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ABSTRACT

The diffusion of rumors on social media generally follows a prop-

agation tree structure, which provides valuable clues on how an

original message is transmitted and responded by users over time.

Recent studies reveal that rumor verification and stance detection

are two relevant tasks that can jointly enhance each other despite

their differences. For example, rumors can be debunked by cross-

checking the stances conveyed by their relevant posts, and stances

are also conditioned on the nature of the rumor. However, stance

detection typically requires a large training set of labeled stances

at post level, which are rare and costly to annotate.

Enlightened byMultiple Instance Learning (MIL) scheme, we pro-

pose a novel weakly supervised joint learning framework for rumor

verification and stance detection which only requires bag-level class

labels concerning the rumor’s veracity. Specifically, based on the

propagation trees of source posts, we convert the two multi-class

problems into multiple MIL-based binary classification problems

where each binary model is focused on differentiating a target

class (of rumor or stance) from the remaining classes. Then, we

propose a hierarchical attention mechanism to aggregate the bi-

nary predictions, including (1) a bottom-up/top-down tree attention

layer to aggregate binary stances into binary veracity; and (2) a

discriminative attention layer to aggregate the binary class into

finer-grained classes. Extensive experiments conducted on three

Twitter-based datasets demonstrate promising performance of our

model on both claim-level rumor detection and post-level stance

classification compared with state-of-the-art methods.
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1 INTRODUCTION

The rapid development of social networks has spawned a large

number of rumors, which jeopardize the environment of online

community and result in harmful consequences to the individuals

and our society. For instance, during the COVID-19 pandemic, a

false rumor claimed that “magnetism will be generated in the body

after the injection of coronavirus vaccine"
1
went viral and shared

millions of times on social media platforms, which causes vaccina-

tion hesitation to the public and delays the establishment of the

herd immunity in the population. It is meanwhile noteworthy that a

wide variety of online opinions spread about a rumor can be useful

for us to distill the collective wisdom of crowd in recognizing some

very challenging rumors [54]. In recent years, this has inspired

researchers to develop automatic rumor verification approaches by

leveraging large-scale analysis of online posts to mitigate the harm

of rumors.

Rumor verification is a task to determine the veracity of a given

claim about some subject matter [22]. Most rumor verification

methods are focused on training a supervised model by utilizing

pre-defined features [5, 25, 48] or enquiring patterns [52] over the

claim and its responding posts. To avoid the painstaking feature

engineering, neural methods such as Recurrent Neural Networks

(RNNs) [32] and Convolutional Neural Networks (CNNs) [49] were

proposed to learn discriminative features from the sequential struc-

ture of rumor propagation. To further capture the complex propaga-

tion patterns, kernel learning algorithms were designed to compare

different propagation trees [33, 41, 47]. Propagation trees were also

1
https://www.bbc.com/news/av/57207134
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Figure 1: An illustration of tree-based MIL binary classification for simultaneous rumor and stance detection.

utilized to guide feature learning for classifying different types of ru-

mors on Twitter based on Recursive Neural Networks (RvNN) [35]

or Transformer-based models [16, 31].

Stance detection on social media aims to determine the atti-

tude expressed in a post towards a specific target. Previous studies

conducted massive manual analysis on stances pertaining to dif-

ferent rumor types [36]. Subsequent methods leveraged temporal

traits to classify rumor stances with Gaussian Process [29] and

Hawkes Process [30]. Some studies proposed to train supervised

models based on hand-crafted features [3, 50, 56]. To alleviate fea-

ture engineering, Zhang et al. [51] proposed to learn a hierarchical

representation of stance classes to overcome the class imbalance

problem. Further, multi-task learning framework was utilized to

mutually reinforce stance detection and rumor classification simul-

taneously [20, 21, 34, 46]. However, they generally require a large

stance corpus annotated at post level for model training, which

is a daunting issue. While some unsupervised methods were pro-

posed [1, 18], they achieved poor generalizability due to the specif-

ically crafted features or pre-trained task-specific models, which

cannot be robustly migrated to other tasks.

Past research revealed that there is close relationship between

rumor verification and stance classification tasks. For instance, the

voices of opposition and doubt seem to always appear among the

posts along with the spread of rumors [36]; also, there are many

skepticism and enquiries posts sparked to find out the claim’s verac-

ity [57]. Moreover, propagation structure provides valuable clues

regarding how a claim is transmitted and opinionated by users

over time [31, 46]. Figure 1 exemplifies the dissemination of four

types of rumorous claims, where each claim is represented as a

propagation tree consisting of the source post and user responses.

We observe that: (1) a response generally reacts towards its re-

sponded post instead of the source claim (i.e., the claim) directly;

(2) a post denying a false rumor claim tends to trigger supporting

replies to confirm the objection; and (3) a post denying a true rumor

claim can generally spark denying replies that object the denial.

So the stances expressed in such structured responses may con-

tain signals for distinguishing rumor classes. On the other hand,

we can observe that given the rumor veracity class, false rumors

tend to attract more denying posts and unfold with more edges

like “𝑠𝑢𝑝𝑝𝑜𝑟𝑡 → 𝑑𝑒𝑛𝑦" and “𝑑𝑒𝑛𝑦 → 𝑠𝑢𝑝𝑝𝑜𝑟𝑡" than true claims,

while unverified rumors contain more questioning posts with more

“𝑐𝑜𝑚𝑚𝑒𝑛𝑡 → 𝑐𝑜𝑚𝑚𝑒𝑛𝑡" and “𝑐𝑜𝑚𝑚𝑒𝑛𝑡 → 𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛" edges than the

other classes of claims. Intuitively, we can deduce the stances of

the individual posts according to the rumor veracity and response

structure by first determining the stances for some salient nodes

directly, and further for the nodes in connection with the nodes

with the help of these featured edges.

In this paper, we propose a weakly supervised approach, which

is an extension of Multiple Instance Learning (MIL) [13], jointly

detect stance and verify rumors only using the veracity labels of

rumorous claims (i.e., so-called bag-level annotation). MIL-based

classifier is traditionally used to classify individual instances (e.g.,

sentences) in a bag (e.g., document) and then deduce the bag-level

prediction by aggregating the instance-level prediction while using

only bag-level annotations for a weak supervision in the training.

The original MIL assumes that the class labels defined at these two

levels are binary and homogeneous. In this work, however, the two

tasks have their own multi-class labels defined independently. The

main challenge lies in how to correlate the two different sets of class

labels and turn the problem to become learnable with the existing

MIL framework. Another challenge is to make inference from one

set of classes to another set based on the feature representations

learned from propagation trees which is the essential propagation

structure of social media posts.

