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Abstract

Vaccine delivery in under-resourced locations with security
risks is not just challenging but also life threatening. The
COVID pandemic and the need to vaccinate added even more
urgency to this issue. Motivated by this problem, we propose
a general framework to set-up limited temporary (vaccina-
tion) centers that balance physical security and desired (vac-
cine) service coverage with limited resources. We set-up the
problem as a Stackelberg game between the centers operator
(defender) and an adversary, where the set of centers is not
fixed a priori but is part of the decision output. This results in
a mixed combinatorial and continuous optimization problem.
As part of our scalable approximation solution, we provide a
fundamental contribution by identifying general duality con-
ditions of switching max and min when both discrete and con-
tinuous variables are involved. Via detailed experiments, we
show that the solution proposed is scalable in practice.

1 Introduction
Vaccine delivery has always been a challenge in under-
resourced parts of the world (Zaffran et al. 2013). The prob-
lem is further aggravated by the threat of violence against
vaccine providers in areas where the security situation is
volatile (Gannon, Meldrum, and Keath 2020). A safer vac-
cine delivery plan for such places can save lives, both via
vaccination of the population and physical protection of the
front line vaccine providers. Specifically, vaccination drives
in underdeveloped areas are often performed by setting up a
limited number of temporary vaccination centers. Motivated
by this issue, we propose and study a general framework
to set-up temporary centers that balance physical security
needs of the centers and achieve desired service coverage.

Our first contribution is a flexible model that allows
choice of a small subset of centers to operate, along with a
consideration of how to allocate security resources to the op-
erational centers. Further, the framework allows for fairness
constraints that ensure fairness in center allocation for dif-
ferent geographical regions as well as fairness in security al-
location to operating centers. The model is set-up as a Stack-
elberg game between the centers operator (defender) and a
bounded rational (Quantal Response) adversary. The model
takes inspiration from Stackelberg security games (Tambe
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2011) in the manner in which security resources are allo-
cated and the center selection aspect is inspired by product
assortment and pricing problems (Wang 2012). While in-
spired from these models from disparate areas, we believe
this is a first model that brings together security issues and
subset of centers (targets) selection within one framework.

Our second contribution is a hybrid algorithm that com-
bines the best of two different approaches. The first of these
two approaches is a Mixed Integer Linear Program (MILP)
with guaranteed approximation, and the second is a polyno-
mial time heuristic. All algorithms work by a sequence of
modifications to the original optimization problem, starting
with a binary search on the objective value. The first algo-
rithm exploits properties of the problem at hand to convert
a bi-linear MIP formulation to a MILP with guaranteed ap-
proximation, but, MILPs are not scalable in practice. Hence,
we design a heuristic where we use Lagrangian duality to
reach a sub-problem which is a max-min-max tri-level opti-
mization with discrete variables for the outer max and con-
tinuous variables for the two inner min-max problems.

Then, in a fundamental technical contribution, we iden-
tify general conditions for minimax equality when the vari-
ables involved are discrete and continuous. While the condi-
tions do not hold in rare cases for our problem, we use this
result as a heuristic to transform our sub-problem to a min-
max-max problem and then we present a polytime approx-
imation for the transformed problem. The polynomial time
approach provides for immense scalability in practice, with
solutions close to the MILP approach in almost all cases. Fi-
nally, we show that the MILP and heuristic can be made to
work together in a scalable hybrid approach with approxi-
mation guarantees for the output solution.

We conduct thorough experiments to analyze various as-
pects of our three approaches. We show that our main hy-
brid algorithm is scalable in practice (solving for up to 5000
potential centers within 1.5 minutes) and also much better
than competing baseline approaches. While inspired by vac-
cine centers operation, our model and ideas can be applied to
critical services operation of temporary health camps, exam
centers, etc. in underdeveloped and security risk-prone ar-
eas or even existing security games work where a subset of
targets can be chosen to be made unavailable.



2 Model and Problem Formulation
We model the stated problem as a general sum Stackelberg
game between a defender and a QR adversary. The defender
operates a subset of centers (which changes at set frequency,
e.g., weekly) and allocates security resources to operational
centers. The adversary’s attacks an operational center.

Action spaces. The defender has a candidate set of poten-
tial centers, denoted by K. The variable S, where S Ď K,
denotes the defender’s choice of centers to operate. How-
ever, not all subsets are feasible; F pKq Ă 2K is the feasible
set of sets of centers. Suppose every center can vaccinate at
least Pmin people. Two natural restrictions are that for ev-
ery S P F pKq to have |S| ď C and Pmin|S| ě NPPmin

for some integer constants C,NP , capturing a budget con-
straint and a minimum number ofNPPmin people to be vac-
cinated every round. In addition, we consider another natural
constraint that the candidate center set K is partitioned into
K1, . . . ,KL such that any feasible choice S P F pKq con-
tains at least one location from each partition l P t1, . . . , Lu
(L ă C), that is, |Kl X S| ě 1 for all l. The set Kl con-
tains the possible operable center locations in a contiguous
geographic region l; hence, this constraint captures fairness
in the allocation of vaccine centers across different regions.
We call this fairness in vaccine center allocation (FVCA).

Continuing with the defender’s action description, the de-
fender also allocates security resources to the centers S P

F pKq that are chosen to be operational. The number of se-
curity resources is fixed and denoted by m. The defender’s
pure strategy is to allocate m security resources to the |S|
operational centers. The mixed strategy is represented suc-
cinctly by xS “ xxjyjPS (xS P Dx

S “ r0, 1s|S|), which
denote the marginal probability of defending the |S| centers
that are chosen to operate. Further, in order to provide a fair-
ness in security allocation (FSA), we impose the constraints:
ř

jPKlXS xj ď βl for all l and some given constants βl. In
words, these constraints imposes an upper bound βl on the
chance of protecting facilities that operate in region l thereby
ensuring that no geographic region is given unusual prefer-
ence in terms of protection. E.g., we could have βl9

|Kl|
|K| m

with the proportionality constant greater than 1.
Overall, the defender’s action is pS, xSq with constraints

as stated above. The adversary’s pure strategy is to choose
one among the |S| operational centers to attack; locations in
KzS have no operational center and cannot be attacked.

Utilities. For every potential center j P K, if the center is
operating and the adversary attacks j and the center is pro-
tected then the defender obtains reward rdj and the adversary
obtains laj . Conversely, if the defender is not protecting the
operating center j, then the defender obtains ldj (rdj ą ldj )
and the adversary gets raj (raj ą laj ). Given xj , the expected
utility of the defender and attacker for an attack on an oper-
ational center j is as follows: Udj pxjq “ xjr

d
j ` p1 ´ xjql

d
j

and Uaj pxjq “ xj l
a
j ` p1 ´ xjqr

a
j . For ease of notation, we

note that these utilities are linear in xj and rewrite these as

Udj pxjq “ wdjxj ` l
d
j where wdj “ rdj ´ l

d
j ě 0

Uaj pxjq “ ´w
a
j xj ` r

a
j where waj “ raj ´ l

a
j ě 0

These utilities are valid for location j P K only when j has
an operational center, that is, j P S. Note that S is a decision
variable and not fixed apriori.

We use the QR model for the adversary’s response. QR
is a well-known model (McFadden 1976; McKelvey and
Palfrey 1995), and used extensively in Stackelberg security
games. Specifically, QR posits that the adversary will attack
an operational center j P S with probability:

qjpxS ;λq “
eλp´w

a
j xj`r

a
j q

ř

iPS e
λp´wai xi`r

a
i q

(1)

Parameter λě0 governs rationality. λ“0 means least ratio-
nal, as the adversary chooses its attack uniformly at random
and λ “ 8 means fully rational (i.e., attacks a center with
highest utility). Thus, QR has the flexibility to model a range
of behavior. Then, defender’s expected utility for pS, xSq is

FpS, xSq “
ÿ

jPS

qjpxS ;λqpwdjxj ` l
d
j q .

Stackelberg equilibrium. The Stackelberg equilibrium
(also called Quantal Stackelberg Equilibrium in (Cerny et al.
2020)) can be computed using the following optimization:

max
SPF pKq,xSPDxS

FpS, xSq (EqOPT)

subject to
ÿ

jPS

xj ď m , (2)

ÿ

jPKlXS
xj ď βl @l , (3)

Constraint (2) states that there can be at most m security
resources. Constraint (3) captures the FSA fairness criteria.
The S P F pKq in the subscript of max captures the three
constraints |S| ď C, |S| ě NP , and FVCA fairness criteria;
objective FpS, xSq is the expected utility of the defender.

