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ABSTRACT
Classical recommendation methods typically render user repre-
sentation as a single vector in latent space. Oftentimes, a user’s
interactions with items are influenced by several hidden factors. To
better uncover these hidden factors, we seek disentangled represen-
tations. Existing disentanglement methods for recommendations
are mainly concerned with user-item interactions alone. To further
improve not only the effectiveness of recommendations but also the
interpretability of the representations, we propose to learn a sec-
ond set of disentangled user representations from textual content
and to align the two sets of representations with one another. The
purpose of this coupling is two-fold. For one benefit, we leverage
textual content to resolve sparsity of user-item interactions, leading
to higher recommendation accuracy. For another benefit, by reg-
ularizing factors learned from user-item interactions with factors
learned from textual content, we map uninterpretable dimensions
from user representation into words. An attention-based alignment
is introduced to align and enrich hidden factors representations. A
series of experiments conducted on four real-world datasets show
the efficacy of our methods in improving recommendation quality.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Disentangled Representation; Textual Content-Aware Recommender
Systems; User Preferences Interpretation
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1 INTRODUCTION
Recommender systems play an indispensable role in delivering rel-
evant content to users, alleviating the information overload. The
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core of an effective personalized recommender system lies at learn-
ing expressive representations [21] to capture user’s preferences
from adoptions and interactions with various items. Ideally this
user representation that we seek is not only amenable to predic-
tion accuracy, but is also interpretable, so we can make sense of
the user’s underlying preferences, as well as controllable, so we
could potentially let users have some control in terms of adaptively
retrieving their preferred items according to specific preferences.

Classical methods enmeshing a user’s multi-faceted preferences
into a monolithic representation would not allow us to appreciate
the respective facets meaningfully. Disentangled learning could
address these by separating the distinct, informative factors of vari-
ations in data [3]. Various methods have been proposed to learn
disentangled representations, primarily in the field of computer
vision [5, 7, 11]. Its application to recommender systems in discov-
ering disentangled factors underlying user’s interactions with a
set of items is pioneered by MacridVAE [26], followed by other re-
cent pursuits for disentangled representations in recommendation
systems research [27, 29, 30, 44, 50, 52].

However, a couple of shortcomings remain. For one, it is diffi-
cult to interpret a factor without further associated interpretable
information [23]. Unlike in computer vision where disentangled
factors could yield visualizable artefacts, in recommender systems
these factors capture ’interactions’ abstractly. For another, existing
disentangled representations for recommendations primarily rely
on interaction data alone, which is known to have sparsity issues
with each user interacting with merely a minuscule fraction of all
items in the catalogue of interest. To address these shortcomings,
we propose to incorporate side information in the form of textual
content associated with each user into disentangled representation
learning for recommendation. For instance, this user-associated
content could be derived from the collection of reviews the user
has written or product descriptions the user has adopted.

Our approach is to derive a second set of disentangled repre-
sentation for the user based on text content, in addition to that
based on item interactions, and to align the hidden factors of these
dual representations. One expected benefit of the alignment is that
text-based factors would provide semantic interpretability of the
corresponding interaction-based factors via the former’s associa-
tions with words. Another benefit is the enhanced accuracy that
we gain from supplementing the interaction data with textual data.
While textual content has been incorporated into recommendation
models with good results [15, 20, 24, 41, 43], they were primarily
studied in the classical non-disentangled representational sense.
Our work, in contrast, builds a disentangled textual modeling net-
work, uncovering hidden factors in textual content and align these
factors with ones capturing user’s adoption. Hypothetically, this
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allows knowledge transfer between hidden factors learned from
textual content and user-item interactions.

To this end, we propose a novel textual-aware disentangled rec-
ommendation model, called AddVAE. Our model consists of two
sub-networks, one for user-item interaction modeling and the other
for user’s textual content. Each sub-network is responsible for dis-
covering the hidden factors underlying their corresponding input
data. Individually, each is based on MacridVAE [26]. To realize
the alignment of hidden factors from these two sub-networks, we
employ compositional de-attention mechanism [36] and then regu-
larize by Mutual Information (MI) maximization. By means of MI
maximization, we explicitly embed collaborative filtering signals
into text-based factors and vice versa so as to achieve both goals of
resolving sparsity and interpretability simultaneously.

ContributionsWe make the following contributions. First, to
the best of our knowledge, this is the first time a content-aware rec-
ommendation model is studied in disentangled fashion by deriving
k factors underlying user-item interactions and user’s adopted tex-
tual content. By equipping disentangled textual content modeling,
our method not only improves recommendation performance but
also is able to interpret user’s preferences at the fine-grained level
of factors. Second, we propose a novel user-oriented content-aware
recommendation model, called AddVAE, that incorporates textual
content into recommendation model by coupling disentangled fac-
tors from two MacridVAE networks via a mutual information max-
imization strategy. We also propose to leverage compositional de-
attention network to effectively align disentangled factors. Third,
we conduct extensive experiments on four real-world datasets. Ex-
perimental results demonstrate thatAddVAE not only enjoys better
recommendation quality compared to several strong baselines but
also provides interpretation of disentangled user’s preferences.

2 RELATEDWORK
Textual Modeling in Recommender Systems Classical frame-
works for recommender systems include matrix factorization [19],
algebraic method [32], autoencoder [21, 34], neural network [10],
graph-based model [9], etc. To address sparsity, various techniques
have been proposed to incorporate textual content. CTR [41] lever-
ages Latent Dirichlet Allocation (LDA) [4]. Stacked Denoising Au-
toencoder (SDAE) [43] is leveraged in CDL [43], CKE [48]. Vari-
ational Autoencoder (VAE) replaces SDAE in CVAE [20]. These
models ignore order of words in the input. ConvMF [15], CRAE
[42] models order of words in textual content using Convolutional
Neural Network and Recurrent Neural Network, respectively. GATE
[24] explores attention mechanism to incorporate textual content
into autoencoder-based recommedation. There are two key dis-
tinctions to our work. First, in contrast to how these models focus
on item information, we model text information on the user-side.
Second, these models represent textual content as a single vector,
whereas we model it in a disentangled fashion.