To this end, we firstly convert the multi-class classification prob-

lem into multiple MIL-based binary problems. For an illustration,

Figure 1 shows the idea of our joint prediction model, where we

can treat False rumor and Deny stance (F-D pair) as the positive



class (i.e., the target class) at the bag and instance level, respec-

tively, while regarding the rest of the classes as negative. Provided

that rumor veracity labels contain False rumor (F), True rumor

(T), Unverified rumor (U) and Non-rumor (N) while post stance

labels consist of Deny (D), Support (S), Question (Q) and Comment

(C), quite a few possible veracity-stance class pairs can exist, and

each veracity-stance pair can indicate the target class of a claim

and a responsive post for the binary classification on the claim

veracity and post stance, respectively. We thus develop MIL-based

top-down/bottom-up propagation models for representation learn-

ing and classification, corresponding to different edge directions. In

order to synthesize the binary results of the set of binary veracity-

stance prediction models, we propose a novel hierarchical attention

mechanism to (1) aggregate the obtained stances from each binary

MIL model for inferring the rumor claim veracity; and (2) com-

bine the multiple binary results into a unified result of multiple

classes. In this way, the stance of each post is obtained by attending

over the the predictions of all the binary (instance-level) stance

classifiers. Similarly, we predict the rumor class of each claim by

attending over the binary (bag-level) veracity predictions following

the weighted collective assumption in MIL [13], which is a variant

of standard MIL assuming that the bag-level label relies more on

vital instances. Extensive experiments conducted on three Twitter-

based benchmark datasets demonstrate that our MIL-based method

achieves promising results for both rumor verification and stance

detection tasks.

2 RELATEDWORK

In this section, we provide a brief review of the research works on

three different topics that are related to our study.

Rumor Verification. Pioneer research on automatic rumor ver-

ification was focused on pre-defined features or rules crafted from

texts, users, and propagation patterns to train supervised classifi-

cation models [25, 40, 48]. Jin et al. [15] exploited the conflicting

viewpoints in a credibility propagation network for verifying news

stories propagated via tweets. To avoid feature engineering, sub-

sequent studies proposed data-driven methods based on neural

networks such as RNN [32] and CNN [49] to automatically cap-

ture rumor-indicative patterns. Considering the close correlations

among rumor and stance categories, multi-task learning framework

was utilized to mutually reinforce rumor verification and stance

detection tasks [20, 21, 34, 46]. To model complex structures of post

propagation, more advanced approaches were proposed to use tree

kneral-based method [33, 47], tree-structured RvNN [35, 46], hybrid

RNN-CNN model [27], variants of Transformer [16, 31], graph co-

attention networks [28] and Bi-directional Graph Neural Networks

(BiGCN) [4, 23] for classify different kinds of rumors. Inspired by

their success, we develop our approach based on the tree-structured

model.

Stance Detection. Manual analysis on stance revealed that

there are close relationship between specific veracity categories

and stances [36]. In the follow-up studies, a range of hand-crafted

features [3, 50, 56] as well as temporal traits [29, 30] were studied to

train stance detection models. More recently, deep neural networks

were utilized for stance representation learning and classification to

alleviate feature engineering and pursue stronger generalizability,

such as bidirectional RNNs [2] and two-layer neural networks for

learning hierarchical representation of stance classes [51]. Some

studies further took into account conversation structure, such as

the tree-based LSTM model for detecting stances [19, 55] and the

tree-structured multi-task framework for joint detection of rumors

and stances [46]. However, these methods require a large stance

corpus annotated at post level for training. While several unsuper-

vised stance models based on pre-defined rules [18] and pre-trained

models [1] were available, their generalizability on stance detection

is always a critical concern due to different problem settings. In

this paper, we propose a weakly supervised propagation model to

classify rumor categories and post stances simultaneously with no

need of post stance labels.

Multiple Instance Learning (MIL). MIL is a type of weakly

supervised learning which aims to learn a classifier with coarse-

grained bag-level annotation to assign labels to fine-grained in-

stances, where instances are arranged in the bag [12]. Further re-

search following MIL proposed some variants by extending the

threshold-based, count-based and weighted collective MIL assump-

tions to infer the bag-level label [13]. In recent years, MIL has been

successfully applied to various applications in the field of Natural

Language Processing (NLP), such as the unifiedMIL framework that

simultaneously classified news articles and extracted sentences [45],

the MIL-based model for user personalized satisfaction prediction

in Community Question Answering (CQA) [6], the context-assisted

MIL method using service dialogues for customer satisfaction anal-

ysis in E-Commerce [42], and the attention-based MIL network for

fashion outfit recommendation [24], etc. However, the original MIL

is specifically designed for binary classification for the instances

without complex structures, and the bag-level labels should be com-

patible with the instance-level labels. In this paper, we design a

tree-based MIL framework to convert the multi-class problem into

multiple binary classifiers and solve the issue of incompatible labels

between the bag and instance levels.

3 PROBLEM STATEMENT

We define a rumor dataset as {C}, where each training instance

C = (𝑐, 𝑋,𝑦) is a tuple consisting of a claim 𝑐 , a sequence of relevant

tweets 𝑋 = (𝑡1, 𝑡2, · · · , 𝑡𝑇 ) and a veracity label 𝑦 of the claim. Note

that although the tweets are presented in a chronological order,

there are explicit connections such as response or repost relations

among them. Inspired by Ma et al. [35], we represent each claim

as two different propagation trees with distinct edge directions: (1)

Bottom-up treewhere the responding nodes point to their responded
nodes, similar to a citation network; and (2) Top-down tree where
the edges follow the direction of information diffusion by reversing

the edge direction in the Bottom-up tree. We define the following

two tasks:

• Stance Detection: The task is to determine the post-level

stance 𝑝𝑖 for a post 𝑡𝑖 expressed over the veracity of claim 𝑐 .

That is, 𝑓 : 𝑡1𝑡2 . . . 𝑡𝑇 , 𝑐 → 𝑝1𝑝2 · · · 𝑝𝑇 , where 𝑝𝑖 is the stance
label that takes one of Support (S), Deny (D), Question (Q)

or Comment (C). Here the Comment is assigned to the posts

that do not have clear orientations to the claim’s veracity.

• Rumor Verification: The task is to classify the claim 𝑐 on

top of the post stances as one of the four possible veracity



Figure 2: A framework of MIL-based model with bottom-up tree. The edge direction in the tree corresponds to stance feature

aggregation recursively from bottom to up. 𝑝𝑘
𝑖
denotes the aggregated stance in a subtree rooted at 𝑡𝑖 .

Figure 3: A framework of MIL-based model with top-down tree. 𝑆𝑘
𝑙
denotes the aggregated stance for specific path from 𝑐 to 𝑡𝑙 .

