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ABSTRACT

In many visually-oriented applications, users can select and group
images that they find interesting into coherent clusters. For instance,
we encounter these in the form of hashtags on Instagram, galleries
on Flickr, or boards on Pinterest. The selection and coherence of
such user-curated visual clusters arise from a user’s preference for
a certain type of content as well as her own perception of which im-
ages are similar and thus belong to a cluster. We seek to model such
curation behaviors towards supporting users in their future activi-
ties such as expanding existing clusters or discovering new clusters
altogether. This paper proposes a framework, namely Collabora-
tive Curating that jointly models the interrelated modalities of
preference expression and similarity perception. Extensive experi-
ments on real-world datasets from a visual curating platform show
that the proposed framework significantly outperforms baselines
focusing on either clustering behaviors or preferences alone.

CCS CONCEPTS

• Information systems → Collaborative filtering; Content
ranking.
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1 INTRODUCTION

The Web is probably the largest collective repository of visual im-
agery ever known. From Instagram stories to Facebook memories,
we express ourselves using images in social media. The photos we
take on our phones and cameras give fodder to image hosting ser-
vices such as Flickr and Photobucket. Meanwhile, we fill our spare
time seeking and providing visual inspirations through graphical
designs, sketchings, infographics, etc., shared on Pinterest.
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Given such vastness of the Web and the sheer volume of con-
tent within, to make sense of even just the sliver that we have
encountered and are of personal interest to us, we would resort to
creating our own “collections”, to save and manage any visual items
that catch our eyes. Beyond collecting them, we would further add
structures, such as by tagging or categorizing them, for ease of
continual access, browsing, and future discoveries.

Of particular interest to this work is a type of user behaviour,
which we refer to as curation, as exemplified by a few paragons. On
Pinterest, users can upload images from their devices or browser
extensions and assign an image to a bulletin board. On Flickr, users
can curate galleries of public photos from other users. Figure 1
illustrates example boards belonging to a Pinterest user and example
galleries of a Flickr user, where images are apparently grouped
together according to some semantic concepts (e.g., “teaching tips”,
“beach”, “mimosa”, “lotus”) that are of the users’ own volition. We
call the resulting boards or groups of related images user-curated
visual clusters. While related phenomena exist in other domains (e.g.,
Spotify song playlists, YouTube video playlists, or Yelp restaurant
lists), in this work we maintain a cogent focus on visual clusters
and reserve the exploration of other domains for future work.

Problem.We seek to build a learning model from users’ curation
behaviours. This has the potential to open up novel applications,
particularly in supporting the users’ future curation activities. As
tangible instances, we identify two following potential tasks:

• Cluster Expansion: Could we suggest new images that a user
would place into one of her existing visual clusters?
• Cluster Discovery: Could we suggest to the user new visual clus-
ters that she may be interested to adopt?

We observe that user-curated visual clusters are manifestations
of two salient modalities of user behaviour: preference - as the
user actively seeks new images to be placed in her clusters (or new
clusters altogether), she empathically indicates which images she
would rather have over alternatives and similarity perception -
as the user organizes her adopted images, she exercises her powers
of discrimination, i.e., what it entails for two images to be related
(in the same cluster) or not.

Traditionally, the two modalities mentioned above are studied
separately (see Section 3). Preference modeling falls under the
purview of collaborative filtering, which is oriented around item
recommendations and with few exceptions is not concerned with
clustering. On the other hand, similarity modeling is of interest in
clustering, which focuses most of the time on an objective sense of
similarity that does not usually depend on user preferences.

Approach. We postulate that jointly modeling user preferences
and perceived similarities between images would be beneficial to
modeling curation behaviors. However, modeling these modalities

https://doi.org/10.1145/3488560.3498504
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Figure 1: Examples of user-curated visual clusters on Pinterest and Flickr

even separately is already challenging. For one thing, there is the
issue of sparsity. Since each user only clusters a few images, it is
probably insufficient to learn both preferences and perceived simi-
larities from individual user’s historical feedback. For another, the
personalized nature of preferences and user-perceived similarities
means that content-based methods that do not take into account
users’ personal tastes might not be sufficient. To address these chal-
lenges, we adopt the collaborative learning paradigm, i.e., learning
from the feedback of many users to better handle data sparsity and
model user-specific preferences and similarity perceptions.