Disentangled Representation Learning Early successful ap-
plications are mostly in computer vision domain such as [5, 7, 11],
in which VAE [17] is exploited as backbone network. Recent work
has explored disentangled representations beyond image data, e.g.,

graph data [25, 45], knowledge graph embedding[46, 49]. In rec-
ommender systems, MacridVAE [26] learns macro- and micro-
disentangled level underlying user adoptions. A suite of following
works learn disentangled representations from user-item interac-
tions in various forms such as graph [44], sequential recommenda-
tion [27], critiquing recommendation [30], causal embedding [52],
generative model [22]. DICER [50] focuses on disentangling content
and collaborative signals. Besides recommendation performance,
researchers are also interested in the scalability [6, 47]. KDR [29]
incorporates side information from knowledge graph on item side.
Our key distinction is to focus not only on one but two sets of
disentangled representations by incorporating textual content on
user side. We also propose an expressive alignment between the
dual representations.

Mutual Information Maximization Mutual information (MI)
measures how well a random variable knows another random vari-
ables. MI is often used as objective to maximize in order to learn
expressive representations. Deep InfoMax [12] is the initial work
that populates the use of MI maximization. Deep InfoMax maxi-
mizes MI between a local image patch and its global context in a
contrastive learning task. MI maximization then becomes popu-
lar in various applications, including computer vision [1], natural
language processing [8, 18], neural topicmodel [31], graph represen-
tation learning [35, 39], recommender systems [29, 53]. MI usually
is intractable in the context of neural network. Hence, researcher
proposed methods to estimate lower bound of MI [2, 33, 37]. Since
a comprehensive comparison between MI estimators is out of scope
of this work, we follow [33] to estimate MI lower bound and leave
the exploration of other MI estimators for future work.

3 METHODOLOGY
In this section, we describe our proposed model called AddVAE,
which stands for Aligned Dual Disentangled VAE. Specifically, our
proposed architecture design aims at finding an effective method to
combine disentangled factors discovered by two networks learned
from user-item interactions (ratings1) signals and textual content
signals respectively. Figure 1 gives an illustration of our proposed
model. Table 1 lists the main notations in this paper.

3.1 Disentangled Representation Module
The key design is to couple factors from two disentangled repre-
sentation modules from user’s rating as well as user’s associated
textual content. We base each component module on Macro-Micro
Disentangled Variational Autoencoder [26], abbreviated as Macrid-
VAE. It is a generative model based on Variational Autoencoder
[17]. The goal is to derive K hidden factors, {z𝑘 }𝐾𝑘=1, z𝑘 ∈ R

𝑑 , un-
derlying input data. In the case of product recommendation, these
represent K latent factors (which could be categories or genres)
that a user is interested in. Learning K latent factors for a given
input is aimed at achieving macro disentanglement. On the other
hand, micro disentanglement requires each dimension of disentan-
gled factor z𝑘 to capture fine-grained aspects of items belonging to
the latent category represented by z𝑘 . Like any VAE, MacridVAE
consists of two parts, encoder and decoder.

1We call user-item interactions and user’s ratings interchangeably
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Figure 1: Illustration of our model AddVAE. Best viewed in color. Shaded circles in user’s binary rating vector are observed interactions. Box
with two circles represents a factor. Factors with patterns represent rating factors while colored factors represent textual factors. Different
patterns (colors) indicate different factors. Combination of pattern and color means addition.

Table 1: List of Notations

Notation Description

U, 𝑢 the set of users and user index, respectively
𝑖 input index, e.g., an item or a word

x𝑢 , x𝑢,𝑖 vector representation indexed by 𝑢 and its 𝑖𝑡ℎ element
𝑖 : x𝑢,𝑖 = 1 set of indices 𝑖 where x𝑢,𝑖 = 1
𝑁,𝑉 number of items and number of words, respectively
𝑘 factor index
𝐾 number of factors
𝑑 dimensionality of factor, item and word representations
𝑟, 𝑡 (without any other specification) rating and text

z𝑟
𝑘
, z𝑡
𝑘

𝑘-th disentangled factor from CF-MacridVAE and
Text-MacridVAE, respectively

z𝑟 |𝑡
𝑘

𝑘-th aligned rating factor after aligning with texts
z𝑡 |𝑟
𝑘

𝑘-th aligned text factor after aligning with ratings
A,A𝑇 matrix and transposed matrix
a, a𝑇 vector and transposed vector

Encoder. Let x𝑢 ∈ R𝑁 as 𝑁 -dimension input vector, e.g., binary
input rating vector of user 𝑢. A neural network with non-linear
activation, f𝑛𝑛 (·) : R𝑑 → R2𝑑 , first projects x𝑢 into two parts:

(a𝑘𝑢 , b𝑘𝑢 ) = 𝑓𝑛𝑛 (
∑
𝑖:x𝑢,𝑖=1 c𝑖,𝑘 t𝑖√︃∑
𝑖:x𝑢,𝑖=1 c

2
𝑖,𝑘

) (1)

in which t𝑖 ∈ R𝑑 is the context vector, which is the 𝑖𝑡ℎ-row of
context matrix T ∈ R𝑁×𝑑 used by encoder to compute represen-
tation of each factor, c𝑖,𝑘 is the probability that 𝑖𝑡ℎ element in the
input, e.g., item when the input is user’s rating vector, belongs to
the 𝑘𝑡ℎ prototype. Without any specification, a prototype refers to a
factor underlying data. Vector c𝑖 ∈ R𝐾 is an approximated one-hot
vector drawn from categorical distribution (CATE) and estimated

using Gumbel-Softmax [14, 28] during training.

c𝑖 ∼ 𝐶𝐴𝑇𝐸 (𝑆𝑂𝐹𝑇𝑀𝐴𝑋 ( [s𝑖,1, s𝑖,2, .., s𝑖,𝐾 ])), s𝑖,𝑘 =
h𝑇𝑖 m𝑘

𝜏 · | |h𝑖 | |2 · | |m𝑘 | |2
(2)

in which m𝑘 ∈ R𝑑 is the vector representation of 𝑘𝑡ℎ prototype,
h𝑖 ∈ R𝑑 is another vector representation of input elements, e.g.,
item vector. Note that 𝑖𝑡ℎ input element has two vector representa-
tions, t𝑖 and h𝑖 . A temperature 𝜏 is added when calculating cosine
similarity between h𝑖 and m𝑘 to obtain more skewed distribution.