Attending over the updated representation of all Leaf nodes correspond to selecting more informative propagation paths.

labels 𝑦: Non-rumor (N), True rumor (T), False rumor (F) or

Unverified rumor (U). That is, 𝑔 : 𝑝1𝑝2 · · · 𝑝𝑇 → 𝑦, where

{𝑝1𝑝2 · · · 𝑝𝑇 } follows a top-down/bottom-up propagation

tree structure. In our approach, we hypothesize that the task

can be modeled following the weighted collective assump-

tion of MIL in a sense that the bag-level label relies more

on vital instances [13]. In our task, bags (i.e., claims) are

predictively labeled with the “most likely" class according

to the distribution of instances (i.e., posts) labels in the tree.

4 OUR APPROACH

In this section, we will describe our extension to the original MIL

framework for joint rumor verification and stance detection based

on the bottom-up and top-down propagation tree structures. Due

to the fine-grained categories of stance and rumor veracity, we first

decompose the multi-class problem into multiple binary classifica-

tion problems and then aggregate the predicted binary classes into

multi-way classes. Without the loss of generality, we assume the

number of rumor classes is 𝑁𝑟 and that of the stance classes is 𝑁𝑠 ,

and thus there can be 𝐾 = 𝑁𝑟 ∗ 𝑁𝑠 possible veracity-stance target

class pairs corresponding to 𝐾 binary classifiers weakly supervised

for detecting rumor veracity and post stance simultaneously.

4.1 Post Encoding

We represent each post as a word sequence 𝑡𝑖 = {𝑤𝑖,1𝑤𝑖,2 · · ·𝑤𝑖, |𝑡𝑖 |},
where 𝑤𝑖, 𝑗 ∈ R𝑑 is a 𝑑-dimensional vector that can be initialized

with pre-trained word embeddings. We map each𝑤𝑖, 𝑗 into a fixed-

size hidden vector using standard GRU [7] and obtain the post-level

vector for 𝑐 and 𝑡𝑖 by using two independent GRU-based encoders
2
:

ℎ𝑐 = ℎ |𝑐 | = 𝐺𝑅𝑈 (𝑤 |𝑐 |, ℎ |𝑐 |−1, 𝜃𝑐 )
ℎ𝑖 = ℎ |𝑡𝑖 | = 𝐺𝑅𝑈 (𝑤 |𝑡𝑖 |, ℎ |𝑡𝑖 |−1, 𝜃𝑋 )

(1)

where 𝐺𝑅𝑈 (·) denotes standard GRU transition equations, | · | is
the number of words, 𝑤 |𝑐 | and 𝑤 |𝑡𝑖 | is the last word of 𝑐 and 𝑡𝑖 ,

respectively, ℎ |𝑐 |−1 and ℎ |𝑡𝑖 |−1 denote the hidden unit for the corre-

sponding previous word, and 𝜃𝑐 and 𝜃𝑋 contain all the parameters

in the claim and post encoder, respectively.

2
Here we choose GRU-based encoder because GRU needs fewer parameters than LSTM.

The GRU-based encoder can be replaced with pre-trained language models such as

ELMO [39], BERT [11], Roberta [26], and BERTweet [37].



4.2 MIL-based Bottom-up Model

Subtree structure embeds relative stance patterns which are closely

correlated to the claim (i.e., root node) veracity, e.g., “𝑠𝑢𝑝𝑝 → 𝑑𝑒𝑛𝑦"

may be more frequently observed in a false rumor claim than that

in a true claim, and false claims normally spark more denying

stances in the posts than true claims do. The core idea of MIL-

based bottom-up model is to infer the post stance supervised by

the claim veracity annotations, while the prediction of both stance

and veracity is jointly learned based on a recursive neural with

bottom-up tree structure. For example, for the False Rumor bag in

Figure 1, we could infer the posts, e.g., “No he has not. The man

himself confirmed not true" and “No he has not", as holding the

denying stance due to their salient opinion refuting the false rumor

claim, and then deduce the stances of the connected posts with the

help of the featured edges till the stances of all posts are determined

following the propagation structure. The overall structure of our

proposed bottom-up model is illustrated in Figure 2.

Binary Stance Classification. The RvNN model [35] assumes

that the subtrees with similar contexts, e.g., subtrees with a sup-

portive parent and denial children alike, can be represented with a

similar vector of features that stand for the stances of the leading

node and obtained by aggregating the post representations along

different branches in the subtree. So, in a binary stance classifier 𝑘3,

we obtain the stance representation for each post by synchronously

aggregating the information from all its children nodes, following

the similar bottom-up tree representation learning algorithm pro-

posed in [35]. Specifically, wemap the hidden vectorℎ 𝑗 of each node

𝑗 into a context vector ˜ℎ 𝑗 by recursively combining the information

of its children nodes C( 𝑗) and itself in each subtree:

˜ℎ𝑘𝑗 = 𝑅𝑣𝑁𝑁 (ℎ𝑘𝑗 , ℎ
𝑘
C( 𝑗) , 𝜃

𝑘 ) (2)

where𝑅𝑣𝑁𝑁 (·) denote the bottom-up RvNN transition function [35],

C( 𝑗) represents the children nodes set of 𝑗 and 𝜃𝑘 represent all the

parameters of RvNN.

We then use a fully-connected softmax layer to predict the stance

probability of 𝑡 𝑗 towards the claim vector ℎ𝑘𝑐 related to classifier 𝑘 :

𝑝𝑘𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊
𝑘
𝑜
˜ℎ𝑘𝑗 +𝑊

𝑘
𝑐 ℎ

𝑘
𝑐 + 𝑏𝑘𝑜 ) (3)

where𝑊 𝑘
𝑜 ,𝑊

𝑘
𝑐 and 𝑏𝑘𝑜 are the weights and bias, the probability

values {𝑝𝑘
1
, 𝑝𝑘

2
, · · · , 𝑝𝑘

𝑇
} can be considered as the stance-indicative

probabilities of all the nodes in the tree inferred from the claim

veracity. This is intuitive because the mapping between veracity

and stance has been significantly reduced to more straightforward

correspondences via the binarization of the classes, and the model

can focus more on a salient subset of veracity-stance target class

pairs such as F-D, T-S, U-Q and N-C, because of the close veracity-

stance correlations in these pairs [36]. Meanwhile, the model would

not simply disregard learning from other pairs by using an attentive

process to automatically adjust the weights of the binary models

corresponding to the pairs (see Section 4.4 for the details of binary

models aggregation).

