
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2022

Lightweight privacy-preserving spatial keyword query over Lightweight privacy-preserving spatial keyword query over

encrypted cloud data encrypted cloud data

Yutao YANG

Yinbin MIAO

Kim-Kwang Raymond CHOO

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computational Engineering Commons

Citation Citation
YANG, Yutao; MIAO, Yinbin; CHOO, Kim-Kwang Raymond; and DENG, Robert H.. Lightweight privacy-
preserving spatial keyword query over encrypted cloud data. (2022). Proceedings of the 42nd IEEE
International Conference on Distributed Computing Systems, Bologna, Italy, 2022 July 10 - 13. 392-402.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7588

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7588&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7588&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Lightweight Privacy-Preserving Spatial Keyword
Query over Encrypted Cloud Data

Yutao Yang*, Yinbin Miao*(Corresponding author), Kim-Kwang Raymond Choo†, and Robert H. Deng‡
*School of Cyber Engineering, Xidian University, Xi’an, China

†Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, USA

‡School of Information Systems, Singapore Management University, Singapore

Email: yangyutao 13@163.com, ybmiao@xidian.edu.cn, raymond.choo@fulbrightmail.org, robertdeng@smu.edu.sg

Abstract—With the rapid development of geographic location
technology and the explosive growth of data, a large amount of
spatio-textual data is outsourced to the cloud server to reduce
the local high storage and computing burdens, but at the same
time causes security issues such as data privacy leakage. Thus,
extensive privacy-preserving spatial keyword query schemes have
been proposed. Most of the existing schemes use Asymmetric
Scalar-Product-Preserving Encryption (ASPE) for encryption,
but ASPE has proven to be insecure. And the existing spatial
range query schemes require users to provide more information
about the query range and generate a large amount of ciphertext,
which causes high storage and computational burdens. To solve
these issues, in this paper we introduce some random numbers
and a random permutation to enhance the security of ASPE
scheme, and then propose a novel privacy-preserving Spatial
Keyword Query (SKQ) scheme based on the enhanced ASPE and
Geohash algorithm. In addition, we design a more Lightweight
Spatial Keyword Query (LSKQ) scheme by using a unified
index for spatial range and multiple keywords, which not only
greatly decreases SKQ’s storage and computational costs but
also requires users to provide little information about query
region. Finally, formal security analysis proves that our schemes
have Indistinguishability under Chosen Plaintext Attack (IND-
CPA), and extensive experiments demonstrate that our enhanced
scheme is efficient and practical.

Index Terms—spatio-textual data, outsourcing data, cloud
server, privacy-preserving, spatial keyword query

I. INTRODUCTION

With the increasing popularity of GPS devices in the

mobile Internet, spatio-textual data is widely used in various

applications such as location-based services [1], [2], [3],

mobile crowdsourcing [4], [5], task recommendation [6] and

personalized query services. For example, Facebook can help

users find like-minded friends, and Google Maps can help

users search for places of interest [7]. Due to the rapid growth

of data volume, more and more service providers (i.e., Google,

Amazon, etc.) tend to outsource their spatio-textual data to

cloud servers to reduce local storage and computing burden,

but this will lead to security issues such as privacy leakages

[8]. Thus, the privacy-preserving spatial keyword query has

been extensively studied. However, there are still several issues

to be solved.

The first issue is that most of the existing spatial range query

schemes require users to provide more query information and

need to generate a large number of ciphertexts for each spatial

object. For example, for the search rectangle range [26], users

need to provide at least two 2-dimensional coordinates of the

lower left corner and the upper right corner of the rectangle,

which generates two ciphertexts for two coordinates respec-

tively. And for arbitrary geometric range query implemented

by polynomial fitting technology [29], users need to provide

an accurate closed curve formed by the query area, which

generates two ciphertexts for the upper half and the lower

half of the closed curve respectively. Thus, the above solutions

require more information about the query region from users,

and also produce a large number of ciphertexts, which incurs

high storage and computational costs and more inconvenience

to users in the real world.
The second issue is that many existing schemes use Asym-

metric Scalar-Product-Preserving Encryption (ASPE) [9] to

encrypt spatio-textual data. ASPE is a very efficient searchable

encryption scheme to achieve scalar product based on vector

search, which can be extended and applied to various search

schemes. However, ASPE has been proven to be insecure, i.e.,

it cannot resist the known-plaintext attack as shown in [10].

