expected ICU LOS, a primary service outcome for surgical care provided by hospitals

(Wong et al. 2016). This objective aligns with the goals of fast-track management, which encourages

physicians to extubate patients aggressively to reduce their stays in the ICU (Sato et al. 2009,

Fitch et al. 2014). We demonstrate in our numerical analysis that, while primarily targeting the

reduction of LOS, optimal policies that incorporate predictive information can also effectively

reduce the extubation failure rate (EFR). We further demonstrate in Appendix EC.7.5 that EFR

can be directly calibrated into the cost parameters to capture the trade-off between service and

clinical outcomes. In our dataset, there is no significant correlation between the remaining LOS
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after extubation and ventilation duration (correlation coefficient = 0.01, p-value = 0.92). Thus, we

assume the remaining LOS is independent of the length of the patient’s stay. This is consistent

with the assumption in the literature that ICU LOS is geometrically distributed (Chan et al. 2012,

Dai and Shi 2019, 2021). The extubation decision does not impact ICU stays before intubation.

Therefore, we only consider the ICU stay from intubation as the objective in this study. In the

remainder of this paper, we use LOS to denote ICU LOS after MV initiation. Under this premise,

the immediate cost H incurred by continuing ventilation equals the length of the decision interval,

which is 6 hours. The terminal cost G(c) is the expected remaining LOS after extubation. We

assume that G(c) decreases1 with c, indicating that the remaining LOS shortens when a patient

is extubated in a better condition. In Appendix EC.3, we show that our structural results remain

valid under the same set of assumptions (as stated below) when the cost to continue is multiplied

by a discount factor.

The optimality equation of the MDP-P model can be expressed as

JP
t (ct, ĉt+1) =min

G(ct), H +
∑

ct+1∈C

∑
ĉt+2∈C

P (ct+1, ĉt+2 | ct, ĉt+1)J
P
t+1(ct+1, ĉt+2)

 ,

t∈ T \{T}, ct, ĉt+1 ∈ C,

(3)

where the transition probability P(ct+1, ĉt+2 | ct, ĉt+1) is computed as in Equation (2). Here,

JP
t (ct, ĉt+1) represents the minimum expected total cost incurred by a patient in class ct at epoch

t, given a prediction of the breathing condition at epoch t+ 1 as ĉt+1. The boundary condition

is JP
T (cT , ĉT+1) = G(cT ), for cT ∈ C. Note that at epoch T , the predicted class ĉT+1 beyond time

horizon T does not affect the value function since the process ends at epoch T , and the terminal

cost depends solely on the patient class at epoch T .

To obtain the structural results for MDP-P, we need certain assumptions. Two related concepts

are introduced below. The first is monotone likelihood ratio (MLR) dominance. A probability

vector x is said to dominate y in MLR ordering if x(j)y(i)≥ x(i)y(j), for i < j, represented as

x ≥lr y. MLR dominance is frequently used in POMDPs since it is preserved under conditional

expectations (e.g., Bayesian updates). Next, we introduce the definition of total positivity of order

2 (TP2). A matrix P is considered TP2 if all its second-order minors are nonnegative. Equivalently,

P is TP2 if and only if Pj ≥lr Pi for i < j, where Pi is the ith row of P (Krishnamurthy 2016).

With these concepts, we are ready to introduce the required assumptions for the MDP-P model,

which are deemed reasonable in our problem context and have also been made in other healthcare

studies (e.g., Boloori et al. 2020).

1 In this paper, we use the term ‘increasing’ (or ‘decreasing’) in the weak sense, i.e., nondecreasing (or nonincreasing).
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Assumption 1. Transition matrix P is TP2.

Assumption 1 ensures that a healthier patient is expected to evolve towards a better condition.

For C = 2, Assumption 1 holds if P (1,1) ≥ P (2,1). For C > 2, if the transition matrix P has a

tridiagonal structure, i.e., P (i, j) = 0, for j < i − 1 or j > i + 1, meaning that patients will not

transition more than one class in a single epoch, then Assumption 1 holds if P (i, i)P (i+1, i+1)≥

P (i, i+1)P (i+1, i).

Assumption 2. The misclassification matrix Q is TP2.

Assumption 2 suggests that a patient with a better health state is more likely to be predicted to

be in a more favorable state at the next epoch compared to a patient in a worse health state.

Assumption 3. G(c)−
∑

c′∈C π(c
′ | c, ĉ)G(c)−H is decreasing in c for any ĉ∈ C.

Assumption 3 means that a healthier patient gains less benefit from one additional epoch of venti-

lation, regardless of the prediction for the future health state. Given these three assumptions, we

can demonstrate the following properties of the value function for the MDP-P model, followed by

the structure of the optimal policy. Proofs for all technical results are relegated to Appendix EC.2.

Lemma 1. Under Assumptions 1 and 2, the value function for the MDP-P model JP
t (ct, ĉt+1) is

decreasing in both ct and ĉt+1 for all t∈ T .

Lemma 1 suggests that optimal ventilation cost decreases with patient class. Furthermore, if a

patient is predicted to be in a better health state at epoch t+1, the expected optimal cost will be

lower. We characterize the structure of the optimal policy for the MDP-P model in the following

theorem.

Theorem 1. Under Assumptions 1–3, for the MDP-P model, there exists an optimal switching

curve at epoch t∈ T \{T} that partitions the state space into two subsets R0
t and R1

t , such that the

optimal action in state (ct, ĉt+1) is

a∗
t (ct, ĉt+1) =

{
0 if (ct, ĉt+1)∈R0

t ,
1 if (ct, ĉt+1)∈R1

t .

In addition, the optimal threshold policy has the following properties:

(1) For all t∈ T \{T}, a∗
t (ct, ĉt+1) is increasing in ct but decreasing in ĉt+1.

(2) For all t= 1,2, . . . , T − 2, we have R0
t+1 ⊆R0

t and R1
t ⊆R1

t+1.

Theorem 1 establishes that the optimal policy for MDP-P is a switching curve policy. We note

that the inclination to extubate the patient increases with the patient’s current class and decreases

in the predicted class. As outlined in Appendix EC.1, the optimal policy in MDP-B, i.e., the

base MDP model without predictive information, is a time-dependent threshold policy that solely
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depends on the current class. With the inclusion of predictive information, patients who would

have been extubated according to the optimal policy in MDP-B may continue receiving ventilation

if their condition is expected to improve at the next epoch. Similarly, patients who would continue

receiving ventilation based on the optimal policy in MDP-B may be extubated if their condition

is predicted to worsen at the next epoch. This suggests that predictive information allows for

more accurate decision-making via personalized treatment effect prediction, a factor confirmed

to be significant in other medical decision-making problems (Chan et al. 2012, Kim et al. 2014).

Furthermore, the extubation region R1
t expands with time t (equivalently, the continuing region

R0
t contracts with time t), indicating that the stopping criterion should be more relaxed as the

treatment duration t increases.

Remark 1. We can also formulate the optimal stopping problem with predictive information

using the POMDP model. Under the POMDP framework, predictive information is modeled as

an observation at each epoch, and the patient’s condition at the next epoch is depicted as a

partially observable state. The DM forms a belief about the patient’s actual condition at the

next epoch using the misclassification matrix (referred to as the information matrix in POMDP

terminology) and makes the stopping decision based on this belief. If the decision is to continue the

treatment, the patient’s condition evolves into the next epoch, and a new observation—a prediction

of the patient’s condition at the next epoch—is revealed by the predictive model, and the process

continues. More details on the POMDP formulation are provided in Appendix EC.4, where we

show that all structural results regarding the optimal policies can be proven under the same set

of assumptions. Note that, in general, a POMDP model cannot be equivalently formulated as an

MDP model. Our problem is a special case, as, in our model, the partially observed state—i.e., the

patient’s condition at the next epoch—is disclosed at the next epoch. In contrast, in many other

POMDP models, the partially observed state(s) may depend on the action and may not be fully

observed within a fixed epoch.

4.2. The Benefit of Predictive Information

In this section, we theoretically explore the value of predictive information. We first compare the

optimal cost of the MDP-B model with that of the MDP-P model. In practice, if the prediction

accuracy is satisfactory, the DM might use the predictive information directly as if it were pre-

cise. Hence, we further discuss a case where the policy is derived using identity matrix I as the

misclassification matrix, while the actual misclassification matrix Q remains unknown to the DM.

In a special case with two patient classes, we derive the necessary and sufficient condition for the

predictive information to be beneficial.
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For a patient in class ct who has been ventilated for the past t− 1 epochs, the expected optimal

remaining cost in the MDP-P model, denoted as JP
t (ct), can be calculated as

JP
t (ct) =

∑
ĉt+1∈C

Q̃(ct, ĉt+1)J
P
t (ct, ĉt+1). (4)

The following result can be derived.

Theorem 2. The optimal policy with predictive information consistently outperforms policies

without predictive information, i.e., JP
t (ct) ≤ JB

t (ct), for all t ∈ T and ct ∈ C, where JB
t (ct) rep-

resents the minimum cost incurred by a class ct patient at epoch t under the base model without

prediction.

Theorem 2 suggests that any predictive information (even if inaccurate) is valuable. That is, for

any class c patient, the expected cost under the optimal policy with predictive information is not

higher than that under any policy without predictive information. This result is based on the fact

that the true misclassification matrix Q is known to the DM.

Even though predictive information is always beneficial when the underlying misclassification

matrix is known, the relation between prediction errors and the associated improvement remains

unclear. To address this question, a special case with two patient classes in an infinite time horizon is

examined. We confine ourselves to this simplified setting because the value function for the general

case is challenging to evaluate. Moreover, the prediction accuracy of the multi-class setting cannot

be easily summarized into a few parameters from the misclassification matrix without imposing

strong assumptions. Hence, we aim to glean some insights from analyzing this special case, where

the prediction accuracy can be represented by the well-known sensitivity and specificity measures,

and the findings can be numerically validated in the multi-class setting. Note that we consider

the infinite-horizon setting for notational simplicity, and all the following results hold under the

finite-horizon setting.

Suppose there are two classes of patients: class 1, representing patients in a severe condition,

and class 2, denoting those in a better state. The transition matrix can be fully captured by its

diagonal elements: p1 := P (1,1) and p2 := P (2,2), with the assumption that 0 < p1 < 1 to avoid

any trivial circumstances. Similarly, the misclassification matrix can be represented by its diagonal

elements, i.e., q1 :=Q(1,1) and q2 :=Q(2,2), which stand for sensitivity and specificity, respectively,

in binary classification problems. We assume that Assumption 2, which in this case simplifies to

the condition q1 + q2 > 1, holds in the following analysis. In this setup, the optimal decision for

class 2 patients is to discontinue ventilation because it does not offer any further benefit. Hence,

we only need to consider the cost related to class 1 patients. In our analysis of this special case,

we define the benefit of predictive information as the difference in expected total costs between
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the MDP-B model and the MDP-P model for class 1 patients, i.e., JB(1)− JP (1). We will also

assume that ∆G :=G(1)−G(2)>H. Otherwise, ventilation provides no benefit, and all patients

should be taken off ventilators immediately. The following theorem outlines the necessary and

sufficient condition for predictive information to be strictly beneficial, demonstrating how the value

of predictive information varies with the model parameters.

Theorem 3. Given two patient classes and under Assumption 2, we have the following results:

(a) Predictive information is strictly beneficial if and only if

κ1 <
H

∆G
<κ2, (5)

where

κ1 = P(ct+1 = 2 | ĉt+1 = 1) =
(1− p1)γ

p1q1 +(1− p1)γ
,

κ2 = P(ct+1 = 2 | ĉt+1 = 2) =
1−λ− γ

1− γ
,

γ = P(ĉt+1 = 1 | ct = 1) = p1q1 +(1− p1)(1− q2), and

λ= P(ĉt+1 = 2, ct+1 = 1 | ct = 1) = p1(1− q1).

(b) When condition (5) holds, the benefit of predictive information is concavely increasing in sen-

sitivity q1 and linearly increasing in specificity q2. Specifically, the rate of benefit increase from

q1 is greater than that from q2 if(
1− H

∆G

)
[1− p1(1− p1)(1− q1 − q2)]− p1 ≤ 0. (6)

Otherwise, the rate of benefit increase from q2 is greater than that from q1.

(c) When condition (5) holds, the benefit of predictive information is bounded above and below by

min{β1, β2} and q1β1 + q2β2 −max{β1, β2}, respectively, where β1 = p1H/(1− p1)− p1(∆G−

H), and β2 = (1− p1)(∆G−H).

Part (a) of Theorem 3 provides a necessary and sufficient condition under which the predictive

information is strictly beneficial when dealing with two patient classes. Note that 0<κ1 ≤ κ2 < 1.

This condition conveys that the holding cost must not be excessively high or low in comparison

to the difference between the terminal costs. Intuitively, a prohibitively high holding cost negates

any benefit derived from awaiting a patient’s condition improvement. Patients in class 1 would

consequently be extubated immediately unless the negative predictive value of correctly detecting

condition improvement (i.e., κ2) is sufficiently high. More specifically, the second inequality of

condition (5) can be expressed as (1−γ)H < (1−λ−γ)∆G. It is noteworthy that 1−γ represents

the probability that a class 1 patient is predicted to transition to class 2, while 1− λ− γ is the

likelihood that a class 1 patient predicted to transition to class 2 indeed makes that transition. If a
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class 1 patient is predicted to transition to class 2, and if the policy leverages this prediction to keep

the patient ventilated for one more epoch, then (1−γ)H represents the expected holding cost of this

policy. Conversely, (1−λ−γ)∆G captures its expected benefit. Thus, this condition corresponds to

a situation where the predictive information is valuable, advising the DM to postpone extubation

if the patient is likely to improve at the subsequent epoch.

In contrast, if the holding cost is negligibly low, the continuation of ventilation and waiting for

a patient to improve to class 2 is more beneficial, even in the absence of predictions. The first

inequality of condition (5) sets the threshold for such a scenario. In particular, if the prediction

indicates that a patient’s condition will not improve at the next epoch, extubating the patient

might be optimal, even when the patient is in class 1 under the given conditions. In other words,

awaiting a patient’s transition to class 2 may not be worthwhile. By substituting the expression of

κ1 and rearranging the terms, the inequality can be rewritten as follows:(
1

1− p1
− 1− γ

1−λ

)
H >

γ

1−λ
∆G.

Here, 1/(1− p1) =
∑∞

i=0 p
i
1, which represents the expected number of epochs needed for a class 1

patient to transition to class 2. Similarly, (1−γ)/(1−λ) = (1−γ)
∑∞

i=0 λ
i accounts for the expected

number of epochs for a class 1 patient who remains in class 1 but is erroneously predicted to tran-

sition to class 2 at the succeeding epoch. The left-hand side of the above inequality represents the

expected holding cost saved by early extubation under the policy with predictive information—i.e.,

extubating class 1 patients predicted to remain in class 1 at the next epoch—compared to the

policy of extubating only class 2 patients, or, in other words, keeping all class 1 patients venti-

lated until their condition improves. The right-hand side of the inequality represents the expected

increase in terminal costs due to not waiting for a patient’s condition to improve. In essence, this

condition states that the expected holding cost reduction resulting from early extubation should

exceed the expected increase in terminal costs induced by early extubation. Therefore, this con-

dition illustrates a situation in which predictive information is crucial in instructing the DM to

proceed with early extubation if the patient is unlikely to improve at the next epoch. Lastly, we

would like to highlight that condition (5) can be rewritten in terms of q1 and q2. The detailed

derivation of alternative expressions can be found within Theorem 3’s proof in Appendix EC.2.

Part (b) of Theorem 3 sheds light on how the benefit of predictive information varies with the

parameters related to prediction accuracy, namely, sensitivity q1 and specificity q2. As anticipated,

the benefit is enhanced with increased sensitivity and specificity. However, the second-order condi-

tions suggest that the benefit accrues at a diminishing rate with an increase in sensitivity, making

it marginally less beneficial to correctly identify a Class 1 patient who will remain in Class 1 at
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the next epoch. We further characterize the condition under which the rate of benefit increase

from sensitivity is greater than that from specificity—in other words, when sensitivity is more

valuable to improve than specificity. From expression (6), it can be deduced that as the cost ratio

H/∆G increases, the region where sensitivity holds more importance expands. Furthermore, if

p21 + (1− 2p1)(1−H/∆G) ≥ 0, it can be demonstrated that the region where sensitivity is more

important grows as p1 increases. Figure 2 depicts these trends. In Figure 2(a), where p1 = 0.60,

we illustrate three separating lines corresponding to H/∆G= 0.42, 0.45, and 0.48. The solid line

represents the condition q1 + q2 = 1. Within the region between the 145-degree solid line and each

separating line, sensitivity is more important than specificity. As H/∆G increases from 0.42 to

0.48, the region where sensitivity holds more importance expands. In Figure 2(b), with H/∆G fixed

at 0.45, we draw the separating lines by varying p1 from 0.57 to 0.63. It is clear that the separat-

ing lines move upward as p1 rises. Moreover, sensitivity is always more valuable to improve when

H/∆G ≥ (1− p21)/[1 + p1(1− p1)]. Conversely, specificity becomes more valuable when H/∆G ≤
(1− p1)

2/[1− p1(1− p1)]. A notable observation from condition (6) is that it depends on the sum

of q1 and q2, rather than on their individual values. Even if q1 is significantly larger than q2, the

advantage of increasing q1 remains greater than that of increasing q2, as long as condition (6) is met.

It is important to note that this pertains to the benefit of predictive information, which does not

account for the costs associated with increasing sensitivity or specificity. In practice, the DM can

assess whether condition (6) is satisfied and decide which parameter to prioritize for improvement

when additional efforts are feasible, considering the cost and benefits of such improvements.

Finally, part (c) of Theorem 3 provides an upper bound and a lower bound on the benefit of

predictive information. The upper and lower bounds collectively offer guidance on the viability

of investing in a predictive model. The upper bound indicates the maximum benefit one could

potentially achieve using predictive information. If the upper bound suggests minimal potential

benefits, it may not be worth pursuing. But if it is significant, the lower bound offers further insight

into the feasibility and required accuracy for a predictive model.