Contributions and Organization. Our contributions can be
summarized as follows. Firstly, we introduce the problem of learning
preference-infused user-perceived similarities from user-curated
visual clusters for solving two personalized tasks: cluster expansion
and cluster discovery. To our knowledge, this paper is the first to
explore these problems for visual domain. Secondly, we propose the
Collaborative Curating framework for modeling personalized
curation behaviours in Section 2. In a nutshell, the model incorpo-
rates both preference and similarity learning objectives, arriving
at latent representations for users, items, as well as clusters, for
solving the two above-mentioned tasks. Thirdly, we conduct com-
prehensive experiments on real-world datasets of various categories.
Section 4 shows that the proposed approach achieves significantly
better performances as opposed to comparable baselines that model
preferences and user-perceived similarities separately. To round
this up, we review related literature in Section 3, concludes the
paper and outlines future work in Section 5.

2 FRAMEWORK

We begin by introducing the notations and formally defining user-
curated visual clusters. Thereafter, we describe the proposed Col-
laborative Curating, how we derive representations of the visual
clusters, and how the model parameters would be learned.

User-Curated Visual Clusters. Let I be a universe of 𝑛 images
andU be a set of𝑚 users. For each user 𝑢 ∈ U, we observe his/her
feedback in the form of clusters of visual items, formulated as
𝐶𝑢 = {𝑐1, 𝑐2, . . . , 𝑐𝑛𝑢 }, where 𝑐𝑙 ⊂ I,∀1 ≤ 𝑙 ≤ 𝑛𝑢 is a subset of
images in I and 𝑛𝑢 is the number clusters created by user 𝑢. We
denote the collection of all user clusters as C, i.e., C =

⋃
𝑢∈U 𝐶𝑢 .

2.1 Visual Cluster Representation

A particular image 𝑖 ∈ I is associated with raw, high-dimensional
input feature 𝑓𝑖 . As per current practice, instead of working with
raw features, we presume that from 𝑓𝑖 we can derive an embedding
vector 𝑧𝑖 ∈ R𝑑 . We further intuit that a visual cluster 𝑐 likely
contains a set of images that cohere around a semantic concept,
which manifests in the curation process. Such a “concept” could be
represented by an embedding 𝑧𝑐 in the same pace.

We now describe the derivation of the representation 𝑧𝑖 ∈ R𝑑
for a particular image 𝑖 ∈ I and the representation 𝑧𝑐 for a cluster
𝑐 . This component comprises the following blocks (Figure 2):
• A base encoder enc(.) that extracts representation vector raw
input 𝑓𝑖 . One can choose from the rich variety of visual CNN
encoders (whose weights are pre-trained or to be trained for the
specific tasks at hand). In this study, we adopt a widely popular
architecture: ResNet [10] with the depth of 50, pre-trained with
ImageNet [6], to obtain the representation vector ℎ𝑖 = enc(𝑓𝑗 ) -
the output after the average pooling layer with size 2048.
• A projection head 𝑔(.) that maps the extracted vectors from
ℎ𝑖 = enc(𝑓𝑗 ) to the embedding space 𝑅𝑑 . Here, we use a sim-
ple MLP network with one fully connected layer, followed by
a nonlinear activation function to obtain the image embedding
𝑧𝑖 = 𝑔(ℎ𝑖 ) = 𝜎𝑔 (𝜃image .ℎ𝑖 ) ∈ R𝑑 , in which 𝜎𝑔 is the nonlinear
activation function, which usually performs better than a linear
function (as suggested in [4]) and 𝜃image is the embedding trans-
formation matrix. In this study, we choose the 𝜎𝑔 (.) = tanh(.).

In short, given an image 𝑖 ∈ I with the raw high-dimensional
feature 𝑓𝑖 , we derive the image embedding 𝑧𝑖 as following:

𝑧𝑖 = tanh(𝜃image .enc(𝑓𝑖 )) (1)

Given a cluster 𝑐 , we first extract the image vectors {𝑧𝑖 |𝑖 ∈ 𝑐} of
all images in 𝑐 (described in Equation 1). To learn the representa-
tion for cluster 𝑐 , we follow the architecture proposed in [30] and
aggregate the vectors {𝑧𝑖 |𝑖 ∈ 𝑐} by the mean operator ⊕ to get the
representation 𝑧𝑐 for cluster 𝑐:

𝑧𝑐 =
1
|𝑐 |

∑︁
𝑖∈𝑐

𝑧𝑖 , (2)

in which |𝑐 | is the number of images in 𝑐 .