Therefore, ASPE-based schemes may lead to the disclosure of

a large number of private information, resulting in irreparable

harm.
To solve the above issues, we devise a novel privacy-

preserving spatial keyword query scheme. We use Geohash

algorithm [11], [12], [13], [14] to achieve approximate spatial

range query, which only requires users to provide less query

information. Then, we build a unified index for spatial range

and multiple keywords to realize a lightweight spatial keyword

query scheme. And we enhance the security of ASPE by

adding some random numbers and a random permutation. The

main contributions of our work are shown as follows:

1) We use Geohash algorithm to realize approximate spatial

range query, which only requires users to provide a

spatial coordinate and an approximate range value. Then,

we design a unified index for spatial range and multiple

keywords to realize spatial keyword query.

2) We enhance the security of ASPE by adding some

random numbers and a random permutation to make

it Indistinguishability under Chosen Plaintext Attack

(IND-CPA).

3) We first propose a naive scheme by simply combining

392

2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS)

2575-8411/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDCS54860.2022.00045

20
22

 IE
EE

 4
2n

d
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
66

54
-7

17
7-

0/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S5
48

60
.2

02
2.

00
04

5

Geohash algorithm with enhanced ASPE, and then im-

prove it to greatly reduce its storage and computational

costs in data encryption, trapdoor generation and query

phases.

4) We give the formal security analysis and extensive

experiments to show the security and feasibility of our

schemes.

II. RELATED WORK

Privacy-preserving spatial query. Due to the rapid devel-

opment of geographic location technology, spatial query has

attracted extensive attention. To find the k-Nearest-Neighbor

(kNN) objects, Choi et al. proposed a secure kNN scheme

based on mutable order preserving encoding [15]. However,

this scheme only supports searching a single spatial point.

To search for rectangular areas, Wang et al. proposed a

hierarchical encrypted index (R̂-tree) by using ASPE, which

enables secure and efficient execution of range queries over

encrypted database [16]. To search for circular areas, Zhu et
al. proposed an encrypted spatial range query algorithm using

an improved homomorphic encryption over composite order

group [17]. To search for areas of arbitrary shape, Xu et al.
used secure kNN calculation, polynomial fitting technology

and order-preserving encryption technology to propose an

efficient geometric range query scheme, which support search

and access control over encrypted spatial data [18].

Privacy-preserving keyword query. Keyword queries aim to

find objects based on textual relevance ranking over encrypted

cloud data. For example, Wang et al. used searchable sym-

metric encryption and order-preserving symmetric encryption

to achieve secure ranked keyword search [19]. To further

improve the efficiency of [19], Wang et al. leveraged the edit

distance as a similarity metric and suppressing technique to

construct a storage-efficient similarity keyword set [20]. But

these schemes just support the single keyword search. To this

end, Sun et al. proposed an effective privacy-preserving multi-

keyword query by building the search index based on term

frequency and the vector space model with cosine similarity

measure [21]. To search for multiple keywords efficiently,

Zheng et al. proposed an efficient keyword set containment

search scheme, which builds a radix tree to effectively prune

the keyword set and uses ASPE to design a set containment

and set intersection encryption to achieve secure search [22].

Privacy-preserving spatial keyword query. To search for

spatial and keyword at the same time, top-k spatial keyword

query and Boolean spatial keyword query have been exten-

sively studied. Su et al. proposed the anchor-based position

determination technique and position-distinguished trapdoor

generation technique for secure spatio-textual similarity com-

putation to achieve secure top-k spatial keyword query [23].

Meng et al. proposed a new practical protocol to support top-

k queries by building an Encrypted Hash List, which allows

the servers to homomorphically evaluate the equality relation

between two objects [24]. Negi et al. proposed a new privacy-

preserving top-k spatio-textual keyword query scheme, which

combines Boneh-Goh-Nissim homomorphic encryption and

hash bucket techniques to protect spatial location and uses one-

way hash function to protect text information [25]. For boolean

spatial keyword query. Cui et al. devised a novel privacy-

preserving spatial-textual Bloom Filter encoding structure and

an encrypted R-tree index to maintain both spatial and text in-

formation together in a secure way [26]. Wang et al. designed

a new encoding scheme, which uses Gray code and bitmap to

uniformly encode spatial text data, and then used Symmetric-

key Hiden Vector Encryption [28] to encrypt the encoded

vector to solve the Boolean spatial keyword query problem

[27]. Song et al. used polynomial fitting technology and ASPE

to achieve secure arbitrary geometric range query, and then

utilized polynomial function and random matrix multiplication

to achieve secure multi-dimensional keyword similarity search

based on access control [29].