For a clearer understanding of the bounds, note that β1 represents the benefit derived from per-

fect prediction when only class 2 patients are extubated by the base model without prediction. Here,

the benefit of predictive information stems from extubating class 1 patients who do not benefit from

extended ventilation. To elaborate, the expected cost under the base model is H/(1− p1) +G(2),

where H/(1− p1) denotes the expected holding cost, and G(2) is the terminal cost. With per-

fect prediction, a class 1 patient, who will not show improvement at the following epoch, will be

extubated at the initial decision epoch. Otherwise, the patient will transition to class 2 at the sub-

sequent epoch and then be extubated. Thus, the expected cost is p1G(1)+(1−p1)[G(2)+H]. The

difference between these costs equates to β1, denoting the benefit of predictive information in this
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(b) H/∆G= 0.46.

Figure 2 Relative importance of sensitivity and specificity. The region below each separating line represents the

area where the rate of benefit increase from sensitivity q1 is greater than that from specificity q2.

scenario. Analogously, β2 depicts the benefit of perfect prediction when all patients are extubated

by the base model. In this situation, the potential cost-saving emerges from not extubating those

patients transitioning to class 2 at the next epoch, which equals ∆G minus the holding cost H.

The transition probability for a class 1 patient to class 2 is 1− p1. Thus, β2 = (1− p1)(∆G−H)

represents the expected benefit of predictive information in this context. When condition (5) holds,

the benefit of predictive information is bounded above by min{β1, β2}. Interestingly, the bound is

not always increasing in ∆G−H, which represents the benefit of waiting for one more epoch to

extubate in a better condition. Intuitively, a larger ∆G−H seems to offer a stronger incentive to

know the patient’s condition at the next epoch. However, if ∆G−H is large enough, then one will

wait for the patient’s condition to improve even in the absence of a prediction, aligning with the

optimal policy with predictive data.

Concerning the lower bound, recall that q1 is the likelihood of identifying class 1 patients who

will stay in class 1 at the next epoch. This probability scales the benefit of employing predictive

information to extubate class 1 patients not showing any improvement with extended ventilation.

This justifies the first term in the lower bound, namely, q1β1. In addition, q2 is the likelihood of

detecting class 1 patients transitioning to class 2 at the subsequent epoch. This probability scales

the benefit of using predictive information to defer the extubation decision for class 1 patients

likely to benefit from continued ventilation. This logic underpins the second term in the lower

bound, i.e., q2β2. It is also noteworthy that the upper and lower bounds coincide when q1 = q2 = 1.
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In practice, even though both sensitivity and specificity might not be immediately available for a

specific case, one could approximate these values through a small-scale study or a literature review.

This would facilitate the estimation of a lower bound on the benefit of predictive information using

our findings.

The results presented above depend on the underlying assumption that the true misclassification

matrix Q is known to the DM. In practice, however, obtaining the true misclassification matrix may

not be straightforward. Typically, the misclassification matrix is derived from out-of-sample tests

using data. The accuracy of this estimation largely depends on the data quality, which could be

compromised. In some scenarios, the DM might base decisions entirely on the prediction, provided

the predictive model’s accuracy is deemed satisfactory. To capture this feature, we analyze the cost

of the MDP-P model under the optimal policy that assumes I to be the misclassification matrix,

as detailed in Theorem 4.

Theorem 4. Suppose that the true misclassification matrix of the prediction model is unknown

to the DM, and Assumption 2 holds. If the DM applies an imperfect predictive model as if it were

perfect, i.e., the optimal extubation policy derived from assuming perfect prediction, we have

(a) If κ1 <H/∆G<κ2, the optimal policy derived from assuming perfect prediction is better than

the optimal policy without prediction.

(b) If κ2 ≤H/∆G< 1 or (1− p1)/(2− p1)<H/∆G≤ κ1, the optimal policy derived from assuming

perfect prediction is worse than the optimal policy without prediction.

(c) If H/∆G ≤ (1− p1)/(2− p1), the optimal policy derived from assuming perfect prediction is

equivalent to the optimal policy without prediction

Part (a) of Theorem 4 suggests that for a reasonable predictive model, an interval exists such

that if the cost ratio H/∆G resides within this span, employing predictive information is beneficial,

even when its true accuracy is overlooked and perceived as perfect. Part (b) of Theorem 4 conveys

that under certain circumstances, for instance, when either q1 or q2 is excessively small, assuming

perfect prediction could lead to erroneous decisions and inferior outcomes. When the holding cost

is small enough, both policies adopt the identical decision rule—always keeping class 1 patients

intubated, irrespective of the prediction, as deduced in part (c) of Theorem 4.

Remark 2. It is noteworthy that the condition specified in part (a) of Theorem 4 coincides with

condition (5) in the case where the misclassification matrix is known, as described in Theorem 3.

Combining these results, within the scope of a two-patient-class scenario, we can infer that if the

predictive information is validated as beneficial (as per condition (5) presented in Theorem 3), then

implementing the optimal policy that regards the imperfect prediction as if it were perfect is not

worse than the optimal policy without predictive information. An immediate practical implication
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is that once the data analytics team affirms the value of a predictive model by assessing its accuracy

and cost parameters, it is feasible to disregard the misclassification matrix during the actual rollout.

In such cases, it would suffice to communicate only the predictions to the physicians for their

deliberation. Adopting this strategy might mitigate the complexity physicians face in interpreting

the misclassification matrix, thereby facilitating smoother adoption of the predictive model in real-

world settings. However, it is crucial to acknowledge that this conclusion is predominantly based

on the framework of a two-patient-class setup. In situations involving multiple classes, one should

exercise caution regarding this implication.

4.3. Parameter Estimation

In this section, we estimate the unknown parameters of the proposed model. Specifically, we first

estimate terminal costs using a two-step approach. Transition probabilities are then estimated

using the sample mean. Subsequently, we train a practical prediction model and estimate the

misclassification matrix via out-of-sample testing.

Terminal costs. The terminal cost G(c) incurred by extubation is the expected remaining LOS

after extubation (RLOS) conditioned on patient class, i.e., G(c) := E[RLOS | c]. We expect G(c)

to be positively correlated with the risk of extubation failure r(c) since patients with failed extu-

bation require additional respiratory support. A failed attempt might even exacerbate a patient’s

condition, prolonging their stay. In our dataset, patients who experienced extubation failure had

a significantly longer RLOS (144.8 hours vs. 66.5 hours, p-value = 0.000). Our estimation results

confirm this conjecture. By accounting for both the treatment and terminal costs in the objective,

we effectively incorporate the EFR when minimizing the overall cost. It is possible to assign a

higher weight to the terminal cost, making EFR a more dominant factor in the optimization. We

present a sensitivity analysis of different weights on the terminal costs in the objective in Appendix

EC.7.5. As demonstrated in subsequent numerical results, the policies derived from our models

with predictive information not only minimize LOS but also significantly reduce EFR, even in the

baseline setup without placing higher weights on terminal costs.

Estimating the terminal cost presents significant challenges, primarily due to selection bias.

Within each patient class, those who were extubated were likely healthier than those who were not,

as physicians made extubation decisions. Consequently, a sample average approach might produce

a biased estimator for the terminal cost. To mitigate this bias, we employ a two-step procedure,

leveraging our rich dataset. The specifics of the estimation process are discussed below.

Using additional information from our dataset, the expression for G(c) can be reformulated as

G(c) =E [E [RLOS | c,x] | c] , (7)
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where x represents a vector of patient characteristics and clinical data just before extubation, as

listed in Table 1, excluding patient class. We also incorporate the sequential organ failure assessment

(SOFA) score, a widely-recognized severity metric used in ICUs (Vincent et al. 1996), to account

for the underlying health status. The first step is to estimate E[RLOS | c,x] and subsequently

determine the distribution of patient attributes x for each patient class using a propensity score

approach to deduce E[RLOS | c]. The first step naturally lends itself to linear regression. The fitted

value derived from the regression model,

RLOS= b0 + b′1x+ b′2c+u, (8)

serves as an estimator for E[RLOS | c,x], where (with a slight abuse of notation) c represents the

set of dummy variables for patient class; b0, b1, and b2 are the corresponding coefficients; and

u is the random error term. Our methodology aligns with numerous empirical studies that use

untransformed LOS as the dependent variable (e.g., Moran et al. 2008, Niskanen et al. 2009, Kc

2020). Verburg et al. (2014) demonstrated that a linear regression with an untransformed LOS

truncated at 30 days yields the highest R-square in comparison with other forms of LOS and

regression models. In the literature, it is also common to apply a logarithmic transformation to

LOS as the dependent variable (KC and Terwiesch 2012, Hu et al. 2018), in which, however,

the goal is usually to identify the risk factors for extended LOS. In our scenario, a logarithmic

transformation is infeasible since we intend to estimate the expected RLOS, and this expectation

does not hold under the logarithmic transformation. Nevertheless, we also estimate the model with

a logarithmically transformed RLOS and revert the fitted log(RLOS) to the RLOS scale using the

exponential function. This method results in a higher root mean squared error than Equation (8)

(61.9 vs. 60.0).

In the second step, we need to estimateG(c) using Equation (7). A significant hurdle is estimating

the distribution of covariates for each patient class. Due to selection bias, conditions at the terminal

epoch cannot represent the distribution of these variables within each class. To counteract this

bias, we adopt a stratification-based propensity weighting technique (Rosenbaum and Rubin 1983).

The core concept is leveraging the propensity-to-treat distribution (in our case, the propensity to

be extubated) as an estimator for the covariate population distribution. This approach is feasible

because our dataset provides real-time patient tracking data from the moment of ICU admission.

Following this strategy, we first compute the propensity score for each patient at every epoch using

logistic regression, resulting in an AUC of 0.762. Then, within each class c, samples are stratified

into Kc equally-sized subgroups based on their propensity scores. Given the limited data points

for the most adversely affected class (i.e., class 1), we opt for five strata for class 1 and ten for the
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remaining classes. Cochran (1968) established that five groups effectively eliminate 90% of the bias

introduced by imbalanced covariates. Subsequently, we calculate the average R̂LOS from Equation

(8) for extubated patients in each class c subgroup k, denoted as R̂LOSc,k. Our final step is to use

the weighted average of means from all subgroups within a patient class as an estimator for the

terminal cost:

Ĝ(c) =

Kc∑
k=1

R̂LOSc,k

Nk
c

Nc

,

where Nk
c is the sample count in class c subgroup k; Nc is the total number of sample points in

class c; and Ĝ(c) denotes estimated terminal cost.

We also estimate the EFR for each patient class by following a similar two-step procedure but

with a linear probability model (LPM) in the first step. We opt for LPM over logistic regression

for the same reasons as using linear regression to estimate G(c). In our data, the LPM produces

an almost identical AUC when compared to that of logistic regression (0.775 vs. 0.776). It is worth

noting that the estimated EFR is not used in the model for optimizing the extubation protocol,

but rather in the numerical analysis for evaluating the performance of different extubation policies.

Estimation results are shown in Table 2. As anticipated, both the risk of extubation failure

r(c) and RLOS(c) decrease with patient class c. Further details on the regression models used in

this section can be found in Appendix EC.9. Note that there may be some unobserved factors

correlated with both LOS and patient class. Our estimation method does not completely eliminate

the potential selection bias. Consequently, we provide a more comprehensive sensitivity analysis

on terminal costs in Appendix EC.7.1. The results suggest that the optimal policy remains robust

in the presence of estimation bias.

Table 2 Estimated RLOS and EFR.

Terminal class No. of observations RLOS (hr) EFR (%)

1 29 137.8 40.9
2 150 98.2 29.6
3 419 91.1 21.0
4 688 88.6 17.7
5 1,781 79.0 13.8

RLOS: remaining length of stay; EFR: extubation failure rate.

Class transition matrix. To estimate transition probabilities, we first divide the ventilation

period into epochs at six-hour intervals for each patient. Subsequently, we identify patient classes

at each epoch using the given RSBI values and the aforementioned classification criteria. If multiple

RSBI records exist within a single epoch for a patient, we use the average value to represent the

patient’s condition during that epoch. Thus, the transition probability P (i, j) from class i to j can
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be estimated as P (i, j) = nij/ni, where ni denotes the number of sample points in class i and nij

represents the number of sample points in class i that transition to j at the subsequent epoch.

One-step transition probabilities for each patient class are presented as follows:

P̂ =


0.35 0.21 0.20 0.11 0.13
0.09 0.40 0.28 0.13 0.10
0.02 0.14 0.48 0.24 0.12
0.01 0.05 0.23 0.36 0.35
0.01 0.02 0.07 0.18 0.72

.

The element-wise 95% confidence interval P, estimated using the bootstrap method, is provided

as follows:

P =


[0.23,0.48] [0.10,0.32] [0.10,0.32] [0.04,0.20] [0.05,0.23]
[0.05,0.13] [0.34,0.47] [0.22,0.34] [0.08,0.17] [0.06,0.15]
[0.01,0.03] [0.11,0.17] [0.45,0.53] [0.20,0.27] [0.09,0.14]
[0.01,0.02] [0.04,0.06] [0.21,0.26] [0.33,0.38] [0.32,0.38]
[0.00,0.01] [0.01,0.02] [0.07,0.09] [0.17,0.20] [0.70,0.73]

.

We also recognize that selection bias can influence the estimation of the transition matrix. To

adjust for this bias in our sensitivity analysis, we employ the propensity score weighting method,

with details available in Appendix EC.7.3. Our primary findings align with those obtained using

the propensity score weighting method.

Misclassification matrix. In this section, we develop a practical predictive model using the

random forest algorithm on our dataset and explore the benefit of integrating the predictions

generated by this model. Time-series data from each epoch of every patient serve as sample points,

while the patient class at the following epoch is set as the target. Our dataset comprises 4,376

samples, 75% of which are allocated for training, with the remaining 25% designated for testing and

estimation of the misclassification matrixQ. Note that our primary aim is not to create a model with

maximal predictive capacity. Rather, our goal is to showcase how a reasonably accurate predictive

model can influence decision quality when its predictions are incorporated into the extubation

protocol. We use all variables in Table 1 in our predictive model to forecast patients’ RSBI class at

the upcoming epoch. Additionally, we classify continuous variables based on their typical ranges and

incorporate them as extra features. For instance, the heart rate (HR) is segmented into HR< 60,

60 ≤ HR ≤ 100, and HR > 100 categories. The out-of-sample misclassification matrix Q̂ of the

predictive model is presented as follows:

Q̂=


0.60 0.08 0.17 0.15 0.00
0.10 0.60 0.16 0.09 0.05
0.01 0.09 0.61 0.21 0.08
0.00 0.02 0.31 0.53 0.14
0.00 0.01 0.11 0.28 0.60

.
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The element-wise 95% confidence interval Q, derived via the bootstrap method, is as follows:

Q=


[0.53,0.66] [0.05,0.12] [0.12,0.22] [0.10,0.20] [0.00,0.02]
[0.06,0.14] [0.53,0.67] [0.11,0.21] [0.05,0.13] [0.02,0.08]
[0.00,0.03] [0.05,0.13] [0.54,0.68] [0.16,0.27] [0.04,0.12]
[0.00,0.02] [0.00,0.04] [0.24,0.37] [0.46,0.60] [0.09,0.19]
[0.00,0.01] [0.00,0.03] [0.07,0.15] [0.21,0.34] [0.54,0.67]

.

Note that the estimated matrices P̂ and Q̂ are not TP2. However, we will later show that the

optimal policy closely resembles a switching-curve policy. Additionally, we demonstrate how to

harness Theorem 1 to derive near-optimal policies that are both more interpretable and easier to

implement. This involves enforcing Assumptions 1 and 2 during parameter estimation via con-

strained maximum likelihood estimation. A more detailed elaboration of the procedures and results

can be found in Appendix EC.10.

Analogous to terminal costs, transition and misclassification matrices might be subject to estima-

tion errors. Therefore, we undertake a sensitivity analysis to assess the influence of such errors on

the optimal policy in Appendix EC.7.2. Our investigations reveal that the optimal policy remains

largely resilient to estimation errors in both transition and misclassification matrices.

5. Numerical Results

In this section, we use the parameters estimated above to determine optimal policies for extubation

in various settings. We first derive the optimal policies for extubation without prediction and with

perfect prediction, then compare the objectives (i.e., LOS) and the EFR for each patient class under

different policies. Our results validate the value of predictive information. We also show that if the

states for the next two or three periods are predictable, there is a more significant improvement

in performance. Next, we assess the performance using the prediction model trained in the previ-

ous section. While the prediction accuracy is moderate, a significant performance enhancement is

observed compared to the scenario without any prediction. We also propose several straightforward

heuristics and guidelines to assist in applying predictive information practically. Lastly, to delve

deeper into the influence of prediction accuracy on system performance, we conduct a series of

numerical comparisons involving different prediction errors.

5.1. Perfect Prediction and the Value of Future Information

In this section, we first investigate the benefit of perfect prediction (i.e., Q= I), which provides an

upper bound for the value of predictive information. With the estimated parameters at hand, we

can computationally determine the optimal extubation policy without prediction (labelled as OP-

B; Figure 3), as well as the optimal extubation policy with perfect predictions (labelled as OP-PP;

Figure 4) by setting Q= I. The outcomes reveal that in the base model without prediction, the

Electronic copy available at: https://ssrn.com/abstract=3397530



28 Cheng, Xie, Zheng, Luo, Ooi: Extubation with Predictive Information

optimal strategy is to extubate the patient whenever they progress to class 2 or a better class—

analogous to a cut-off value of 105 in RSBI. This aligns with the suggestions of Yang and Tobin

(1991) and McConville and Kress (2012). Conversely, if we are aware that a class 2 patient will

advance to a better class by continuing ventilation for an additional epoch, it becomes optimal to

continue with ventilation for this patient instead of extubation, as depicted in Figure 4, and the

same holds for a class 3 patient. Figure 4 shows that the OP-PP policy at every decision epoch is

contingent upon both present class data and future class information. The black dashed contours

in Figure 4 highlight the patient subgroup whose extubation recommendations under the OP-PP

policy diverge from those under the OP-B policy. Note that the extubation decision at the last

epoch is more aggressive compared to earlier epochs due to the terminal effect. This policy can

be readily adapted, allowing physicians to exercise discretion when a patient remains intubated

nearing the conclusion of the decision timeline.

1 2 3 4 5
Current class

 

Figure 3 Optimal extubation policy without prediction. The dark gray grid indicates extubation, while the light

gray grid represents continued ventilation. The policy is stationary across all decision epochs.
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(b) t= 27.