Figure 2: Image and cluster prototypical embedding pipeline

2.2 Collaborative Curating

We now model how user interacts with visual cluster 𝑐 and an indi-
vidual image 𝑖 towards supporting cluster discovery and expansion.

Preference Modeling. When a user adopts a new cluster or
a new item to be placed within one of the existing clusters, a key
driver is her preference for the “concept” expressed by that cluster
or item. Let us now associate each user 𝑢 with a preference vector
𝑥𝑢 ∈ R𝑑 . The collection of user vectors is denoted as 𝑋 ∈ R𝑑×𝑚 .

We define the user preference score of a user𝑢 for an image 𝑖 ∈ I
as pref𝑢 (𝑖) = 𝑥𝑇𝑢 𝑧𝑖 and for a visual cluster 𝑐 ⊆ I as pref𝑢 (𝑐) = 𝑥𝑇𝑢 𝑧𝑐 .
Note that besides the inner product kernel, alternative formulations
of preference score function include 𝑙2 distance [13], angular dis-
tance [17], or non-linear function [12, 24].

Let I+𝑢 be the collection of those images that 𝑢 has adopted, i.e.,
I+𝑢 =

⋃
𝑐∈𝐶𝑢

𝑐 . As we do not presume any explicit rating over
and above the act of adoption itself, we would only model the
implicit feedback that𝑢 prefers those “positive” images in I+𝑢 to the
complement I\I+𝑢 . Moreover, since presumably 𝑢 seeks to curate
for “concepts” as captured by visual clusters rather than individual
items, it would be more empathic to say that 𝑢 would prefer an
adopted visual cluster 𝑐 ∈ 𝐶𝑢 to a “negative” image 𝑖 ∈ I\I+𝑢 .
Therefore, we seek to minimize the following loss function:

L𝑢pref = −
©«

∑︁
𝑐∈𝐶𝑢 ;𝑖∈I\I+𝑢

log
(
SM

(
pref𝑢 (𝑐) − pref𝑢 (𝑖)

) )ª®¬ (3)

SM(·) is the sigmoid/logistic function 1
1+exp(−·) . Though the

above loss function is reminiscent of implicit feedback models for
item preference [11, 23], there is a distinction in that we model
preferences for clusters. In addition, the loss will be further coupled
with other behavioral objectives to be discussed shortly.

User-Perceived Similarity Modeling.Whether a user would
adopt a visual cluster would also likely be influenced by how well
the individual items in the cluster collectively meet the user’s se-
mantic conception of the cluster. Moreover, when a user seeks to
expand an existing cluster, she would be looking at those candidate
images that will enhance or augment that conception. In both in-
stances, similarity among images within a cluster matters, but only
with respect to the user’s perception of similarity.

Our intention is to model such user-perceived similarities so that
it can generalize to new items not yet clustered by 𝑢. Towards this

end, given a user 𝑢, we define the potential membership score of
an image 𝑖 to a cluster 𝑐 as follows:

mem𝑢 (𝑐, 𝑖) ∝ −
(𝑧𝑐 − 𝑧𝑖 )𝑇𝑊𝑢 (𝑧𝑐 − 𝑧𝑖 )

2
(4)

where𝑊𝑢 is a 𝑑 × 𝑑 symmetric, positive semi-definite matrix that
represents user 𝑢’s similarity perception. As in [29], we restrict
𝑊𝑢 to be diagonal with non-negative elements. In this paper, we
set𝑊𝑢 = diag(ReLU(𝑤𝑢 )) is the diagonal matrix with 𝑤𝑢 ∈ R𝑑

whereby ReLU is the rectified linear activation function. Alternative
choices for membership function can be found in [25, 29, 30].

For each cluster 𝑐 ∈ 𝐶𝑢 , we want its vector 𝑧𝑐 to act as a "rep-
resentative" for all images in 𝑐 and to capture the user-perceived
similarities that connect images in 𝑐 together. Intuitively, for each
cluster 𝑐 , the similarity between 𝑧𝑐 and 𝑧𝑖 for 𝑖 ∈ 𝑐 should be higher
than that between 𝑧𝑐 and 𝑧𝑘 for 𝑘 ∉ 𝑐 . To achieve this objective, we
consider the following loss function for each cluster 𝑐 ∈ 𝐶𝑢 :

L𝑢𝑐 = −
∑︁
𝑖∈𝑐

©«
∑︁

𝑘∈I\𝑐
log (SM (mem𝑢 (𝑐, 𝑖) −mem𝑢 (𝑐, 𝑘)))