With estimated a𝑘𝑢 and b𝑘𝑢 at hand, parameters of Gaussian vari-
ational distribution 𝑞(z𝑘𝑢 |x𝑢 ,C) for 𝑘𝑡ℎ prototype is computed as

𝝁𝑘𝑢 =
a𝑘𝑢
| |a𝑘𝑢 | |2

, 𝝈𝑘 ← 𝜎0 · 𝑒𝑥𝑝 (−
1
2
b𝑘𝑢 ) (3)

Then the 𝑘𝑡ℎ prototype representation z𝑘𝑢 is drawn frommultivarite
normal distribution with diagonal varianceN(𝝁𝑘𝑢 , [𝑑𝑖𝑎𝑔(𝝈𝑘𝑢 )]2). 𝜎0
is a hyper-parameter.

Decoder. Given the 𝐾 factors z𝑢 = [z1𝑢 , z2𝑢 , ..., z𝐾𝑢 ] and the proto-
type assignment for C = {c𝑖 }𝑁𝑖=1, MacridVAE predicts the output
distribution such that

𝑝 (x𝑢,𝑖 |z𝑢 ,C) =
∑𝐾
𝑘=1 c𝑖,𝑘 · 𝑓 (z

𝑘
𝑢 )∑𝑁

𝑖=1
∑𝐾
𝑘=1 c𝑖,𝑘 · 𝑓 (z

𝑘
𝑢 )

(4)

in which

𝑓 (z𝑘𝑢 ) = 𝑒𝑥𝑝 (
(z𝑘𝑢 )𝑇 · h𝑖

𝜏 · | |z𝑘𝑢 | |2 · | |h𝑖 | |2
) (5)

and 𝑝 (x𝑢,𝑖 ) follows a categorical distribution over 𝑁 elements.
LearningObjective. MacridVAE follows 𝛽-VAE [11] tomaximize

the following objective

E𝑝 (C) [E𝑞 (z𝑢 |x𝑢 ,C) [𝑙𝑛(𝑝 (x𝑢 |z𝑢 ,C))]−𝛽 ·𝐷𝐾𝐿 (𝑞(z𝑢 |x𝑢 ,C) | |𝑝 (z𝑢 ))]
(6)
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𝑝 (C) is estimated using Equation 2.𝑞(z𝑢 |x𝑢 ,C) = Π𝐾
𝑘=1𝑞(z

𝑘
𝑢 |x𝑢 ,C),

where each 𝑞(z𝑘𝑢 |x𝑢 ,C) is Gaussian distribution with parameters
as described in Equation 3. 𝑙𝑛 is logarithm operation with natural
base while Equation 4 describes how to obtain 𝑝 (x𝑢 |z𝑢 ,C). Finally,
𝐷𝐾𝐿 (·, ·) is the Kullback-Leibler (KL) divergence that encourages
variational distribution 𝑞(z𝑢 |x𝑢 ,C) to be close to prior distribution
𝑝 (z𝑢 ) = N(0, 𝜎20 I). The prior distribution is chosen so as to en-
courage independence between dimensions. 𝛽 is used to strengthen
disentanglement [11]. We study more about 𝛽 in Section 4.4.

Our Dual Formulation Let x𝑟 ∈ {0, 1}𝑁 , 𝑁 is the number of
items, as the binary rating of vector of user 𝑢. Given x𝑟 as input
of a MacridVAE network named CF-MacridVAE, we obtain x̂𝑟 as
the predicted (or reconstructed) rating vector at the output of CF-
MacridVAE as well as𝐾 factors {z𝑟

𝑘
}𝐾
𝑘=1 learned from rating signals.

CF-MacridVAE network parameters, denoted as 𝜽𝐶𝐹 , are trained
by minimizing the negative version of objective as described in
Equation 6. We denote this objective as L𝐶𝐹 .

Analogously, we have x𝑡 ∈ R𝑉 as the 𝑡 𝑓 − 𝑖𝑑 𝑓 vector represen-
tation of user 𝑢’s associated text2 with 𝑉 is the number of words
in vocabulary. By providing x𝑡 as input to a second MaridVAE net-
work called Text-MacridVAE, we have reconstructed (predicted)
textual content x̂𝑡 at the output and 𝐾 disentangled factors {z𝑡

𝑘
}𝐾
𝑘=1

learned from textual signals. Let 𝜽𝑡𝑒𝑥𝑡 as the set of parameters of
Text-MacridVAE network. They are also trained by minimizing
negative version of MacridVAE network in Equation 6. We denote
this objective as L𝑡𝑒𝑥𝑡 .

We remove user index 𝑢 from each factor z𝑟
𝑘
and z𝑡

𝑘
for clarity.

Without any specification, disentangled factors concern one user
𝑢. The following sections describe two AddVAE variants corre-
sponding to how we regularize disentangled factors {z𝑟

𝑘
}𝐾
𝑘=1 and

{z𝑡
𝑘
}𝐾
𝑘=1.

3.2 Euclidean Distance-Based Regularization
An effective combination of rating hidden factors and textual hid-
den factors allows knowledge transfer between the two modalities.
On one hand, incorporating textual signal into rating hidden fac-
tors resolves user-item interactions sparsity. On the other hand,
user preferences underlying rating hidden factors is projected onto
textual space by means of reconstructing input text, allowing us to
understand preferences in granular level through predicted words
per disentangled factor.

The first approach is to minimize Euclidean distance between
rating-based representation and text-based representation as in
some content-aware non-disentangledmodels [15, 20, 43]. Although
this approach is proposed for a single vector representation, we can
extend it to the set of disentangled factors by adding the following
regularization.

L𝑟𝑒𝑔 =
𝐾∑︁
𝑘=1
| |z𝑟
𝑘
− z𝑡

𝑘
| |22 (7)

We name this model variant with Euclidean distance regularization
𝐴𝑑𝑑𝑉𝐴𝐸𝑑𝑖𝑠𝑡 .