Figure 4 Optimal extubation policy with perfect prediction. The dark gray grid indicates extubation, while the

light gray grid represents continued ventilation.
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Under the OP-B policy, the expected total cost JB
1 (c) can be computed for each patient with a

starting class c using Equation (EC.1). Additionally, the EFR for a patient beginning with class c

under the OP-B policy, denoted as RB
1 (c), can be determined using the following recursive equation:

RB
t (ct) = aB∗

t (ct)r(ct)+ [1− aB∗
t (ct)]

∑
ct+1∈C

P (ct, ct+1)R
B
t+1(ct+1), t∈ T \{T},

where aB∗
t (·) follows the OP-B policy and r(·) corresponds to the estimated EFR given in Table

2. The boundary condition is RB
T (c) = r(c) for all c. The expected total cost under the optimal

strategy with predictive information (for any general misclassification matrix) can be obtained

from Equations (3) and (4). The corresponding EFR for a patient in class ct at epoch t, RP
t (ct),

can be calculated as follows:

RP
t (ct) =

∑
ĉt+1∈C

Q̃(ct, ĉt+1)R
P
t (ct, ĉt+1),

where RP
t (ct, ĉt+1) = [1 − a∗

t (ct, ĉt+1)]P (ct+1, ĉt+2 | ct, ĉt+1)R
P
t+1(ct+1, ĉt+2) + a∗

t (ct, ĉt+1)r(ct), and

a∗
t (·, ·) follows the optimal policy with predictive information. For comparison, we also present

the current LOS and EFR for each initial class in our dataset, which are computed using sample

averages. These results are summarized in Table 3.

Table 3 Performance of different extubation policies.

Initial class
Data OP-B OP-PP

LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%)

1 115.3 21.4 105.8 21.8 104.5 19.4
2 103.9 29.1 104.2 29.6 101.7 23.6
3 99.5 20.2 97.1 21.0 96.4 20.1
4 93.9 16.7 94.6 17.7 93.3 16.3
5 86.7 13.9 85.0 13.8 85.0 13.8

OP-B: optimal extubation policy without prediction; OP-PP: optimal extubation policy with
perfect prediction; LOS: length of stay; EFR: extubation failure rate.

From Table 3, we observe that the OP-B policy results in a longer LOS compared to current

practices, confirming our earlier concern that physicians might be incorporating their own predic-

tions into extubation decisions. However, it is worth noting that comparing current practice with

our model might not be entirely fair, as real-world decisions are multifaceted, and numerous factors

come into play. While we have tried to reduce estimation bias in model parameters and conducted

thorough sensitivity analyses, we cannot claim that the comparison is perfectly fair. Hence, the

comparison between our data and the base model performance primarily serves to illustrate the
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potential pitfalls of the base model in certain situations relative to current practices. Going for-

ward, our focus will be on the comparison between the base model and the model that incorporates

predictive information.

When predictive information is considered, not only does LOS decrease relative to the OP-B

policy, but EFR is also reduced. The reduction in EFR largely stems from identifying a patient

subgroup that can be ventilated longer, allowing them to achieve improved conditions, which

significantly lowers their EFR. Simultaneously, accurate predictions can pinpoint patients at risk

of complications from prolonged ventilation, facilitating their earlier extubation. This highlights

the significance of precision medicine and personalized medical decision-making. Class 2 patients,

who are at the borderline between extubation and continued ventilation, experience the most

benefit from predictive information, with a 3.4% reduction in LOS and, more importantly, a 20.3%

reduction in EFR compared to the optimal policy that does not utilize prediction. These results

partially underscore that, even without explicitly incorporating EFR into the objective of our

model, predictive information enables the optimized extubation policy to significantly reduce EFR,

thereby improving patients’ clinical outcomes. It is logical that patients with an initial class of

5 see no benefit from predictive information since they are typically extubated shortly after ICU

admission. This aligns with observations from our partner hospital, where patients in better initial

respiratory health are generally put on ventilation due to needs related to surgery and anesthesia

and are safely extubated soon after ICU admission. As such, we will omit results for class 5 patients

in subsequent analyses.

To contextualize the reductions in ICU LOS, imagine a hospital with 3,000 ICU admissions

requiring MV support annually (our study ICU is merely one of five specialty ICUs in the hospital).

If we can decrease the average ICU stay by 2 hours per patient, this would be equivalent to saving

250 days annually, which is analogous to adding an additional ICU bed, assuming a 70% utilization

rate. If the hospital retains its current bed count, this LOS reduction could alleviate congestion.

Given that high congestion levels are correlated with poorer outcomes (KC and Terwiesch 2009,

Kuntz et al. 2014), a reduced LOS can enhance patient care quality. Operationally, a shorter LOS

can reduce wait times for subsequent ICU admissions. As delays can propagate in a queueing

system (Luo et al. 2017), a 2-hour cut might result in substantial throughput improvements for

both the ICU and the broader hospital (Kim et al. 2020).

One might expect that if a predictive model could forecast patient conditions beyond a six-hour

window, further LOS reductions could be achieved. We next investigate the effect of extending the

prediction window from one to two or even three epochs—i.e., from 6 hours to 12 or 18 hours.

Table 4 shows that both LOS and EFR can be further reduced with extended predictive windows.

Echoing the effect of diminishing returns, we notice that while there are benefits to longer prediction
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windows, the primary benefits are captured within a single epoch. Another contributing factor

might be health transitions: if a patient’s condition improves within a few epochs, then acquiring

extended future predictions might not add significant value. This implies that, in practice, the DM

might prioritize enhancing predictions for just the subsequent epoch.

Table 4 Performance of the optimal extubation policy with perfect
prediction under longer prediction windows.

Initial class
2-epoch prediction 3-epoch prediction

LOS (hr) EFR (%) LOS (hr) EFR (%)

1 104.4 19.1 104.4 19.1
2 101.4 23.1 101.3 22.6
3 96.4 19.7 96.4 17.7
4 93.3 16.3 93.3 16.3

LOS: length of stay; EFR: extubation failure rate.

5.2. A Practical Predictive Model and Imperfect Prediction

In the aforementioned analysis, our comparison of a model with perfect prediction to MDP-B

provides an upper limit on the value of predictive information. Yet, in the real world, predictions

are seldom entirely accurate. Employing the estimated misclassification matrix, Q̂, from Section

4.3, we derive the optimal policy for a model with imperfect prediction as illustrated in Figure

5. Interestingly, at decision epoch 27, the optimal policy deviates from a threshold structure.

Specifically, for a class 3 patient predicted to transition to class 5 (i.e., the best condition) at the

next epoch, extubation is recommended despite anticipated health improvements. This deviation

arises since the accuracy of a class 3 patient predicted to be class 5 at the next epoch is much

lower than that of a class 4 patient predicted to be class 5 at the next epoch (0.48 vs. 0.75). Thus,

the policy appears skeptical about the likelihood of a class 3 patient transitioning to class 5 at

the next epoch and recommends extubation. Note that this does not contravene our analytical

findings, as neither the estimated misclassification matrix nor the transition probability matrix

satisfies the TP2 condition in our dataset (i.e., Assumptions 1 and 2). As such, a threshold policy

is not assured. We will delve deeper into this in Section EC.10, proposing a new strategy to derive

a more pragmatically implementable policy by leveraging the analytical results from Section 4.1.

Nonetheless, this behavior can also be attributed to terminal effects, implying its implications in

real-world practices might be minimal.

Table 5 presents the performance of the optimal extubation policy with imperfect predictions,

labeled as OP-IP. We observe that the benefit of predictive information is reduced when predictions

are imperfect. Nevertheless, LOS and EFR still show improvement compared to the model without

predictive information. Next, as discussed in Section 4.2, we consider the scenario where the DM
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Figure 5 Optimal extubation policy with imperfect prediction. The dark gray grid indicates extubation, while

the light gray grid represents continued ventilation.

is unaware of the misclassification matrix and näıvely applies the optimal policy derived from

assuming perfect predictions (i.e., the OP-PP policy). Although the OP-PP policy is not optimal

in this context, its performance is remarkably close to that of the optimal OP-IP policy, with

differences being marginal within our reporting accuracy. This outcome suggests that our prediction

model is considerably accurate, rendering the loss from overlooking its true misclassification matrix

negligible. This result confirms our findings in Theorem 4.

Table 5 Performance of the optimal extubation policy with
imperfect prediction.

Initial class
OP-IP OP-PP

LOS (hr) EFR (%) LOS (hr) EFR (%)

1 105.3 19.3 105.3 19.3
2 102.9 23.0 102.9 23.0
3 97.1 20.3 97.1 20.3
4 94.3 16.9 94.3 16.9

OP-IP: optimal extubation policy with imperfect prediction; OP-PP:

optimal extubation policy derived from assuming perfect prediction

(i.e., Q= I); LOS: length of stay; EFR: extubation failure rate.

5.3. Rule of Thumb

A defining characteristic of optimal extubation policies with predictive information is that if a

patient is predicted to benefit from continued intubation, extubation is not pursued. Conversely,

without predictive information, the patient would be extubated. Stemming from this observation,

we aim to determine the threshold of prediction accuracy at which the decision shifts from extubat-

ing to continuing the ventilation. To investigate this, we modify a specific entry in the misclassifi-

cation matrix related to predicting transitions to a better class. By gradually increasing this entry
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while randomizing the others, we aim to determine the point at which the optimal policy begins

to shift. Specifically, we first focus on the entry Q(3,3), representing the probability of correctly

predicting a transition to class 3 at the next epoch. We generate values for Q(3,3) by drawing from

a uniform distribution over [0,1]. The remaining entries in the third row of Q are regenerated via

a uniform distribution over [0,1] and are normalized such that their sum is 1−Q(3,3). The rest of

the misclassification matrix is then generated from an uncertainty set constructed by element-wise

confidence intervals, as detailed in Appendix EC.7.2. This procedure is repeated 50,000 times, with

the matrices arranged in ascending order based on the values of Q(3,3), facilitating the analysis of

policy shifts correlated with its variations. Similar analyses are conducted for Q(4,4) and Q(5,5).

Given that the optimal policies are time-dependent, providing a summary of policy changes for

all decision epochs can become convoluted. Thus, we focus on decisions made within the first 10

epochs (i.e., 60 hours), since only 90 patients (2.9% of our dataset) were subjected to ventilation

beyond 10 decision epochs. Based on our observations, we propose the following rules of thumb to

leverage predictive information:

• For patients predicted to improve by one class, continuing the ventilation is recommended if

the prediction accuracy exceeds 0.65, except for class 3 patients.

• For patients predicted to improve by two classes, continuing the ventilation is recommended

if the prediction accuracy exceeds 0.5.

From our simulations, we observe that 100% of the optimal policies with prediction accuracy beyond

these thresholds switch from recommending extubation to recommending continued intubation

when patients are predicted to improve under ventilation. This guidance also extends to physicians’

own prognostications, with accuracy aligning with their confidence levels.

Note that the proposed heuristic emerges from the model parameters we estimated and might

not translate seamlessly to other contexts due to potential estimation discrepancies and varying

environments. Hence, we encourage practitioners to recalibrate the parameters and modify the

guidelines to suit their specific context.

5.4. Impact of Prediction Accuracy and Validation of Analytical Results

The accuracy of predictions hinges on both data availability and the efficacy of a predictive model.

We carry out a sensitivity analysis to investigate the influence of prediction accuracy on outcomes.

We set the diagonal elements of the misclassification matrix Q(i, i) to values ranging from 0.1 to

0.9, incrementing by 0.1, and then randomize the off-diagonal entries. Recall that the ith diagonal

element of Q represents the probability of correctly predicting a patient’s future state as class i

when they indeed transition to class i. Hence, the diagonal elements Q(i, i) capture the model’s

predictive accuracy. For each accuracy level, we generate 1,000 instances of the misclassification
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Table 6 Performance of the optimal extubation policy with imperfect prediction under different prediction accuracy.

Accuracy
Initial class 1 Initial class 2 Initial class 3 Initial class 4

LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%)

OP-B 105.8 21.8 104.2 29.6 97.1 21.0 94.6 17.7
0.0 105.6 20.8 103.6 26.5 97.1 21.0 94.6 17.6
0.1 105.7 20.9 103.9 27.0 97.1 21.0 94.6 17.6
0.2 105.7 21.1 104.0 27.6 97.1 21.0 94.6 17.7
0.3 105.7 21.1 103.9 27.4 97.1 21.0 94.6 17.7
0.4 105.7 20.8 103.8 26.7 97.1 21.0 94.6 17.6
0.5 105.6 20.5 103.6 25.9 97.1 21.0 94.5 17.4
0.6 105.4 20.1 103.3 24.9 97.1 20.8 94.3 17.0
0.7 105.2 19.7 102.9 24.1 97.0 20.5 94.1 16.8
0.8 105.0 19.5 102.5 23.8 96.8 20.3 93.8 16.6
0.9 104.8 19.4 102.1 23.7 96.6 20.2 93.6 16.5
1.0 104.6 19.3 101.7 23.6 96.3 20.0 93.4 16.3

LOS: length of stay; EFR: extubation failure rate.

matrix (with random off-diagonal elements) and execute our model to compute the average LOS

and EFR. The findings are presented in Table 6.

From Table 6, we can observe that the model with imperfect predictive information outperforms

the model without prediction, even if the prediction accuracy is moderate. The misclassification

matrix in our model enables a rational DM to speculate about the probability of each class that a

patient’s condition could evolve to based on both predictive information and the original transition

matrix. The Bayesian update allows the value of even noisy prediction to be extracted to improve

decision quality.

In some situations, the DM might not be aware of the misclassification matrix or may use it

solely as an indicator of whether to believe the predictions. Consequently, decisions might be made

based purely on the predictions as if they were perfectly accurate. To probe into the implications of

this, we adopt the aforementioned procedure to evaluate whether the policy derived from assuming

perfect prediction (i.e., the OP-PP policy) remains beneficial even if the prediction is imperfect.

The results are presented in Table 7. The insights from the table suggest that, in cases of low

prediction accuracy, the model without predictive information might yield better outcomes mainly

in terms of LOS compared to when overtrusting the predictions. However, with moderate prediction

accuracy, the optimal policy derived from assuming perfect prediction can surpass the OP-B policy

in an environment of imperfect prediction. This complements the conclusions drawn in Theorem 4

for two patient classes.

In Remark 2, we note that for two patient classes, if predictive information is proven beneficial,

then the optimal policy derived from assuming perfect prediction remains beneficial relative to the

optimal policy without prediction. We would like to explore to what extent this insight remains valid
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Table 7 Performance of the optimal extubation policy derived from assuming perfect prediction under different actual
prediction accuracy.

Accuracy
Initial class 1 Initial class 2 Initial class 3 Initial class 4

LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%)

OP-B 105.8 21.8 104.2 29.6 97.1 21.0 94.6 17.7
0.0 107.5 20.2 106.8 24.7 99.1 20.9 96.2 18.0
0.1 107.1 20.1 106.1 24.6 98.7 20.8 95.8 17.8
0.2 106.7 20.0 105.5 24.4 98.4 20.7 95.5 17.6
0.3 106.4 19.9 104.9 24.3 98.1 20.6 95.2 17.5
0.4 106.1 19.8 104.3 24.2 97.8 20.5 94.9 17.3
0.5 105.8 19.7 103.8 24.1 97.5 20.5 94.6 17.1
0.6 105.5 19.7 103.4 24.0 97.2 20.4 94.3 16.9
0.7 105.2 19.6 102.9 23.9 97.0 20.3 94.1 16.8
0.8 105.0 19.5 102.5 23.8 96.8 20.3 93.8 16.6
0.9 104.8 19.4 102.1 23.7 96.6 20.2 93.6 16.5
1.0 104.6 19.3 101.7 23.6 96.3 20.0 93.4 16.3

LOS: length of stay; EFR: extubation failure rate.

in multi-class scenarios. To achieve this, we randomly generate 50,000 misclassification matrices

from the uncertainty set of Q and compute the corresponding outcomes from different policies.

Details of constructing the uncertainty set can be found in Appendix EC.7.2. The results show

that when the average benefit (OP-IP vs. OP-B) in terms of LOS for patients in classes 1, 2, 3,

and 4 exceeds 0.5 hours (45,334 out of 50,000 sampled Q matrices), or when the benefit for class

1 patients exceeds 0.6 hours (45,812 out of 50,000 sampled Q matrices), the OP-PP policy can

also outperform the OP-B policy in more than 95% of these instances. Hence, we suggest that

if the predictive information can reduce the LOS for a patient by at least 0.5 hours, viewing the

prediction model as perfectly accurate is not detrimental to decision quality in our case.

6. Conclusion

In this paper, we propose a framework that exploits predictive information in a sequential decision-

making environment for a medical treatment stopping problem. Following the literature, the con-

ventional decision problem without predictive information is modeled using MDP as a benchmark.

We extend the state space of the benchmark MDP model to incorporate predictions of future

states, and system dynamics are extended to capture the quality of prediction. For the new MDP

model, we derive the structural properties of the optimal policies and demonstrate the impact of

predictive information. We demonstrate that the optimal policies are threshold policies, which can

then be easily incorporated into existing medical decision protocols.

To validate the proposed framework, we apply our models to the extubation problem in ICUs

and calibrate the models using a comprehensive dataset from an ICU. The numerical results show

that predictive information allows for more precise identification of potential patients for early
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extubation, which in turn reduces the side effects of traditional aggressive extubation strategies

that apply the same criteria to every patient based on their current condition. Consequently, new

protocols with predictive information could reduce both ICU LOS and EFR, especially for patients

whose initial condition is poor. In contrast, optimal policies from the benchmark model without

predictive information might lead to worse outcomes compared with the observed outcomes in

the data, since physicians in practice may have incorporated some predictive information in their

decision-making based on their experience and judgment.

To further validate our model, we train a practical predictive model using our data and a random

forest algorithm to predict a patient’s condition at the next decision epoch and measure the quality

of the prediction using an out-of-sample misclassification matrix. Although the accuracy of the

predictive model tested in our analysis is not very high, the results show that the optimal policy that

incorporates those predictions still outperforms the policy that does not use predictive information.

To analyze the impact of prediction accuracy on outcomes, we conduct numerical studies using

a randomly generated misclassification matrix. As a comparison, we also investigate the case in

which prediction errors are either not considered or overlooked by applying the policy derived from

assuming perfect prediction. In both scenarios, we observe that predictive information can still

enhance decision quality, even with a moderately accurate predictive model.