+
∑︁

𝑐−∈𝐶𝑢\{𝑐 }
log (SM (mem𝑢 (𝑐, 𝑖) −mem𝑢 (𝑐−, 𝑖)))ª®¬ (5)

inwhich𝐶𝑢\{𝑐} is the set of other clusters created by𝑢, but different
from 𝑐 . By minimizing L𝑢𝑐 , (1) given one cluster 𝑐 , the vector of an
image 𝑖 in 𝑐 should be placed closer to the cluster embedding 𝑧𝑐 as
compared to the vectors of negative images i.e., {𝑧𝑘 |𝑘 ∈ I\𝑐} to 𝑧𝑐
and (2) given one image 𝑖 ∈ 𝑐 , 𝑧𝑐 should be placed closer to 𝑧𝑖 as
compared to 𝑧𝑐− , the embedding of another cluster of user 𝑢 to 𝑧𝑖 .

Multi-Task Learning. The two modalities of preferences and
user-perceived similarity modeling are mutually affecting one an-
other, as manifested through shared parameters. As such, the un-
derlying idea of the Collaborative Curating framework is to
jointly model the two within a multi-task learning approach.

The overall objective function is formulated in Equation 6:

L =
∑︁
𝑢∈U
L𝑢pref +

∑︁
𝑢∈U

∑︁
𝑐∈𝐶𝑢

L𝑢𝑐 (6)

+ 𝜆
(
| |𝜃image | |2𝐹

2
+

∑︁
𝑢∈U

| |𝑥𝑢 | |2
2
+

∑︁
𝑢∈U

| |𝑊𝑢 − 𝐼𝑑 | |2
2

)
,



in which, | |.| |𝐹 is the Frobenius norm, 𝜆 is the regularization coeffi-
cient, 𝜃image is a parameter in deriving the representation of image
𝑧𝑖 from its raw features (see Section 2.1). The regularization term
| |𝑊𝑢−𝐼𝑑 | |2

2 (where 𝐼𝑑 is the identity matrix of size 𝑑 ×𝑑), interpreted
as an assumption that, a priori, each user perceives the similarity
between images based on their visual content.

2.3 Parameter Learning

Algorithm 1 describes the parameter learning process of Collabo-
rative Curating framework, by minimizing the objective function
defined in Equation 6 using Adam optimization method. In each
iteration, for each user 𝑢, we first sample 𝐾 images from the set of
unobserved images I\I+𝑢 to be used as negative examples 𝐼−𝑢 (Line
6). For each cluster 𝑐 ∈ 𝐶𝑢 , we compute the cluster prototypical
representation 𝑧𝑐 as described in Equation 2 . We sample𝐾 negative
examples from I\𝑐 to compute the clustering loss in Equation 5
(Line 11). The next step is to compute the pairwise ranking prefer-
ence loss for user 𝑢 as described in Equation 3 (Line 15). Lastly, we
update the loss function with the regularization for Collaborative
Curating’s parameters (Line 20). The model parameters will be
updated with Adam optimizer. Per iteration, the complexity of Col-
laborative Curating is O

(∑
𝑢∈U

(
𝑛𝑢𝐾 +

∑
𝑐∈𝐶𝑢

( |𝑐 |𝐾 + |𝑐 |𝑛𝑢 )
) )
.

Algorithm 1 Collaborative Curating
Require: Collection of clusters C, negative sample size 𝐾 .
1: Initialize 𝜃image; 𝑥𝑢 and𝑊𝑢 ;∀𝑢 ∈ U
2: while not converged do

3: L ← 0
4: for user 𝑢 inU do

5: Sample 𝐾 negative images 𝐼−𝑢 from I/𝐼+𝑢
6: for a cluster 𝑐 in 𝐶𝑢 do

7: Compute cluster vector 𝑧𝑐 (Equation 2)
8: Sample 𝐾 negative images from from I/{𝑐}
9: L ← L + L𝑢𝑐 , with L𝑐 described in Equation 5.
10: for an image 𝑖 in 𝐼−𝑢 do

11: L ← L − log
(
SM

(
pref𝑢 (𝑐) − pref𝑢 (𝑖)