Related Work
Product Assortment and Pricing. Our problem is most
closely related to the problem that combines product assort-
ment and price optimization problem in which a subset of
products is chosen from an assortment of products and si-
multaneously the prices of products is chosen with the goal
of maximizing profit in a market where the buyers choose a
product following the QR (Wang 2012) model. The relation
to our problem stems from the analogy of set of products
to set of centers and of continuous prices to security allo-
cation. However, prior work (Wang 2012) solves an uncon-
strained optimization (no constraints on prices), whereas we
deal with a constrained optimization.

Other works in this area optimize just the product assort-
ment with fixed prices (Davis, Gallego, and Topaloglu 2014;
Désir, Goyal, and Zhang 2020). In other works (still fixed
prices), different models of buyers have been considered
such as rational best responding buyers (Immorlica et al.
2018) and other discrete choice models (Davis, Gallego, and
Topaloglu 2014; Gallego, Ratliff, and Shebalov 2015). Fur-
ther away, there is work on an online version of the product
assortment problem using a multi-armed bandits formula-
tion (Agrawal et al. 2016; Cheung and Simchi-Levi 2017).



Stackelberg Security Games. There is a large body of
work in game theoretic models and algorithms for phys-
ical security (Tambe 2011; Xu 2016; Fang et al. 2017;
Sinha et al. 2018; Cerny et al. 2020; Yang, Ordonez, and
Tambe 2012; Haghtalab et al. 2016) of a given fixed set of
vulnerable targets, which have also been deployed in real
world (Tambe 2011). The difference from the standard se-
curity game with QR adversary (Fang et al. 2017) is in the
aspect that we allow the defender to choose a subset of tar-
gets that then are part of the game and other targets are not
part of the game; this yields a novel mixed combinatorial
and continuous optimization problem. A naive exploration
of all subsets is computationally infeasible, and we present
novel approaches to address this problem.

Recent work explores the complexity of quantal response
players in more generality for Stackelberg games (Cerny
et al. 2020; Milec et al. 2021) calling the equilibrium as
Quantal Stackelberg Equilbrium (QSE). Our problem differs
because of an additional combinatorial dimension (operate a
subset of centers) of the defender’s action space. Moreover,
in contrast to the hardness results in these work, we obtain
arbitrarily precise approximation for our problem in poly-
nomial time. Thus, we identify a sub-class of games where
the QSE is efficiently approximable to arbitrary precision,
even with a complex defender action space. Our technique
can be viewed as one in robust optimization (Bertsimas,
Brown, and Caramanis 2011) or a Stackelberg game with
constrained follower strategy space (Goktas and Greenwald
2021), but a primary difference is that some of our variables
are discrete and hence (sub) gradient or other continuous op-
timization methods do not apply directly.

Facility Location. Our problem might seem like the max-
imum capture problem in competitive facility location (Be-
nati and Hansen 2002; Freire, Moreno, and Yushimito 2016;
Mai and Lodi 2020; Golowich, Narasimhan, and Parkes
2018; Aziz et al. 2020). However, our problem is very dif-
ferent, as we consider security for centers and have no con-
sideration of capturing market share and abstract away from
logistic modelling. The interplay between discrete and con-
tinuous optimization is an important aspect of our work.

3 Guaranteed Approximate Equilibrium
As stated in the introduction, we present two approaches,
one MILP based with solution quality guarantees (in this
section) and another based on a polynomial time heuristic
in Section 4. We further combine these two approaches into
one hybrid approach in Section 5 that provides approxima-
tion guarantees for the solution, as well as similar scalability
as the heuristic. All missing proofs are in the appendix.

Common Binary Search Transformation
We start with a transformation that is used in all our ap-
proaches. We use the Dinkelbach transform (Dinkelbach
1967) to convert the fractional objective of EqOPT to a non-
fractional one. We use the shorthand notation qjpxS ;λq “
Npxjq{DpxSq to express Eq. 1 succinctly (as λ is obvi-
ous, it is not stated explicitly). By definition, DpxSq “
ř

jPS Npxjq. Hence the objective of EqOPT can be writ-

Algorithm 1: Binary Search Template

1 U “ maxjPK w
d
j ` l

d
j , L “ minjPK l

d
j , S “ φ

2 while U ´ L ě ε do
3 δ0 “ pU ` Lq{2
4 obj “ Solve BOPTpδ0q and get obj. value
5 if obj ě 0 then L “ δ0 else U “ δ0

6 return δ0, S, xS from the last BOPT solution

ten as
ÿ

jPS

Npxjq

DpxSq
pwdjxj ` l

d
j q.

The Dinkelbach transform works by seeking to find the high-
est value of a threshold δ such that there exists some feasible
S, xS such that

ř

jPS
Npxjq
DpxSq

pwdjxj ` ldj q ě δ. The highest
possible δ can be computed by a binary search where in each
round of the search the feasibility problem stated above is
solved for a particular δ0. For given δ0, the feasibility prob-
lem is easily solved by checking if the maximum of the fol-
lowing optimization is ě 0 or not

max
SPF pKq

max
xSPDxS

ÿ

jPS

Npxjqpw
d
jxj`l

d
j q´δ0DpxSq (BOPT)

subject to Constraints (2-3)

While the above is a common technique, for completeness,
the binary search template over δ0 is shown in Algorithm 1,
where BOPT is solved repeatedly (line 4) till convergence.
We present different ways of solving BOPT in the sequel for
our different approaches. However, all our approach of solv-
ing BOPT are approximate, making Algorithm 1 a binary
search with inexact function evaluation, which necessitates
the following result:
Theorem 1. Suppose BOPT is computed with additive er-
ror of ξ and runtime T in line 4 of Algorithm 1. Let fpδq
be the optimal value of BOPT for δ. We can show that
d|δ ´ δ1| ď |fpδq ´ fpδ1q| ď D|δ ´ δ1| for some constants
d,D ą 0 under the assumption that the absolute value of
the utility parameters are bounded by constants. Moreover,
Algorithm 1 runs in Oplogp1{εqˆT q time with and additive
error of Opξ ` εq.

In the rest of this paper, all our approaches will focus on
approximately solving BOPT (line 4) in Algorithm 1. The
additive approximation guarantee of each approach can di-
rectly be used as ξ in the above theorem to obtain the overall
approximation guarantee of that approach.

MILP Approach via Compact Linearization
The BOPT optimization objective is separable in xj’s.
We exploit this and use a piecewise linear approximation
(PWLA) to obtain a non-linear integer program. We follow
a recipe similar to prior work (Yang, Ordonez, and Tambe
2012), and divide the range of xj , i.e., r0, 1s, into K equal
intervals and represent each xj “

ř

kPrK´1s rjk, where
rjk “ 1{K if k ď tKxju and rjk “ xj ´ tKxju{K if
k “ tKxju` 1 and rjk “ 0 otherwise. However, in contrast



to (Yang, Ordonez, and Tambe 2012) we need additional bi-
nary variables θj (θj“1 if j PS, θj“0 otherwise) to repre-
sent center selection, which results in bi-linear terms of the
form θjrjk in the resultant MIP. This bilinear MIP is shown
in the appendix. Bi-linear terms can be linearized using the
well-known big-M approach (Wu 1997). But, this naive lin-
earization results in K|K| additional variables and 3|K|K
additional constraints, making such approach not scalable at
all. Next, we show that the naive bi-linear MIP can be for-
mulated as a MILP with no additional variables and only |K|
additional constraints, with upper bounds for the approxima-
tion error given in the result below.
Theorem 2. BOPT is approximated by the following MILP

max
θ,r,z

K
ÿ

jPK
θjpgjp0q ´ δ0gjp0qq (ApxOPTL)

`
ÿ

jPK

ÿ

kPrKs

´

γgjk ´ δ0γ
N
jk

¯

rjk

subject to
ÿ

jPK

ÿ

kPrKs

rjk ď Km

ÿ

jPKl

ÿ

kPrKs

rjk ď Kβl,@l P rLs

θj ě zj1, @j P K
zjk ě zj,k`1, k P rK ´ 1s, j P K
zjk{K ď rjk ď 1{K, k P rKs, j P K
rjk ď zj,k`1{K, k P rK ´ 1s, j P K

NP ď
ÿ

jPK
θj ď C,

ÿ

jPKl

θj ě 1, l P rLs

zjk, θj P t0, 1u, @j P K, k P rKs.
Let BpS, xSq be the objective function of (BOPT) and
S˚, x˚S be an optimal solution of (BOPT). Let pθ1, z1, r1q be
an optimal solution of (ApxOPTL), which provides solution
S1, x1S such that S1 “ tj|θ1j “ 1u and px1Sqj “

ř

kPrKs r
1
jk.