Our research can be extended in several directions. First, our proposed framework focuses on

integrating predictive information and does not consider many operational aspects, such as capacity

rationing issues under stochastic demands. Future research could incorporate more operational

aspects into the analysis. Second, this paper studies the optimal stopping problem for medical

treatment. In practice, deciding when to initiate treatment, and how to control medication dosage

and intensity, as well as other modalities during treatment, is also critical. For example, one might

consider the problem of optimal treatment initiation when treatment termination is determined by

an optimal stopping model and analyze the value of predictive information. Third, we demonstrate

numerically that the value of predictive information grows as the prediction window increases.

Nevertheless, conducting a theoretical analysis becomes considerably more challenging with an

extended prediction window. Fourth, as mentioned in the literature review, developing robust

MDP models to capture parameter uncertainties in both transition and misclassification matrices

would be beneficial in obtaining robust extubation policies with predictive information. Fifth, it is

important to note that all extubated patients in our study remained in the ICU post-extubation. In

contrast, other ICUs may transfer patients to a transitional care unit. Hence, it would be interesting

to extend our model to include a broader range of post-extubation pathways, considering that

prediction accuracy might vary depending on the options taken. Extending our model to capture

more actions, where the prediction accuracy under different actions may vary, would be insightful.
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Sixth, our model assumes that extubation decisions for different patients are independent, which

may not always be the case in reality. Indeed, system-level factors can influence individual-level

decisions. However, incorporating system-level factors explicitly into the state could result in a high-

dimensional MDP. We provide a partial solution to implicitly incorporate the impact of utilization

in Appendix EC.8. Exploring ways to enhance the model by integrating system-level factors more

explicitly into the decision-making process would be valuable. Finally, randomized controlled trials

are warranted to validate the findings in this paper and to establish protocols that incorporate

predictive information. We leave these and other challenges for future research.

References

Akan M, Alagoz O, Ata B, Erenay FS, Said A (2012) A broader view of designing the liver allocation system.

Operations Research 60(4):757–770.

Alagoz O, Maillart LM, Schaefer AJ, Roberts MS (2004) The optimal timing of living-donor liver transplan-

tation. Management Science 50(10):1420–1430.

Alagoz O, Maillart LM, Schaefer AJ, Roberts MS (2007a) Choosing among living-donor and cadaveric livers.

Management Science 53(11):1702–1715.

Alagoz O, Maillart LM, Schaefer AJ, Roberts MS (2007b) Determining the acceptance of cadaveric livers

using an implicit model of the waiting list. Operations Research 55(1):24–36.

Ayer T, Alagoz O, Stout NK (2012) OR Forum–A POMDP approach to personalize mammography screening

decisions. Operations Research 60(5):1019–1034.

Ayer T, Alagoz O, Stout NK, Burnside ES (2016) Heterogeneity in women’s adherence and its role in optimal

breast cancer screening policies. Management Science 62(5):1339–1362.

Ayer T, Zhang C, Bonifonte A, Spaulding AC, Chhatwal J (2019) Prioritizing hepatitis C treatment in U.S.

prisons. Operations Research 67(3):853–873.

Ayvaci MU, Alagoz O, Burnside ES (2012) The effect of budgetary restrictions on breast cancer diagnostic

decisions. Manufacturing & Service Operations Management 14(4):600.

Barrett M, Smith M, Elixhauser A, Honigman L, Pines J (2014) Utilization of intensive care services, 2011.

HCUP statistical brief 185.

Bellman R (1957) A Markovian decision process. Journal of Mathematics and Mechanics 679–684.

Bertsimas D, Kallus N (2020) From predictive to prescriptive analytics. Management Science 66(3):1025–

1044.

Bertsimas D, Kallus N, Weinstein AM, Zhuo YD (2017) Personalized diabetes management using electronic

medical records. Diabetes Care 40(2):210–217.

Bertsimas D, O’Hair A, Relyea S, Silberholz J (2016) An analytics approach to designing combination

chemotherapy regimens for cancer. Management Science 62(5):1511–1531.

Electronic copy available at: https://ssrn.com/abstract=3397530



38 Cheng, Xie, Zheng, Luo, Ooi: Extubation with Predictive Information

Blum B (2018) Saving lives in the ICU through artificial intelligence. URL https://www.israel21c.org/

saving-lives-in-the-icu-through-artificial-intelligence/.

Boloori A, Saghafian S, Chakkera HA, Cook CB (2020) Data-driven management of post-transplant medica-

tions: An ambiguous partially observable markov decision process approach. Manufacturing & Service

Operations Management 22(5):1066–1087.

Boyarchenko S, Levendorskii S (2007) Irreversible decisions under uncertainty: optimal stopping made easy,

volume 27 (Springer Science & Business Media).

Chan CW, Farias VF, Bambos N, Escobar GJ (2012) Optimizing intensive care unit discharge decisions with

patient readmissions. Operations Research 60(6):1323–1341.

Chan CW, Green LV, Lu Y, Leahy N, Yurt R (2013) Prioritizing burn-injured patients during a disaster.

Manufacturing & Service Operations Management 15(2):170–190.

Chao DC, Scheinhorn DJ (2007) Determining the best threshold of rapid shallow breathing index in a

therapist-implemented patient-specific weaning protocol. Respiratory care 52(2):159–165.

Chen J, Dong J, Shi P (2023) Optimal routing under demand surges: The value of future arrival rates.

Operations Research .

Chen T, Xu J, Ying H, Chen X, Feng R, Fang X, Gao H, Wu J (2019) Prediction of extubation failure for

intensive care unit patients using light gradient boosting machine. IEEE Access 7:150960–150968.

Chen Y, Farias VF (2013) Simple policies for dynamic pricing with imperfect forecasts. Operations Research

61(3):612–624.

Chhatwal J, Alagoz O, Burnside ES (2010) Optimal breast biopsy decision-making based on mammographic

features and demographic factors. Operations Research 58(6):1577–1591.

Ching WK, Huang X, Ng MK, Siu TK (2013) Higher-order Markov chains. Markov Chains, 141–176

(Springer).

Ching WK, Ng MK, Fung ES (2008) Higher-order multivariate Markov chains and their applications. Linear

Algebra and its Applications 428(2-3):492–507.

Ching WK, Ng MK, So MM (2004) Customer migration, campaign budgeting, revenue estimation: the

elasticity of Markov decision process on customer lifetime value. Advanced Modeling and Optimization

6(2):65–80.

Chow Y, Robbins HA, Siegmund D (1971) Great expectations: the theory of optimal stopping.

Chung WC, Sheu CC, Hung JY, Hsu TJ, Yang SH, Tsai JR (2020) Novel mechanical ventilator weaning

predictive model. The Kaohsiung journal of medical sciences 36(10):841–849.
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model-based advisory system for the management of ventilated intensive care patients. Part II: advisory

system design and evaluation. Computer methods and programs in biomedicine 99(2):208–217.

Wiesemann W, Kuhn D, Rustem B (2013) Robust Markov decision processes. Mathematics of Operations

Research 38(1):153–183.

Wilmore DW, Kehlet H (2001) Management of patients in fast track surgery. British Medical Journal

322(7284):473–476.

Wong WT, Lai VK, Chee YE, Lee A (2016) Fast-track cardiac care for adult cardiac surgical patients.

Cochrane Database of Systematic Reviews (9).

Xie J, Cheng G, Zheng Z, Luo H, Ooi OC (2019) To extubate or not to extubate: Risk factors for extubation

failure and deterioration with further mechanical ventilation. Journal of cardiac surgery 34(10):1004–

1011.

Xu K (2015) Necessity of future information in admission control. Operations Research 63(5):1213–1226.

Xu K, Chan CW (2016) Using future information to reduce waiting times in the emergency department via

diversion. Manufacturing & Service Operations Management 18(3):314–331.

Yang KL, Tobin MJ (1991) A prospective study of indexes predicting the outcome of trials of weaning from

mechanical ventilation. New England Journal of Medicine 324(21):1445–1450.

Zhang J, Denton BT, Balasubramanian H, Shah ND, Inman BA (2012) Optimization of prostate biopsy

referral decisions. Manufacturing & Service Operations Management 14(4):529–547.

Zhang Y, Steimle LN, Denton BT (2017) Robust Markov decision processes for medical treatment decisions.

Optimization Online .

Zhu F, Lee A, Chee YE (2012) Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database

of Systematic Reviews (10).

Electronic copy available at: https://ssrn.com/abstract=3397530



e-companion to Cheng, Xie, Zheng, Luo, Ooi: Extubation with Predictive Information ec1

Appendix: Proofs and Additional Results

EC.1. Benchmark Model without Predictive Information

In the base scenario, we address the extubation problem without predictive information, approach-

ing it in a conventional manner. This decision problem is formulated as a finite-state, finite-horizon,

discrete-time MDP model, which we denote as the MDP-B model. Although it shares many com-

ponents with the MDP-P model, they differ in state and transition probabilities. In this setting,

the system state is solely defined by the patients’ current class, so the transition probabilities are

entirely characterized by matrix P .

The optimality equation for MDP-B is given by

JB
t (ct) =min

G(ct), H +
∑

ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)

 , ct ∈ C, t∈ T \{T}, (EC.1)

where JB
t (ct) represents the minimum expected total cost for a class ct patient at epoch t. The

boundary condition is

JB
T (cT ) =G(cT ), cT ∈ C. (EC.2)

To solve the optimality equation (EC.1) and derive the optimal policy for the MDP-B model,

we begin with certain assumptions, which are deemed reasonable in a healthcare context. The first

assumption concerns the definition of first-order stochastic dominance. For probability vectors x

and y, x is said to first-order stochastically dominate y, denoted as x≥st y, if
∑

i≥k x(i)≥
∑

i≥k y(i)

for any k. In decision theory, this suggests that x is more favorable than y.

Assumption EC.1. For all i, j ∈ C such that i < j, Pj ≥st Pi.

Assumption EC.1 defines the structure of the transition probability matrix P in the sense of first-

order stochastic dominance. It indicates that a healthier patient in class j is more likely to transition

to a better state compared to a less healthy patient in class i, given i, j ∈ C and i < j.

The next assumption links the transition probability matrix to the cost functions. For a class c

patient,
∑

c′∈C P (c, c′)G(c′) denotes the expected terminal cost after one more epoch of treatment.

Thus, the expression G(c) −
∑

c′∈C P (c, c′)G(c′) − H quantifies the net benefit of an additional

treatment epoch. The following assumption asserts that the net benefit from one more epoch of

treatment declines as the patient’s health improves.

Assumption EC.2. G(c)−
∑
c′∈C

P (c, c′)G(c′)−H is decreasing with respect to c.
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In other words, a healthier patient gets less benefit from one more epoch of treatment.

Before characterizing the structure of the optimal policy for the MDP-B model, we first investi-

gate the property of the optimal value function in the following lemma. Technical proofs of all the

results in this appendix are presented in Appendix EC.2.

Lemma EC.1. Under Assumption EC.1, the optimal value function JB
t (ct) for the MDP-B

model is a decreasing function of ct for any t∈ T .

Lemma EC.1 implies that a healthier patient can expect a reduced residual treatment cost, after

undergoing t epochs of treatment. The structure of the optimal policy for the MDP-B model is

then characterized in the following theorem.

Theorem EC.1. Under Assumptions EC.1–EC.2, there exists an optimal threshold c∗t for each

decision epoch t ∈ T \{T} in the MDP-B model, such that it is optimal to stop the treatment if

ct ≥ c∗t , and to continue the treatment otherwise. Furthermore, c∗t decreases as t increases, i.e.,

c∗1 ≥ c∗2 ≥ · · · ≥ c∗T−1.

Theorem EC.1 states that the MDP-B model’s optimal policy is a threshold policy. For each

epoch t∈ T \{T}, there exists an optimal class threshold. If a patient’s class ct is equal to or better

than this optimal stopping threshold c∗t , then it is optimal to terminate the treatment; otherwise,

it is optimal to continue with it. The monotonicity of the optimal threshold c∗t in time t indicates a

more lenient stopping criterion for patients who have undergone multiple treatment epochs. In the

following proposition, we discuss a special case in which the optimal threshold remains stationary

over time.

Proposition EC.1. For a subgroup of patients who consistently improve under treatment (i.e.,

P (i, j) = 0 if j < i for i, j ∈ C), the optimal threshold from Theorem EC.1 remains invariant with

time. That is, c∗1 = c∗2 = · · ·= c∗T−1 = c∗. More explicitly, the optimal threshold is defined as

c∗ =min

{
c∈ C :G(c)−H −

∑
c′∈C

P (c, c′)G(c′)≤ 0

}
.

Proposition EC.1 suggests that a consistent stopping criterion can be applied to a patient sub-

group that consistently transitions to healthier states under treatment. This is invaluable, especially

since, under appropriate treatments, the majority of patients recover. In our dataset, 2,323 patients

(76%) never experienced any deterioration during ventilation. Even though some patients deteri-

orated while on ventilation, the optimal policy derived from the MDP-B model in our case study

remained a stationary threshold policy.
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EC.2. Proofs of the Mathematical Results

EC.2.1. Proof of Lemma EC.1

The proof proceeds by induction on decision epoch t.

For t= T , according to Equation (EC.2), JB
T (cT ) is decreasing in cT since G(cT ) is decreasing in

cT . Next, let’s assume that for epoch t+1, JB
t+1(ct+1) is decreasing in ct+1. At epoch t, based on

Equation (EC.1), we have

JB
t (ct) =min

G(ct), H +
∑

ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)

 .

Assumption EC.1 (specifically, Pj ≥st Pi for i < j) implies that

Pig≥ Pjg, ∀i < j, i, j ∈ C, (EC.3)

for any C-dimensional column vector g with decreasing components, i.e., g1 ≤ g2 ≤ · · · ≤ gC (Müller

and Stoyan 2002). Given the induction hypothesis, we infer that
∑

ct+1∈C P (ct, ct+1)J
B
t+1(ct+1) is

decreasing in ct. Since both G(ct) and H decrease in ct, it follows that JB
t (ct) is decreasing in ct,

thus completing the proof.

EC.2.2. Proof of Theorem EC.1

To prove Theorem EC.1, we first define the function to represent the benefit of continuing the

treatment under the base model as follows:

hB
t (ct) :=G(ct)−H −

∑
ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1), ct ∈ C, t∈ T \{T}. (EC.4)

It is optimal to stop the treatment if hB
t (ct)≤ 0, and to continue otherwise. This theorem can then

be recast into the following statement:

(i) hB
t (ct) decreases with ct for t∈ T \{T}.

(ii) hB
t (c)≥ hB

t+1(c) for all c∈ C and t= 1,2, . . . , T − 2.

Part (i) indicates that the optimal policy is a threshold policy, and part (ii) suggests that the

optimal threshold c∗t decreases with t. We now turn to proving these statements.

We begin by proving part (i) using induction on the decision epoch t. For the decision epoch

T − 1, we have
hB
T−1(cT−1) =G(cT−1)−H −

∑
cT∈C

P (cT−1, cT )J
B
T (cT )

=G(cT−1)−H −
∑
cT∈C

P (cT−1, cT )G(cT ).

The first equality follows from Equation (EC.4), and the second one is derived from the boundary

condition given by Equation (EC.2). Based on Assumption EC.2, it can be inferred that hB
T−1(cT−1)

decreases as cT−1 increases.
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Assume that for epoch t+1, hB
t+1(ct+1) decreases as ct+1 increases. Consequently, there exists an

optimal threshold c∗t+1 for epoch t+1. When ct+1 ≥ c∗t+1, we have JB
t+1(ct+1) =G(ct+1). Otherwise,

JB
t+1(ct+1) =G(ct+1)−hB

t+1(ct+1). For epoch t, we have

hB
t (ct) =G(ct)−H −

∑
ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)

=G(ct)−H −
∑

ct+1∈C

P (ct, ct+1)G(ct+1)+
∑

ct+1<c∗t+1

P (ct, ct+1)h
B
t+1(ct+1).

The first equality follows from Equation (EC.4), and the second one is due to the induc-

tion hypothesis. From Assumption EC.1 combined with the induction hypothesis, we note that∑
ct+1<c∗t+1

P (ct, ct+1)h
B
t+1(ct+1) decreases as ct increases. Moreover, due to Assumption EC.2,

G(ct) −H −
∑

ct+1∈C P (ct, ct+1)G(ct+1) decreases as ct increases. Consequently, hB
t (ct) decreases

with an increase in ct, which concludes the proof for part (i).

Moving on to prove part (ii), we begin with the following claim.

Claim EC.1. For all c∈ C and t∈ T \{T}, JB
t (c)≤ JB

t+1(c).

Proof. To prove this claim, we use induction on the decision epoch t. For t= T − 1, we have

JB
T−1(c) =min

{
G(c), H +

∑
c′∈C

P (c, c′)JB
T (c′)

}
≤G(c)

= JB
T (c).

The first equality follows the definition, and the third one comes from the boundary condition.

Assume that the claim is valid for epoch t+1. For epoch t, we have

JB
t (c) =min

{
G(c), H +

∑
c′∈C

P (c, c′)JB
t+1(c

′)

}

≤min

{
G(c), H +

∑
c′∈C

P (c, c′)JB
t+2(c

′)

}
= JB

t+1(c).

This inequality follows from the induction hypothesis. Consequently, JB
t (c) increases with t. ■

With the above established, we can now proceed to prove part (ii). We have

hB
t (c) =G(c)−H −

∑
c′∈C

P (c, c′)JB
t+1(c

′)

≥G(c)−H −
∑
c′∈C

P (c, c′)JB
t+2(c

′)

= hB
t+1(c).

This inequality follows from Claim EC.1. Thus, part (ii) is established, completing the proof for

Theorem EC.1.
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EC.2.3. Proof of Proposition EC.1

As presented in Proposition EC.1, we define

c∗ :=min

{
c∈ C :G(c)−H −

∑
c′∈C

P (c, c′)G(c′)≤ 0

}
. (EC.5)

To prove this proposition, we need to show that hB
t (ct)≤ 0 if ct ≥ c∗, and hB

t (ct)> 0 otherwise for

t∈ T \{T}.
The proof proceeds by induction on decision epoch t. When t= T − 1, we have

hB
T−1(cT−1) =G(cT−1)−H −

∑
cT∈C

P (cT−1, cT )J
B
T (cT )

=G(cT−1)−H −
∑
cT∈C

P (cT−1, cT )G(cT ).