) )
12: L ← L + 𝜆.∑𝑢∈U

(
| |𝑥𝑢 | |2

2 + | |𝑊𝑢−𝐼𝑑 | |2
2

)
+ 𝜆. | |𝜃image | |2𝐹

2
13: Update 𝜃image;𝑥𝑢 ,𝑊𝑢∀𝑢 ∈ U to minimize L
14: return 𝜃image;𝑥𝑢 ,𝑊𝑢∀𝑢 ∈ U

3 RELATEDWORK

Semi-Supervised Visual Clustering. Clustering deals with as-
signing data instances to groups, such that an instance would be
more similar to members of the same group than to members of
other groups [26]. Our problem is closer to the scenario where
side information on the similarity between images is available, and
is utilized as constraints to guide the parameter learning process.
Such similarity observations may be produced based on human
perception. The question is whether that perception is objective
or subjective. In this work, we are interested in the latter, i.e., a
user’s personalized perception of similarity. Previous works such as
[5, 9, 29] try to understand the clustering behaviors of the users. In
particular, [29] proposes personalized collaborative clustering or PCC

Table 1: Data Summary

Category #users #clusters #images #adoptions

Science Nature 694 1912 22530 28114
Outdoors 854 2668 23980 28933
Products 923 2610 12759 13632

Technology 570 1623 22368 27238
Sports 1015 3396 91386 100227

Men Fashion 1076 3167 125619 171580

to model personalized similarity between pairs of items. However,
these models only consider the clustering behaviors, but ignore the
user preference.

Conditional Similarity Learning. Another line of work fo-
cuses on similarity learning in the presence of multiple similar-
ity concepts. The target is not a clustering structure per se, but a
learned similarity function. Conditional Similarity Network or CSN
[18, 25] assumes that the similarity between images is conditioned
on certain semantic similarity concepts. It produces a disentangled
representation for images and defines a mask vector for each simi-
larity concept as a filter to map the disentangled representation to
concept-specific representation space. There is no consideration of
user preferences, which is an essential factor in Collaborative
Curating. Our experiments in Section 4 validate this hypothesis.

Moreover, we are interested in personalized clustering and rank-
ing of images. This is distinct from the problem in [19], whose
goal is to objectively (i.e., non-personalized) cluster the objects into
groups and rank these objects simultaneously.

Visual Recommendation. Collaborative filtering [16] learns
personalized preference models from user-item interactions in the
context of recommending individual items. Given the focus of this
work, we pay particular attention to those where items are as-
sociated with visual content [11, 14, 28]. These venture beyond
user-item interactions to also focus on extracting visual features
of products and incorporate them into recommendation models.
Our problem is distinct from this group in two important ways. For
one, we are not modeling user preferences at the item level, but at
the cluster level. For another, beyond user interactions with items
or clusters, we expressly model the similarity between items (im-
ages) from the same clusters. Of these, we consider VBPR [11] most
comparable, and include it as a baseline to test the significance of
learning cluster representation and user preferences over clusters
of images. Other variants tend to seek improvement in orthogonal
means such as by complexifying the underlying CNN model [14].

Our problem is different from bundle recommendation [1–3].
For one, bundles are usually fixed-sized sets of items created by
service providers or suppliers to be promoted to users. This setting
is different from us, as our visual clusters are dynamically curated
by users. For another, previous research on bundle recommendation
deals with bundles in the form of baskets of online products [3], or
playlists of songs [8, 22], not for visual collections.

4 EXPERIMENTS

4.1 Experimental Setup

Visual Curation Datasets. Since there is no existing benchmark-
ing user-curation dataset for visual domain, we build the datasets
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Figure 3: AUC Scores for image ranking (Step 1) as 𝑑 varies

ourselves from data collected from Pinterest1. On Pinterest, a user
can upload a new image or save an image from another user. The
user then chooses a board to place the image. We consider each
board as a visual cluster and the number of images varies signifi-
cantly across the boards.

We evaluate our framework on multiple datasets derived from
several categories, namely Science Nature, Outdoors, Products, Tech-
nology, Sports, and Men Fashion. For each category, we randomly
sample a set of 100 seed users. Thereafter, for each seed user, we
visit his/her profile and collect the corresponding boards and pins,
and following/follower relationships. After collecting seed users’
profiles, we pursue the same collection process with their follow-
ing/follower users. For evaluation, only users with profiles com-
pletely collected are included. For each board, we can collect the
name, description, and the images that belong to that board. Table
1 summarizes these categories. Adoptions are triplets in the form
of (𝑢, 𝑐, 𝑖), i.e., a user 𝑢 placing an image 𝑖 in a cluster 𝑐 .