However, the above solutions cannot solve our problems

simultaneously. Therefore, we propose a lightweight privacy-

preserving spatial keyword query scheme, which only requires

users to provide less information about the query range to

greatly reduce storage and computational costs and enhance

the security of ASPE. The comparison between our schemes

and the above scheme is shown in TABLE I.

TABLE I
COMPARISON BETWEEN PREVIOUS SCHEMES AND OUR SCHEMES.

Schemes
Spatial
query

Keyword
query

Range
query

High
efficiency

Resist attack
types

[15] � � � NO IND-OCPA

[18] � � � YES KCA/KBA

[21] � � � NO KCA/KBA

[22] � � � YES COA/KPA

[23] � � � YES CPA/KPA

[26] � � � NO KBA

[29] � � � NO COA/CPA

SKQ � � � NO COA/CPA

LSKQ � � � YES COA/CPA

Notes: KCA:Known-Ciphertext Attack; CPA:Chosen-Plaintext Attack;
KPA: Known-Plaintext Attack; COA: Ciphertext-Only Attack;
KBA: Known-Background Attack.

III. PRELIMINARIES

In this section, we mainly review some related back-

ground knowledge, including Geohash algorithm [11], [12],

[13], [14], Asymmetric Scalar-Product-Preserving Encryption

(ASPE) [9], which is treated as the basis of our schemes.

A. Geohash Algorithm

Geohash is a geocoding method, which recursively divides

the geographic space into smaller grids, and converts the two-

dimensional latitude and longitude of each grid into Geohash

code according to Base32. Each Geohash code represents a

specific rectangular region on the earth, as shown in Fig. 1.

The Geohash code provides arbitrary precision. The longer

the Geohash code is, the smaller the divided grid and the more

accurate the position of the spatial points are represented. For

example, in Fig. 1, the red dot (8, 13) can be denoted as

393

Fig. 1. An example of Geohash coding.

“s33jxb67” with ±19m rectangular range, “s33jxb6” with

±76m, or “s33jxb” with ±610m. The precision of each

Geohash code is shown in TABLE II.

TABLE II
ACCURACY OF GEOHASH CODING

Geohash Length 1 2 3 4
Km Error (km) ±2500 ±630 ±78 ±20
Geohash Length 5 6 7 8
Km Error (km) ±2.4 ±0.61 ±0.076 ±0.019

Therefore, we can determine the distance between two

points by matching the Geohash code. For example, in Fig. 1,

the prefix of the Geohash code of the red dot and the green dot

is “s33jxb6”, then we can know that the green dot is within

±76m of the red dot. Therefore, we can judge whether the

spatial point is within the query range of the query point by

judging the number of the same prefix of the two Geohash

codes. Moreover, when the length of the Geohash code is 8,

the accuracy is about 19 meters, then an 8-character Geohash

code can accurately correspond to a spatial point in the real

world.

B. Asymmetric Scalar-Product-Preserving Encryption (ASPE)

ASPE is an important technology for similarity search over

encrypted data, which can calculate the inner product of two

vectors without revealing privacy. Assuming that p and q are

two d-dimensional vectors, ASPE consists of the following

four algorithms:

• ASPE.KeyGen(1ζ) → sk: Given a security parameter

ζ, this algorithm generates a secret key sk = {s,M1,

M2}, where s is a random d-dimensional bit vector, M1

and M2 are two random d × d dimensional invertible

matrices.

• ASPE.Enc(p, sk) → C: Given the secret key sk
and a vector p, this algorithm encrypts p as C =
(MT

1 p
′,MT

2 p
′′), where p is split into two vectors p′,

p′′ by using the bit vector s by Eq. 1.{
p′[κ] = p′′[κ] = p[κ], ifs[κ] = 0;

p′[κ] + p′′[κ] = p[κ], ifs[κ] = 1.
(1)

• ASPE.TrapGen(q, sk) → TQ: Given the secret key sk
and a vector q, this algorithm encrypts q as TQ =
(M−1

1 q′,M−1
2 q′′), where q is split into two vectors q′,

q′′ by using the bit vector s by Eq. 2.{
q′[κ] + q′′[κ] = q[κ], ifs[κ] = 0;

q′[κ] = q′′[κ] = q[κ], ifs[κ] = 1.
(2)

• ASPE.Query(C, TQ) → pT ·q: This algorithm calculates

the inner product of C and TQ as pT · q by Eq. 3.