The first equality follows from the definition of hB
t (ct), whereas the second is a result of the

boundary condition of the MDP-B model. Clearly, based on the definition of c∗, we find that

hB
T−1(cT−1)≤ 0 when cT−1 ≥ c∗ and hB

T−1(cT−1)> 0 otherwise. Assume the condition holds true for

epoch t+ 1. Then, for ct+1 ≥ c∗, we have JB
t+1(ct+1) =G(ct+1). Otherwise, JB

t+1(ct+1) =G(ct+1)−
hB
t+1(ct+1). At epoch t, we have

hB
t (ct) =G(ct)−H −

∑
ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)

=G(ct)−H −
∑

ct+1∈C

P (ct, ct+1)G(ct+1)+
∑

ct+1<c∗

P (ct, ct+1)h
B
t+1(ct+1).

The second equality follows from the induction hypothesis. We can consider the following two cases.

(a) If ct ≥ c∗, according to Equation (EC.5), we have G(ct)−H −
∑

ct+1∈C P (ct, ct+1)G(ct+1)≤ 0.

Also, since P (ct, ct+1) = 0 when ct+1 < ct in this particular case,
∑

ct+1<c∗ P (ct, ct+1)h
B
t+1(ct+1) = 0

As a result, hB
t (ct)≤ 0 for ct ≥ c∗.

(b) If ct < c∗, according to Equation (EC.5), we have G(ct) −H −
∑

ct+1∈C P (ct, ct+1)G(ct+1) >

0. Furthermore, according to our induction hypothesis,
∑

ct+1<c∗ P (ct, ct+1)h
B
t+1(ct+1) ≥ 0. Thus,

hB
t (ct)> 0 when ct < c∗.

Combining cases (a) and (b), we complete the proof.

EC.2.4. Proof of Lemma 1

To prove this lemma, we require the following result, which states that the belief is larger in the

sense of MLR dominance if the current class, or the predicted class at the next epoch, is healthier.

Claim EC.2. Given the current class ct ∈ C, for ĉt+1, ĉ
′
t+1 ∈ C, ĉt+1 ≥ ĉ′t+1 implies [π(ct+1 |

ct, ĉt+1)]ct+1∈C ≥lr [π(ct+1 | ct, ĉ′t+1)]ct+1∈C, where [π(ct+1 | ct, ·)]ct+1∈C represents the belief vector of

dimension C. Similarly, given the predicted class ĉt+1 ∈ C, for ct, c
′
t ∈ C, ct ≥ c′t implies [π(ct+1 |

ct, ĉt+1)]ct+1∈C ≥lr [π(ct+1 | c′t, ĉt+1)]ct+1∈C.
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Proof. According to the definition of MLR dominance, [π(ct+1 | ct, ĉt+1)]ct+1∈C ≥lr [π(ct+1 |

ct, ĉ
′
t+1)]ct+1∈C is equivalent to

π(ct+1 | ct, ĉt+1)π(c
′
t+1 | ct, ĉ′t+1)≥ π(c′t+1 | ct, ĉt+1)π(ct+1 | ct, ĉ′t+1), ∀ct+1 > c′t+1.

From Equation (1), the above inequality is equivalent to

P (ct, ct+1)Q(ct+1, ĉt+1)P (ct, c
′
t+1)Q(c′t+1, ĉ

′
t+1)[∑

c∈C
P (ct, c)Q(c, ĉt+1)

][∑
c∈C

P (ct, c)Q(c, ĉ′t+1)

] ≥

P (ct, c
′
t+1)Q(c′t+1, ĉt+1)P (ct, ct+1)Q(ct+1, ĉ

′
t+1)[∑

c∈C
P (ct, c)Q(c, ĉt+1)

][∑
c∈C

P (ct, c)Q(c, ĉ′t+1)

] , ∀ct+1 > c′t+1.

That is,

P (ct, ct+1)P (ct, c
′
t+1)[Q(ct+1, ĉt+1)Q(c′t+1, ĉ

′
t+1)−Q(c′t+1, ĉt+1)Q(ct+1, ĉ

′
t+1)]≥ 0, ∀ct+1 > c′t+1.

Since P (ct, ct+1)P (ct, c
′
t+1)≥ 0, it can be simplified to

Q(ct+1, ĉt+1)Q(c′t+1, ĉ
′
t+1)−Q(c′t+1, ĉt+1)Q(ct+1, ĉ

′
t+1)≥ 0, ∀ct+1 > c′t+1.

According to Assumption 2, the above inequality immediately holds if ĉt+1 > ĉ′t+1. The proof of

the other part is similar, so we omit it. ■

We then prove that JP
t (ct, ĉt+1) is decreasing in both ct and ĉt+1 by induction on the decision

epoch t. First, when t= T , we have JP
T (cT , ĉT+1) =G(cT ). The lemma immediately holds.

Assume that JP
t+1(ct+1, ĉt+2) is decreasing in ct+1 and ĉt+2. Note that Q̃ is TP2 under Assump-

tions 1 and 2 (see Krishnamurthy 2016, Lemma 10.5.2), and MLR dominance implies first-

order stochastic dominance. Meanwhile, JP
t+1(ct+1, ĉt+2) is decreasing in both ct+1 and ĉt+2.

Then,
∑

ĉt+2∈C Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2) is decreasing in ct+1. Together with Claim EC.2,∑

ct+1∈C π(ct+1 | ct, ĉt+1)
∑

ĉt+2∈C Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2) is decreasing in both ct and ĉt+1. G(ct)

and H are assumed as decreasing in ct. Therefore, J
P
t (ct, ĉt+1) is decreasing in both ct and ĉt+1.

EC.2.5. Proof of Theorem 1

We first define the function to represent the benefit of continuing the treatment under the MDP-P

model as follows:

hP
t (ct, ĉt+1) :=G(ct)−H −

∑
ct+1∈C

π(ct+1 | ct, ĉt+1)
∑

ĉt+2∈C

Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2)

 ,

t∈ T \{T}, ct ∈ C, ĉt+1 ∈ C.

Theorem 1 is equivalent to the following statements:
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(i) hP
t (ct, ĉt+1) is decreasing in ct.

(ii) hP
t (ct, ĉt+1) is increasing in ĉt+1.

(iii) hP
t (ct, ĉt+1) is decreasing in t.

From Section EC.2.4,
∑

ct+1∈C[π(ct+1 | ct, ĉt+1) ·
∑

ĉt+2∈C Q̃(ct+1, ĉt+2) · JP
t+1(ct+1, ĉt+2)] is decreas-

ing in ĉt+1. Hence, hP
t (ct, ĉt+1) is increasing in ĉt+1, and part (ii) holds.

We next prove part (i) by induction on the decision epoch t. First, at epoch T − 1, we have

hP
T−1(cT−1, ĉT ) =G(cT−1)−H −

∑
cT∈C

π(cT | cT−1, ĉT )G(cT ).

Part (i) holds under Assumption 3. Assume that part (i) holds at epoch t+1. Similar to the proof

of Theorem EC.1 in Section EC.2.2, at epoch t, with the induction hypothesis and part (ii), we

have

hP
t (ct, ĉt+1) =G(ct)−H −

∑
ct+1∈C

π(ct+1 | ct, ĉt+1)
∑

ĉt+2∈C

Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2)


=G(ct)−H −

∑
ct+1∈C

π(ct+1 | ct, ĉt+1)G(ct+1)+

∑
ct+1<c∗t+1

π(ct+1 | ct, ĉt+1)
∑

ĉt+2<ĉ∗t+2

Q̃(ct+1, ĉt+2)h
P
t+1(ct+1, ĉt+2)

 ,

where c∗t+1 and ĉ∗t+2 are the optimal thresholds for the patient class and the predicted future patient

class at epoch t+1. Under the induction hypothesis, it is decreasing in ct based on Assumptions

1–3. Therefore, part (i) holds.

Before proving part (iii), we establish the following result.

Claim EC.3. JP
t (c, ĉ)≤ JP

t+1(c, ĉ), ∀t∈ T \{T}, c∈ C and ĉ∈ C.

Proof. The proof proceeds by induction on the decision epoch t. When t= T − 1, we have

JP
T−1(c, ĉ) =min

{
G(c), H +

∑
c′∈C

[
π(c′ | c, ĉ)

∑
c̃∈C

Q̃(c′, c̃)JP
T (c

′, c̃)

]}
≤G(c)

= JP
T (c, ĉ).

The first equality follows the definition, and the third follows from the boundary condition. Assume

that the property holds for epoch t+1. At epoch t, we have

JP
t (c, ĉ) =min

{
G(c), H +

∑
c′∈C

[
π(c′ | c, ĉ)

∑
c̃∈C

Q̃(c′, c̃)JP
t+1(c

′, c̃)

]}

≤min

{
G(c), H +

∑
c′∈C

[
π(c′ | c, ĉ)

∑
c̃∈C

Q̃(c′, c̃)JP
t+2(c

′, c̃)

]}
= JP

t+1(c, ĉ).
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The inequality follows from the induction hypothesis. ■

We then demonstrate that hP
t (c, ĉ) is decreasing with respect to t as follows:

hP
t (c, ĉ) =G(c)−H −

∑
c′∈C

[
π(c′ | c, ĉ)

∑
c̃∈C

Q̃(c′, c̃)JP
t+1(c

′, c̃)

]

≥G(c)−H −
∑
c′∈C

[
π(c′ | c, ĉ)

∑
c̃∈C

Q̃(c′, c̃)JP
t+2(c

′, c̃)

]
= hP

t+1(c, ĉ).

The inequality follows from Claim EC.3. Thus, the proof is completed.

EC.2.6. Proof of Theorem 2

We prove this theorem by induction on the decision epoch t. First, for t= T , we have

JB
T (cT ) =G(cT )

=
∑

ĉT+1∈C

Q̃(cT , ĉT+1)G(cT )

=
∑

ĉT+1∈C

Q̃(cT , ĉT+1)J
P
T (cT , ĉT+1)

= JP
T (cT ).

The equations follow from the definitions and the boundary condition. Thus, the proposition holds

for epoch T . Next, assuming that the statement holds for epoch t+1, i.e., JB
t+1(ct+1)≥ JP

t+1(ct+1),

∀ct+1 ∈ C. For epoch t, we have

JB
t (ct) =min

G(ct), H +
∑

ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)


≥min

G(ct), H +
∑

ct+1∈C

P (ct, ct+1)
∑

ĉt+2∈C

Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2)


=min

G(ct), H +
∑

ĉt+1∈C

Q̃(ct, ĉt+1)
∑

ct+1∈C

π(ct+1 | ct, ĉt+1)
∑

ĉt+2∈C

Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2)




≥
∑

ĉt+1∈C

Q̃(ct, ĉt+1)min

G(ct), H +
∑

ct+1∈C

π(ct+1 | ct, ĉt+1)
∑

ĉt+2∈C

Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2)


=

∑
ĉt+1∈C

Q̃(ct, ĉt+1)J
P
t (ct, ĉt+1)

= JP
t (ct).

The first line follows from the optimality equation. The second line is a result of the induction

hypothesis. The third line derives from the definitions of Q̃ and π. The fourth line follows from

Jensen’s inequality. The fifth line uses the optimality equation, while the last line follows from the

definition of JP
t (ct). Thus, Theorem 2 holds. The proof is completed.
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EC.2.7. Proof of Theorem 3

Note that if patients are in class 2, they will be extubated, as no further benefit can be gained

from continued ventilation. Consequently, we need only consider the cost for class 1 patients. The

optimal decision for class 1 patients, when there is no predictive information, depends solely on

their current condition. This can be simplified to a comparison of the costs of extubation and

continued ventilation for class 1, i.e., G(1) vs. G(2)+H/(1− p1). Here, G(2)+H/(1− p1) represents

the expected cost of not extubating a class 1 patient, or in other words, extubating only when

patients reach class 2. The first term represents the terminal cost of extubation in class 2, and the

second term is the expected holding cost of transitioning from class 1 to class 2, represented by

the mean of a geometric distribution with success probability 1− p1. Comparing the two policies,

we deduce that if H/∆G > 1− p1, that is, the holding cost is significantly larger relative to the

cost difference between extubating in class 1 and class 2, then the optimal action is to extubate in

class 1. Otherwise, continuing ventilation is optimal. Thus, the optimal cost can be formulated as

JB(1) =

{
G(2)+H/(1− p1) if H/∆G≤ 1− p1,

G(1) if H/∆G> 1− p1.

There are four potential policies when considering predictive information: a(1,1) = a(1,2) = 1;

a(1,1) = 1, a(1,2) = 0; a(1,1) = 0, a(1,2) = 1; and a(1,1) = a(1,2) = 0.

Under the first policy, where a(1,1) = a(1,2) = 1, meaning all class 1 patients are extubated

regardless of predictive information, the expected cost is JP (1) =G(1).

For the second policy, a(1,1) = 1, a(1,2) = 0, where class 1 patients who are predicted to remain in

class 1 are extubated and those who are predicted to transition to class 2 continue with ventilation,

the expected cost is

JP (1) =

[
γ

∞∑
i=0

λi

]
G(1)+

[
1− γ

∞∑
i=0

λi

]
G(2)+ (1− γ)

[
∞∑
i=0

λi

]
H

=
γ

1−λ
G(1)+

1−λ− γ

1−λ
G(2)+

1− γ

1−λ
H,

where

γ = Q̃(ct = 1, ĉt+1 = 1) = p1q1 +(1− p1)(1− q2) and

λ= Q̃(ct = 1, ĉt+1 = 2)π(ct+1 = 1 | ct = 1, ĉt+1 = 2) = p1(1− q1).

For the third policy, a(1,1) = 0, a(1,2) = 1, where class 1 patients who are predicted to transition

to class 2 are extubated, while those who are predicted to stay in class 1 continue with ventilation,

the expected cost is

JP (1) =

[
(1− γ)

∞∑
i=0

(p1q1)
i

]
G(1)+

[
1− (1− γ)

∞∑
i=0

(p1q1)
i

]
G(2)+ γ

[
∞∑
i=0

(p1q1)
i

]
H
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=
1− γ

1− p1q1
G(1)+

γ− p1q1
1− p1q1

G(2)+
γ

1− p1q1
H.

Under the fourth policy, a(1,1) = a(1,2) = 0, where all class 1 patients continue with ventilation

irrespective of predictive information, the expected cost is

JP (1) =G(2)+
∞∑
i=0

pi1H

=G(2)+
1

1− p1
H.

Note that the first and fourth policies are the same as the policies without predictive information.

In what follows, we focus on the second and third policies that utilize predictive information. First,

we identify the condition under which the second policy, a(1,1) = 1, a(1,2) = 0, is strictly better

than the other three policies. This is equivalent to the following inequalities:

γ

1−λ
G(1)+

1−λ− γ

1−λ
G(2)+

1− γ

1−λ
H <G(1), (EC.6)

γ

1−λ
G(1)+

1−λ− γ

1−λ
G(2)+

1− γ

1−λ
H <G(2)+

1

1− p1
H, (EC.7)

γ

1−λ
G(1)+

1−λ− γ

1−λ
G(2)+

1− γ

1−λ
H <

1− γ

1− p1q1
G(1)+

γ− p1q1
1− p1q1

G(2)+
γ

1− p1q1
H. (EC.8)

The first two inequalities are equivalent to

H

∆G
<

1−λ− γ

1− γ
= κ2,

H

∆G
>

(1− p1)γ

p1q1 +(1− p1)γ
= κ1.

We show that the third inequality is implied by the first two. To demonstrate this, it suffices to

show
1− γ

1− p1q1
G(1)+

γ− p1q1
1− p1q1

G(2)+
γ

1− p1q1
H >G(1),

which is equivalent to
H

∆G
>

γ− p1q1
γ

.

Note that

κ1 −
γ− p1q1

γ
=

(1− p1)p
2
1q1(q1 + q2 − 1)

γ [p1q1 +(1− p1)γ]
≥ 0.

The inequality holds by Assumption 2, that is, q1 + q2 ≥ 1. Thus, when inequalities (EC.6) and

(EC.7) hold, inequality (EC.8) also holds. Therefore, the second policy is the unique optimal policy

if and only if

κ1 <
H

∆G
<κ2. (EC.9)
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Also note that

κ2 −κ1 = p1(1− p1)(1−λ)(q1 + q2 − 1)≥ 0.

This inequality holds by Assumption (2). Since we assume 0< p1 < 1, condition (EC.9) is an empty

set if and only if q1 + q2 = 1.

Now we consider the conditions under which the third policy, a(1,1) = 0, a(1,2) = 1, is strictly

better than the other three policies. This is equivalent to the following inequalities:

1− γ

1− p1q1
G(1)+

γ− p1q1
1− p1q1

G(2)+
γ

1− p1q1
H <G(1),

1− γ

1− p1q1
G(1)+

γ− p1q1
1− p1q1

G(2)+
γ

1− p1q1
H <G(2)+

1

1− p1
H,

1− γ

1− p1q1
G(1)+

γ− p1q1
1− p1q1

G(2)+
γ

1− p1q1
H <

γ

1−λ
G(1)+

1−λ− γ

1−λ
G(2)+

1− γ

1−λ
H.

The first two inequalities are equivalent to

H

∆G
<

γ− p1q1
γ

,

H

∆G
>

(1− p1)(1− γ)

1− p1q1 − (1− p1)γ
.

However, we have

γ− p1q1
γ

− (1− p1)(1− γ)

1− p1q1 − (1− p1)γ
=

p1(1− p1)(q1 + q2 − 1)(p1q1 − 1)

γ [1− p1q1 − (1− p1)γ]
≤ 0.

This inequality holds because p1 < 1, q1 ≤ 1, and q1 + q2 ≥ 1 (i.e., Assumption 2). Thus, under

Assumption 2, these inequalities cannot hold simultaneously, which indicates that the third policy

can never be strictly better than the other policies.

By combining the above analyses of the two policies that utilize predictive information, we

conclude that predictive information is strictly beneficial if and only if condition (EC.9) holds. Fur-

thermore, condition (EC.9) can be expressed in alternative forms by incorporating the definitions

of γ and λ as follows:

H

∆G
>

1− p1
2− p1

and q1 >max

{
(1− p1)

2(1− q2)
(
1− H

∆G

)
p1

H
∆G

− p1(1− p1)
(
1− H

∆G

) , 1− (1− p1)
(
1− H

∆G

)
q2

p1
H
∆G

}
,

or

H

∆G
>

1− p1
2− p1

and q2 >max

{(
1− H

∆G

)
[(1− p1)

2 + p1(2− p1)q1]− p1q1

(1− p1)2
(
1− H

∆G

) ,
p1(1− q1)

H
∆G

(1− p1)
(
1− H

∆G

)} .