Visual Features. For each image 𝑖 in the six categories, we ex-
tract visual feature ℎ𝑖 = enc(𝑓𝑗 ) using the ResNet [10] architecture
with the depth of 50, pre-trained with ImageNet [6], where ℎ𝑖 is the
output after the average pooling layer with size 2048. Without loss
of generality, there could well be other approaches in the literature
towards learning image representations for content-based recom-
mendation [7, 15, 20, 27, 31, 32], and such orthogonal techniques
could potentially be incorporated into the proposed framework.

Baselines.We consider the following baselines:
• For the first baseline, we simply represent a cluster 𝑐 by the
mean vector of all the visual features of images in 𝑐 , i.e., ℎ𝑐 =

1www.pinterest.com
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Figure 4: AUC scores for cluster ranking task as 𝑑 varies

mean({ℎ𝑖 |𝑖 ∈ 𝑐}). We use the cosine similarity between ℎ𝑐 and
ℎ𝑖 to measure the membership score of an image 𝑖 to a cluster 𝑐 .
We refer to this baseline as Avg model.
• The second baseline is VBPR [11], a personalized recommen-
dation algorithm with visual signals. Comparing to VBPR will
validate the effectiveness of modeling the user-perceived similar-
ity for learning better representation for users and images2. The
computational complexity of VBPR is O

(∑
𝑢∈U |𝐼+𝑢 |𝐾

)
.

• The third baseline Personalized Collaborative Clustering or PCC
[29] learns the user-specific pairwise similarity score to fit clus-
tering feedback. The fourth baseline Conditional Similarity Net-
work or CSN [25] models similarities between items, condi-
tioned on users. Comparing to PCC and CSN validates our mod-
eling of user preferences for visual clusters. The computational
complexity of PCC and CSN are O

(∑
𝑢∈U

∑
𝑐∈𝐶𝑢

(
|𝑐 |2𝐾

) )
and

O
(∑

𝑢∈U
∑
𝑐∈𝐶𝑢

(
|𝑐 |2𝐾

) )
respectively.

Reproducibility. For project head 𝑔 of Collaborative Cu-
rating, we use a simple nonlinear fully connected layer to map
the ResNet features to the desired 𝑑− dimensional embedding
space. The learning rate and regularization coefficient are tuned
for all models to achieve their best performances. Specifically, for
all datasets, the learning rate for Collaborative Curating and
VBPR is 0.005 and the regularization coefficient is 0.001, the num-
ber of negative examples is 𝐾 = 20. For CSN and PCC, the best
hyper-parameters setting are: learning rate 0.001, the regularization
coefficient 0.001, the number of negative examples K = 20.

2The choice of VBPR ismotivated by its similarity to our preference-infused component,
which engenders greater comparability.



4.2 Personalized Cluster Expansion

The first evaluation task we are interested in this study is cluster
expansion, i.e., to suggest the images that match user preferences
and are also relevant to the similarity concepts expressed by the
clusters. For this experiment, we only keep users who have created
at least two clusters of images to ensure there is sufficient informa-
tion to learn their similarity perceptions. To evaluate all models for
this task, we use the leave-one-out strategy. Specifically, for each
user 𝑢, we split each cluster 𝑐 in𝐶𝑢 by selecting a random image to
be used for validation and another for testing.

𝑐 = 𝑐train ∪ 𝑐val ∪ 𝑐test,∀𝑐 ∈ 𝐶𝑢 ; (7)

This effectively creates the training clusters𝐶train
𝑢 =

⋃
𝑐∈𝐶𝑢

𝑐train,
validation images 𝐼val𝑢 =

⋃
𝑐∈𝐶𝑢

𝑐val, and testing images 𝐼 test𝑢 =⋃
𝑐∈𝐶𝑢

𝑐test for each user 𝑢.
A natural strategy to suggest images to existing clusters of user

𝑢 is to perform the following sub-tasks:
(1) Step 1: Image Ranking Identify the top images that the user

𝑢 might prefer.
(2) Step 2: Cluster Selection Assign each recommended image to

the cluster that returns the highest membership score.
Since the observed test image of a cluster might not appear at

the top of the image ranking list of the user (and thus would not
participate in Step 2), a reasonable approach is to evaluate these
sub-tasks separately so we can associate each with their respective
known ground-truths.