Then, |BpS1, x1Sq ´BpS
˚, x˚Sq| ď Op 1

K q.
Using Theorem 1 and the above result, it can be shown

that when solution of ApxOPTL is used in line 4 of the bi-
nary search of Algorithm 1, we attain an approximation of
Op 1

K `εq. However, the runtime of a MILP in the worst case
is not polytime. Next, we propose a heuristic that is polytime
but an approximation guarantee does not hold in rare cases.

4 Polynomial Time Heuristic
Our starting point for the heuristic is problem BOPT. We
aim to transform the problem further to remove constraints
but the inner max problem in xS is not concave. However,
a simple variable transform yj “ e´λw

a
j xj makes the inner

problem, now in yS , concave with the same optimal objec-
tive value. Then, we form the Lagrangian dual of the inner
max problem (in yS) with guaranteed same solution due to
concavity and consequent strong duality. The optimization
after Lagrangian dualizing is

max
SPF pKq

min
ν,µě0

max
ySPDyS

φpS, ν, µ, yS , δ0q (DualOPT)

where φpS, µ, ν, yS , δ0q “

(a) f1, f2, maxpf1, f2q (b) f 11, f 12, maxpf 11, f
1
2q

Figure 1: Simple illustration of Thm. 3. Horizontal axis is
the y-axis. Max functions are in bold. f1, f 11 touch the origin.

ÿ

jPS

Npyjq
´´wdj log yj

λwaj
` ldj

¯

´ δ0DpySq

´ ν
´

ÿ

jPS

´ log yj
λwaj

´m
¯

´
ÿ

l

µl

´

ÿ

jPKlXS

´ log yj
λwaj

´ βl

¯

and Dy
S is the Cartesian product

Ś

jPSre
´λwaj , 1s, Npyjq“

yje
λraj and DpySq “

ř

jPS Npyjq and ν, xµlylPt1,...,Lu are
the dual variables. We aim to switch the outer max and min
in DualOPT; first, we present a general result when such
switching is possible.

A General Minimax Equality
We present a general result about conditions for minimax
equality when discrete variables are involved. We note that,
as far as we know, there is no such result in literature.

Theorem 3. Let f : XˆY Ñ R be a function such that the
following are true:

• X is a set with finitely many points.
• Y is a convex set in a Euclidean space.
• fpx, ¨q is continuous and convex on Y .
• For all x P X and all b, the sub-level sets of fpx, ¨q given

by ty | fpx, yq ď bu are compact and convex (if Y is
compact, this condition is implied and can be removed)

• For any y˚ P argminyPY maxxPX fpx, yq there is a
unique x˚ such that x˚ “ argmaxxPX fpx, y

˚q.

Then minyPY maxxPX fpx, yq “ maxxPX minyPY fpx, yq

We provide a simple illustration with 1d quadratic func-
tions in Fig. 1 for better intuition of the above result. The ex-
act functions used are stated in the appendix. Fig. 1a shows a
situation where there is a non-unique maximizer (both 1, 2)
of miny maxpf1pyq, f2pyqq for functions f1, f2 (occurring
at y “ 0.75 with value f1p0.5q “ f2p0.5q “ 0.5625).
Whereas, max1,2 minypf1pyq, f2pyqq, which is min of each
function separately and then the max from among those, oc-
curs at y “ 1 with value 0.5 ‰ 0.5625. Fig. 1b shows a
situation where miny maxpf 11pyq, f

1
2pyqq is uniquely deter-

mined by f 12 and hence is same as max1,2 minypf
1
1, f

1
2q .

A Polytime Solution for Switched Problem
Continuing with our aim of solving DualOPT,
we switch the outer max and min in



DualOPT to obtain SwitchedDualOPT:
minν,µě0 maxSPF pKqmaxySPD φpS, ν, µ, yS , δ0q. This
switching is a heuristic as the uniqueness condition in The-
orem 3 may not hold for every possible parameter values
of the problem at hand (other conditions hold); see also
discussion after Lemma 1. In any case, SwitchedDualOPT
provides tight bounds, which we use for a hybrid guaranteed
approximate solution in the next section.

Solving for fixed duals. We first show a polytime
arbitrary close approximation for the inner problem in
SwitchedDualOPT. For any given fixed ν, µ ě 0, consider:

max
SPF pKq

max
ySPDyS

φpS, ν, µ, yS , δ0q (FixedDuals)

Observe that the objective φp¨q of FixedDuals is additively
separable into terms gjpν, µ, yj , δ0q that depend only on the
single scalar variables yj as follows:

φpS, ν, µ, yS , δ0q “
ÿ

jPS

gjpν, µ, yj , δ0q ` νm`
ÿ

l

µlβl

where gjpν, µ, yj , δ0q “ Npyjq
`´wdj log yj

λwaj
` ldj ´ δ0

˘

´ pν ` µlq
´ log yj
λwaj

for l s.t. j P Kl

We use this separability to solve FixedDuals to any preci-
sion in polytime in Algorithm 2. First, in lines (2-4) we
maximize gj over yj for each j P K to obtain hjpν, µ, δ0q.
With hj’s, the objective of FixedDuals takes the form
maxSPF pKq

ř

jPS hj plus constants νm`
ř

l µlβl. Recalling
the definition of F pKq, we solve this by sorting the hj’s (line
5) and extracting the best hj values from each of the L parti-
tions of locations (lines 6-8). This ensures at least one center
in each partition is selected. Then, among remaining loca-
tions, we choose the best (as measured by hj) centers (lines
9-12) ensuring at least NP are chosen. The final choice of
centers is So (line 13).

Next, we show that there is a closed form formula for hj
in line 4 of Algorithm 2. This is a concave max optimiza-
tion as gj is concave in yj . The closed form formula enables
a much faster solving of prior security game models with
QR adversary (no subset selection). The main result in Yang,
Ordonez, and Tambe (2012) was a piecewise linear approx-
imation based optimization solution of the standard security
games with QR adversary (no subset selction of targets),
which we vastly improve upon by showing that the same
can be computed to optimality using the closed form for-
mula in the lemma below. In more details, we show that op-
timization in Yang, Ordonez, and Tambe (2012) has a closed
form convex dual (using the lemma below) with much fewer
variables (only µ, ν) than the primal; hence the whole ex-
pensive piecewise linear approximation approach in (Yang,
Ordonez, and Tambe 2012) can just be replaced by an easy
gradient descent on the dual program. This result provides
scalability in all other works in security games, including de-
ployed wildlife (An et al. 2013) and coast guard (Fang et al.
2017) applications, that use the result from Yang, Ordonez,
and Tambe (2012).

Algorithm 2: FixedDualsSolver (ν, µ, δ0q
1 So “ φ, k “ 0
2 for j P K do
3 Let l be that index such that j P Kl
4 compute

hjpν, µ, δ0q “ max
yjPre

´λwa
j ,1s

gjpν, µ, yj , δ0q

5 In list H , store the indexes j sorted by hjpν, µ, δ0q in
descending order.

6 Partition H into H1, . . . ,HL, such that any j P Hl

satisfies j P Kl and each Hl is still sorted by hj .
7 for i P t1, . . . , Lu do
8 So “ So Y tHlp0qu // best hj per Kl
9 while |So| ă C do

10 j “ Hpkq, k “ k ` 1
11 if hjpν, µ, δ0q ą 0 or |So| ă NP then
12 So “ So Y tju

13 return S˚ “ So and the y˚j ’s that maximize hj

Lemma 1. The solution of the problem in line 4 of Algo-
rithm 2 is

y˚j “ e´λw
a
j maxp0,minpβj ,1qq where βj is

1

λwaj

”

1´
λwaj
wdj

pldj ´ δ0q´W
`ν ` µl

wdj
e
1´λraj´

λwaj

wd
j

pldj´δ0q˘
ı

and W is the Lambert W function (Corless et al. 1996).