CT · TQ = ((p′)TM1) · (M−1
1 q′)

+ ((p′′)TM2) · (M−1
2 q′′) = pT · q (3)

IV. PROBLEM FORMULATION

In this section, we formalize our system model, problem

definition, threat model and design goals.

A. System Model

In this paper, we consider a cloud data outsourcing scenario.

As depicted in Fig. 2, the system model of our schemes

consists of three entities, namely data owner, data user and

cloud server. The role of each entity is shown as follows:

Fig. 2. System model.

• Data Owner: The data owner first generates a corre-

sponding index for each object in the dataset D, and

then encrypts the spatial data objects and indexes and

outsources them to the cloud server.

• Data user: The user encrypts the query content as a

trapdoor, and then submits the trapdoor to the cloud

server.

• Cloud Server: The cloud server has unlimited storage

and computing capabilities. It can store encrypted objects

and indexes outsourced by the data owner, and provide

query services for users.

The data owner outsources the encrypted objects and in-

dexes to the cloud server (step 1©, 2©). The user is authorized

after registering himself with the data owner (step 3©), then

obtains the encryption key from the data owner (step 4©).

When the user requests a query, he encrypts the query content

as a trapdoor, and submits the trapdoor to the cloud server

(step 5©). After receiving the trapdoor, the cloud server finds

the objects that meet the user’s query requirements and returns

the id of the object to the data user (step 6©).

394

B. Problem Definition

Consider the example shown in Fig. 3, a user wants to

find objects that meet all query keywords {w2, w5} in the

vicinity. As can be seen from Fig. 3, only o3 contains all query

keywords, which is most likely to be returned as a result.

Fig. 3. A example of spatial keyword query.

Let W = {w1, w2, . . . , wm} be a total keyword set, D =
{o1, o2, . . . , on}|1≤i≤n be a spatio-textual dataset owned by

the data owner. Each object oi in D has a unique identity

idi and a tuple (oi.l, oi.k), where oi.l = (xi, yi) represents

spatial geographic location, oi.k = {w1, w2, . . . , wg} ⊆ W
represents a set of keywords. Let Q = {Q.l,Q.k,R} be a

search request, where Q.l = (qx, qy) represents spatial geo-

graphic location of query and Q.k = {w′1, w′2, . . . , w′k} ⊆ W
represents a set of query keywords, R represents the query

range. Now we give the definition of our scheme as follows:

Definition 1: (Lightweight Spatial Keyword Query,
LSKQ) Given a spatio-textual dataset D = {o1, o2, ..., on},
where each oi is encoded as a vector oi.v and then encrypted
as Ci. Given a query Q = {Q.l,Q.k,R}, it is encoded as a
vector Q.v and then encrypted to TQ. A LSKQ is to retrieve
a subset Result = {id1, id2, ..., idh} from D, such that
∀idr ∈ Result, 1 ≤ r ≤ h, CT

r · TQ = 0.

C. Threat Model

In this paper, the cloud server is considered to be honest-

but-curious, which honestly performs the established protocol

but may be curious to collect or analyze the meaningful infor-

mation such as location, text information and user’s queries,

which incurs security concerns. We assume that the data owner

and data users are trusted and do not collude with the cloud

server and unauthorized data users. In addition, we assume

that the authorization, access and transmission channels are

secure. According to the available information known by the

cloud server, we consider the following two threat models:

• Ciphertext-Only-Attack Model: In this model, it is

assumed that the cloud server knows the ciphertext of

all the outsourced data, and can observe the encrypted

trapdoors, but cannot obtain the corresponding plaintext.

• Chosen-Plaintext-Attack Model: In this model, it is as-

sumed that the cloud server can access object ciphertexts

corresponding to the plaintexts of its choice in addition to

knowing the encrypted spatial data, index and trapdoor.

D. Design Goals

To achieve a secure spatial keyword query, our schemes

should satisfy the following requirements:

• Data privacy: The data privacy includes the privacy of

dataset and query content. In other words, the plaintext

dataset and query should not be leaked to the cloud server

and unauthorized entities.

• Unlinkability of trapdoor: The cloud server should not

be able to associate one trapdoor with another, which

means that it cannot determine whether two different

trapdoors are generated from the same search.