Binary Rumor Classification. Based on the RvNN model, we

aggregate stance indicative representations of the posts along the

bottom-up structure into the global representation of a tree. Specif-

ically, on top of the obtained stance distributions of the tree nodes

3𝑘 is ranged in [0, 𝐾 − 1].

from the binary stance classifier, we define a function to aggregate

the stances to predict the veracity of the claim, following the intu-

ition that the systematic synergy of user stances in the propagation

can eventually support or refute the claim as to its veracity. To

this end, we propose a bottom-up Tree Attention Mechanism to se-

lectively attend over specific stances expressed in more important

posts from bottom to up recursively. In each loop of the recursion,

let S(𝑖) denotes the set of subtree nodes with root at 𝑖 , the stance

of node 𝑖 is updated as the aggregated stance in a subtree:

𝛼𝑘𝑗 =
𝑒𝑥𝑝 ( ˜ℎ𝑘

𝑗
· ℎ𝑘𝑐

⊤)∑
𝑗 ∈S(𝑖) 𝑒𝑥𝑝 ( ˜ℎ𝑘𝑗 · ℎ

𝑘
𝑐
⊤)

𝑝𝑘𝑖 =
∑︁
𝑗 ∈S(𝑖)

𝛼𝑘𝑗 · 𝑝
𝑘
𝑗

(4)

where 𝛼𝑘
𝑗
denotes the attention coefficient for each node 𝑗 ∈ S(𝑖),

˜ℎ𝑘
𝑗
and ℎ𝑘𝑐 respectively denote the hidden vector of post 𝑗 and claim

𝑐 , and 𝑝𝑘
𝑗
is the aggregated subtree stance. It is worth noting that

Eq. 4 is inherently recursive following the bottom-up process in a

sense that 𝑝𝑘
𝑗
= 𝑝𝑘

𝑗
when 𝑗 is a leaf node, and when 𝑖 is the root

node (i.e., 𝑡𝑖 = 𝑐), we denote 𝑝
𝑘
𝑖
= 𝑦𝑘𝑐 .

4.3 MIL-based Top-Down Model

The structure of top-down tree can capture complex stance pat-

terns that model how information flows from source post to the

current node. For example, a “𝑠𝑢𝑝𝑝 → 𝑐𝑜𝑚𝑚 → 𝑠𝑢𝑝𝑝” path may

be more common in true rumors than that in false rumors, and true

rumor claims tend to spark more supportive posts than false claims.

Similarly, the core idea of MIL-based top-down model is to infer

the post-level stance along propagation path based on claim-level

veracity label, while the prediction of both stance and veracity takes

top-down structure. The overall structure of top-down model is

shown in Figure 3.

Binary StanceClassification. Following information diffusion,

we assume that the non-leaf stance features can be diffused syn-

chronously to all its children nodes until the stance reaches the

leaf nodes. So, in each binary classifier 𝑘 , we can obtain the stance

representation for each post by aggregating the post information

along the propagation path starting from the source to current node.

Based on the top-down representation learning algorithm proposed

in [35], we map each node ℎ 𝑗 into a context vector ˜ℎ 𝑗 by recursively

combining information of its parent node 𝑃 ( 𝑗) and itself in each

step
4
:

˜ℎ𝑘𝑗 = 𝑅𝑣𝑁𝑁
′(ℎ𝑘𝑗 , ℎ

𝑘
𝑃 ( 𝑗) , 𝜃

𝑘 ) (5)

where 𝑅𝑣𝑁𝑁 ′(·) denotes the top-down-based RvNN transition

function [35], and 𝜃𝑘 represent all the corresponding parameters.

We then use a fully-connected softmax layer to predict the stance

probability of 𝑡 𝑗 towards the claim vector ℎ𝑘𝑐 related to classifier 𝑘 :

𝑝𝑘𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊
𝑘
𝑜
˜ℎ𝑘𝑗 +𝑊

𝑘
𝑐 ℎ

𝑘
𝑐 + 𝑏𝑘𝑜 ) (6)

where𝑊 𝑘
𝑜 ,𝑊

𝑘
𝑐 ℎ and 𝑏𝑘𝑜 are the weights and bias of prediction layer.

Then, the stance probabilities of individual posts {𝑝𝑘
1
, 𝑝𝑘

2
, · · · , 𝑝𝑘

𝑇
} in

4
The RvNN-based representation learning in Eq. 2 and Eq. 5 can be replaced with

other state-of-the-art graph neural representation algorithms such as GCN [4], tree-

LSTMs [43, 53] and PLAN [16]



the top-down tree can be computed following the similar intuition

as Eq. 6.

Binary Rumor Classification. To aggregate top-down stance

tree into claim veracity, we propose to attend over evidential stances

along each propagation path as well as selecting more evidential

paths for rumor veracity prediction. For this purpose, we design a

top-down Tree Attention Mechanism to aggregate the stances. Firstly,

our model selectively attends on the evidential stance nodes in a

path expressing specific attitude towards a claim. Let 𝑟𝑙 denote a

propagation path from 𝑐 to 𝑡𝑙 (i.e., a leaf node), P(𝑙) denotes node
set along 𝑟𝑙 , the aggregated stance for 𝑟𝑙 is obtained as follows:

𝛼𝑘𝑗 =
𝑒𝑥𝑝 ( ˜ℎ𝑘

𝑗
· ℎ𝑘𝑐

⊤)∑
𝑖∈P(𝑙) 𝑒𝑥𝑝 ( ˜ℎ𝑘𝑖 · ℎ𝑘𝑐

⊤)

𝑠𝑘
𝑙
=

∑︁
𝑗 ∈P(𝑙)

𝛼𝑘𝑗 · 𝑝
𝑘
𝑗

(7)

where 𝛼𝑘
𝑗
denotes the attention coefficient of each node along 𝑟𝑙

and 𝑠𝑘
𝑙
denotes the aggregated leaf node’s stance probability along

propagation path 𝑟𝑙 .

Secondly, for each path 𝑟𝑙 , the information is eventually embed-

ded into the hidden vector of the leaf nodes
˜ℎ𝑘
𝑙
. To further aggregate

the path stance, we again adopt the tree attention mechanism to

select more informative paths based on the leaf nodes. Let K(𝑐)
represent the leaf node set of the top-down tree rooted with claim

𝑐 . The aggregated path stance representing the claim veracity can

be computed as:

𝛼𝑘
𝑙
=

𝑒𝑥𝑝 ( ˜ℎ𝑘
𝑙
· ℎ𝑘𝑐

⊤)∑
𝑙 ∈K (𝑐) 𝑒𝑥𝑝 ( ˜ℎ𝑘𝑙 · ℎ𝑘𝑐

⊤)

𝑦𝑘𝑐 =
∑︁

𝑙 ∈K (𝑐)
𝛼𝑘
𝑙
· 𝑠𝑘
𝑙

(8)

where 𝛼𝑘
𝑙
denotes the attention coefficient of each leaf node and

𝑦𝑘𝑐 is the probability of rumor veracity which is aggregated from

the stances of different paths.

Although the discriminative tree attention for both MIL-based

models aims to predict the claim veracity by recursively aggre-

gating all the post stance, we can conjecture that the top-down

model would be better. The hypothesis is that in the bottom-up

case the stance is aggregated from local subtrees, and the context

information is not fully considered compared with the top-down

case where node stance is firstly aggregated through path locally

then aggregate all paths globally.