For Step 1, we employ the widely used metric AUC (Area Under
the ROC Curve), to evaluate the predicted personalized ranking on
the hidden images 𝐼 test𝑢 for each user 𝑢:

AUC − item − ranking =

1
|U|

∑︁
𝑢

1
|𝐸 (𝑢) |

∑︁
(𝑖, 𝑗) ∈𝐸𝑢

𝛿 (pref𝑢 (𝑖) > pref𝑢 ( 𝑗)) (8)

in which, 𝐸 (𝑢) = {(𝑖, 𝑗) |𝑖 ∈ 𝐼 test𝑢 ; 𝑗 ∉ 𝐼+𝑢 } and 𝛿 (𝑥) = 1 if 𝑥 > 0 and
0 otherwise. Higher AUC indicates higher performance. For models
that do not define an explicit preference score function such as
CSN, PCC, and Avg, we rank the items based on their membership
scores to all the user’s training items instead. For Step 2, we also
measure the AUC score to investigate how the algorithms select a
cluster for a recommended image:

AUC − cluster − selection =∑︁
𝑢∈U

∑︁
𝑖∈𝐼 test𝑢

∑︁
𝑐′∈𝐶 train

𝑢 \{𝑐𝑖 }

𝛿 (mem𝑢 (𝑐𝑖 , 𝑖) > mem𝑢 (𝑐 ′, 𝑖))
|U|.(𝑛𝑢 − 1).|𝐼 test𝑢 |

, (9)

in which, 𝑐𝑖 indicates the cluster image 𝑖 belongs to.
For each split of a dataset, we select the best model via hyper-

parameter tuning based on the validation set and report the per-
formance on the test set. We conduct experiments on 5 different
random splits and report the average results. Figures 3 and 5 re-
spectively show the AUC scores of all models for the image ranking
and cluster selection sub-tasks across different values of dimension
𝑑 = 8, 16, 32, 64, 128. Across all categories, Collaborative Curat-
ing consistently shows better performances in both sub-tasks. The
results are mostly statistically significant with 𝑝 < 0.01 based on
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Figure 5: AUC scores for cluster selection (Step 2) as 𝑑 varies

the paired sample t-test. For image ranking on Technology, Collab-
orative Curating is comparable to VBPR when 𝑑 = 32 and for
cluster selection on Sports, VBPR achieves competitive performance
compared to Collaborative Curating. Jointly modeling prefer-
ence and user-perceived similarity enhances the quality of image
recommendation for each user and each cluster of the user.

For image ranking (Figure 3), baselines CSN and PCC consistently
show worse performances. This is attributed to how these models
only consider the user-perceived similarity factor. Compared to
these, Collaborative Curating shows significantly better results,
implying that incorporating user preferences factor is critical for
this task. For cluster selection (Figure 5), Collaborative Curating
achieves substantial improvement over the baselines. The result
shows that our framework can learn the user-perceived similarity
perceptions and generalize to the new images effectively. For this
task, Avg model performs fairly well on Technology, Sports, Men
Fashion categories, while VBPR shows competitive results as well
(except for Science Nature and Products categories, CSN outperforms
VBPR when 𝑑 = 128). This could be due to utilization of informative
ResNet50 visual features to represent the images.

4.3 Personalized Cluster Discovery

The second evaluation task is to suggest a new cluster (created by
another user) to a target user 𝑢. The motivation is to help the user
𝑢 to discover new ideas from other users, who might share similar
interests as 𝑢. For this experiment, we consider users with at least
three clusters of images. Particularly, for each user 𝑢, we randomly
hide one of their clusters for validation and another for testing, i.e.,
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Figure 6: Ablation Analysis: Performances of Collaborative Curating and its variants 𝑑 = 128

𝐶𝑢 = 𝐶observed
𝑢 ∪ 𝐶val

𝑢 ∪ 𝐶test
𝑢 . Across all users, we denote all the

testing clusters as Ctest, i.e., Ctest = ⋃
𝑢∈U 𝐶

test
𝑢 .

For evaluation, for each user𝑢, we first rank all the test clusters in
Ctest by the preference scores for clusters as defined in Eq. ??. Here,
we treat other test clusters from other users as negative clusters.
We measure AUC to see how well the test cluster of a user 𝑢 is
ranked against 𝑢’s negative clusters. The metric is given in Eq. 10.