Part (a) of the theorem is thus proven. Moreover, the second policy is the preferable way to

utilize the predictive information (compared to the third policy) when the predictive information

proves beneficial, given Assumption 2.
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Next, we examine how the benefit of predictive information varies with q1 and q2. Since policies

without predictive information do not account for q1 or q2, we only need to determine how the cost

function of the policies with predictive information is affected by these two parameters. Observe

that condition (EC.9) can be expressed as continuous intervals with respect to q1 or q2. Thus, we

can derive the cost function to see how it changes with respect to q1 and q2 when the conditions

are met.

Under condition (EC.9), we have

JP (1) =
γ

1−λ
G(1)+

1−λ− γ

1−λ
G(2)+

1− γ

1−λ
H,

which is simplified to

JP (1) =
γ

1−λ
∆G+G(2)+

1− γ

1−λ
H =

∆G−H

1−λ
γ+

H

1−λ
+G(2).

Recall that γ = p1q1 + (1− p1)(1− q2), and λ= p1(1− q1). It is immediately apparent that JP (1)

increases linearly with γ, and therefore decreases linearly with q2. Hence, the benefit of predictive

information increases linearly with q2. To understand the relationship with q1, we differentiate with

respect to q1:

∂JP (1)

∂q1
=

[
p1

1−λ
− p1γ

(1−λ)2

]
(∆G−H)− p1H

(1−λ)2

=p1
(1−λ− γ)(∆G−H)−H

(1−λ)2

≤p1
(1−λ− γ)( H

κ1
−H)−H

(1−λ)2

=p1
(1−λ− γ)( 1

κ1
− 1)− 1

(1−λ)2
H

=p1
(1−λ− γ)

(
1−λ−(1−p1)(1−γ)

(1−p1)γ
− 1

)
− 1

(1−λ)2
H

=p1
(1−λ− γ) 1−λ−(1−p1)

(1−p1)γ
− 1

(1−λ)2
H

=p1
(1−λ− γ) 1−p1(1−q1)−(1−p1)

(1−p1)γ
− 1

(1−λ)2
H

=p1
(1−λ− γ) p1q1

(1−p1)γ
− 1

(1−λ)2
H

=p1

p1q1q2
γ

− 1

(1−λ)2
H

=p1
p1q1q2 − γ

γ(1−λ)2
H

=p1
−(1−λ)(1− q2)

γ(1−λ)2
H
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≤0,

where the first inequality follows from condition (EC.9), while the last one is based on the obser-

vations that λ ≤ 1 and q2 ≤ 1. Note that 1 − λ − γ = (1 − p1)q2 is independent of q1. For the

second-order derivative, we find

∂2JP (1)

∂q21
=−p21 [(1−λ− γ)(∆G−H)−H]

(1−λ)3
≥ 0,

where the inequality is drawn from the conclusion of the first-order derivative, specifically, (1−

λ − γ)(∆G −H) −H ≤ 0. Thus, JP (1) is convex decreasing in q1, implying that the benefit of

predictive information is concave increasing in q1.

To compare the rates of benefit increase from sensitivity q1 and specificity q2, we examine the

first-order derivatives of JP (1) with respect to q1 and q2. Recall that J
P (1) denotes the expected

cost. Consequently, the rate of benefit increase with respect to q1 is greater than that with respect

to q2 if

− ∂JP (1)

∂q1
≥−∂JP (1)

∂q2

⇐⇒− p1
(1−λ− γ)(∆G−H)−H

(1−λ)2
≥ 1− p1

1−λ
(∆G−H)

⇐⇒− p1
(1−λ− γ)(∆G−H)−H

1−λ
≥ (1− p1)(∆G−H)

⇐⇒p1
H +(1−λ− γ)H

1−λ
+(1− p1)H ≥ (1− p1)∆G+

p1(1−λ− γ)

1−λ
∆G

⇐⇒
[
p1

2−λ− γ

1−λ
+(1− p1)

]
H ≥

[
(1− p1)+

p1(1−λ− γ)

1−λ

]
∆G

⇐⇒ H

∆G
≥ (1− p1)(1−λ)+ p1(1−λ− γ)

(1− p1)(1−λ)+ p1(2−λ− γ)

⇐⇒ H

∆G
≥ 1−λ− p1γ

p1 +1−λ− p1γ
.

Hence, the rate of benefit increase from q1 is greater than that from q2 if(
1− H

∆G

)
[1− p1(1− p1)(1− q1 − q2)]− p1 ≤ 0.

Otherwise, the rate of benefit increase from q2 is greater than that from q1.

To establish an upper bound for the benefit of predictive information, we set q1 = q2 = 1 in JP (1),

where the cost is minimized. This results in

JP (1)≥ p1G(1)+ (1− p1)G(2)+ (1− p1)H.

Note that

JB(1) =min

{
G(1), G(2)+

H

1− p1

}
.
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Thus, the upper bound of the benefit of predictive information is given by

V := JB(1)− JP (1)≤min

{
(1− p1)(∆G−H),

p1H

1− p1
− p1(∆G−H)

}
=min{β1, β2}.

To derive a lower bound for the benefit of predictive information, we can express V as

V =min

{
∆G,

H

1− p1

}
− γ∆G+(1− γ)H

1−λ
.

For q1 = 0, q2 = 1, we have λ= p1, γ = 0, and V =H/(1− p1). For q1 = 1, q2 = 0, we have λ= 0,

γ = 1, and V =∆G. For q1 = q2 = 1, we have λ= 0, γ = p1, and V = p1∆G+(1− p1)H. The affine

function connecting these three points can be defined as follows:

L(q1, q2) =min

{
∆G,

H

1− p1

}
+

[
p1H

1− p1
− p1(∆G−H)

]
q1+

(1− p1)(∆G−H)q2 − (1− p1)(∆G−H)− H

1− p1
=q1β1 + q2β2 −max{β1, β2}.

As previously demonstrated, the benefit function is concave in q1 and linear in q2. Therefore, it is

jointly concave in (q1, q2). Since the affine function L(q1, q2) traverses the three extreme points of

the benefit function (within the feasible space defined by 0≤ q1, q2 ≤ 1 and q1 + q2 ≥ 1), it serves

as a lower bound for the benefit.

The proof is now complete.

EC.2.8. Proof of Theorem 4

Under our assumption, the DM employs the optimal policy with perfect prediction by setting

q1 = q2 = 1. From Theorem 3, given q1 = q2 = 1, we deduce that the optimal policy with perfect

prediction is strictly better than the optimal policy without prediction if and only if

1>
H

∆G
>

1− p1
2− p1

,

where the optimal policy with perfect prediction uses the decision rule a(1,1) = 1, a(1,2) = 0.

Let d represent the decision rule a(1,1) = 1, a(1,2) = 0. Thus, the expected cost for this policy

under imperfect prediction is

Jd(1) =
γ

1−λ
G(1)+

1−λ− γ

1−λ
G(2)+

1− γ

1−λ
H.

As established in Appendix EC.2.7, this cost function is strictly lower than the costs associated

with the other two policies if and only if condition (EC.9) is satisfied. Note that κ2 ≤ 1. Furthermore,

we obtain

κ1 −
1− p1
2− p1

=
(1− p1)γ

p1q1 +(1− p1)γ
− 1− p1

2− p1

=
(1− p1)

2(1− q2)

[p1q1 +(1− p1)γ] (2− p1)

≥ 0.
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Thus, when κ1 <H/∆G<κ2, the optimal policy with perfect prediction is a(1,1) = 1, a(1,2) = 0,

and its associated cost is lower than that of the optimal policy without prediction.

If κ2 ≤ H/∆G < 1 or (1− p1)/(2− p1) < H/∆G ≤ κ1, the DM still applies the optimal policy

with perfect prediction, which is a(1,1) = 1, a(1,2) = 0. However, according to the insights from

Appendix EC.2.7, the cost is higher than that of the optimal policy without prediction. Conse-

quently, in this case, using the optimal policy with perfect prediction in an imperfect environment

proves counterproductive.

WhenH/∆G≤ (1− p1)/(2− p1), both the optimal policy with perfect prediction and the optimal

policy without prediction propose not to extubate class 1 patients, irrespective of the prediction.

As such, the costs remain consistent. The proof concludes here.
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EC.3. Discounting Future Costs

In this section, we consider the scenario where the DM is more concerned about the immediate

cost. Therefore, a discount factor α∈ [0,1] is incorporated into our models. The value functions of

the two settings are then modified as follows:

JB
t (ct) =min

G(ct), H +α
∑

ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)

 , ∀ct ∈ C, t∈ T \{T}, and

JP
t (ct, ct+1) =min

G(ct), H +α
∑

ct+2∈C

P (ct+1, ct+2)J
P
t+1(ct+1, ct+2)

 ,

∀t∈ T \{T}, ct, ct+1 ∈ C.
We show next that the theoretical results in Section 4 hold for the discount factor α. Since most

of the proofs are similar to those in Section EC.2, we only provide those that are significantly

different from the previous ones.

EC.3.1. Proof of Theorem EC.1 with Discounted Future Costs

To prove Theorem EC.1, we redefine the function (EC.4) as

hB
t (ct) :=G(ct)−H −α

∑
ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1), ct ∈ C, t∈ T \{T}.

For epoch T − 1, we have

hB
T−1(cT−1) =G(cT−1)−H −α

∑
cT∈C

P (cT−1, cT )J
B
T (cT )

=G(cT−1)−H −
∑
cT∈C

P (cT−1, cT )G(cT )+ (1−α)
∑
cT∈C

P (cT−1, cT )J
B
T (cT ).

The last term above is decreasing in cT−1 due to Lemma EC.1 and Assumption EC.1. Combined

with Assumption EC.2, this implies that hB
T−1(cT−1) is decreasing in cT−1. Assume that at epoch

t+1, hB
t+1(ct+1) is decreasing in ct+1. For epoch t, we have

hB
t (ct) =G(ct)−H −α

∑
ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)

=G(ct)−H −
∑

ct+1∈C

P (ct, ct+1)G(ct+1)+α
∑

ct+1<c∗t+1

P (ct, ct+1)h
B
t+1(ct+1)+

(1−α)
∑

ct+1∈C

P (ct, ct+1)G(ct+1).

The second equality follows from the induction hypothesis. The term,∑
ct+1<c∗t+1

P (ct, ct+1)h
B
t+1(ct+1), is decreasing in ct due to Assumption EC.1 and the induction

hypothesis. Moreover, G(ct)−H −
∑

ct+1∈C P (ct, ct+1)G(ct+1) is decreasing in ct from Assumption
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EC.2, and
∑

ct+1∈C P (ct, ct+1)G(ct+1) is decreasing in ct due to Assumption EC.1. Hence, hB
t (ct) is

decreasing in ct. We have

hB
t (c) =G(c)−H −α

∑
c′∈C

P (c, c′)JB
t+1(c

′)

≥G(c)−H −α
∑
c′∈C

P (c, c′)JB
t+2(c

′)

= hB
t+1(c).

The inequality follows from Claim EC.1. Therefore, the proof for Theorem EC.1 with a discount

factor is complete.

EC.3.2. Proof of Proposition EC.1 with Discounted Future Costs

After introducing the discount factor α, the stationary threshold c∗ in Proposition EC.1 is given

by

c∗ =min

{
c∈ C :G(c)−Hα

∑
c′∈C

P (c, c′)G(c′)≤ 0

}
.

To prove this proposition, it suffices to show that hB
t (ct)≤ 0 if ct ≥ c∗, and hB

t (ct)> 0 otherwise,

for all t∈ T \{T}. The proof proceeds by induction on the decision epoch t.

For t= T − 1, we have

hB
T−1(cT−1) =G(cT−1)−H −α

∑
cT∈C

P (cT−1, cT )J
B
T (cT )

=G(cT−1)−H −α
∑
cT∈C

P (cT−1, cT )G(cT ).

The above equalities arise from definitions and the boundary condition. Clearly, hB
T−1(cT−1)≤ 0 if

cT−1 ≥ c∗, and hB
T−1(cT−1)> 0 otherwise, based on the definition of c∗. Assume that the property

holds at epoch t+1. For epoch t, we have

hB
t (ct) =G(ct)−Hα

∑
ct+1∈C

P (ct, ct+1)J
B
t+1(ct+1)

=G(ct)−H −α
∑

ct+1∈C

P (ct, ct+1)G(ct+1)−
∑

ct+1<c∗

P (ct, ct+1)h
B
t+1(ct+1)

=G(ct)−H −
∑

ct+1∈C

P (ct, ct+1)G(ct+1)+α
∑

ct+1<c∗

P (ct, ct+1)h
B
t+1(ct+1)+

(1−α)
∑

ct+1∈C

P (ct, ct+1)G(ct+1).

The second equality follows from the induction hypothesis. If ct ≥ c∗, then

G(ct) − [H +
∑

ct+1∈C P (ct, ct+1)G(ct+1)] ≤ 0. Since P (ct, ct+1) = 0 when ct+1 < ct,∑
ct+1<c∗ P (ct, ct+1)h

B
t+1(ct+1) = 0. It follows that hB

t (ct) ≤ 0 for ct ≥ c∗. Otherwise, if ct < c∗,

G(ct)− [H+
∑

ct+1∈C P (ct, ct+1)G(ct+1)]> 0 and
∑

ct+1<c∗ P (ct, ct+1)h
B
t+1(ct+1)≥ 0 by the induction

hypothesis, implying hB
t (ct)> 0 when ct < c∗. The proof is thus complete.
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EC.3.3. Proof of Theorem 1 with Discounted Future Costs

We redefine that

hP
t (ct, ĉt+1) :=G(ct)−H −α

∑
ct+1∈C

π(ct+1 | ct, ĉt+1)
∑

ĉt+2∈C

Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, πt+1)

 ,

t∈ T \{T}, ct, ĉt+1 ∈ C.

First, note that hP
t (ct, ĉt+1) decreases with respect to ct, which can be proved from a similar

argument presented in Appendix EC.3.1. Furthermore, according to Appendix EC.2.4, the expres-

sion
∑

ct+1∈C π(ct+1 | ct, ĉt+1)
∑

ĉt+2∈C Q̃(ct+1, ĉt+2)J
P
t+1(ct+1, ĉt+2) decreases as ĉt+1 increases. Con-

sequently, hP
t (ct, ĉt+1) is increasing in ĉt+1.

Next, we demonstrate that hP
t (c, ĉ) decreases with respect to t as follows:

hP
t (c, ĉ) =G(c)−H −α

∑
c′∈C

[
π(c′ | c, ĉ)

∑
ĉ′∈C

Q̃(c′, ĉ′)JP
t+1(c

′, ĉ′)

]

≥G(c)−H −α
∑
c′∈C

[
π(c′ | c, ĉ)

∑
ĉ′∈C

Q̃(c′, ĉ′)JP
t+2(c

′, ĉ′)

]
= hP

t+1(c, ĉ).

The inequality follows from Claim EC.3. With this, our proof is complete.
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EC.4. POMDP Formulation of the Case with Predictive Information

In this appendix, we develop an alternative formulation for the optimal stopping problem with

predictive information using the POMDP framework. This is referred to as the POMDP-P model.

Core states. The core state at epoch t is the health state of the patient at the current epoch t

and the next epoch t+1, denoted as (ct, ct+1). In POMDP-P, the core state cannot be completely

observed by the DM.

Observations. Given that the predictive information may contain errors, the DM can only

partially observe the core state (ct, ct+1) at epoch t based on the signal provided by a predictive

model. Note that the current patient class ct is fully observable. Meanwhile, the DM receives

a predicted class ĉt+1 for ct+1 from the predictive model. Thus, the observation at epoch t is

represented as (ct, ĉt+1), and the observation space is C ×C.

Information matrix. In POMDP models, the information matrix characterizes the quality

of observations. This matrix is exactly the misclassification matrix, Q, from our MDP-P model.

Recall that each component of the misclassification matrix Q(i, j) := P(ĉ= j | c= i) represents the

probability that a patient transitioning to class i at the next epoch is predicted to transition to

class j when the prediction is made at the current epoch.

Belief states. The belief state is a vector indicating the probability of the patient being in each

class. Since the current class ct is fully observable, the belief state πt comprises the probabilities

of each class that the patient will be in at epoch t+1, given the observation (ct, ĉt+1). The belief

space is a (C − 1)-dimensional standard simplex, represented by Π.

The optimality equation of the POMDP-P model is expressed as

JIP
t (ct,πt) =min

G(ct), H +
∑

ct+1∈C

πt(ct+1)
∑

ĉt+2∈C

Q̃(ct+1, ĉt+2)J
IP
t+1(ct+1,πt+1)

 ,

t∈ T \{T}, ct ∈ C, πt ∈Π,

where

Q̃(ct+1, ĉt+2) =
∑

ct+2∈C

P (ct+1, ct+2)Q(ct+2, ĉt+2),

and JIP
t (ct,πt) represents the minimum expected total cost associated with a class ct patient at

epoch t when their health condition at the subsequent epoch follows the belief πt. The boundary

condition is

JIP
T (cT ,πT ) =G(cT ), cT ∈ C.

The belief is updated following Bayes’ rule as follows:

πt+1(ct+2 | ct+1, ĉt+2) =
P (ct+1, ct+2)Q(ct+2, ĉt+2)∑
c∈C

P (ct+1, c)Q(c, ĉt+2)
.
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Based on the POMDP formulation, we have the following results on the optimal policy. Their

proofs are analogous to those for the MDP-P model and are therefore omitted here.

Theorem EC.2. Under Assumptions 1–3, for the POMDP-P model, there exists an optimal

switching curve at epoch t∈ T \{T} that partitions the belief space into two connected regions B0
t (ct)

and B1
t (ct), such that the optimal action in the current state ct with belief πt is

a∗
t (ct,πt) =

{
0 if πt ∈B0

t (ct),
1 if πt ∈B1

t (ct).

In addition, the optimal threshold policy has the following properties:

(1) For all ct, c
′
t ∈ C and ct > c′t, t∈ C\{T}, we have B1

t (ct)⊇B1
t (c

′
t).

(2) For all c∈ C and t= 1,2, ..., T − 2, we have B1
t (c)⊆B1

t+1(c).