V. OUR PROPOSED SCHEME

In this section, we first enhance the security of ASPE, then

propose a naive spatial keyword query scheme based on the

enhanced ASPE and Geohash algorithm. Finally, we improve

the naive scheme and propose a more lightweight scheme to

greatly reduce its computational and storage overhead.

A. Technical Overview

ASPE is a very common encryption method in spatial

keyword query schemes, but it has been proved that it cannot

resist the known-plaintext attack as shown in [10]. Therefore,

we first enhance the security of ASPE by adding some random

numbers and a random permutation to make it Indistinguisha-

bility under Chosen Plaintext Attack (IND-CPA).

The existing spatial range query schemes require users to

provide more information about the query area and generate

a large number of ciphertexts, resulting in huge storage and

computing overhead. Therefore, to solve these problems, we

use the Geohash algorithm to implement a lightweight approx-

imate range query. We first propose a naive spatial keyword

query scheme by simply combining Geohash algorithm with

enhanced ASPE. Specifically, in the data encryption phase,

for each object oi in the dataset D, which spatial location

oi.l is first mapped as an 8-character Geohash code and then

converted as an 8-dimensional order vector õi.l according to

Base32, finally, each dimension of the order vector is encoded

as a 32-dimensional spatial vector oi.lvj |1≤j≤8. The keyword

set oi.k of oi is converted as an m-dimensional text vector

oi.kv. Thus, we generate 8 data vectors oi.vj for each object

oi by appending a text vector after each spatial vector, and then

use enhanced ASPE to encrypt them as Ci,j |1≤i≤n,1≤j≤8. In

the trapdoor generation phase, for query Q = {Q.l,Q.k,R},
Q.l is first mapped as a t-character Geohash code according

to R and then converted as an 8-dimensional order vector

Q̃.l, where the remaining 8 − t dimensions are set as 0,

finally, each dimension of the order vector is encoded as a

32-dimensional spatial vector Q.lvj |1≤j≤8. Q.k is converted

as an m-dimensional vector Q.kv. The generation method of

each query vector Q.vj is similar to that of each data vector

oi.vj and then is encrypted as 8 trapdoors TQj
|1≤j≤8. In the

query phase, the cloud server can determine whether the object

oi meets the query conditions by calculating the inner product

of each Ci,j and TQj . However, the naive scheme causes high

storage and computational burdens.

395

Then we improved the naive scheme to construct a

lightweight spatial keyword query scheme. Specifically, we

convert each dimension of the order vector õi.l of each object

into 5-bit binary to generate a 40-dimensional spatial vector

oi.lv, and form a data vector oi.v by appending a text

vector after spatial vector, so each object oi contains only

one ciphertext Ci. The user’s query vector is similar to the

data vector generation method, only one query vector Q.v
needs to be generated and encrypted as a trapdoor TQ. In the

query phase, the cloud server determines whether the object

oi meets the query conditions only by calculating the inner

product of each Ci and TQ. Therefore, the lightweight scheme

greatly improves the calculation and storage overhead in the

KeyGeneration, TrapdoorGeneration and Query phases.

B. Enhanced Asymmetric Scalar-Product-Preserving Encryp-
tion (EASPE)

We enhance the security of ASPE by adding some random

numbers and a random permutation. The specific structure is

as follows:

• EASPE.KeyGen(1ζ) → sk: Given a security parameter

ζ, this algorithm generates a secret key sk = {s,M1,

M2, π, r1, r2, r3, r4, r5, r6}, where s is a random (d+3)-
dimensional bit vector, M1 and M2 are two random (d+
3)×(d+3) dimensional invertible matrices, π is a random

permutation, i.e., π : R(d+3) → R
(d+3), r1, r2, r3, r4, r5

and r6 are random numbers and satisfy r1r4 + r2r5 +
r3r6 = 0.

• EASPE.Enc(p, sk) → C: Given the secret key sk
and a d-dimensional vector p, p is first extended to a

(d+ 3)-dimensional vector pv = (p, r1, r2, r3) and then

permuted as p̂v = π(pv) by π. Finally, this algorithm

encrypts p̂v as C = (MT
1 p̂v

′
,MT

2 p̂v
′′
), where p̂v is

split into two vectors p̂v
′
, p̂v

′′
by using the bit vector s

by Eq. 4.{
p̂v
′
[κ] = p̂v

′′
[κ] = p̂v[κ], ifs[κ] = 0;

p̂v
′
[κ] + p̂v

′′
[κ] = p̂v[κ], ifs[κ] = 1.