For further notational ease, let ΦpS, ν, µ, δ0q “

maxySPDyS φpS, ν, µ, yS , δ0q. Using the solution y˚S
from the above lemma, we get that ΦpS, ν, µ, δ0q “

φpS, ν, µ, y˚S , δ0q. Note that y˚S is still a function of ν, µ, δ0.
It can be readily checked that Φ satisfies the conditions
of Theorem 3 with Φ as f , and ν, µ as y, and S as x
(δ0 is a constant), except for the uniqueness of S˚ (x˚
in Theorem 3) for optimal ν˚, µ˚ (y˚ in Theorem 3).
However, observe that in Algorithm 2, the solution S˚ (for
given ν˚, µ˚) may be non-unique only if hj “ hi for some
i ‰ j; the stringent equality needed makes non-uniqueness
highly unlikely; indeed, we encounter non-uniqueness in
only 1.1% cases in experiments. We prove the following:

Lemma 2. 1. Alg. 2 runs in poly time Op|K| log |K|q.
2. Alg. 2 solves FixedDuals to any arbitrary fixed precision.

Gradient descent on duals. Next, in order to
solve SwitchedDualOPT, we perform projected gra-
dient descent (PGD) on dual variables ν, µ. Re-
call that the inner problem in SwitchedDualOPT is
maxSPF pKqmaxySPDyS φpS, ν, µ, yS , δ0q, which, with slight
abuse of notation, we refer to as FixedDualspν, µ, δ0q, which
we already solved in Algorithm 2 for given ν, µ, δ0. The use
of PGD is justified by:

Proposition 1. FixedDualspν, µ, δ0q is convex in ν, µ.

Proof. We again skip writing δ0 for ease of notation.
Using the notation introduced and Lagrangian duality,



Algorithm 3: SwitchedDualOptSolverpξ, δ0q

1 pν0, µ0q “ 0
2 repeat
3 pνt, µtq “ Pνµě0

`

pνt´1, µt´1q ´

ηt∇ν,µFixedDualspν
t´1, µt´1, δ0q

˘

4 S, yS “ FixedDualsSolverpνt, µt, δ0q
5 until objective changes by less than ξ
6 return S, yS

the inner ΦpS, ν, µq “ maxySPD φpS, ν, µ, ySq prob-
lem is convex in ν, µ. The function in the theorem is
maxSPF pKq ΦpS, ν, µq. As this is a max over multiple con-
vex functions ΦpS, ν, µqSPF pKq, this function is convex.

Combining all sub-results for the polynomial heuristic, in
Algorithm 3 PGD is used in lines 3-4, where Pν,µě0 denotes
projection to the space ν, µ ě 0. The gradient of FixedDuals
w.r.t. ν, µ can be computed using Danskin’s Theorem (Bert-
sekas, Hager, and Mangasarian 1998) (details in appendix).
Alg. 3, when plugged in as solver for BOPT in line 4 of the
binary search Alg. 1 is the full polynomial time heuristic.

Using Theorem 1 and Lemma 2, it can be readily seen that
the heuristic has a runtime of Oplogp 1ε q

|K| log |K|
ξ q (gradient

descent takes Op 1ξ q iterations under mild smoothness condi-
tion). Also, if the uniqueness condition of Theorem 3 holds
for any problem instance then we would obtain Opξ ` εq
approximation. However, as stated earlier, the uniqueness
might not hold in rare cases and hence we next propose a
hybrid approach combining the advantages of this heuristic
and the earlier MILP approach.

5 Hybrid Approach
This hybrid approach is inspired by the observation that
the heuristic is time efficient and if the minimax equal-
ity hold, the resulting solution is optimal for EqOPT. If
the minimax eaulity does not, we can still use solution
of SwitchedDualOPT to construct tight lower and upper
bounds for the MILP approach with guaranteed solution
quality. Towards that end, we present the following result:

Theorem 4. If we run the heuristic (Algorithm 3 plugged in
line 4 of Algorithm 1) and obtain solution pδ0, S, xSq, then
with S˚, x˚S optimal for EqOPT there exists a small enough
ξ (in Algorithm 3) such that (1) |FpS˚, x˚Sq ´ FpS, xSq| ď
|δ0 ´ FpS, xSq| ` 2ε and (2) FpS, xSq and δ0 ` 2ε can be
used as a lower and upper bounds for the MILP approach
(ApxOPTL plugged in line 4 of Algorithm 1).

Theorem 4 implies that if δ0 is sufficiently close to
FpS, xSq, then pS, xSq is a near-optimal solution to
EqOPT. Using the above result, we design a hybrid ap-
proach combining the MILP and the heuristic to efficiently
find a near-optimal solution in Algorithm 4. It can be seen
from the above result that if the algorithm stops at line 3,
then the returned solution is additive 3ε-optimal to EqOPT,

Algorithm 4: Hybrid algorithm
1 run heuristic (Algorithm 3 used in Algorithm 1) to

get pδ0, S, xSq
2 if |δ0 ´ FpS, xSq| ď ε then
3 return pS, xSq
4 else
5 run MILP approach (Algorithm 1 with

ApxOPTL), with L “ FpS, xSq, U “ δ0 ` 2ε,
obtain pS˚, x˚Sq

6 run heuristic with fixed S “ S˚ to improve x˚S
7 return the last solution obtained.

i.e., FpS˚, x˚Sq ´ FpS, xSq ď 3ε. Otherwise, if the algo-
rithm stops at line 7, then a guarantee is already established
via Theorem 2, i.e., FpS˚, x˚Sq ´FpS, xSq ď Op1{K ` εq.
So, it is guaranteed that a solution returned by Algorithm 4
is additive Op1{K ` εq-optimal to EqOPT. In line 6, we
run the heuristic again to further improve the solution of the
MILP. In experiments we show that in most of the cases, the
hybrid algorithm stops at line 3, making it much faster than
the MILP approach.

6 Experiments
Our experiments are simulated over 10 random instances for
each measurement that we report. In each game instance,
payoffs are chosen uniformly randomly, from 1 to 10 for rdj
and raj and from -10 to -1 for ldj and laj . Following past user
studies (Yang et al. 2011), the parameter λ of the QR model
is chosen as 0.76. We select C “ t2K{3u, NP “ tK{2u,
m “ |K|{10, and split the set of centers into L“ 5 disjoint
partitions of equal size. For each partition l, we choose βl “
2m{L. All experiments were conducted using Matlab on a
Windows 10 PC with Intel i7-9700 CPUs (3.00GHz).

We compare our algorithm (Alg. 4, denoted as Hybrid)
with two baseline methods. One is based on the convex op-
timization approach (denoted as ConvexOpt) proposed in
prior work (Yang, Ordonez, and Tambe 2012); this method
is not capable of choosing which center to operate hence
we run it with all the centers chosen as operational. The
other method is based on a two-steps procedure (denoted as
TwoSteps); for this we first solve EqOPT with fixed S “ K
(using ConvexOpt) to find a strategy x˚. We then use this
strategy to select at least NP and at most C centers from K
by sorting the individual rewards twdjx

˚
j ` ldj , j P Ku and

selecting NP centers with highest rewards and then, from
the remaining centers, selecting no more than C´NP cen-
ters with highest and positive rewards. Then, a subset S˚
is selected and we solve EqOPT with fixed S “ S˚ to re-
optimize the strategy.

We first determine the number of pieces K needed in our
PWLA approach for a good approximation, noting that, as
is typical for approximation algorithms, the bound in The-
orem 2 can be too conservative for average case problems.
We vary K in t5, 10, . . . , 30u and compute the percentage
gap between the objective values given by PWLA with K



Figure 2: Expected reward comparison, the curves given by
Hybrid and SwitchedDual are almost identical.

pieces and with a largeK “ 200 pieces. We observe that the
percentage gaps become relatively small (less than 1.4%) if
K ě 20 (Figure 5 in Appendix). Thus, we fix K “ 20 for
the rest of the experiments.