4.4 Binary Models Aggregation

It is intuitive that each binary classifier contributes differently to the

final prediction, according to the different strength of the veracity-

stance correlation it can capture. So, we design an attention mecha-

nism to attend on the most reliable binary classifiers:

ℎ𝑎 = 𝐺𝑅𝑈 (𝑤 |𝑐 |, ℎ |𝑐 |−1, 𝜃𝑎)

𝛽𝑘 =
𝑒𝑥𝑝 (ℎ𝑎 · ℎ𝑘𝑐

⊤)∑
𝑘 𝑒𝑥𝑝 (ℎ𝑎 · ℎ𝑘𝑐

⊤)

(9)

where 𝜃𝑎 represents all the parameters inside the GRU encoder
5

and ℎ𝑘𝑐 is the claim representation directly obtained from the 𝑘-th

classifier.

Stance Detection.We regroup all the binary stance classifiers

with the same stance type target 𝑙𝑠 ∈ {𝑆, 𝐷,𝑄,𝐶} into one set and

then compute the final stance probability by:

𝑝𝑖,𝑙𝑠 =
∑︁

𝑘∈𝑈 (𝑙𝑠 )
𝛽𝑘 · 𝑝𝑘𝑖 (10)

where 𝑈 (𝑙𝑠 ) represents the indicator set of the binary classifiers

with 𝑙𝑠 as the target stance class, 𝑝
𝑘
𝑖
is the predicted stance proba-

bility of the post 𝑡𝑖 given by classifier 𝑘 , and therefore 𝑝𝑖,𝑙𝑠 indicates

the probability that the post 𝑡𝑖 is classified as stance 𝑙𝑠 weighted

by the importance of the corresponding classifiers with 𝑙𝑠 as the

target class. Note that these binary classifiers of the same target

stance class are different models because each classifier is super-

vised by a different target veracity label of claim. Thus, the final

probability distribution over all the stances can be obtained as

𝑝𝑖 = [𝑝𝑖,𝑆 , 𝑝𝑖,𝐷 , 𝑝𝑖,𝑄 , 𝑝𝑖,𝐶 ].
Rumor Verification. We regroup all the binary claim veracity

classifiers and put the classifiers with the same rumor class label 𝑙𝑐 ∈
{𝑁,𝑇 , 𝐹,𝑈 } into one set. And then the claim veracity probability

can be computed similarly as the weighted sum of all the binary

classifiers’ outputs:

𝑦𝑐,𝑙𝑐 =
∑︁

𝑘∈𝑈 (𝑙𝑐 )
𝛽𝑘 · 𝑦𝑘𝑐 (11)

where 𝑈 (𝑙𝑐 ) is the indicator set of the binary classifiers with 𝑙𝑐 as

the target veracity class and 𝑦𝑘𝑐 is the predicted binary veracity

class probability of the claim 𝑐 given by the classifier 𝑘 . Note that

the binary veracity classifiers with the same target veracity class

are distinguishable by the different target stance classes they are

associated with, which give different stance probability predictions.

Thus, the final probability distribution over the veracity classes can

be represented as 𝑦𝑐 = [𝑦𝑐,𝑁 , 𝑦𝑐,𝑇 , 𝑦𝑐,𝐹 , 𝑦𝑐,𝑈 ].

4.5 Model Training

To train each binary classifier, we transform the finer-grained ve-

racity and stance labels into binary labels for ground-truth repre-

sentation. For example, for the classifier with [T, S] veracity-stance

pair as the target, the ground-truth veracity label of claim𝑦 is repre-

sented as either ‘T’ or ‘others’, and the model outputs the stance for

each post represented by a probability belonging to target class ‘S’.

A variant of this similar setting is applicable to all the binary classi-

fiers with different target classes. This yields the way for obtaining

our binary ground truth:

𝑦𝑘 =

{
1 if the target of classifier 𝑘 is the same as 𝑦

0 others

(12)

where 𝑦 ∈ [𝑁,𝑇 , 𝐹,𝑈 ] defined for the rumor verification task, and

the ground truth refers to the veracity label of claims instead of

stance due to the unavailability of label at post level.

5
Note that the GRU have a different set of parameters from Eq. 1



Table 1: Statistics of rumor datasets for model training.

Statistics Twitter15 Twitter16 PHEME

# of claim 1,308 818 6,425

# of Non-rumor 374 (28.6%) 205 (25.1%) 4,023 (62.6%)

# of False-rumor 370 (28.3%) 207 (25.3%) 638 (9.9%)

# of True-rumor 190 (14.5%) 205 (25.1%) 1,067 (16.6%)

# of Unverified-rumor 374 (28.6%) 201 (24.5%) 697 (10.8%)

# tree nodes 68,026 40,867 383,569

# of Avg. posts/tree 52 50 6

# of Max. posts/tree 814 757 228

# of Min. posts/tree 1 1 3

Binary MIL-based Classifiers Training.We use the negative

log likelihood as the loss function:

𝐿𝑏𝑖𝑛 = −
𝐾∑︁
𝑘=1

𝑀∑︁
𝑚=1

𝑦𝑘𝑚 ∗ log𝑦𝑘𝑚 + (1 − 𝑦𝑘𝑚) ∗ log(1 − 𝑦𝑘𝑚) (13)

where 𝑦𝑘𝑚 ∈ [0, 1] indicating the ground truth of the𝑚-th claim

obtained in Eq. 12,𝑦𝑘𝑚 is the predicted probability for the𝑚-th claim

in classifier 𝑘 ,𝑀 is the total number of claims, and 𝐾 is the number

of binary classifiers.

AggregationModel Training.We also utilize negative log like-

lihood loss function to train the aggregation model:

𝐿𝑎𝑔𝑔 = −
𝑁∑︁
𝑛=1

𝑀∑︁
𝑚=1

𝑦𝑚,𝑛 ∗ log𝑦𝑚,𝑛 + (1 −𝑦𝑚,𝑛) ∗ log(1 −𝑦𝑚,𝑛) (14)

where 𝑦𝑚,𝑛 ∈ [0, 1] is the binary value indicating if the ground-

truth veracity class of the 𝑛-th claim is 𝑚, 𝑦𝑚,𝑛 is the predicted

probability the𝑛-th claim belonging to class𝑚, and𝑀 is the number

of veracity classes.

All the parameters are updated by back-propagation [8] with

Adam [17] optimizer. We use pre-trained GloVe Wikipedia 6B word

embeddings [38] present on input words, set 𝑑 to 100 for word

vectors and empirically initialize the learning rate as 0.001. The

training process ends when the loss value converges or the maxi-

mum epoch number is met
6
. The weighted aggregation model is

trained after all the weak classifiers are well trained.