Theorem EC.2 asserts that the optimal policy for the described problem is a threshold policy.

Similar to classical POMDP results, the threshold curve lies in the belief space, which is not easily

interpretable. Moreover, the curve needs to be numerically computed, and the belief at every epoch

also needs to be computed to compare against the curve to derive the optimal decision. To address

this issue, in the following theorem, we map the threshold in the optimal policy in the belief space

into a threshold curve in the observation space and recover the same result for the MDP-P model.

Theorem EC.3. Under Assumptions 1–3, for the POMDP-P model, there exists an optimal

switching curve at epoch t ∈ T \{T} that partitions the observation space into two subsets O0
t and

O1
t , such that the optimal action given observation (ct, ĉt+1) is

a∗
t (ct, ĉt+1) =

{
0 if (ct, ĉt+1)∈O0

t ,
1 if (ct, ĉt+1)∈O1

t .

In addition, the optimal threshold policy has the following properties:

(1) For all t∈ C\{T}, a∗
t (ct, ĉt+1) is increasing in ct and decreasing in ĉt+1.

(2) For all t= 1,2, ..., T − 2, we have O1
t ⊆O1

t+1.

Theorem EC.3 is equivalent to Theorem EC.2 analytically in describing the structure of the

optimal policy, but it is easier to implement since the policy in the belief space is projected into

the observation space, which is much more interpretable and allows the easy design of decision

protocols based on the predictions rather than computed beliefs.

Compared with the MDP-P model formulation, Theorem EC.3 is the same as Theorem 1, and

all insights remain unchanged. In particular, if a patient’s condition at the current epoch is in a

good state, it is more likely that the treatment will be stopped; if the patient’s condition at the

next epoch is predicted to be worse, it is also more likely that the treatment will be stopped. Also,

the likelihood of stopping treatment increases with the duration of treatment.
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EC.5. Sample Selection

Table EC.1 Data selection process.

Sample Observations left % of previous % of initial

All patients receiving MV 4,026 - 100%
Excluding 30-day ICU readmissions 3,378 83.9% 83.9%
Excluding the cases with over 30 days of ICU LOS 3,341 98.9% 83.0%
Excluding the cases ventilated over 7 days 3,309 99.0% 82.2%
Excluding the cases with simultaneous intubation and extubation records 3,296 99.6% 81.9%
Excluding the cases with NIV records during MV 3,282 99.6% 81.5%
Excluding the cases that died within 7 days after extubation 3,147 95.9% 78.2%
Excluding the cases discharged within 6 hours after extubation 3,129 99.4% 77.7%
Excluding the cases without RSBI record 3,118 99.6% 77.4%
Excluding unplanned extubations 3,067 98.4% 76.2%

MV: mechanical ventilation; ICU: intensive care unit; LOS: length of stay; NIV: noninvasive ventilation; RSBI: rapid shallow breathing index.
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EC.6. Definitions of Demographic and Clinical Variables

Table EC.2 Definition of demographic and clinical variables in the case study.

Variable Definition

Age Patient’s age at ICU admission
Gender Patient’s gender
Race Patient’s race
Weight Patient’s weight at ICU admission
HR Frequency of heartbeats
RR Frequency of breaths
GCS Neurological score capturing the conscious state
Creatinine Byproduct of muscle metabolism, excreted unchanged by the kidneys
Haematocrit Volume percentage of red blood cells in blood
Haemoglobin Amount of iron-containing oxygen-transport metalloprotein in red blood cells
Potassium Amount of potassium in blood
Sodium Amount of sodium in blood
WBC Amount of white blood cells in blood
Platelets Amount of platelets in blood
Potassium Amount of potassium in blood
Sodium Amount of sodium in blood
Platelets Amount of platelets in blood
Systolic BP Maximum pressure in blood vessels during heartbeats
Diastolic BP Minimum pressure in blood vessels between heartbeats
Temperature Body temperature
Arterial pO2 Partial pressure of oxygen in arterial blood
Arterial pCO2 Partial pressure of carbon dioxide in arterial blood
Arterial pH Amount of hydrogen ions in arterial blood
Arterial SaO2 Percentage of hemoglobin binding sites occupied by oxygen
FiO2 Fraction of inspired oxygen
Tidal volume Volume of air displaced between inhalation and exhalation
Cardiac rhythm
Paced Paced atrial and ventricular rhythms
Sinus rhythm Normal sinus rhythm
Sinus tachycardia Normal sinus tachycardia rhythm

Nursing assessment
Cardiac The pulse is regular; the heart rate is between 60 and 100 beats/min; the

skin is warm and dry; the blood pressure is less than 140/90 mmHg; there
are no symptoms of hypotension.

Respiratory The respiratory rate is between 12 and 24 times/min; bilateral breath sounds
are clear; nail beds and mucous membranes are pink; the sputum is clear.

Vascular The extremities are normal, pink, and warm; peripheral pulses are palpable;
capillary refill is 3 seconds or less; there is no edema, numbness, or tingling.

Musculoskeletal The patient can move all extremities independently and perform
functional activities.

Neurological The patient is alert, oriented to person, place, time, and situation; the speech
is coherent.

Nutrition There is no difficulty in chewing, swallowing, or manual dexterity; the patient
consumes over 50% of the daily diet ordered.

HR: heart rate; RR: respiratory rate; GCS: Glasgow Coma Scale; WBC: white blood cell; BP: blood pressure.
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EC.7. Sensitivity Analysis

In this appendix, we report a series of sensitivity analyses focusing on parameter estimation, which

include terminal costs, the transition matrix, and the misclassification matrix. We also explore

alternative patient classification schemes and different definitions of terminal costs.

EC.7.1. Sensitivity Analysis on Terminal Costs

Note that unobserved selection bias might exist when estimating terminal costs. To make our results

more robust, we conduct a sensitivity analysis to investigate the potential impact of estimation

errors on terminal costs and extubation policies. Due to the potential selection bias arising from

unobserved factors, the patients who were extubated in the data might be healthier in those

unobserved dimensions. Consequently, our estimator Ĝ could be underestimated compared to the

true parameter G. We assume a bias coefficient v, such that the true terminal cost is given by

G= (1+ v)Ĝ.

To investigate the effect of this bias on the optimal policy, we vary v from 0 to 0.5 in steps of

0.01 and derive the optimal policy using terminal cost G. As a policy with predictive information

consists of a set of action matrices at each epoch t ∈ T with binary entries, we use the entry-wise

absolute difference to measure the discrepancy between two policies. We define the action deviation

as

d(AG,AĜ) =
1

T − 1

T−1∑
t=1

C∑
i=1

C∑
j=1

∣∣∣AG
t,i,j −AĜ

t,i,j

∣∣∣,
where AG and AĜ represent the optimal policies using G and Ĝ, respectively; the first index is for

time t, the second index for the current class i, and the third index for predicted class j.

Four different policies were observed among the 500 experiments, excluding the one presented

in the main paper, i.e., the optimal policy under Ĝ. Note that the optimal policy only changes

when there are sufficient changes in the terminal costs (i.e., a significant change in v). The action

deviation is 0.1 on average for the four different policies. In our case, describing a policy at an

epoch requires 5× 5 = 25 entries. Comparing 0.1 with 25, we conclude that the optimal policy is

not sensitive to estimation bias in terminal costs.

EC.7.2. Sensitivity Analysis on Transition and Misclassification Matrices

The estimated transition and misclassification matrices could be biased due to the extubation

decisions made. In this section, we perform a set of sensitivity analyses on these matrices and

investigate their impact on our results.

Specifically, to construct the uncertainty set, we use the bootstrap method to estimate the 95%

confidence interval for each element of the transition matrix, P . We randomly select observations

with replacement from the full sample to generate a new sample of the same size. From this
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bootstrapped sample, we estimate a transition matrix. We then construct an element-wise interval

uncertainty set using the 50,000 estimated transition matrices. That is, for the ith row of P , the

uncertainty set Pi is defined as

Pi =
([
¯
Pi,1, P̄i,1

]
, · · · ,

[
¯
Pi,C , P̄i,C

])
∩∆C ,

where [
¯
Pi,j, P̄i,j] is the confidence interval of element Pij, and ∆C represents the (C−1)-dimensional

probability simplex. We subsequently generate 50,000 P̂ samples based on Pi and derive the opti-

mal policy with imperfect prediction, as well as the optimal cost, for each P̂ . Among the 50,000

experiments, we observe 209 distinct policies, and the action deviation is 0.5, on average, for these

policies. Table EC.3 provides a summary of the performance, while Table EC.4 presents the bene-

fits of predictive information compared to the model without predictive information. We also carry

out a similar analysis for the misclassification matrix, in which we observe 205 different policies

among the 50,000 experiments, and the action deviation is 0.5 on average. Hence, we conclude

that the optimal policy remains relatively robust to estimation errors in both the transition and

misclassification matrices.

Table EC.3 Performance of the optimal extubation policy with imperfect prediction under
uncertain transition and misclassification matrices.

Initial class
Uncertain transition matrix Uncertain misclassification matrix

LOS (hr) EFR (%) LOS (hr) EFR (%)

1
105.4 19.6 105.3 19.6

(102.0-109.7) (17.6-22.9) (105.2-105.4) (19.4-19.7)

2
102.9 23.6 102.9 23.2

(101.9-103.7) (21.8-27.0) (102.6-103.2) (22.8-23.6)

3
97.1 20.6 97.1 21.0

(97.0-97.1) (20.2-21.0) (97.1-97.1) (21.0-21.0)

4
94.3 16.9 94.3 16.9

(94.2-94.3) (16.8-17.0) (94.1-94.6) (16.8-17.0)

LOS: length of stay; EFR: extubation failure rate.

* Numbers in parentheses indicate 95% confidence intervals.

EC.7.3. Adjusted Transition Matrix Estimation

As mentioned earlier, the extubation decision can also affect the estimation of the transition matrix.

When patients are extubated, we are unable to observe their health transitions as we would if

they continued to be intubated. In other words, the estimated health transitions for patients under

MV could be biased due to physicians’ extubation decisions. We provide an alternative estimation

procedure similar to the approach we adopted for terminal cost estimation to account for this
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Table EC.4 Benefit of the predictive information under uncertain transition and
misclassification matrices.

Initial class
Uncertain transition matrix Uncertain misclassification matrix

LOS (hr) EFR (%) LOS (hr) EFR (%)

1
0.5 2.0 0.4 1.3

(0.2-1.0) (-1.8-4.0) (0.3-0.5) (1.1-1.4)

2
1.4 5.7 1.2 3.5

(0.6-2.2) (-4.4-7.4) (1.0-1.4) (3.1-3.9)

3
0.0 0.1 0.0 0.0

(0.0-0.1) (0.0-0.8) (0.0-0.0) (0.0-0.0)

4
0.3 0.8 0.3 0.8

(0.0-0.4) (0.7-0.9) (0.0-0.5) (0.6-0.9)

LOS: length of stay; EFR: extubation failure rate.
* Numbers in parentheses indicate 95% confidence intervals.

selection bias as much as possible. In particular, we estimate the transition probabilities using the

following equation:

P̂ (i, j) =

Kc∑
k=1

Nk
i,j∑

l∈C
Nk

i,l

· N
k
i

Ni

,

where Nk
i,j is the number of patients in class i subgroup k that transition to class j. Note that∑

l∈C N
k
i,l ̸=Nk

i , since Nk
i counts the extubated patients, while Nk

i,l only counts those under venti-

lation. The idea is to use the propensity distribution to adjust the weight of the transitions. The

estimated transition matrix from this procedure is as follows:
0.35 0.18 0.20 0.13 0.14
0.08 0.39 0.31 0.10 0.12
0.01 0.13 0.49 0.23 0.14
0.01 0.05 0.23 0.38 0.33
0.00 0.02 0.06 0.18 0.74

.

The performance of our models under the adjusted transition matrix is shown in Table EC.5.

The results closely resemble those obtained using the transition matrix estimated via the sample

mean approach presented in the main text.

Table EC.5 Performance of different extubation policies under the propensity-adjusted transition matrix.

Initial Class
OP-B OP-PP OP-IP OP-PP under Q̂

LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%)

1 105.2 21.2 104.0 18.9 104.7 18.9 104.7 18.9
2 104.2 29.6 101.5 23.4 102.6 22.8 102.6 22.8
3 97.1 21.0 96.2 20.0 97.0 20.2 97.0 20.2
4 94.6 17.7 93.4 16.4 94.4 16.9 94.4 16.9

OP-B: optimal extubation policy without prediction; OP-PP: optimal extubation policy with perfect prediction; OP-IP: optimal
extubation policy with imperfect prediction; LOS: length of stay; EFR: extubation failure rate.
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EC.7.4. Alternative Patient Classification Schemes

In this section, we explore alternative patient classification criteria to derive the results. The

parameters are estimated following the same procedure described in Section 4.3.

EC.7.4.1. Six-class Stratification

In this section, we incorporate the cutoff value RSBI 80 from Chao and Scheinhorn (2007) and

classify patients into six classes: {[105,+∞), [80,105), [65,80), [45,65), [35,45), (0,35)}. Thus,

C = {1,2,3,4,5,6}. The estimated terminal costs are shown in Table EC.6.

Table EC.6 Estimated RLOS and EFR under six-class patient
stratification.

Terminal class No. of observations RLOS (hr) EFR (%)

1 29 137.8 40.9
2 55 99.6 26.0
3 95 97.3 30.2
4 419 91.1 21.0
5 688 88.6 17.7
6 1,781 79.1 13.8

RLOS: remaining length of stay after extubation; EFR: extubation

failure rate.

The transition probability matrix is estimated as follows:

P =


0.35 0.13 0.08 0.20 0.11 0.13
0.13 0.20 0.20 0.22 0.08 0.17
0.07 0.11 0.29 0.31 0.15 0.07
0.02 0.05 0.09 0.48 0.24 0.12
0.01 0.02 0.03 0.23 0.36 0.35
0.01 0.01 0.01 0.07 0.18 0.72

.

With these parameters, we derive results under our models. The optimal policies are depicted

in Figures EC.1 and EC.2. We find that classifying patients into more classes enables more precise

decisions. For example, under the base policy without prediction, patients with an RSBI in [80,105)

will not be extubated in the five-class case but will be extubated in the six-class case during the

last two epochs.

1 2 3 4 5 6
Current class

 

(a) t= 1,2, . . . ,25.

1 2 3 4 5 6
Current class

 

(b) t= 26,27.

Figure EC.1 Optimal extubation policy without prediction under six-class patient stratification. The dark gray

grid indicates extubation, while the light gray grid represents continued ventilation.
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(b) t= 27.

Figure EC.2 Optimal extubation policy with perfect prediction under six-class patient stratification. The dark

gray grid indicates extubation, while the light gray grid represents continued ventilation.

The performance under different extubation policies is summarized in Table EC.7. With one

additional class, we can further reduce LOS and EFR using predictive information. However, the

improvement is marginal. Moreover, the issues with the base model persist even with finer patient

classification: both LOS and EFR can worsen compared with current practice if the model does

not incorporate predictive information.

Table EC.7 Performance of different extubation policies under six-class patient stratification.

Initial Class
Data OP-B OP-PP

LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%)

1 115.3 21.4 105.8 20.2 104.6 19.0
2 104.4 27.8 104.7 21.3 101.9 21.9
3 103.7 29.9 103.3 30.2 101.5 23.9
4 99.5 20.2 97.1 20.9 96.4 20.1
5 93.9 16.6 94.6 17.7 93.3 16.3
6 86.7 13.9 85.0 13.8 85.0 13.8

OP-B: optimal extubation policy without prediction; OP-PP: optimal extubation policy with per-
fect prediction; LOS: length of stay; EFR: extubation failure rate.

EC.7.4.2. Seven-class Stratification

In this section, we further refine the classification and group patients into seven RSBI classes:

{[105,+∞), [80,105), [65,80), [55,65), [45,55), [35,45), (0,35)}. Thus, C = {1,2,3,4,5,6,7}. The

estimated terminal costs are shown in Table EC.8.

Electronic copy available at: https://ssrn.com/abstract=3397530



ec28 e-companion to Cheng, Xie, Zheng, Luo, Ooi: Extubation with Predictive Information

Table EC.8 Estimated RLOS and EFR under seven-class patient
stratification.

Terminal class No. of observations RLOS (hr) EFR (%)

1 29 137.8 40.9
2 55 99.6 26.0
3 95 97.3 30.2
4 121 94.7 21.4
5 298 89.4 20.7
6 688 88.6 17.7
7 1,781 79.1 13.8

RLOS: remaining length of stay after; EFR: extubation failure rate.

The transition probability matrix is estimated as follows:

P =



0.35 0.13 0.08 0.07 0.13 0.11 0.13
0.13 0.20 0.20 0.13 0.09 0.08 0.17
0.07 0.11 0.29 0.18 0.13 0.15 0.07
0.03 0.08 0.14 0.26 0.29 0.10 0.10
0.01 0.04 0.08 0.14 0.32 0.29 0.12
0.01 0.02 0.03 0.06 0.17 0.36 0.35
0.01 0.01 0.01 0.02 0.05 0.18 0.72


.

The optimal policies are depicted in Figures EC.3 and EC.4, and their performance is summarized

in Table EC.9. All observations and insights are consistent with the results reported in the main

text with five patient classes.

1 2 3 4 5 6 7
Current class

 

(a) t= 1,2, . . . ,24.

1 2 3 4 5 6 7
Current class

 

(b) t= 25,26,27.

Figure EC.3 Optimal extubation policy without prediction under seven-class patient stratification. The dark

gray grid indicates extubation, while the light gray grid represents continued ventilation.

EC.7.5. Different Weights on Terminal Cost

Physicians consider two important factors when making extubation decisions: LOS and EFR. In the

main analysis, we construct the objective function using LOS as the sole criterion. We show that

optimal policies failing to consider predictive information can result in more extubation failures

compared with current practice. However, if predictive information is properly incorporated into

the model, the optimal policies can substantially reduce extubation failures while minimizing only

LOS. In this section, we conduct a sensitivity analysis by modifying the value function to directly

account for EFR in the models. To this end, we introduce a tuning parameter λ to model the

trade-off between ventilation duration and terminal cost.
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Figure EC.4 Optimal extubation policy with perfect prediction under seven-class patient stratification. The

dark gray grid indicates extubation, while the light gray grid represents continued ventilation.