Expected rewards comparison. The means and standard
errors of the expected rewards of different approaches are
plotted in Fig. 2, where in the left figure we vary the number
of centers from 20 to 200 and set resource budget as m “

|K|{10, and in the right figure we fix |K| “ 50 and vary the
resource budget m from 2 to 20. The expected rewards of
SwitchedDual are equal to those of Hybrid for 178/180 test
instances, and only slightly smaller for 2/180 instances. This
shows that the minimax equality holds with high probability.

Also, Hybrid and SwitchedDual consistently outperform
other methods. In particular, for varying number of centers,
Hybrid provides 85%-96% larger rewards than TwoSteps.
For varying resource budget, the improvements are up to
142%. ConvexOpt returns very low rewards, revealing clear
benefit of selecting centers instead of operating all centers.

Computational scalability. In this experiment, we run
Hybrid, SwitchedDual, ConvexOpt and MILP, where MILP
refers to using ApxOPTL. We vary the number of potential
centers from 50 to 500 with two settings, one with a fixed
resource ratio as m “ 0.1|K| and one with a fixed resource
budget m “ 20. Fig. 3 shows the means and standard errors
of the CPU time of the four approaches over 10 repetitions.
We see that the curves given by the Hybrid and Switched-
Dual are almost identical (a log scale figure is in appendix),
indicating that Alg. 4 mostly stops at line 3, i.e., the minimax
equality holds. There are only a few instances of |K| “ 200
or |K| “ 350 that Alg. 4 stopped at line 7, noting that even in
these cases, the total time is still about 5-10 times less than
the time required by the MILP, due to the tightness of the
bounds provided by the SwitchedDual in line 5. While Con-
vexOpt solves an easier problem with no selection of centers,
still Hybrid runs faster than ConvexOpt on average.

The time taken by MILP grows very fast as the number
of centers increases whereas the time required by Hybrid
and SwitchedDual is stable and small. More precisely, for
fixed resource ratio, with |K| “ 500, the times required by
Hybrid, SwitchedDual, ConvexOpt and MILP are about 4,
4, 400 and 4700 (secs), respectively. To further demonstrate

Figure 3: Computational scalability comparison, the curves
given by Hybrid and SwitchedDual are almost identical.

Figure 4: Fairness in security allocation over vaccine centers

scalability, we increased the number of centers to 5000 and
Hybrid and SwitchedDual finished in 70 seconds.

We evaluate the impact of the FSA constraints on the fair-
ness of security resource distribution. To this end, we se-
lect |K| “ 20 and also divide all the centers into L “ 5
partitions of equal size. To better illustrate the fairness, we
add 5 units to raj , @j P K1. This implies that the adversary
will get more rewards if attacking a target in Partition #1.
We also tighten the selection of parameters βl by choosing
βl “ 1.2m{L, for all l “ 1, . . . , L. The box plot in Fig. 4
reports the distributions of the total resources assigned to the
5 partitions, with and without the FSA constraints. Without
the FSA constraints, the first partition gets a high chance of
being protected (allocating an expected number of more than
two resources to the four centers in Partition #1), thus lower-
ing the protection of other partitions. On the other hand, the
FSA constraints maintains a fairness of security allocation
between partitions.

7 Conclusion
We proposed a model for security of vaccine delivery in un-
derdeveloped and security risk-prone areas and presented an
efficient solver using a novel strong duality result with dis-
crete variables. As such, a number of other schemes require
security (setting up voting centers, medical camps, etc.). We
believe our model can serve as a basis for formally model-
ing such problems and its variants. Our technical approach
can also inform other techniques where a mix of discrete and
continuous variables are used.
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A Details of Omitted Parts and Additional
Experiments

Bilinear ILP and MILP
For ease of notation, let gjpxjq “ Npxjqpw

d
jxj ` ldj q. We

divide the range of xj , i.e., [0,1], into K equal intervals and
represent each xj “

ř

kPrK´1s rjk, where rjk “ 1{K if
k ď tKxju and rjk “ xj ´ tKxju{K if k “ tKxju ` 1
and rjk “ 0 otherwise. We then approximate the univariate
functions gjpxjq and Npxjq as

Npxjq « Njp0q ` 1{K
ÿ

kPrKs

γNjkrjk

gjpxjq « gjp0q ` 1{K
ÿ

kPrKs

γgjkrjk

where Njp0q “ eλr
a
j , and γNjk, γ

g
jk are the slopes of

Njpxjq, gjpxjq in each small interval in r0, 1s, defined as

γNjk “ K pNjpk{Kq ´Njppk ´ 1q{Kqq , k P rKs

γgjk “ K pgjpk{Kq ´ gjppk ´ 1q{Kqq , k P rKs

To include rjk into the optimization model, we introduce
binary variables zjk P t0, 1u such that zjk ě zj,k`1 for
k P rK ´ 1s. We constrain 0 ď rjk ď 1{K for all k, and
use rjk ě zjk{K to force rjk to 1{K if zjk “ 1, and use
rjk ď zj,k`1{K to force rjk “ 0 if zj,k`1 “ 0. For the
first k s.t. zjk “ 0 (representing k “ txjKu ` 1) the only
applicable constraint is 0 ď rjk ď 1{K. Moreover, we also
include binary variables θj P t0, 1u, j P K to represent a
subset S Ă K, i.e., θj “ 1 if j P S and θj “ 0 otherwise.
Combining all these, we can approximate (BOPT) by the
following binary nonlinear program

max
θ,r,z

K
ÿ

jPK
θjpgjp0q ´ δ0Njp0qq (ApxOPT)

`
ÿ

jPK

ÿ

kPrKs

´

γgjk ´ δ0γ
N
jk

¯

θjrjk

subject to
ÿ

jPK

ÿ

kPrKs

θjrjk ď Km (4)

ÿ

jPKl

ÿ

kPrKs

θjrjk ď Kβl, @l P rLs (5)

zjk ě zj,k`1, k P rK ´ 1s, j P K (6)
zjk{K ď rjk ď 1{K, k P rKs, j P K (7)
rjk ď zj,k`1{K, k P rK ´ 1s, j P K (8)

NP ď
ÿ

jPK
θj ď C,

ÿ

jPKl

θj ě 1, l P rLs (9)

zjk, θj P t0, 1u, @j P K, k P rKs (10)

The above program contains bi-linear terms θjrjk, which
can be linearized using the well-known “big-M” ap-
proach (Wu 1997). However, this requires K|K| additional
variables and 3|K|K additional constraints, making such ap-
proach not scalable at all. In the following result we show

that (ApxOPT) can be formulated as a MILP with no addi-
tional variables and only |K| additional constraints. In par-
ticular, we claim that (ApxOPT) is equivalent to the follow-
ing MILP

max
θ,r,z

K
ÿ

jPK
θjpgjp0q ´ δ0gjp0qq (ApxOPTL)

`
ÿ

jPK

ÿ

kPrKs

´

γgjk ´ δ0γ
N
jk

¯

rjk

subject to
ÿ

jPK

ÿ

kPrKs

rjk ď Km

ÿ

jPKl

ÿ

kPrKs

rjk ď Kβl, @l P rLs

θj ě zj1, @j P K
and constraints (6-10)

The above MILP is exactly the same one as shown in the
statement of Theorem 2 in the main paper. We show the
proof of the above claim in the proof of Theorem 2.

Variable Transformation
Using yj “ e´λw

a
j xj , the complete transformed optimiza-

tion is

max
SPF pKq

max
ySPD

ÿ

jPS

Npyjq
´´wdj log yj

λwaj
` ldj

¯

´ δ0DpySq

subject to
ÿ

jPS

´ log yj
λwaj

ď m , (11)

ÿ

jPKlXS

´ log yj
λwaj

ď βl @l , (12)

where D is the convex set given by the Cartesian prod-
uct

Ś

jPSre
´λwaj , 1s, Npyjq “ yje

λraj and DpySq “
ř

jPS Npyjq.

Gradient using Danskin’s Theorem
Briefly, Danskin’s Theorem states that given fpxq “

maxzPZ gpx, zq for compact set Z and gpx, zq convex in x
for all z, and a unique maximizer z˚ of maxzPZ gpx, zq for
any x, then we have

Bf

Bx
“
Bgpx, z˚q

Bx
where z˚ is treated as a constant.