2User-associated text is the concatenation of user’s adopted items’ texts.

3.3 Aligned Mutual Information
Maximization-Based Regularization

Although Euclidean distance-based regularization works in certain
cases, we seek a more effective regularization. Since we do not have
access to prior information about the alignment between factors, we
propose to learn an attention-based alignment step before applying
regularization.

Attention-Based Factors Alignment The objective of the
alignment step is that given a factor z𝑟

𝑘
, we would like to find

a corresponding representation from the set of 𝐾 textual-based
factors {z𝑡

𝑘
}𝐾
𝑘=1. We propose to model the alignment by means of

attention mechanism [38]. Given rating-based factor z𝑟
𝑘
, the aligned

representation from textual factors is

z𝑡 |𝑟
𝑘

=

𝐾∑︁
𝑗=1

A𝑡 |𝑟
𝑘 𝑗

z𝑡𝑗 (8)

in which, A𝑡 |𝑟
𝑘 𝑗

is the attentive score

A𝑡 |𝑟
𝑘 𝑗

=

𝑒𝑥𝑝 (
𝑔 (z𝑟

𝑘
,z𝑡
𝑗
)

√
𝑑
)∑𝐾

𝑚=1 𝑒𝑥𝑝 (
𝑔 (z𝑟

𝑘
,z𝑡𝑚)√
𝑑
)

(9)

𝑔(·, ·) is implemented as inner product in this paper. The notation
𝑡 |𝑟 means given rating (𝑟 ) factor, the aligned output is from textual
content (𝑡 ). z𝑡 |𝑟

𝑘
is the textual aligned factor conditioning on rating-

based factor z𝑟
𝑘
. By repeating Equation 8 for each z𝑟

𝑘
∈ {z𝑟

𝑘
}𝐾
𝑘=1, we

obtain 𝐾 textual aligned factors {z𝑡 |𝑟
𝑘
}𝐾
𝑘=1. Similarly, we also obtain

𝐾 rating aligned factors {z𝑟 |𝑡
𝑘
}𝐾
𝑘=1 in an identical manner.

Each aligned factor z𝑡 |𝑟
𝑘

(z𝑟 |𝑡
𝑘

) is a weighted sum of disentangled
factors {z𝑡

𝑘
}𝐾
𝑘=1 ({z

𝑟
𝑘
}𝐾
𝑘=1). Therefore, the aligned factor contains

information of all disentangled factors, which is in contrast with the
intention of disentangled factors [26], such that each disentangled
factor is encouraged to be independent from others. Therefore,
the non-negative attentive weight in Equation 9 may not be as
effective. To fill this gap, we propose to incorporate Compositional
De-Attention [36], abbreviated as CoDA. Unlike vanilla attention
in Equation 9 that only allows addition, CoDA allows addition,
subtraction and nullifying a certain vector. We hypothesize that
CoDA is helpful to learn more effectively aligned factors.

CoDA starts by calculating two matrices N ∈ R𝐾×𝐾 and E ∈
R𝐾×𝐾 3.

N𝑘 𝑗 = (z𝑟𝑘 )
𝑇 z𝑡𝑗 E𝑘 𝑗 = −||z𝑟𝑘 − z

𝑡
𝑗 | |1 (10)

N𝑘 𝑗 is the similarity between two disentangled factors z𝑟
𝑘
and z𝑡

𝑗

while E𝑘 𝑗 is the dissimilarity between z𝑟
𝑘
and z𝑡

𝑗
computed via

𝐿1-norm. Then attentive score matrix A ∈ R𝐾×𝐾 is calculated as

A = 𝑡𝑎𝑛ℎ(N) ⊙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (E) (11)

Since all element values in E is negative, applying 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 con-
straints the value in to [0, 0.5]. To guarantee 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (E) is between
[0, 1], we apply transformation E← E −𝑚𝑒𝑎𝑛(E) before applying
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 . Another transformation is to multiply 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (E) by 2.
3We set scaling factor 𝛼 = 1 and 𝛽 = 1 and omit them for simplicity. Details about 𝛼
and 𝛽 can be found in [36]
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Unlike vanilla attention in Equation 9 whose values are non-
negative, the attentive score in Equation 11 can be both positive
and negative. A𝑘 𝑗 is biased towards 1 iff N𝑘 𝑗 is biased towards 1
and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (E) is biased towards 1 as well. Conversely, A𝑘 𝑗 can
be negative, e.g., close to −1 in case one of N𝑘 𝑗 and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (E)
goes towards 1 and the other goes towards −1. Furthermore, when
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (E𝑘 𝑗 ) is around 0, it acts as a gate that learns to forget
information from a vector. By equipping CoDA, which is more
flexible and adaptive than vanilla attention, we end up with more
effective factor alignments since CoDA learns to add, substract or
forget the disentangled factors. All in all, with CoDA mechanism
in Equation 11, we compute aligned factors as follows:

z𝑡 |𝑟
𝑘

=

𝐾∑︁
𝑗=1

A𝑡 |𝑟
𝑘 𝑗

z𝑡𝑗 , ∀𝑘 = 1, 2, ..., 𝐾 ; z𝑟 |𝑡
𝑘

=

𝐾∑︁
𝑗=1

A𝑟 |𝑡
𝑘 𝑗

z𝑟𝑗 , ∀𝑘 = 1, 2, ..., 𝐾

(12)
Mutual Information (MI)Maximization.With aligned factors

as computed in Equation 12 at hand, we design a regularization so
that their underlying information are driven to be close.

In some cases, the magnitudes of text-based and rating-based
representation are widely different, therefore distance-based reg-
ularization as in Equation 7 is less effective. Hence, we explore
alternative regularization called MI maximization [12].