(4)

• EASPE.TrapGen(q, sk) → TQ: Given the secret key sk
and a d-dimensional vector q, q is first extended to a

(d+ 3)-dimensional vector qv = (q, r4, r5, r6) and then

permuted as q̂v = π(qv) by π. Finally, this algorithm

encrypts q̂v as TQ = (M−1
1 q̂v

′
,M−1

2 q̂v
′′
), where q̂v is

split into two vectors q̂v
′
, q̂v

′′
by using the bit vector s

by Eq. 5.{
q̂v
′
[κ] + q̂v

′′
[κ] = q̂v[κ], ifs[κ] = 0;

q̂v
′
[κ] = q̂v

′′
[κ] = q̂v[κ], ifs[κ] = 1.

(5)

• EASPE.Query(C, TQ)→ pT ·q: This algorithm calculates

the inner product of C and TQ by Eq. 6.

CT · TQ = ((p̂v
′
)TM1) · (M−1

1 q̂v
′
)

+ ((p̂v
′′
)TM2) · (M−1

2 q̂v
′′
)

= pv
T · qv = pT · q

(6)

Note that, compared with the ASPE scheme, EASPE

scheme introduces three random numbers and a random per-

mutation π for each ciphertext Ci and each trapdoor TQ.

Specifically, Ci and TQ introduce random numbers {r1, r2,

r3} and {r4, r5, r6} respectively. We will give a detailed

security proof of the enhanced ASPE in Section VI, which

is secure against IND-SCPA.

C. Naive Scheme: Spatial Keyword Query (SKQ)
We first propose a Spatial Keyword Query (SKQ) scheme

by simply combining Geohash algorithm with the en-

hanced ASPE, which includes four phases of KeyGeneration,

DataEncryption, TrapdoorGeneration and Query. The specific

construction is as follows.
Let W = {w1, w2, . . . , wm} be a total keyword set and

D = {o1, o2, . . . , on}|1≤i≤n be a spatio-textual dataset. Each

object oi has a unique identity idi and a tuple (oi.l, oi.k),
where oi.l = (xi, yi) represents spatial geographic location,

oi.k = {w1, w2, . . . , wg} ⊆ W represents a set of keywords

owned by the object oi.
KeyGeneration. The data owner generates a encryption key

sk = {s,M1, M2, π, r1, r2, r3, r4, r5, r6}, where s is a

random (36+m)-dimensional bit vector, M1 and M2 are two

random (36+m)× (36+m) dimensional invertible matrices.
DataEncryption. The details are shown in Algorithm 1. For

each object oi in D, the data owner first encodes oi.l as an

8-character Geohash code, then converts the Geohash code

into an order vector õi.l according to the Base32, and finally

generates eight 32-dimensional spatial vectors {oi.lvj}1≤j≤8.

It is worth noticing that each spatial vector corresponds to

a character of Geohash code, the corresponding position of

this character on the base32 sequence is set as 1, and other

positions are set as 0. The specific process of spatial vectors

are shown in Fig. 4. Given a point o.l = (8, 13), the data

owner first encodes it as a Geohash code “s33jxb67”, for

each character, i.e., the order of ‘s’ in Base32 is 24, ‘3’ is 3.

An order vector is generated as (24, 3, 3, 17, 29, 10, 6, 7) [11].

Then, each element of the order vector is converted as a spatial

vector, e.g., 24 is denoted as (0, . . . , 0, 1, 0, . . . , 0), where

only the 24-th position is set as 1. Finally, oi.l is converted as

8 spatial vectors {oi.lv1,oi.lv2, . . . ,oi.lv8}.

Fig. 4. An example of converting spatial location into vectors.

For each object oi, oi.k is converted as an m-dimensional

vector oi.kv by Eq. 7,

oi.kv = (λ1, λ2, . . . , λm), (7)

396

where m is the size of the W , and if wr ∈W is in oi.k, λr =
1, otherwise, λr = 0. For example, let W = {w1, w2, w3, w4,
w5, w6, w7} and o.k = {w1, w2, w4, w5}, we obtain o.kv =
(1, 1, 0, 1, 1, 0, 0).

Then, the data owner generates eight (33+m)-dimensional

data vectors oi.vj for each object oi by Eq. 8,

oi.vj = (oi.lvj ,oi.kv,−1). (8)

Finally, D is encrypted as Enc(D) = {Ci,j |1 ≤ i ≤ n, 1 ≤
j ≤ 8} by EASPE.Enc and Enc(D) is outsourced to the cloud

server.