Recall that FixedDuals is maxS,ySPD φpS, ν, µ, ySq. By
Danskin’s theorem, given unique optimal S˚, y˚S (which we
assume in this heuristic) and φ convex in ν, µ, we obtain the
required derivative. an be obtained as

BφpS˚, ν, µ, y˚Sq

Bν
“

ÿ

jPS˚

log y˚j
λwaj

`m,

BφpS˚, ν, µ, y˚Sq

Bµl
“

ÿ

jPKlXS˚

log y˚j
λwaj

` βl @l



Figure 5: Performance of the PWLA as K increases.

Figure 6: Computational scalability comparison (log scale).

Functions used in Fig. 1
The two functions in Fig. 1a are f1pyq “ y2 and f2pyq “
0.5 ` py ´ 1q2. max1,2 minxpf1pxq, f2pxqq considers a
min of each function separately and then chooses the max
from among those. f1 has min value 0 at x “ 0 and
f2 has min value 0.5 at x “ 1. Thus, the outer max
chooses solution value 0.5 at x “ 1. The solution of
minx max1,2pf1pxq, f2pxqq is at x “ 0.75 with value
0.5625, which is a different solution from the max-min case.
Also, note that at x “ 0.75, we have f1p0.75q “ f2p0.75q
thus, the inner problem max1,2pf1pxq, f2pxqq does not have
a unique solution. This shows that uniqueness is needed for
the minimax equality to hold.

The two functions in Fig. 1b are f 11pyq “ y2 and f 12pyq “
0.5 ` 0.75py ´ 0.25q2. The min of the min max occurs at
y “ 0.25 and is uniquely determined by f 12.

Choosing K
We vary K in t5, 10, . . . , 30u and compute the percentage
gap between the objective values given by PWLA with K
pieces and with a large K “ 200 pieces. Figure 5 plots the
percentage gaps for |K| P t20, 40, 60u and we see that the
percentage gaps become relatively small (less than 1.4%) if
K ě 20.

Additional Figure
A log scale y-axis version of Figure 3 is shown in Figure 6.

B Missing Proofs
Proof of Theorem 1
Proof. We first prove a claim that f is a strictly monotonic
decreasing function of δ and hence f´1 is well-defined. This
can be verified readily as DpxSq ą 0 for any feasible xS ;
suppose optimal solution value is fpδq for δ. For contra-
diction, assume fpδ1q ě fpδq for some δ1 ą δ with opti-
mal solution S1, x1S for δ1. Clearly, S1, x1S is feasible with
δ also and achieves objective value

ř

jPS1 Npx
1
jqpw

d
jx
1
j `

ldj q ´ δDpx
1
Sq “ fpδ1q ` pδ1´ δqDpx1Sq which is more than

fpδq, a contradiction. Thus, we must have fpδ1q ă fpδq.
Hence, f´1 is well-defined. Also, the Lipschitz constants
are derived at the end.

Next, as defined, fpδq is the ideal value of obj in the algo-
rithm if the BOPT solver has no error. Suppose Sδ, xS,δ is
the optimal for some δ and approximation provides S1, x1S
with objective value within ξ of the objective value with
Sδ, xS,δ . The ξ approximation guarantee gives for any δ

|fpδq ´ BOPTpδ, S1, x1Sq| “

|BOPTpδ, Sδ, xS,δq ´ BOPTpδ, S1, x1Sq| ď ξ (13)

Let δ˚ be a fixed value such that fpδ˚q “ 0. We seek δ˚ in
this algoriTheorem By definition, δ˚ “ FpS˚, x˚Sq, where
S˚, x˚S is an optimal variable value for EqOPT. By Lips-
chitzness assumption in the theorem, for any δ

|δ ´ δ˚| ď p1{dq|fpδq ´ fpδ˚q| “ p1{dq|fpδq| (14)

When the binary search stops then U ´ L ď ε. Suppose
U and L was last updated with corresponding δU and δL (in
line 5). Then, δU ´ δL ď ε. Also, suppose when the binary
search stops the solution for the variables are S, xS . We hope
to have δ˚ P pδL, δU q but cannot claim this for sure because
of the ξ error.

We consider the case that δ˚ does not lie in pδL, δU q and
we bound how far δ˚ is from δU , δL. WLOG, we assume U
was last updated before binary search stopped (the case of
L last updated can be handled exactly analogously). Next,
suppose the output of binary search is δ0, S, xS . We know
that δ0 “ δU . We know that objective BOPTpδU , S, xSq
with δU was negative (that is, obj was negative) because U
was updated.

Suppose δ˚ ą δU , thus, due to decreasing f we obtain
fpδ˚q ă fpδU q meaning fpδU q is positive. Using Equa-
tion 13, we get

|fpδU q ´ BOPTpδU , S, xSq| ď ξ

With the knowledge that BOPTpδU , S, xSq is negative and
fpδU q is positive, we can readily infer that fpδU q ď ξ. Fur-
ther, using Equation 14, fpδU q ď ξ and positive fpδU q gives
|δ˚ ´ δU | ď p1{dqξ.

A similar reasoning applies for δ˚ ă δL. We know that
objective BOPTpδL, S

2, x2Sq with δL was positive (that is,
obj was negative) when L was last updated. Note that we
use S2, x2S ‰ S, xS as we assumed U was the last update
in binary search whereas S2, x2S is for when L was last up-
dated. As δ˚ ă δL, thus, due to decreasing f we obtain



fpδ˚q ą fpδLq meaning fpδLq is negative. Using Equa-
tion 13, we get

|fpδLq ´ BOPTpδL, S
2, x2Sq| ď ξ

With the knowledge that BOPTpδL, S2, x2Sq is positive and
fpδLq is negative, we can readily infer that fpδLq ě ´ξ.
Further, using Equation 14, fpδLq ě ´ξ and negative fpδLq
gives |δ˚ ´ δL| ď p1{dqξ.

Recall the output of binary search is δ0, S, xS . Combined
with the possibility that δ˚ can lie in pδL, δU q we get the
worst case error of choosing output δ0 “ δU (or δ0 “ δL in
the analogous case) is p1{dqξ ` ε. Thus, we showed above
that |δ˚ ´ δ0| ď p1{dqξ ` ε.

Also, S, xS is the approximate solution of problem BOPT
with δ0. Thus, |fpδ0q ´ BOPTpδ0, S, xSq| ď ξ. Further,
|fpδ0q ´ fpδ˚q| “ |fpδ0q| ď D|δ0 ´ δ˚| ď pD{dqξ `Dε.
Combining these two facts we obtain:

|BOPTpδ0, S, xSq| ď pD{d` 1qξ `Dε

Note that BOPTpδ0, S, xSq “
ř

jPS Npxjqpw
d
jxj ` ldj q ´

δ0DpxSq. As DpxSq ą 0, dividing throughout we get

|
ÿ

jPS

Npxjqpw
d
jxj`l

d
j q{DpxSq´δ0| ď rpD{d`1qξ`Dεs{DpxSq

or using the notation F

|FpS, xSq ´ δ0| ď rpD{d` 1qξ `Dεs{DpxSq

Combining, using triangle inequality, with the proved result
that |δ˚´δ0| ď p1{dqξ`ε and the fact that δ˚ “ FpS˚, x˚Sq
we get

|FpS, xSq´FpS˚, x˚Sq| ď p1{dqξ`ε`rpD{d`1qξ`Dεs{DpxSq

Also, DpxSq is smallest when all x’s are 1 (as a worst case
bound) giving DpxSq ą

ř

jPS e
laj . With a worst case over

S, we have DpxSq ą eminjPK l
a
j for any S. With the lower

bound constant L assumed, we get DpxSq ą eL. Thus,

|FpS, xSq´FpS˚, x˚Sq| ď rp1{dq`pD{d`1qe´Lsξ`r1`De´Lsε

The above is Opξ ` εq as d,D,L are constants.
Details on Lipschitzness (intuitive and can be skipped by

a time constrained reader but put here for completeness).
Let S1, x1S be optimal solution for δ1. We can easily get
that for any δ1 ą δ (WLOG) we have fpδq ´ fpδ1q ě
ř

jPS1 Npx
1
jqpw

d
jx
1
j ` l

d
j q´ δDpx

1
Sq´ fpδ

1q “ Dpx1Sqpδ
1´

δq, which using the fact proved above that Dpx1Sq ą eL, we
get |fpδq ´ fpδ1q| ě eL|δ1 ´ δ|, thus, d “ eL (as δ, δ1 are
arbitrary choices).