Given a user 𝑢 ∈ U, let 𝐼 (z𝑟 |𝑡
𝑘
, z𝑡 |𝑟
𝑘
) be the mutual information

between two factors z𝑟 |𝑡
𝑘

and z𝑡 |𝑟
𝑘

. Since maximizing mutual in-
formation (MI) is known to be intractable, we aim at maximizing
the lower bound of MI. Therefore, we adopt Jensen-Shannon MI
estimator [12, 33] as our maximization objective

𝐼 (z𝑟 |𝑡
𝑘
, z𝑡 |𝑟
𝑘
) = E𝑢∈U [−𝑠𝑝 (−𝑔 (z𝑟 |𝑡𝑘 , z𝑡 |𝑟

𝑘
)) ] − E𝑢∈U, 𝑗≠𝑘 [𝑠𝑝 (𝑔 (z𝑟 |𝑡𝑘 , z𝑡 |𝑟

𝑗
)) ]
(13)

𝑔(·, ·) is inner product and 𝑠𝑝 (𝑥) = 𝑙𝑜𝑔(1+𝑒𝑥 ) is softplus function.
The distributions of user𝑢 and factor 𝑗 ≠ 𝑘 are uniform distribution.
Finally, the mutual information regularization term is summed up
over negative mutual information for minimization as follows.

L𝑟𝑒𝑔 = −
𝐾∑︁
𝑘=1

𝐼 (z𝑟 |𝑡
𝑘
, z𝑡 |𝑟
𝑘
) (14)

Similar to KDR [29], the final disentangled factors for user 𝑢 are
derived by summing up aligned factors. These are,

z𝑘 = z𝑟 |𝑡
𝑘
+ z𝑡 |𝑟

𝑘
, ∀𝑘 = 1, 2, ..., 𝐾 (15)

In this way, factors from two signals, rating and text, complement
each other. Then z𝑘 will be shared in both CF-MacridVAE and
Text-MacridVAE to predict output in Equation 4. Each factor z𝑘 is
trained by both rating and textual supervision signals. We name our
model variant with attention-based alignment andMI maximization
regularization 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 .

3.4 Learning Objective
Given the learning objective of CF-MacridVAE and Text-MacridVAE
networks in Section 3.1 and the regularization term, our model
parameters 𝜽 = {𝜽𝐶𝐹 , 𝜽𝑡𝑒𝑥𝑡 } are jointly learned to minimize the
following objective:

L = L𝐶𝐹 + 𝜆𝑡𝑒𝑥𝑡L𝑡𝑒𝑥𝑡 + 𝜆𝑟𝑒𝑔L𝑟𝑒𝑔 (16)

Table 2: Statistics of our chosen datasets

Data #users #items #interactions #words

Citeulike-a 5,551 16,980 204,986 8,000
Movies 45,498 27,320 576,901 10,000
Kindle 29,920 31,778 388,143 4,401
Cell Phone 4,775 4,883 31,749 4,796

𝜆𝑡𝑒𝑥𝑡 and 𝜆𝑟𝑒𝑔 are hyper-parameters, controlling the influence of
textual signals and regularization term. L𝑟𝑒𝑔 can be either based on
distance regularization in Equation 7 (variant𝐴𝑑𝑑𝑉𝐴𝐸𝑑𝑖𝑠𝑡 ) or align-
ment and MI maximization in Equation 14 (variant 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 ).

4 EXPERIMENTS
4.1 Settings
As our goal is to incorporate textual content into recommendation
model in disentangled fashion, we evaluate our method against
baselines on recommendation quality, i.e., top-N recommendation
task of predicting top N items user is likely to interact with.

Datasets. We conduct a series of experiments on real-world
publicly available datasets.
• Movies, Kindle, Cell Phone are three categories fromAma-
zon datasets 4, consisting of product reviews data and prod-
ucts meta-data. We extract user-item interactions as a user
wrote review for a product. For textual content, we concate-
nate product titles and product descriptions adopted by a
user. We only keep user with at least 5 interactions so that
we have interactions for training, validation and testing.
• Citeulike-a5 has user’s articles. A user-item interaction is
when user saves an article in their collection. Textual content
is the concatenation of title and abstract of an article.

Data Preprocessing. In each dataset, we leverage ratio split
strategy as suggested by [51], splitting the interactions of a user into
training, validation and test set with ratio 0.8:0.1:0.1, respectively.
For Amazon dataset with provided timestamp per interaction, we
first sort user’s interactions chronologically before splitting. For
Citeulike-a dataset, there is no timestamp per interaction and there-
fore, items for validation and test set are chosen randomly. We
tokenize item textual content using SpaCy [13], remove stop words
and only keep words appears at least 5 times and in less than 60%
of item’s texts. All user-item interactions without textual content
or textual content without vocabulary words are excluded. The
statistics of data after preprocessing is presented in Table 2.

Competitors. We compare our proposed model against disen-
tangled recommendation model (MacridVAE, DGCF) and textual
content-aware recommendation model (CDL, CVAE, GATE).
• MacridVAE [26] 𝛽-VAE based model learns to generate
user’s interaction assuming there are several disentangled
factors underlying user’s adoptions.
• DGCF [44] learns a disentangled graph-based collaborative
filtering model. Each user-item interaction is modeled as a
distribution over a set of intents and iteratively refine intent
representation using graph propagation.

4https://jmcauley.ucsd.edu/data/amazon/
5http://wanghao.in/CDL.htm
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• GATE [24] adopts attention mechanism to model textual
content then incorporate into autoencoder-based recommen-
dation model. Item representation is also enriched by learn-
ing to attend over the set of neighbors.
• CDL [43] adopts Stacked Denoising Autoencoder [40] to
model textual content and incorporate into recommendation
model under a probabilistic framework.
• CVAE [20] has a similar idea as CDL but adopts VAE [17] to
model textual content.

As we incorporate textual content into user side in our proposed
model so as to interpret user preferences, in CDL, CVAE and GATE,
textual content is also incorporated on user side6.

Hyperparameters Settings. All models are trained using Adam
optimization [16] with learning rate 0.001, batch size 512 and em-
bedding size is set to 64. The maximum number of training epoch
is 200. Training stop after 𝑒 epochs without improving 𝑅𝑒𝑐𝑎𝑙𝑙@20
on validation set, in which 𝑒 is 15 for CDL, CVAE and GATE, 5
for other models. Hyper-parameters are chosen based on model
performance on validation set.