Table EC.9 Performance of different extubation policies under seven-class patient stratification.

Initial Class
Data OP-B OP-PP

LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%)

1 115.3 21.4 105.9 20.2 104.7 19.2
2 104.4 27.8 105.2 21.3 102.2 21.8
3 103.7 29.9 103.3 30.2 101.5 25.6
4 104.6 26.3 100.7 21.4 99.6 20.1
5 98.3 18.7 95.4 20.7 94.9 19.9
6 93.9 16.6 94.6 17.7 93.3 16.3
7 86.7 13.9 85.0 13.8 85.0 13.8

OP-B: optimal extubation policy without prediction; OP-PP: optimal extubation policy with per-

fect prediction; LOS: length of stay; EFR: extubation failure rate.

Specifically, the value function of the MDP-P model becomes:

JP
t (ct, ĉt+1) =min

λG(ct), H +
∑

ct+1∈C

∑
ĉt+2∈C

P (ct+1, ĉt+2 | ct, ĉt+1)J
P
t+1(ct+1, ĉt+2)

 .

Since the terminal cost for each class increases with the risk of extubation failure, λ can be viewed

as the weight assigned to extubation failure relative to LOS; λ= 1 corresponds to the case reported

in the main text. With a larger λ, the DM tends to keep patients ventilated for longer durations

and extubates them when they are in better conditions. We vary λ from 1 to 10 at intervals of 0.01

to construct the efficient frontiers that capture the trade-off between LOS and EFR under different

models. The results are presented in Figure EC.5. Since Class 5 represents the best condition, the

weight has no impact on the optimal action for this class of patients; therefore, we only present

results for the other four classes.
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Figure EC.5 Trade-off between LOS and EFR under different weights on terminal costs.

OP-B: optimal extubation policy without prediction; OP-PP: optimal extubation policy with perfect prediction;

LOS: length of stay; EFR: extubation failure rate.

In Figure EC.5, the x-axis represents the expected total LOS since intubation, and the y-axis

corresponds to the EFR. Each point corresponds to a specific λ value. In these charts, points at

the lower-left corners represent more effective policies with lower LOS and EFR. Since a larger λ

results in extended LOS, the point moves from left to right as λ increases, thereby increasing LOS

while decreasing EFR. The leftmost points on these curves correspond to cases with λ= 1, which

are the results reported in the main text. These charts enable the DM to visualize the benefits

of using predictive information and to identify inefficiencies in the base model without predictive

information compared to current practice. The DM can use these charts to balance the trade-off

between the two objectives, i.e., LOS and EFR, opting for a larger λ if EFR is considered to carry

greater weight in extubation decisions.
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EC.8. Impact of Utilization with Different Weighting Functions

In practice, system utilization can influence individual-level decisions in several ways (KC and

Terwiesch 2009, Kim et al. 2016, Shen et al. 2021). Specific to our context, in a less-congested

unit, the DM might prioritize the quality of care and aim for a lower EFR. However, as the unit

becomes more congested, the DM may feel compelled to conduct early extubations to transition

more patients to downstream care units. Incorporating the utilization level directly into the state

would result in a high-dimensional MDP. Following the approach of Grand-Clément et al. (2021),

we implicitly account for the effects of utilization by discounting the continuation cost. Specifically,

we use the utilization level to discount the constant treatment cost in our model, leading to the

following revised value function:

JP
t (ct, ĉt+1) =min

G(ct), wρH +
∑

ct+1∈C

∑
ĉt+2∈C

P (ct+1, ĉt+2 | ct, ĉt+1)J
P
t+1(ct+1, ĉt+2)

 ,

where wρ denotes the impact of utilization level on the immediate cost H. Intuitively, the weight

wρ should increase with ρ. As the utilization level grows, the one-epoch LOS assumes heightened

importance.

In our analysis, we adopt various forms of the weighting function wρ to represent the influence

of utilization on the extubation decision. Given that Erlang loss systems are commonly applied

to model healthcare service systems, including ICUs, we formulate the weighting function based

on the Erlang loss system’s blocking probability (van Dijk and Kortbeek 2009). In an Erlang loss

system with capacity s, arrival rate λ, and service rate µ, the blocking probability is defined as

B(s, ρ) = (as/s!)/(
∑s

k=0 a
k/k!), where a = λ/µ. In our model, s = 15. We define ρ = a/s as the

system’s utilization level. Subsequently, as we vary ρ∈ (0,1), we calculate the associated blocking

probabilities for different utilization levels. To construct the weight function, we normalize the

blocking probability to get:

wρ =
B(s, a)

maxρ∈(0,1)B(s, a)
. (EC.10)

This weighting function yields two desirable properties: (1) wρ → 1 as ρ→ 1, implying that the

objective becomes solely the LOS when the system is at its busiest, and (2) wρ → 0 as ρ → 0,

indicating that the objective shifts to minimize the EFR when the utilization level gets lower.

Figure EC.6 depicts the benefit of perfect prediction—which is the reduction in objective values

achieved through using perfect predictions—at various utilization levels. Note that we evaluate the

objective values under the newly-defined value function with the weighting parameter specified

in (EC.10). We observe that incorporating predictive information provides no benefit when the

system’s utilization level is low. This is because, in less busy scenarios, the holding cost becomes

less important, allowing the DM the luxury of waiting until the patient progresses to a healthier
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state. However, as congestion intensifies (i.e., when utilization level exceeds 70%), the value of

integrating predictive information becomes more apparent. In our study ICU, the utilization level

exceeds 70% more than 60% of the time, suggesting that predictive information is beneficial in

most scenarios.
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Figure EC.6 Impact of utilization levels on the benefit of perfect prediction with the holding cost weighted by

Erlang blocking probability.

To more comprehensively investigate alternative weighting functions related to utilization, we

also consider the Erlang delay system’s waiting probability, along with a linear function and an

S-shaped function, as potential utilization weights. That is,

wρ =

(sρ)s

s!(1−ρ)∑s−1

k=0
(sρ)k

k!
+ (sρ)s

s!(1−ρ)

,

wρ = ρ, or

wρ =
S(ρ)−minρ∈(0,1) S(ρ)

maxρ∈(0,1) S(ρ)−minρ∈(0,1) S(ρ)
, where S(ρ) =

exp(4ρ− 2)

exp(4ρ− 2)+ exp(−4ρ+2)
.

Note that the values of the third function are normalized to [0,1]. Figures EC.7–EC.9 depict the

results. We can observe that the insights are consistent with the findings based on the blocking

probability of the Erlang loss system.
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Figure EC.7 Impact of utilization levels on the benefit of perfect prediction with the holding cost weighted by

Erlang waiting probability.
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Figure EC.8 Impact of utilization levels on the benefit of perfect prediction with the holding cost weighted by

a linear function of the utilization level.
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Figure EC.9 Impact of utilization levels on the benefit of perfect prediction with the holding cost weighted by

an S-shaped function of the utilization level.
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EC.9. Regression Models in Terminal Costs Estimation

In all regression models, we incorporate not only the original clinical variables but also transform

numerical variables into categorical ones based on their normal ranges, aiming to produce more

accurate regression models. For instance, for heart rate (HR), we encode HR< 60, HR∈ [60,100],

and HR> 100 into three categories. The regression coefficients from models that estimate RLOS,

EFR, and propensity to extubate are shown in Table EC.10. As discussed in Section 4.3, we use

linear regression to estimate RLOS and extubation failures. Logistic regression is used to estimate

the propensity to extubate.

Table EC.10: Regression coefficients from models for parameters estimation.

Variables RLOS Extubation Failure Extubation Decision

Age 0.331∗∗∗ 0.000 -0.001
Gender: Male -3.938 -0.005 0.325∗∗∗

Race
Chinese 1 1 1
Malay -0.575 -0.021 0.051
India -3.349 -0.026 0.082
Others -9.732∗∗∗ -0.021 0.021

Weight -0.157 -0.001 0.003
HR
60-100 1 1 1
<60 14.823 0.072 0.024
>100 -5.075 0.004 0.263

RR
12-20 1 1 1
<12 -3.288 -0.060∗∗ 0.351∗∗∗

>20 2.775 0.083∗∗∗ -0.134
GCS -0.037 -0.005∗ 0.170∗∗∗

Creatinine
45-110 1 1 1
<45 -5.949 -0.038 -0.006
>110 24.174∗∗∗ 0.115∗∗∗ -0.456∗∗∗

Haematocrit
37-52 1 1 1
<37 -15.121∗∗ -0.063 0.177
>52 -9.396

Haemoglobin
12-17.5 1 1 1
<12 10.415∗ 0.025 -0.185

Potassium
3.5-5 1 1 1
<3.5 20.343 0.110∗∗∗ -0.373∗∗∗

>5 -0.205∗∗∗ -0.023 0.103
Sodium
135-145 1 1 1
<135 1.041 0.014 -0.175∗∗

>145 31.120∗∗∗ 0.172∗∗∗ -0.416∗∗∗

WBC
4.5-11 1 1 1
<4.5 -14.271 -0.056 0.603∗∗
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>11 6.565∗∗∗ 0.008 -0.018
Platelets
150-450 1 1 1
<150 8.326∗∗∗ 0.045∗∗∗ -0.077
>450 -1.313 0.073 0.568

Systolic BP
90-120 1 1 1
<90 17.022∗∗ 0.001 0.002
>120 0.405 0.015 0.126∗∗

Diastolic BP
60-80 1 1 1
<60 4.011 0.022 -0.292∗∗∗

>80 5.630 0.005 0.298
Temperature
36.1-37.2 1 1 1
<36.1 0.082 0.022 0.010
>37.2 -4.368 -0.011 0.277∗∗∗

Arterial pO2
80-100 1 1 1
<80 2.555 0.028 0.258∗∗∗

>100 0.331 0.024 -0.117
Arterial pH
7.35-7.45 1 1 1
<7.35 5.816∗ 0.088∗∗∗ -0.362∗∗∗

>7.45∗∗ 8.972 0.015 -0.782∗∗∗

Arterial SaO2
93-97 1 1 1
<93 -3.026 -0.068∗∗∗ 0.055
>97 -6.222 -0.071∗∗∗ 0.438∗∗∗

FiO2 0.326∗∗ 0.003∗∗∗ -0.012∗∗∗

Tidal volume 0.013 0.000 0.000
Cardiac rhythm: Paced 3.543 -0.018 0.119∗

Cardiac rhythm: Sinus rhythm 12.053 -0.035 0.387
Cardiac rhythm: Sinus tachycardia 42.415 0.050 -0.341
Nursing assessment: Cardiac 2.739 0.039 -0.476∗∗∗

Nursing assessment: Respiratory 9.159∗∗∗ 0.053∗∗∗ -0.188∗∗

Nursing assessment: Vascular 5.386 0.026 -0.338∗∗∗

Nursing assessment: Musculoskeletal -11.603∗∗∗ -0.051∗∗∗ -0.077
Nursing assessment: Neurological -13.633 -0.095∗∗ 0.042
Nursing assessment: Nutrition 1.993 -0.074 -0.445∗

SOFA 2.303∗∗∗ -0.001 -0.124∗∗∗

RSBI 0.228∗ 0.000 0.000
Arterial pO2/FiO2 -0.740 -0.032∗∗∗ -0.028
Class
1 1 1 1
2 5.932 -0.001 0.205
3 -0.799 -0.017 0.134
4 1.834 0.011 0.166
5 -1.500 -0.001 0.273

No. of observations 3,067 3,067 7,281
(Pseudo) R-squared 0.15 0.16 0.27
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Prob > Chi-squared < 0.001

RLOS: remaining length of stay, HR: heart rate; RR: respiratory rate; GCS: Glasgow Coma Scale; WBC:
white blood cell; BP: blood pressure.
Linear regression is used for predicting RLOS and extubation failures, while logistic regression is used for
predicting extubation decisions.
∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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EC.10. Constrained Estimation of Transition and Misclassification
Matrices

Threshold-type policies are widely used in practice for their better interpretability and ease of

implementation. Our analytical results in Section 4.1—specifically, Theorem 1—guarantee the opti-

mality of threshold-type policies, provided that both the transition probability matrix and the

misclassification matrix satisfy the TP2 condition (i.e., Assumptions 1 and 2). As previously dis-

cussed, these assumptions are reasonable and have also been made in other healthcare studies (e.g.,

Boloori et al. 2020). However, näıve estimators for these matrices may not satisfy the TP2 con-

dition, even if the underlying transition probability and misclassification matrices are inherently

TP2. Consequently, optimal policies based on biased estimators may not be of the threshold type,

complicating interpretation and implementation.

We propose an estimation procedure that incorporates the TP2 requirement into the estimation

of the transition probability matrix and misclassification matrix by solving constrained maximum

likelihood estimation (MLE) problems. Using these estimated matrices as inputs, we can guarantee

the derivation of threshold-type policies through solving the MDP-P model. We then assess the

performance gap between policies obtained using this approach and those obtained earlier via näıve

MLE estimation.

We formulate the constrained estimation problem for the transition probability matrix as follows:

max
P

∑
i,j∈C

N(i, j) logP (i, j)

s.t. P (i, j)P (i+1, j+1)≥ P (i, j+1)P (i+1, j), ∀i, j ∈ C/{C}∑
j∈C

P (i, j) = 1, ∀i∈ C

0≤ P (i, j)≤ 1, ∀i, j ∈ C

where N is a matrix consisting of the counts of patient transitions. This problem aims to maxi-

mize the log-likelihood of observed transition data within the space of TP2-constrained transition

probability matrices. A similar formulation can be made for the misclassification matrix, in which

we replace N with the misclassification matrix estimated using the näıve approach. The resulting

estimation problem is a non-convex, quadratically-constrained optimization problem. Although we

attempt to solve this problem using the sequential quadratic programming (SQP) algorithm, not

all constraints may be feasible with SQP. It should be noted that the primary reason for estimating

a TP2 transition probability matrix is to obtain a threshold policy; thus, it is more important to

guarantee feasibility than optimality when solving the estimation problem.

To address the aforementioned issue, we propose a heuristic that solves a series of convex opti-

mization problems based on the equivalence between the TP2 condition and row-wise MLR domi-

nance, as discussed in Section 4.1. Specifically, we estimate the transition probability matrix row
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by row, requiring MLR dominance between consecutive rows. For the first row, the transition prob-

abilities are estimated via conventional MLE subject to a simplex constraint. For subsequent rows,

we solve a constrained MLE problem that includes an additional condition in which the second

row exhibits MLR dominance over the first row. This results in a convex optimization problem

that can be efficiently solved. We continue this process for each remaining row of the transition

probability matrix. Although this procedure is a greedy heuristic, we find it produces higher like-

lihoods for both the transition and misclassification matrices compared to those estimated by the

SQP algorithm. The estimated matrices are provided as follows:

P̂TP2 =


0.35 0.27 0.22 0.11 0.05
0.12 0.37 0.29 0.15 0.07
0.04 0.12 0.48 0.24 0.12
0.02 0.06 0.22 0.35 0.35
0.01 0.02 0.07 0.18 0.72

,

Q̂TP2 =


0.60 0.27 0.09 0.04 0.00
0.11 0.59 0.20 0.08 0.02
0.02 0.08 0.61 0.23 0.06
0.00 0.03 0.30 0.53 0.14
0.00 0.01 0.11 0.28 0.60

.

Next, we resolve the MDP-B and MDP-P models using the above estimation. The OP-B and

OP-PP policies remain the same as those depicted in Figures 3 and 4, respectively. The new

OP-IP policy is presented in Figure EC.10, which is a threshold policy in contrast to Figure 5.

In particular, at epoch 27, class 3 patients predicted to improve to class 5 at epoch 28 are now

recommended to continue ventilation under the new policy illustrated in Figure EC.10.

1 2 3 4 5
Current class

1
2

3
4

5
Pr

ed
ict

ed
 c

la
ss

(a) t= 1,2, . . . ,25.

1 2 3 4 5
Current class

1
2

3
4

5
Pr

ed
ict

ed
 c

la
ss

(b) t= 26.

1 2 3 4 5
Current class

1
2

3
4

5
Pr

ed
ict

ed
 c

la
ss

(c) t= 27.

Figure EC.10 Optimal extubation policy with imperfect prediction derived from using TP2 transition and

misclassification matrices. The dark gray grid indicates extubation, while the light gray grid represents continued

ventilation.

The performance of different policies under TP2 matrices is summarized in Table EC.11. In

Table EC.11, the system dynamics are assumed to follow TP2 matrices. All previously observed
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insights continue to hold under the new parameters. We also evaluate the performance of the

optimal extubation policy with imperfect prediction, derived from using TP2 matrices, while the

system dynamics follow the non-TP2 matrices estimated in Sections 4.3 and 5.2. As demonstrated

in Table EC.12, even when assuming that the true system dynamics adhere to parameters estimated

via näıve MLE, the performance of the threshold policy derived from using TP2 matrices closely

approximates that of the optimal policy as reported in Figure 5 and Table 5. Thus, the proposed

method allows us to estimate TP2 matrices and subsequently derive a threshold policy for practical

implementation. While it may not be optimal, the threshold policy offers easier interpretation and

implementation with minimal performance loss.

Table EC.11 Performance of different extubation policies derived from using TP2 transition and
misclassification matrices in the environment governed by TP2 transition and misclassification

matrices.

Initial class
OP-B OP-PP OP-IP

LOS (hr) EFR (%) LOS (hr) EFR (%) LOS (hr) EFR (%)

1 107.9 23.5 106.6 20.5 107.4 20.5
2 104.2 29.6 102.0 23.8 103.1 23.4
3 97.1 21.0 96.4 20.1 97.0 20.3
4 94.6 17.7 93.3 16.3 94.2 16.9
5 85.0 13.8 85.0 13.8 85.0 13.8

OP-B: optimal extubation policy without prediction; OP-PP: optimal extubation policy with

perfect prediction; OP-IP: optimal extubation policy with imperfect prediction; LOS: length of stay;
EFR: extubation failure rate.

Table EC.12 Performance of the optimal
extubation policy with imperfect prediction derived

using TP2 transition and misclassification matrices in
the environment governed by matrices estimated via

näıve MLE

Initial class 1 2 3 4 5

LOS (hr) 105.3 102.9 97.1 94.3 85.0
EFR (%) 19.3 23.0 20.3 16.9 13.8

MLE: maximum likelihood estimation; LOS: length
of stay; EFR: extubation failure rate.
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