Algorithm 1: Data Encryption

Input: D = {o1, o2, . . . , on}
Output: Enc(D)

1 Initialize a set Enc(D) = ∅;
2 for 1 ≤ i ≤ n do
3 Initialize a set Enc(oi) = ∅;
4 oi.l is encoded an 8-character Geohash code and then

converted as an 8-dimensional order vector õi.l;
5 oi.k is converted as oi.kv;

6 for 1 ≤ j ≤ 8 do
7 Convert the j-th dimension of õi.l as oi.lvj ;

8 oi.vj = (oi.lvj ,oi.kv,−1);
9 Ci,j = (MT

1 ôi.v
′
j ,M

T
2 ôi.v

′′
j);

10 Enc(oi).add(Ci,j);

11 Enc(D).add(Enc(oi));

12 return Enc(D).

TrapdoorGeneration. The details are shown in Algorithm

2. Given an query Q = (Q.l,Q, k,R), where Q.l = (qx, qy)
represents spatial geographic location of query and Q.k =
{w′1, w′2, . . . , w′k} ⊆ W represents a set of query keywords,

R represents the query range. The user encodes Q.l as a

Geohash code with a length of t characters according to the

query range R, and then converts the Geohash code as an

order vector Q̃.l through the Base32 sequence. Since the

number of characters in the Geohsah code can represent the

query range, to protect the privacy of the query range, when

t < 8, the user needs to set the remaining 8 − t dimensions

to 0, and finally convert the 8-dimensional order vector into

eight 32-dimensional query spatial vectors {Q.lvj}1≤j≤8.

The specific process of query spatial vectors are shown in Fig.

5. Given a point Q.l = (8, 13) and R = 600m, Q.l is first

encoded as Geohash code “s33jxb” and then converted as an

order vector (24, 3, 3, 17, 29, 10, 0, 0) by the Base32 sequence.

Finally, each element of the order vector is converted as a

query spatial vector and Q.l is converted as 8 query spatial

vectors {Q.lv1,Q.lv2, ...,Q.lv8}.
Given Q.k, the user generates an m-dimensional vector

Q.kv by Eq. 9,

Q.kv = (λ′1, λ
′
2, . . . , λ

′
m), (9)

Fig. 5. An example of converting the query location into vectors.

where m is the size of the W , and if wr ∈ W is in

Q.k, λ′r = 1, otherwise, λ′r = 0. For example, let W =
{w1, w2, w3, w4, w5, w6, w7} and Q.k = {w2, w5}, we obtain

Q.kv = (0, 1, 0, 0, 1, 0, 0).
Then, the user generates eight (33 + m)-dimensional data

vectors Q.vj by Eq. 10,

Q.vj =

{
(Q.lvj ,Q.kv, 1 + k), 1 ≤ j ≤ t

(Q.lvj ,Q.kv, k), t < j ≤ 8,
(10)

where k is the number of query keywords.

Finally, Q is generated as trapdoors {TQj
|1 ≤ j ≤ 8} by

EASPE.TrapGen and TQj are outsourced to the cloud server.

Algorithm 2: Trapdoor Generation

Input: Q = {Q.l,Q.k,R}
Output: TQ

1 Initialize a set TQ = ∅;
2 Q.l is encoded an t-character Geohash code and then

converted as an 8-dimensional order vector Q̃.l;
3 Q.k is converted as Q.kv;

4 for 1 ≤ j ≤ 8 do
5 Convert the j-th dimension of Q̃.l as Q.lvj ;

6 if j ≤ t then
7 Q.vj = (Q.lvj ,Q.kv, 1 + k);

8 else
9 Q.vj = (Q.lvj ,Q.kv, k);

10 TQj = (M−1
1 Q̂.v′

j ,M
−1
2 Q̂.v′′

j);

11 TQ.add(TQj);

12 return TQ.

Query. After receiving the user’s trapdoor, the cloud server

returns the id of the object that meets the query requirements

to the user. The details are shown in Algorithm 3.