For CDL and CVAE, we search 𝜆𝑢 and 𝜆𝑣 in {10−6, 10−5, 10−4,
10−3, 10−2, 10−1, 100, 101}. We use 2-layer CDL (L = 4) with ReLU
activation and hidden unit is 200 for Cell Phone and Citeulike-a,
300 for other datasets. For CVAE, 2-layer network of size 200 − 100
is used inference and generation network with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation.

For GATE, 𝜌 is set to 100 for all datasets. Attention dimension
𝑑𝑎 is searched from {10, 15, 20, 25}. Threshold to select neighbor for
users is tuned from {0.1, 0.15, 0.2, 0.3}. The sequence length of user’s
text is chosen in from {500, 1000, 1500, 2000}. Hidden layer size is
set to 200 for Cell Phone and Citeulike-a, 300 for other datasets.

For DGCF, 𝐾 = 4, 𝑇 = 2, 𝐿 = 1, weight of independent term is
searched in {0.005, 0.01, 0.02, 0.05, 0.1, 0.2}.

For MacridVAE, we set to 𝐾 to 4. The dimensions of hidden layer
is set to 200 for Cell Phone and Citeulike-a, 300 for other dataset.
Dropout rate is 0.5, 𝜏 = 0.1, 𝜎0 = 0.075. The value of 𝛽 follows an
annealing update, i.e., 𝛽 =𝑚𝑖𝑛(𝛽0, 𝑢𝑝𝑑𝑎𝑡𝑒𝑇

), in which 𝑢𝑝𝑑𝑎𝑡𝑒 is the
number of parameters update so far, 𝑇 is the estimated number
of parameters update. We empirically found 𝛽0 = 0.2,𝑇 = 20000
works well for recommendation task.

For AddVAE, we set parameters for CF-MacridVAE and Text-
MacridVAE identically to MacridVAE, except 𝜎0 = 0.05 for Kindle
and Cell Phone. We found that multiplying 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐸) by 2 works
well for Cell Phone, for other datasets we apply E← E −𝑚𝑒𝑎𝑛(E)
in Equation 11. 𝜆𝑟𝑒𝑔 is set to 0.2 for all dataset. 𝜆𝑡𝑒𝑥𝑡 is set to 0.2 for
Citelike-a, Movies and Kindle and 1.0 for Cell Phone.

All models are trained 10 times with different random seeds on
GPU machine of RTX 8000. The averaged numbers over 10 runs on
test set are reported.

Evaluation Metrics. We evaluate the recommendation perfor-
mance on two ranking metrics, namedly Recall at top K - Recall@K
andNormalizedDiscounted Cummulative Gain at top K - NDCG@K.
Let P𝑢,𝐾 is the set of top K items predicted for user 𝑢, G𝑢 is the set
of items in the test set of user 𝑢.

𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 =
1
|U|

∑︁
𝑢∈U

|P𝑢,𝐾 ∩ G𝑢 |
|G𝑢 |

(17)

6In their original version, textual content is incorporated on item side

𝑁𝐷𝐶𝐺@𝐾 =
1
|U|

∑︁
𝑢∈U

𝐷𝐶𝐺@𝐾
𝐼𝐷𝐶𝐺@𝐾

𝐷𝐶𝐺@𝐾 =

𝐾∑︁
𝑟=1

2𝑟𝑒𝑙𝑟 − 1
𝑙𝑜𝑔2 (𝑟 + 1)

(18)
𝑟𝑒𝑙𝑟 = 1 if 𝑟𝑡ℎ item in P𝑢,𝐾 is in G𝑢 , 0 otherwise. IDCG@K is the
computed identically with DCG@K by sorting test set and treating
it as the set of predicted items.

4.2 Quantitative Evaluation
The performances of our model variants, 𝐴𝑑𝑑𝑉𝐴𝐸𝑑𝑖𝑠𝑡 , 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 ,
and baselines are illustrated in Table 3. We observe that

• Our model variants perform well in all datasets, achieving better
results than all competitors in both top-10 and top-50 metrics.
• 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 equipping MI maximization regularization achieves
the highest results in 3 out of 4 datasets while𝐴𝑑𝑑𝑉𝐴𝐸𝑑𝑖𝑠𝑡 stands
on top in Kindle dataset.
• For Cell Phone and Citeulike-a datasets, a large improvement is
observed over the disentangled baselines MacridVAE and DGCF.
The largest gap w.r.t. MacridVAE is almost 2% and 1% in HR@50,
respectively. On the larger and sparser dataset Movies, the im-
provement is smaller, e.g., less than 0.8%.
• For Kindle dataset, 𝐴𝑑𝑑𝑉𝐴𝐸𝑑𝑖𝑠𝑡 surpasses 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 and is
slightly better than the best-performing baseline MacridVAE.
Notably, 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 is worse than MacridVAE, showing that Eu-
clidean distance-based regularization is favorable in this dataset.
• Among baseline models, disentangled models including Macrid-
VAE and DGCF outperform non-disentangled ones, except Re-
call@50 on Cell Phone. This ascertains the advantage of learning
disentangled representation in recommendation task. Between
these two models, MacridVAE shows their stronger performance
than DGCF in 3 out of 4 datasets while DGCF is only better than
MacridVAE on the smallest dataset, Cell Phone.
• All in all, the experimental results show that our proposed incor-
poration of textual content into disentangled recommendation
model is beneficial to improve the recommendation quality.

4.3 Hyperparameters and Architecture Analysis
We study the impact of different parameters that play a role in the
proposed models. Additionally, we also investigate model perfor-
mance on various architectural choices.

Number of Factors. Table 4 presents model performance w.r.t
the number of factors. Firstly, 𝐾 = 2 performs worst in all datasets,
indicating that too few factors are insufficient to capture user pref-
erences at granular level. Secondly, a significant degradation is
observed in Movies and Citeulike-a when 𝐾 becomes large, e.g.,
𝐾 = 12. In these datasets, user preferences may be more coarse-
grained. Thirdly, for Kindle and Cell Phone dataset, setting 𝐾 = 12
slightly degrades model performance compared to 𝐾 = 8 or 𝐾 = 4.
Overall, the number of user factors is data-dependent and should
be chosen carefully for disentangled recommendation models. Em-
pirically, 𝐾 = 4 is a reasonable choice for our chosen datasets.