5 EXPERIMENTS AND RESULTS

5.1 Datasets and Setup

For experimental evaluation, we refer to rumor and stance dataset

with propagation structure. For model training, since only rumor

labels at claim-level are required, we refer to three public tree-

based benchmark datasets for rumor verification on Twitter, namely

Twitter15, Twitter16 [33] and PHEME
7
. In each dataset, every claim

is annotated with one of the four veracity classes (i.e., Non-rumor,

True, False and Unverified) and the post-level stance label is not

available. We filter out the retweets since they simply repost the

claim text.

6
We set the number of maximum epoch as 150 in our experiment.

7
This PHEME dataset is not the one used for stance detection [59] [10]. It is defined

specifically for rumor detection task: https://figshare.com/articles/PHEME_dataset_

of_rumours_and_non-rumours/4010619.

Table 2: Statistics of the datasets for model testing.

Statistics RumorEval2019-S SemEval8

# of claim 425 297

# of Non-rumor 100 (23.53%) ——

# of False-rumor 74 (17.41%) 62 (20.8%)

# of True-rumor 145 (34.12%) 137 (46.1%)

# of Unverified-rumor 106 (24.94%) 98 (33.0%)

# posts of Support 1320 (19.65%) 645 (15.1%)

# posts of Deny 522 (7.77%) 334 (7.8%)

# posts of Question 531 (7.90%) 361 (8.5%)

# posts of Comment 4,345 (64.68%) 2,923 (68.6%)

# tree nodes 6,718 4,263

# Avg. posts/tree 16 14

# Max. posts/tree 249 228

# Min. posts/tree 2 3

For model testing, since both post-level stance and claim level ve-

racity are required, we resort to two rumor stance datasets collected

from Twitter with stance annotations, namely RumorEval2019-

S [14]
8
and SemEval8 [9, 58]. The original datasets were used for

joint detection of rumors and stances where each claim is annotated

with one of the three veracity classes (i.e., true-rumor, false-rumor

and unverified-rumor), and each responsive post is annotated as

the attitude expressed towards the claim (i.e., agreed, disagreed,

appeal-for-more-information, comment). We further augmented

RumorEval2019-S dataset by collecting additional 100 non-rumor

claims together with their relevant posts following the method

described by Zubiaga et al. [59]. We asked three annotators inde-

pendent of this work to annotate the post stance. For stance class,

we convert the original labels into the [S, D, Q, C] set based on a

set of rules proposed in [30]. Table 1–2 display the data statistics.

More specifically, when testing on RumorEval2019-S dataset,

we train 16 binary classifiers in total considering that there are 4

veracity and 4 stance categories to be determined. And we train 12

binary stance classifiers for testing on SemEval-8 dataset since it

contains 3 veracity and 4 stance categories. We hold out 20% of the

test datasets as validation datasets for tuning the hyper-parameters.

Due to the imbalanced rumor and stance class distribution, accuracy

is not sufficient for evaluation [55]. We use AUC, micro-averaged

and macro-averaged F1 score, and class-specific F-measure as eval-

uation metrics. We implement all the neural models with Pytorch.

5.2 Stance Detection Performance

Since our stance detection model is weakly supervised by coarse

label (i.e., claim veracity) instead of explicit post-level stance label,

we choose to compare with both unsupervised methods and super-

vised methods in the following: (1) Zero-Shot [1]: A pre-trained

stance detection method that captures relationships between topics.

(2) Pre-Rule [18]: An unsupervised method designed for detecting

support and deny stance by referring to some pre-defined rules.

(3) C-GCN [46]: An unsupervised graph convolutional network

8
We only use the posts from Twitter in PhemeEval2019 and discard Reddit data. Note

that although the original RumorEval2019-S and SemEval8 datasets contain some same

claims, we further extend RumorEval2019-S dataset by including a more challenging

but general case to evaluate the generalization power of our methods.

https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619
https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619


Table 3: Results of stance detection.

Dataset RumourEval2019-S SemEval8

Method

S D Q C S D Q C

AUC MicF MacF 𝐹1 𝐹1 𝐹1 𝐹1 AUC MicF MacF 𝐹1 𝐹1 𝐹1 𝐹1

Zero-Shot — 0.369 0.324 0.301 0.168 0.342 0.486 — 0.383 0.344 0.278 0.162 0.480 0.456

Pre-Rule — 0.605 0.478 0.657 0.419 — — — 0.429 0.389 0.432 0.644 — —

C-GCN 0.633 0.629 0.416 0.331 0.173 0.429 0.730 0.610 0.625 0.411 0.327 0.161 0.430 0.728

BrLSTM(V) 0.710 0.660 0.420 0.460 0.000 0.391 0.758 0.676 0.665 0.401 0.493 0.000 0.381 0.730

BiGRU(V) 0.700 0.630 0.417 0.392 0.162 0.360 0.754 0.660 0.633 0.416 0.460 0.168 0.328 0.708

MT-GRU(V) 0.714 0.636 0.432 0.313 0.156 0.506 0.748 0.669 0.630 0.413 0.498 0.116 0.312 0.729

TD-MIL(V) 0.712 0.650 0.432 0.438 0.156 0.408 0.688 0.668 0.626 0.416 0.473 0.127 0.463 0.602

BU-MIL(V) 0.710 0.630 0.431 0.485 0.166 0.396 0.688 0.669 0.623 0.415 0.470 0.128 0.460 0.602

TD-MIL(T15) 0.706 0.668 0.427 0.339 0.173 0.444 0.752 0.663 0.642 0.418 0.330 0.174 0.420 0.750

TD-MIL(T16) 0.713 0.665 0.436 0.350 0.182 0.446 0.758 0.660 0.671 0.421 0.334 0.173 0.422 0.754

TD-MIL(PHE) 0.722 0.691 0.434 0.344 0.179 0.467 0.767 0.669 0.651 0.426 0.335 0.175 0.430 0.763

BU-MIL(T15) 0.706 0.662 0.428 0.341 0.173 0.436 0.756 0.661 0.638 0.415 0.326 0.168 0.420 0.748

BU-MIL(T16) 0.701 0.660 0.426 0.340 0.170 0.438 0.749 0.659 0.637 0.416 0.324 0.169 0.419 0.753

BU-MIL(PHE) 0.707 0.665 0.432 0.344 0.174 0.445 0.762 0.666 0.642 0.420 0.329 0.169 0.423 0.758

that classifies the stances by modeling tweets with conversation

structure. (4) BrLSTM [19]: An LSTM-based model that models

the conversational branch structure of tweets to detect stance. (5)

BiGRU [2]: A bidirectional RNN-based tweet stance model which

considered the bidirectional contexts between target and tweet. We

replaced the original LSTM units with GRU for fair comparisons.