Similarly, if S, xS is optimal solution for δ then fpδq ´
fpδ1q ď fpδq ´

ř

jPS Npxjqpw
d
jxj ` ldj q ` δ1DpxSq “

pδ1´ δqDpxSq. Now, it is easy to show that DpxSq is largest
when all x’s are 0 (as a worst case bound) giving DpxSq “
ř

jPS e
raj . But, note that at maxC centers can operate, hence

with a worst case over S, we have DpxSq ă |C|emaxjPK r
a
j

for any S. But as |C| and maxjPK r
a
j are bounded, say byC0

and U0, this gives the Lipschitz constant D “ C0e
U0

Proof of Theorem 2
Proof. To analyze (ApxOPTL), we request the reader to
first read the Appendix A to get familiar with the prob-
lem (ApxOPTL) introduced there. Let us denote f1pθ, r, zq
and S1 be the objective function and feasible set of
(ApxOPT), and f2pθ, r, zq and S2 be the objective and
feasible set of (ApxOPTL). We see that S2 Ă S1 and
f1pθ, r, zq “ f2pθ, r, zq for all pθ, r, zq P S2, thus
maxpθ,r,zqPS1 f1pθ, r, zq ě maxpθ,r,zqPS2 f2pθ, r, zq. Now
let pθ˚, r˚, z˚q be an optimal solution to (ApxOPT), we
create a solution pθ1, r1, z1q such that θ1 “ θ˚, z1jk “

r1jk “ 0, @k P rKs, if θ˚j “ 0, @j P K. We can
see that pθ1, r1, z1q is feasible to the both problems and
f1pθ˚, r˚, z˚q “ f1pθ1, r1, z1q “ f2pθ1, r1, z1q. From the
fact that f1pθ˚, r˚, z˚q ě maxpθ,r,zqPS2 f2pθ, r, zq ě

f2pθ1, r1, z1q, we have that any optimal solution to
(ApxOPTL) is also optimal to (ApxOPT), as desired. Since
(ApxOPT) approximates BOPT, then so does (ApxOPTL).

For the performance bound, let H “
ř

j w
d
j e
λraj p1 `

λmaxt|ldj |; |l
d
j `w

d
j |uq ` δ0λw

a
j e
λra . Let pNpxjq and pgj be

the piece wise linear approximations of Npxjq and gjpxjq.
For any xj P r0, 1s, let k P rKs such that xj P rpk ´
1q{K, k{Ks, it can be seen that there is α P r0, 1s such that

pNpxjq “ αNppk ´ 1q{Kq ` p1´ αqNppk ´ 1q{Kq,

which further implies that

| pNpxjq ´Npxjq| ď α|Npxjq ´Nppk ´ 1q{Kq|

` p1´ αq|Npxjq ´Npk{Kq|

We then can use the mean value theorem to have the follow-
ing inequalities

|Npxjq´Nppk ´ 1q{Kq| ď 1{K max
xj
|N 1pxjq|

“ 1{K max
xj

!

λwaj e
λp´waj xj`r

a
j q
)

“ 1{Kλwaj e
λraj

We can have the same evaluation for |Npxjq ´ Npk{Kq|,
which leads to

| pNpxjq ´Npxjq| ď 1{Kλwaj e
λraj . (15)

Similarly, we also have

|gjpxjq´gjppk ´ 1q{Kq| ď 1{K max
xj
|g1pxjq| ď ψ

where ψ “ 1
K

´

wdj e
λraj ` λwdj e

λraj maxt|ldj |; |l
d
j ` w

d
j |u

¯

.
This also leads to

|pgjpxjq ´ gjpxjq| ď ψ. (16)

Now, let pF pS, xSq be the approximated objective function
of BpS, xSq, i.e., pF pS, xSq “ pgjpxjq ´ δ0

ř

j
pNpxjq. From

the inequalities in (15) and (16) we have

| pF pS, xSq ´BpS, xSq| ď H{K.



Now, let pS1, x1Sq be an optimal solution to the approximate
problem and pS˚, x˚Sq be an optimal solution to (BOPT).
We can write

|BpS1, x1Sq´BpS
˚, x˚Sq| ď |BpS

1, x1Sq ´ pF pS1, x1Sq|

` | pF pS1, x1Sq ´BpS
˚, x˚Sq|

ď H{K ` |BpS˚, x˚Sq ´ pF pS1, x1Sq| (17)

We further evaluate the second term of (17) by consider-
ing the following two cases: BpS˚, x˚Sq ě pF pS1, x1Sq or
BpS˚, x˚Sq ď

pF pS1, x1Sq. If BpS˚, x˚Sq ď pF pS1, x1Sq we
have

|BpS˚, x˚Sq ´
pF pS1, x1Sq| “

pF pS1, x1Sq ´BpS
˚, x˚Sq

ď pF pS1, x1Sq ´BpS
1, x1Sq

ď H{K. (18)

This can be done similarly for the second case to have
|BpS˚, x˚Sq ´

pF pS1, x1Sq| ď H{K. Combine this with (17)
we obtain |BpS˚, x˚Sq ´BpS

1, x1Sq| ď 2H{K as desired.

Proof of Lemma 1
Proof. First, writing the solution in expanded form:

y˚j “

#

e´λw
a
j , for 1 ď βj

e´λw
a
j βj , for 0 ă βj ă 1

1, for βj ď 0

Next, the objective is

yje
λraj

`´wdj log yj

λwaj
` ldj ´ δ0

˘

` pν ` µlq
log yj
λwaj

While this objective is concave, we show that using the orig-
inal formulation in x’s provides an easier path to a closed
form solution. Transforming the variable back to x’s using
yj “ e´λw

a
j xj for 0 ď xj ď 1 we get the objective as

e´λw
a
j xj`λr

a
j
`

wdjxj ` l
d
j ´ δ0

˘

´ pν ` µlqxj

With a little manipulation, the above can be written as
ae´bxjxj ´ cxj ` d for constants a ą 0, b ą 0, c ą 0, d.
This function can be readily checked to be unimodal (one
maximum and monotonic drop on either side) though not
concave. The first order condition for this is

e´λw
a
j xj`λr

a
j
`

wdj ´ λw
a
j pw

d
jxj ` l

d
j ´ δ0q

˘

´ pν ` µlq “ 0

which is same as

wdj e
´λwaj xj`λr

a
j
`

´λwaj xj`1´
λwaj
wdj

pldj´δ0q
˘

´pν`µlq “ 0

Using shorthand z “ ´λwaj xj ` 1´
λwaj
wdj
pldj ´ δ0q, then

wdj e
λraj`

λwaj

wd
j

pldj´δ0q´1
ez
`

z
˘

´ pν ` µlq “ 0

which gives, by definition of Lambert W function (Corless
et al. 1996),

z “W
´ν ` µl

wdj
e
1´λraj´

λwaj

wd
j

pldj´δ0q
¯

Then, using the definition of z, we solve for xj . Denoting

β “
1

λwaj

”

1´
λwaj
wdj

pldj´δ0q´W
`ν ` µl

wdj
e
1´λraj´

λwaj

wd
j

pldj´δ0q˘
ı

the solution gives xj “ β. However, xj is constrained to lie
in r0, 1s and using the fact that the objective is unimodal, we
can state that if β is more than 1 then xj “ 1 and if β is less
than 0 then xj “ 0. This gives the required result.

Proof of Theorem 3
Proof. First, compact sub-level sets of a convex function im-
plies that the minimizer exists. This can be seen easily by
choosing a b such that sub-level set is nonempty and the min-
imizer over this sub-level set is same as global minimizer. As
the sub-level set is compact, by Weierstrass extreme value
theorem the minimizer always exists.

Then, following well-known convexity preserva-
tion transforms maxxPX fpx, yq is convex. Also,
ty | maxxPX fpx, yq ď bu “ XxPXty | fpx, yq ď bu is
compact since ty | fpx, yq ď bu is compact for each x.
Thus, sub-level sets of the convex function maxxPX fpx, yq
are compact and hence a minimizer y˚ always exists.