Architecture Analysis We report our model performance with
various architectural choices in Table 5. Pertaining to 3 datasets,
namedly Movies, Cell Phone and Citeulike-a, where 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼
achieves top performance, we make the following observations.
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Table 3: Comparison between models on top-10 and top-50 recommendation task with two metrics Recall (R) and NDCG (N). Bold numbers are
the best while underlined ones are second best. All numbers are percentage, we omitted % for clarity. § denotes statistical significant number
(p-value < 0.05) between bold numbers and underlined ones.

Movies Kindle Cell Phone Citeulike-a
Metric@10 Metric@50 Metric@10 Metric@50 Metric@10 Metric@50 Metric@10 Metric@50
R N R N R N R N R N R N R N R N

CDL 4.59 2.35 12.65 4.14 5.61 2.92 13.81 4.76 6.04 3.20 14.11 4.95 15.47 10.17 36.06 15.88
CVAE 4.61 2.37 12.72 4.17 5.49 2.84 14.06 4.77 6.28 3.39 15.43 5.36 15.34 9.99 36.29 15.81
GATE 3.88 1.99 10.87 3.55 5.44 2.91 12.50 4.50 5.00 2.70 12.60 4.35 15.98 10.18 34.42 15.45
DGCF 4.40 2.35 11.72 3.97 6.46 3.57 14.7 5.42 6.49 3.54 15.23 5.43 17.61 12.59 37.99 18.05
MacridVAE 6.29 3.39 15.08 5.36 10.11 5.58 20.08 7.85 5.69 2.99 13.67 4.72 22.41 15.52 42.97 21.38

𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 6.41§ 3.43§ 15.83§ 5.54§ 9.51 5.19 19.51 7.47 6.80§ 3.54 17.34§ 5.82§ 23.10§ 16.06§ 43.98§ 21.97§

𝐴𝑑𝑑𝑉𝐴𝐸𝑑𝑖𝑠𝑡 6.29 3.38 15.16 5.37 10.28§ 5.64§ 20.22 7.91 5.74 3.01 13.82 4.77 22.45 15.60 43.17 21.51

Table 4: Recall@10 (R) and NDCG@10 (N) with various 𝐾 .

Movies Kindle Cell Phone Citeulike-a
R N R N R N R N

K = 2 5.30 2.78 9.66 5.28 6.56 3.40 18.72 12.77
K = 4 6.41 3.43 10.28 5.64 6.80 3.54 23.10 16.06
K = 8 4.83 2.61 10.45 5.78 6.91 3.54 20.43 14.15
K = 12 3.68 1.98 10.41 5.79 6.64 3.42 17.03 11.58

Table 5: Recall@10 (R) and NDCG@10 (N) with architecture vari-
ants. (1) 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 . (2) 𝐴𝑑𝑑𝑉𝐴𝐸𝑑𝑖𝑠𝑡 . (3) 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 without CoDA.
(4) 𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 without alignment. (5) Replace MI maximization in
𝐴𝑑𝑑𝑉𝐴𝐸𝑀𝐼 by Euclidean distance regularization.

Movies Kindle Cell Phone Citeulike-a
R N R N R N R N

(1) 6.41 3.43 9.51 5.19 6.80 3.54 23.10 16.06
(2) 6.29 3.38 10.28 5.64 5.74 3.01 22.45 15.60
(3) 5.27 2.86 9.01 4.99 5.27 2.65 20.97 14.54
(4) 5.08 2.75 8.56 4.72 5.39 2.76 20.80 14.31
(5) 6.39 3.42 9.44 5.15 6.77 3.52 22.97 15.97

• (1) vs. (3): When replacing CoDA (Equation 11) by vanilla atten-
tion (Equation 9), a sharp degradation is witnessed, indicating
that CoDA is significant in learning effective combination of
disentangled factors.
• (1) vs. (4): We remove alignment step as in Equation 12, then
equation 15 becomes z𝑘 = z𝑟

𝑘
+ z𝑡

𝑘
, ∀𝑘 = 1, 2, ..., 𝐾 . Numbers in

(1) are much higher than their counterparts in (4), showcasing
that the proposed attention-based alignment significantly boosts
model performance.
• (1) vs. (5): In (5), we replace MI maximization regularization
(Equation 14) by Euclidean distance regularization (Equation 7)
and leave the alignment unchanged. It is observed that MI-based
regularization works better than Euclidean distance-based regu-
larization with bigger gaps in Citeulike-a dataset while smaller
gaps are witnessed in Cell Phone and Movies datasets.
For Kindle dataset, we also observe that CoDA and attention-

based alignment are helpful by contrasting (1) with (3) and (4),
although worse than (2). Numbers in (1) and (5) show that MI max-
imization is better than Euclidean distance-based regularization.

Table 6: Recall@10 and NDCG@10 with various 𝜆𝑟𝑒𝑔 .

𝜆𝑟𝑒𝑔
Movies Kindle Cell Phone Citeulike-a
R N R N R N R N

0.0 6.42 3.43 10.21 5.62 6.72 3.51 23.14 16.07
0.2 6.41 3.43 10.28 5.64 6.80 3.54 23.10 16.06
0.4 6.41 3.43 10.23 5.64 6.78 3.54 23.09 16.05
0.6 6.41 3.43 10.22 5.63 6.79 3.54 23.19 16.10
0.8 6.42 3.43 10.21 5.61 6.81 3.55 23.16 16.09
1.0 6.43 3.43 10.26 5.64 6.75 3.52 23.17 16.10

Table 7: Recall@10 and NDCG@10 with various 𝜆𝑡𝑒𝑥𝑡 .