(6)MT-GRU [34]: A multi-task learning approach based on GRU

for joint detection of rumors and stances by capturing the both

shared and task-specific features. TD/BU-MIL(DateSet) is our

proposed MIL-based top-down/bottom-up model using the veracity

labels in DateSet for the weak supervision
9

In Table 3, we use the open source of Zero-Shot and Pre-rule,

which does not report AUC. Zero-shot, Pre-Rule and C-GCN are

models without the need of annotated data for stance detection,

while BrLSTM, BiGRU and MT-GRU are three popular supervised

stance detection baseline models. To train the supervised models,

we use the validation datasets left out from RumorEval2019-S and

SemEval-8 in the same way as our fully supervised variants TD/BU-

MIL(V) does for fair comparison. This is because there is no stance

annotations in the training set.

The first group refers to unsupervised baselines. Zero-Shot and

Pre-rule perform worse than other methods, because they are pre-

trained models based on the out-of-domain data from their original

papers that cannot generalize well to Twitter data. The results on

Q and C by Pre-Rule are absent since the pre-defined linguistic

rules are designed for identifying the stance of Support and Deny

only. Propagation-based method C-GCN performs better because

it capture structural information in propagation by modeling the

neighbors of each tweet.

9
T15, T16 and Phe are the short-forms of Twitter15, Twitter16 and PHEME datasets,

respectively. In order to make fair comparison with the supervised stance detection

models that are trained with validation sets, here V denotes the variants of our models

trained with the validation sets although only veracity labels are used.

The second group considers supervised baselines. BrLSTM im-

proves unsupervised baselines with a large margin in terms of

Micro-F1, because BrLSTM is focused on modeling propagation

structure while both BiGRU and MT-GRU are sequential models.

But BrLSTM is poor at classifying denial stance since it is data-

driven and the proportion of the stance is small in the training data.

Our method TD-MIL(V) achieves comparable Micro-F1 and Macro-

F1 scores as BiGRU, indicating that our MIL-based method has the

potential to surpass supervised models. This is because TD-MIL(V)

considers the information propagation patterns in the whole propa-

gation tree while BiGRU only makes limited comparisons between

the target veracity class and the unstructured posts.

Our MIL-based method outperforms all the baselines when train-

ing data is large enough. For example, BU/TD-MIL(Phe) performs

better than its counterparts trained on Twitter15/16 datasets. This

is because PHEME contains more claims than Twitter15/16 datasets

for weak supervision. We conjecture that the performance of our

method can be further improved when trained on larger datasets.

5.3 Rumor Verification Performance

We compare our methods with the following state-of-the-art rumor

verification baselines: (1)TD-RvNN and (2)BU-RvNN [35]: A tree-

structured recursive neural networks for rumor verification with

top-down and bottom-up propagation structure. (3)H-GCN [46]: A

hierarchical multi-task learning framework for jointly predicting ru-

mor and stance with graph convolutional network. (4) GCAN [28]:

A graph-aware co-attention model utilizing retweet structure to

verify the source tweet. (5) PPC [27]: a propagation-based early

detection model utilizing user information and retweets. (6) MT-

GRU [34]: A multi-task learning approach to jointly detect rumors

and stances by capturing both shared and task-specific features. (7)

MTL2 [20]: A sequential approach sharing a LSTM layer between

the tasks, which is followed by a number of task-specific layers



Table 4: Results of rumor verification.

Dataset RumorEval2019-S SemEval8

Method

T F U N T F U

AUC MicF MacF 𝐹1 𝐹1 𝐹1 𝐹1 AUC MicF MacF 𝐹1 𝐹1 𝐹1

GCAN 0.693 0.645 0.253 0.249 0.310 0.113 0.339 0.688 0.645 0.255 0.241 0.326 0.198

PPC 0.672 0.632 0.250 0.244 0.296 0.114 0.346 0.673 0.642 0.249 0.237 0.289 0.221

TD-RvNN 0.880 0.743 0.699 0.713 0.631 0.660 0.792 0.882 0.728 0.689 0.702 0.619 0.745

BU-RvNN 0.865 0.720 0.723 0.746 0.641 0.696 0.806 0.870 0.708 0.684 0.708 0.620 0.723

H-GCN 0.690 0.534 0.418 0.712 0.180 0.371 0.409 0.675 0.530 0.413 0.355 0.16 0.724

MTL2 (V) 0.683 0.653 0.430 0.622 0.279 0.352 0.457 0.680 0.651 0.433 0.640 0.289 0.372

MT-GRU (V) 0.704 0.768 0.452 0.462 0.298 0.373 0.452 0.701 0.761 0.428 0.639 0.254 0.391

TD-MIL (V) 0.685 0.678 0.450 0.667 0.329 0.376 0.428 0.680 0.621 0.436 0.650 0.274 0.384

BU-MIL (V) 0.682 0.679 0.448 0.668 0.326 0.373 0.428 0.680 0.645 0.427 0.631 0.292 0.360

TD-MIL (T15) 0.919 0.793 0.790 0.822 0.762 0.716 0.818 0.913 0.771 0.730 0.679 0.689 0.823

TD-MIL (T16) 0.914 0.792 0.764 0.796 0.740 0.719 0.812 0.899 0.785 0.725 0.668 0.682 0.825

TD-MIL (Phe) 0.917 0.809 0.776 0.826 0.659 0.669 0.852 0.908 0.798 0.741 0.741 0.672 0.810

BU-MIL (T15) 0.899 0.769 0.780 0.794 0.688 0.770 0.819 0.887 0.752 0.724 0.670 0.680 0.822

BU-MIL (T16) 0.902 0.776 0.760 0.780 0.664 0.780 0.810 0.893 0.756 0.721 0.663 0.676 0.826

BU-MIL (Phe) 0.904 0.776 0.763 0.793 0.666 0.770 0.833 0.902 0.763 0.729 0.728 0.649 0.809

for multi-task outputs. TD/BU-MIL(DateSet) is our MIL-based

methods for rumor verification.

In Table 4, we only report the best result of supervised rumor

verification methods in the first group across different training

datasets. MT-GRU and MTL2 are multi-task models which require

training with both claim and post labels. So in our case, they are

trained on the validation datasets because training datasets only

have claim-level label while the validation dataset has both veracity

and post stance labels. For fair comparisons with supervised base-

lines, TD/BU-MIL(V) are trained on the same validation datasets.

To further improve and generalize our method, we train all the

MIL-based models with larger datasets, i.e., T15, T16 and Phe.

Among the first group that relates to structured supervised base-

lines, we observe that GCAN, PPC and H-GCN perform worse than

the other systems, because they only consider local structure such

as directly connected neighborhood. PPC performs poorly because

the number of user nodes in their model include both reply and

retweet that can provide user features, which is much more than

the number of reply nodes in our model. In contrast, TD-RvNN and

BU-RvNN perform better because they model the global propaga-

tion contexts by aggregating the entire propagation information

recursively. However, they perform worse than our MIL methods

since our methods (i.e., TD-MIL(*) and BU-MIL(*)) not only use

propagation information for tweets representation, but also aggre-

gate stances with tree-based and MIL-based attention mechanism,

which reduces the impact of noise stances.