For each x P X , let yx denote any el-
ement in argminyPY fpx, yq. Fix a y˚ P

argminyPY maxxPX fpx, yq. For this y˚ let x˚ be the
unique value (as assumed in theorem) such that x˚ such that
x˚ “ argmaxxPX fpx, y

˚q.
We first show that y˚ P argminyPY fpx

˚, yq using proof
by contradiction. Assume that y˚ R argminyPY fpx

˚, yq.
Our assumptions in the theorem imply that x˚ is unique,
thus fpx, y˚q ă fpx˚, y˚q for all x ‰ x˚. Let

δ “ min
xPX,x‰x˚

fpx˚, y˚q ´ fpx, y˚q. (19)

We must have δ ą 0. On the other hand, from the contradict-
ing assumption and def. of yx˚ , we have that fpx˚, y˚q ą
fpx˚, yx˚q. The convexity of fpx, yq in y implies that, for
any ε P p0, 1q,

p1´ εqfpx˚, y˚q ` εfpx˚, yx˚q

ě fpx˚, p1´ εqy˚ ` εyx˚q

“ fpx˚, y˚ ` εdyq,

where dy “ yx˚ ´ y˚. We note that, since fpx˚, y˚q ą
fpx˚, yx˚q and f is continuous and y˚ ` εdy is the line be-
tween y˚ and yx˚ , there is a ε0 such that for all ε ď ε0
fpx˚, yx˚q ă fpx˚, y˚ ` εdyq. Thus, plugging this into the
above convexity derived result we get

p1´ εqfpx˚, y˚q ` εfpx˚, y˚ ` εdyq ą fpx˚, y˚ ` εdyq

which when rearranged and canceling out p1´ εq gives

fpx˚, y˚q ą fpx˚, y˚ ` εdyq (20)

for any ε P p0, ε0q. Since fpx, yq is continuous in y, we can
always select ε P p0, ε0q small enough such that

|fpx, y˚q ´ fpx, y˚ ` εdyq| ă δ{2 @x P X (21)



where δ is defined in (19). Now, we have

fpx˚, y˚ ` εdyq
paq
ą fpx˚, y˚q ´ δ{2

pbq
ě fpx, y˚q ` δ{2 @x P Xztx˚u

pcq
ą fpx, y˚ ` εdyq @x P Xztx˚u

where paq is due to (21), pbq is due to the selection of δ in
(19) and pcq is due to the selection of ε in (21). The above set
of inequalities show that x˚ is optimal to maxxPX fpx, y

˚`

εdyq. Thus, from (20) and the abobbe result we have

fpx˚, y˚q “ max
xPX

fpx, y˚q ą max
xPX

fpx, y˚ ` εdyq

which is contrary to the assumption in the theorem that
y˚ P argminyPY maxxPX fpx, yq. So our contradicting
assumption must be false. Thus, we should have y˚ P

argminyPY fpx
˚, yq.

Now we know that there is x˚ P X and yx˚ (in partic-
ular, choose yx˚ “ y˚) such that px˚, yx˚q is optimal to
minyPY maxxPX fpx, yq. We have the following chain

fpx˚, yx˚q “ min
yPY

max
xPX

fpx, yq

pdq
ě max

xPX
min
yPY

fpx, yq

“ max
xPX

fpx, yxq @yx P argmin
yPY

fpx, yq

where pdq is due to the minimax inequality. Thus, we have
fpx˚, yx˚q “ maxxPX fpx, yxq since the choice of x˚, yx˚
achieves the maximum. In other words, px˚, yx˚q is an op-
timal solution to maxxPX minyPY fpx, yq and the minimax
equality holds, i.e.,

max
xPX

min
yPY

fpx, yq “ min
yPY

max
xPX

fpx, yq.

We complete the proof.

Proof of Lemma 2
Proof. For part(1), all expressions in the algorithm can be
evaluated exactly, except for the solution of the optimization
in line 4. But, the optimization in line 4 can be computed by
the closed form formula given in Lemma 1. The closed form
requires computing the Lambert W function, which is possi-
ble with arbitrary constant precision in Op1q evaluations of
the exponential function (Johansson 2020). This gives us the
desired result.

For part(2), the optimization in line 4 can be computed
by Op1q evaluations of the exponential function (Johansson
2020), which is overall Op1q as exponentiation is assumed
constant time. All loops run for a maximum of |K| iterations,
and the operations in them are all constant time. Other than
the loops the step are sortingH (of length |K|) and partition-
ing it. The runtime is dominated by the sorting of |K| sized
array, which gives Op|K| log |K|q.

Proof of Theorem 4
Proof. Recall ΦpS, ν, µ, δ0q “ maxySPD φpS, ν, µ, yS , δ0q
(the objective function of SwitchedDualOPT). For BOPT,

we want to solve DualOPT but instead we solve
SwitchedDualOPT and that too approximately with addi-
tive error ξ. However, the first half of the proof of Theorem 1
does not depend on what BOPT is except for the result that
f (which is SwitchedDualOPT here when solved exactly) is
monotonic in δ.

In order to run the heuristic SwitchedDualOPT within
Algorithm 1, it is necessary to have the objective value of
SwitchedDualOPT be monotonically decreasing in δ0. To
prove this, we first note that if upyq, u1pyq are two functions
from a compact set Y to R, then if upyq ě u1pyq for all
y P Y , then we have

max
yPY

upyq ě max
yPY

u1pyq

min
yPY

upyq ě min
yPY

u1pyq.

To verify the above, let y˚ be an optimal solution to
maxyPY u

1pyq. We then have maxyPY u
1pyq “ u1py˚q ď

upy˚q ď maxy upyq. The second inequality can be ver-
ified similarly by letting y˚˚ “ argminyupyq and have
minyPY upyq “ upy˚˚q ě u1py˚˚q ě miny u

1pyq.
We now come back to the objective function of

SwitchedDualOPT. Given δ1 ě δ2, for any S, ν, µ, yS we
have φpS, ν, µ, yS , δ1q ď φpS, ν, µ, yS , δ2q. The above re-
mark tells us that

max
yS

φpS, ν, µ, yS , δ1q ď max
yS

φpS, ν, µ, yS , δ2q

max
S

max
yS

φpS, ν, µ, yS , δ1q ď max
S

max
yS

φpS, ν, µ, yS , δ2q

min
ν,µ

max
S

max
yS

φpS, ν, µ, yS , δ1q

ď min
ν,µ

max
S

max
yS

φpS, ν, µ, yS , δ2q,

which implies the monotonicity of the objective function of
SwitchedDualOPT, as desired.

The Lipschitz constants can be derived in same manner
as Theorem 1 and for notational simplicity we call them
d,D here again. In this part, we choose small ξ such that
p1{dqξ ď ε. Thus, using the partial result from Theorem 1
that |δ0 ´ δ˚| ď p1{dqξ ` ε we get |δ0 ´ δ˚| ď 2ε.

Recall that fpδ˚q “ 0. Thus, after running Algorithm 1
with f “ SwitchedDualOPT we will obtain δ0 such that

min
ν,µ

max
S

 

ΦpS, ν, µ, δ0 ` 2εq
(

ď 0.

Moreover, from the minimax inequality (which always
holds) we have

min
ν,µ

max
S

 

ΦpS, ν, µ, δ0 ` 2εq
(

ě max
S

min
ν,µ

 

ΦpS, ν, µ, δ0 ` 2εq
(

,

thus
max
S

min
ν,µ

 

ΦpS, ν, µ, δ0 ` 2εq
(

ď 0,

The above is DualOPT which has same optimal as BOPT.
Then, if S˚, x˚S is the optimal solution for EqOPT, the
above leads to the inequality

FpS˚, x˚Sq ď δ0 ` 2ε.

On the other hand, clearly FpS˚, x˚Sq ě FpS, xSq. This
directly gives the upper and lower bound.



The inequality

FpS˚, x˚Sq ď δ0 ` 2ε.

also gives

FpS˚, x˚Sq ´ FpS, xSq ď δ0 ´ FpS, xSq ` 2ε

ď |δ0 ´ FpS, xSq| ` 2ε.
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