𝜆𝑡𝑒𝑥𝑡
Movies Kindle Cell Phone Citeulike-a
R N R N R N R N

0.0 6.37 3.41 10.20 5.62 6.54 3.40 22.98 16.04
0.2 6.41 3.43 10.28 5.64 6.63 3.45 23.10 16.06
0.4 6.36 3.40 10.24 5.63 6.31 3.28 23.05 16.05
0.6 6.32 3.37 10.26 5.64 6.25 3.25 23.03 16.01
0.8 6.25 3.33 10.23 5.62 6.57 3.45 22.98 16.03
1.0 6.23 3.31 10.26 5.65 6.80 3.54 23.11 16.05

In summary, we found that aligning disentangled factors using
attention mechanism works more effectively than using regular-
ization methods relying solely on Euclidean distance or MI max-
imization. Furthermore, incorporating more expressive attention
mechanism such as compositional de-attention (CoDA) is key to
improving representation power of aligned factors.

Studies of 𝜆𝑟𝑒𝑔 and 𝜆𝑡𝑒𝑥𝑡 . Finally, we vary the values of 𝜆𝑟𝑒𝑔
and 𝜆𝑡𝑒𝑥𝑡 and the model performance is reported in Tables 6 and 7,
respectively. Overall, we found that these two hyper-parameters do
not have significant impact. We conjecture that this is due to the
representation in alignment step may compensate the model per-
formance when 𝜆𝑡𝑒𝑥𝑡 or 𝜆𝑟𝑒𝑔 changes. These parameters seems to
be data-dependent and should be carefully selected when training.

4.4 Interpretability Analysis
Besides recommendation performance, incorporating textual con-
tent into disentangled model aims at providing interpretability of
user preferences. To understand the user’s preferences underlying
each factor, we visualize the top predicted words by each factor as
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(a) Word clouds of user with id 1544

(b) Word clouds of user with id 1396

(c) Word clouds of user with id 5542

Figure 2: On Citeulike-a dataset with 𝐾 = 4, items that user interacts
with are scientific articles. Each user has four word clouds represent-
ing their topic of interest corresponding to four factors. Size of word
encodes their predicted score given by AddVAE. Best viewed in color.

a word cloud. The size of words in each word cloud encodes their
predicted score by our model. Intuitively, the bigger the size of a
word, the more likely that user is interested in the aspect described
by this word. Word color and position are chosen randomly. An
illustration of words of interest of three users corresponding to four
hidden factors on Citeulike-a dataset is presented in Figure 2.

Interpretability We can understand user’s preferences by pe-
rusing their four word clouds (corresponding to hidden factors).
For example, user with id 1544 with their word clouds in Figure 2 is
interested in User Interface (UI), designing, user-centered problem
and support. Similarly, user with id 1396 caresmore about graph and
network related problem such as community, page rank algorithm,
internet, etc. Finally, latent models, mixture models, probabilistic
algorithm are likely the topics user with id 5542 is interested in.

Interpretability vs. Recommendation Performance We an-
alyze the influence of 𝛽 on the user’s preferences interpretation.
As noted in [11], setting large 𝛽 leads to more disentangled rep-
resentation. However, larger 𝛽 is unfavorable in the context of
recommendation[21] as higher 𝛽 results in generating more simi-
lar user interaction vector as in training data. In contrast, in rec-
ommendation task we care more about predicting unobserved
user-item interactions which are likely to happen. Recall that 𝛽 =

𝑚𝑖𝑛(𝛽0, 𝑢𝑝𝑑𝑎𝑡𝑒𝑇
), 𝑢𝑝𝑑𝑎𝑡𝑒 is the number of parameters update. We

fix 𝛽0 = 0.2 and vary𝑇 in {1000, 1500, 3000, 5000, 10000, 20000}. The
word clouds are presented in Figure 3. When 𝑇 is smaller, i.e. 1000
and 1500, despite lower Recall@10, the word clouds correspond-
ing to factors are more discriminative, i.e., less words are shared
between word clouds. In contrast, when 𝑇 becomes larger, mean-
ing that 𝛽 becomes smaller, more words are shared between word
clouds. This is problematic when one would like to apply VAE on
recommendation [21]. Therefore, 𝛽 should be chosen to balance
between interpretability and recommendation performance. For
instance, in this example, 𝑇 = 5000 achieves both good recommen-
dation performance and discriminative clouds.

Interpretability vs. Textual Supervision Signal. We would
like to emphasize the role of textual content on interpretability. As
presented in Table 7, we observe that setting 𝜆𝑡𝑒𝑥𝑡 = 0 reduces
model performance. We investigate this case by visualizing word
clouds when 𝜆𝑡𝑒𝑥𝑡 = 0 in Figure 4, contrasting it with 𝜆𝑡𝑒𝑥𝑡 = 0.2.

(a) T = 1000, Recall@10 = 22.35

(b) T = 1500, Recall@10 = 22.65

(c) T = 3000, Recall@10 = 23.09

(d) T = 5000, Recall@10 = 23.03

(e) T = 10000, Recall@10 = 23.13

(f) T = 20000, Recall@10 = 23.10

Figure 3: Word clouds for user with id 562 on Citeulike-a dataset
with various values of𝑇 . Recall@10 is reported with % omitted. Best
viewed in color.

(a) 𝜆𝑡𝑒𝑥𝑡 = 0

(b) 𝜆𝑡𝑒𝑥𝑡 = 0.2

Figure 4: Word clouds when 𝜆𝑡𝑒𝑥𝑡 = 0, i.e. there is no textual supervi-
sion signals and 𝜆𝑡𝑒𝑥𝑡 = 0.2. Best viewed in color.

With 𝜆𝑡𝑒𝑥𝑡 = 0, the word clouds of the four factors are very similar
and unlinked to user’s preferences. This again ascertains the im-
portance of textual content on interpretation of user’s preferences.

5 CONCLUSION
We look into learning disentangled representation for user-oriented
content-aware recommendation. Our proposed model, called Ad-
dVAE, achieves better recommendation accuracy compared to a
series of disentangled baselines as well as content-aware recommen-
dation model. We propose aligning disentangled factors learned
from ratings and textual content based on regularization and compo-
sitional de-attention mechanism. The experimental analysis shows
that this is effective and plays a key role. An interesting follow-up
research direction is to explore mechanism that models disentan-
gled user preferences at both intra- and inter-user levels.
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