AUC − cluster − ranking =

1
|U|

∑︁
𝑢∈U

∑︁
𝑐∈Ctest\Ctestu

𝛿
(
pref𝑢 (𝐶test

𝑢 ) − pref𝑢 (𝑐)
)

|Ctest\Ctestu |
. (10)

Figure 4 shows the AUCcluster−ranking scores of all models on
the test data (the average results of 5 random splitting). Across all
datasets, Collaborative Curating achieves significant improve-
ment over the baselines. The improvement is statistically significant
with 𝑝 < 0.01 based on the paired sample t-test (except for Science
Nature, Avg baseline is slightly better than Collaborative Curat-
ing). Especially, Collaborative Curating shows better results
than VBPR, supporting the effectiveness of modeling user prefer-
ence for images at individual and cluster level.

Again, baselines CSN and PCC are the weaker models for this
task, since both models are not optimized for learning user prefer-
ences. This again highlights the importance of incorporating user
preference signals for suggesting new visual clusters to users. Avg
model also achieves relatively good results for this task, especially
on Men Fashion category, but still lower than ours. This shows that
our adoption of the collaborative learning paradigm approach is
more accurate compared to content-based solutions that do not take
into account user personal preference and similarity perceptions.

4.4 Ablation Analysis

To investigate the contribution of our architecture components, we
conduct an ablation analysis on several variants of Collaborative
Curating. The first variant is Preference Only, which only models
the user preference, but ignore the user perceived similarity factor.
The second variant is Clustering Only, which only considers the
user perceived similarity, but ignoring the user preference factor.

Figure 6 shows the AUC scores of all variants for the three tasks:
image ranking, cluster selection, and cluster ranking on the six cate-
gories with 𝑑 = 128. The full architecture Collaborative Curat-
ing (in red color) achieves highest AUC scores compared to other
variants for image ranking and cluster selection tasks. This shows
that jointly modeling user preferences and user-perceived similar-
ities are beneficial. For cluster ranking, Preference Only achieves

competitive results compared to the full architecture Collabora-
tive Curating, and outperforms Clustering Only. This implies
that modeling user preference for clusters is critical for cluster
discovery task. Also, Preference Only variant achieves competitive
performances for cluster selection, compared to Clustering Only,
showing that user preference has useful signals towards learning
the user-perceived similarity as well.

4.5 Case Studies

To better understand our framework, we illustrate several examples
of recommendations generated by Collaborative Curating here.

Case Study #1: Cluster Expansion and Discovery. Figure 7
shows the visual clusters of a user from Science Nature category,
and the users’ recommendations for cluster expansion and cluster
discovery tasks. The first row displays the existing clusters separated
by the grey lines, with the corresponding names annotated by the
corresponding user. The entire second row displays the top-20
recommended images returned by Collaborative Curating for
the user, each of which is assigned to the cluster with highest
membership score. Each column in the second row displays the
recommended images (from the above top-20 images) to “expand”
the corresponding cluster above. The third row is the top-1 cluster
recommendation (with annotated name), created by another user.
We observe that the top-20 images (second row) and the top-1
recommended cluster are significantly relevant to the images of
the existing clusters. This shows that, Collaborative Curating
can effectively learn the user preferences (both at the individual
image and cluster level) for high quality recommendations. For each
existing cluster, the recommended images are also semantically
similar to the existing images in the cluster. This further illustrates
the effectiveness of Collaborative Curating in learning the user-
perceived similarities and generalizing to new images.

Case Study #2: Clusters Visualization. Figures 8 shows the
2-𝑑 t-SNE [21] visualization of all clusters from Products category
with original 𝑑 = 128. For each cluster, we choose the image whose
embedding is closest to the cluster’s embedding as the thumbnail.

From Figure 8, we observe that thumbnail images form several
visual clusters that are semantically relevant, such as a cluster of
“shoes” at the bottom-right corner, a cluster of “interior furniture” at
the bottom left, a cluster of “mugs” at the middle left, or clusters of
“fashion items”. This shows that Collaborative Curating is able
to learn informative representation of the visual clusters, which is
useful to help users to discover clusters created by other users.
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Figure 8: Visualization of clusters from Products category with 𝑑 = 128.

5 CONCLUSION AND FUTUREWORK

We are interested in curation behaviors for visual content, whereby
a user expresses preferences as well as perception of similarity. To
model such behaviors towards supporting cluster expansion and
cluster discovery, we proposeCollaborative Curating that jointly
models both modalities within a unified framework. Experiments

on six categories show that the model outperforms baselines that
consider preferences or user-perceived similarities separately.

There are several facets in Collaborative Curating that are
worth further investigation such as the effect of different base en-
coder architectures on the quality of visual representations. It may
also be interesting to study how the framework could be extended
or modified to model curation behaviors in non-visual domains.
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