The second group consists of non-structured multi-task frame-

works utilizing both post-level and claim-level labels. MT-GRU(V)

and MTL2(V) get higher Micro-F1 and Macro-F1 score than our

method TD-/BU- MIL(V). This is because they are both trained un-

der the supervision of veracity and stance annotation whereas our

method only utilizes veracity labels. Moreover, TD-MIL(V) shows

Table 5: Ablation study results.

Rumor Result Stance Result

Method AUC MicF MacF AUC MicF MacF

MIL-a 0.892 0.759 0.736 0.672 0.643 0.430

TD-MIL-b 0.912 0.802 0.746 0.701 0.658 0.426

TD-MIL-c 0.903 0.805 0.738 0.696 0.653 0.420

BU-MIL-b 0.901 0.752 0.743 0.698 0.647 0.419

BU-MIL-c 0.903 0.749 0.742 0.687 0.645 0.419

TD-MIL 0.917 0.809 0.776 0.722 0.691 0.434

BU-MIL 0.904 0.776 0.763 0.707 0.665 0.432

comparable AUC and MacF scores with MTL2(V), suggesting the

potential of our weakly supervised model compared to the super-

vised baselines. By increasing the training sets, our models precede

the multi-task models as TD-/BU- MIL(T15/T16/Phe) do.

Among the multi-task models, we observe that our MIL models

are more effective than the non-structured baselines (e.g., MTL2,

MT-GRU), because our MIL-based propagation models consider

structural features. TD-MIL (*) outperforms BU-MIL (*) because

TD-MIL (*) considers both local and global contexts during stance

aggregation, which verifies our assumptions in Section 4.3.

5.4 Ablation Study

To evaluate the impact of each component, we perform ablation

tests based on the best performed BU-/TD-MIL (Phe) models on

RumorEval2019-S dataset by removing some component(s): 1)MIL-

a: replace all tree-based post encoder with non-structured post

encoder and remove the tree-based recursive stance aggregation



(a) True rumor case (b) False rumor case

Figure 4: Case study of tree-based attention mechanism.

process; 2) TD/BU-b: replace top-down/bottom-up post encoder

with non-structured post encoder while keeping the tree-based at-

tention mechanism; 3) TD/BU-c: replace top-down/bottom-up tree

attention mechanism with the general dot product attention [44]

for stance aggregation.

As shown in Table 5, MIL-a gets the lowest performance scores,

where AUC/MicF/MacF decreases about 2.5%/5.4%/4% for rumor

verification and 5%/4.8%/0.4% for stance detection, which demon-

strates top-down/bottom-up tree structure is vital to our methods.

Besides, the variants in terms of BU/TD-MIL-c result in the largest

performance drops in both directions for the two tasks, indicat-

ing that discriminative tree-based attention mechanisms for stance

aggregation play an important role in the our MIL method.

5.5 Case Study

To get an intuitive understanding of the tree attention mechanism,

we design an experiment to show the behavior of TD-MIL (Phe),

due to its superior performance. Specifically, we sample two trees

from RumorEval2019-S that the source claims have been correctly

classified as True and False rumor, and display the posts’ predicted

stance results. We compute the average path/leaf nodes attention

scores over all binary classifiers, mark the most important stance

with solid blue oval for each propagation path and show the leaf

nodes attention scores corresponding to the importance of each

propagation path in Figure 4. We observe that: 1) The “support"

posts mostly play an important role along each propagation path

with True rumor as the target class. 2) The “deny" posts contribute

more in each propagation path with False rumor as the target class.

3) Themodel with true rumor as target attendsmore on “𝑠𝑢𝑝𝑝𝑜𝑟𝑡 →
𝑠𝑢𝑝𝑝𝑜𝑟𝑡” and “𝑑𝑒𝑛𝑦 → 𝑑𝑒𝑛𝑦” propagation patterns, which end with

𝑡4 and 𝑡6 respectively as shown in the figure. 4) The model with

False rumor as target tends to capture the “𝑑𝑒𝑛𝑦 → 𝑠𝑢𝑝𝑝𝑜𝑟𝑡” and

“𝑐𝑜𝑚𝑚𝑒𝑛𝑡 → 𝑑𝑒𝑛𝑦 → 𝑠𝑢𝑝𝑝𝑜𝑟𝑡” propagation patterns which end

with 𝑡7 and 𝑡6, respectively. These observations conform to our

assumption and intuition that the tree propagation structure is vital

in the joint task of rumor verification and stance detection.

We also conduct experiments to show why the aggregation

model can simultaneously enhance rumor verification and stance

detection tasks. We randomly sample 100 claims from PHEME

dataset, and then disclose the attention scores of all the binary clas-

sifiers obtained during the evaluations on RumorEval2019-S and

(a) RumorEval2019-S (b) SemEval8

Figure 5: Average attention scores for binary classifiers ob-

tained from Eq. 9.

SemEval8 datasets. The average attention scores over all the claims

are shown in Figure 5. We observe that: 1) The top attention scores

indicate a close correlation between the specific rumor veracity and

stance category, which is compatible with previous findings [36].

For instance, the high values of 𝛽1 and 𝛽6 in Figure 5(a) suggest

that true rumor and supportive stance in the posts are more closely

correlated and likewise the false rumor and denial stance. 2) The

classifiers with lower attention suggest that the final prediction

prediction is less affected by the corresponding veracity-stance

relationship, indicating there is a weak correlation between rumor

and stance for the current target class. For example, 𝛽2 and 𝛽3 in

Figure 5(b) demonstrates that for the T-D and T-Q target pairs,

veracity-stance correlation has weak influence on the prediction

of the corresponding binary models. This seems to be consistent

with the lower proportion of denying and questioning posts as

shown in Table 2. 3) The rumor veracity can be generally better

determined based on a combination of diverse stances instead of a

single stance. For instance, support and comment stances combined

can contribute more than others when true rumor being the target

class, which can be reflected by the relatively high value when

combining T-S (𝛽1) and T-C (𝛽4) model predictions as shown in

Figure 5(a). 4) Similarly, among the classifiers with question stance

as the target class, the T-Q model is generally less important than

the other three (i.e., N-Q, F-Q and U-Q) which indicates the lower

proportion of questioning posts in the true rumor.

6 CONCLUSION

We propose two tree-structured weakly supervised propagation

models based on Multiple Instance Learning (MIL) framework for

simultaneously verifying rumorous claims and detecting stances

of their relevant posts. Our models are trained only with bag-level

annotations (i.e., claim veracity labels), which can jointly infer

rumor veracity and the unseen post-level stance labels. Our two

novel tree-based stance aggregation mechanisms in the top-down

and bottom-up settings achieve promising results for both rumor

verification and stance detection tasks in comparison with state-of-

the-art supervised and unsupervised models.
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