Correctness. For each oi ∈ D, CT
i,j · TQj

is calculated as

CT
i,j · TQj

= oi.vj
T ·Q.vj by EASPE.Query. For example,

suppose oi.v1
T ·Q.v1 = (oi.lv1,oi.kv, −1) ·(Q.lv1, Q.kv,

1 + k) = 0, then (oi.lv1 ·Q.lv1) − 1 = 0 indicates that the

first character of the Geohash code of the object oi and query

Q is the same, and (oi.kv · Q.kv) − k = 0 indicates that

oi contains all query keywords. Thus, {CT
i,j · TQj

= 0}1≤j≤8

indicate that the object oi meets the users query conditions,

its identifier idi is returned to the user.

397

Algorithm 3: Query

Input: Enc(D) = {C1,j , C2,j , . . . , Cn,j}1≤i≤n,1≤j≤8

and {TQj}1≤j≤8

Output: Result
1 Initialize a set Result = ∅;
2 for 1 ≤ i ≤ n do
3 τ = 0;

4 for 1 ≤ j ≤ 8 do
5 Calculate CT

i,j · TQj
;

6 if CT
i,j · TQj

= 0 then
7 τ + 1;

8 else
9 break;

10 if τ = 8 then
11 Result.add(idi);

12 else
13 break;

14 return Result.

Remark 1: Since the naive solution needs to generate 8

encrypted indexes and 8 trapdoors for each object and user

respectively, which incurs high storage and computational

burdens. In the query phase, the cloud server needs to calculate

the inner product of each encrypted index and each trapdoor,

which causes the query time to be too long. Therefore, we

need to improve the scheme to greatly improve its efficiency.

D. Enhanced Scheme: Lightweight Spatial Keyword Query
(LSKQ)

The enhanced scheme also includes four phases of Key
Generation, DataEncryption, TrapdoorGeneration and Query.

Unlike SKQ, we convert an 8-dimensional order vector into a

40-dimensional spatial vector instead of eight 32-dimensional

spatial vectors. The details are as follows.

KeyGeneration. The data owner generates a encryption key

sk = {s,M1, M2, π, r1, r2, r3, r4, r5, r6}, where s is a

random (44+m)-dimensional bit vector, M1 and M2 are two

random (44+m)× (44+m) dimensional invertible matrices.

DataEncryption. The details are shown in Algorithm 4. For

each object oi in D, oi.l is converted as an order vector,

and then each dimension of the order vector is converted

as a 5-bit binary vector to generate a 40-dimensional spatial

vector. The specific process of spatial vector is shown in

Fig. 6. Given a point o.l = (8, 13), it is first encoded

into Geohash code “s33jxb67”, then converted as an or-

der vector (24, 3, 3, 17, 29, 10, 6, 7) through Base32. Finally,

the order vector is converted as a spatial vector oi.lv =

(11000, 00011, 00011, 10001, 11101, 01010, 00110, 00111).
Then, the data owner generates a (41+m)-dimensional data

vectors oi.v for each object oi by Eq. 11,

oi.v = (oi.lv,oi.kv,−1). (11)

Fig. 6. An example of converting spatial location into a vector.

Finally, D is encrypted as Enc(D) = {Ci|1 ≤ i ≤ n} by

EASPE.Enc and Enc(D) is outsourced to the cloud server.

Algorithm 4: Data Encryption

Input: D = {o1, o2, . . . , on}
Output: Enc(D)

1 Initialize a set Enc(D) = ∅;
2 for 1 ≤ i ≤ n do
3 oi.l is encoded an 8-character Geohash code and then

converted as an 8-dimensional order vector õi.l;

4 õi.l is converted as a 40-dimensional binary vector

oi.lv;

5 oi.k is converted as oi.kv;

6 oi.v = (oi.lv,oi.kv,−1);
7 oi.v is encrypted as Ci = (MT

1 ôi.v
′,MT

2 ôi.v
′′);

8 Enc(D).add(Ci);

9 return Enc(D).

TrapdoorGeneration. The details are shown in Algorithm

5. Given an query Q = (Q.l,Q.k,R), Q.l is converted as an

8-dimensional order vector and then each dimension of the

order vector is converted as a 5-bit binary vector to generate

a 40-dimensional query spatial vectors Q.lv. The specific

process of query spatial vectors are shown in Fig. 7. Given

a point Q.l = (8, 13) and R = 600m, Q.l is first encoded

as an order vector (24, 3, 3, 17, 29, 10, 0, 0) by the Base32

sequence and then converted as a query spatial vector Q.lv =

(11000, 00011, 00011, 10001, 11101, 01010, 00000, 00000).

Fig. 7. An example of converting the query location into a vector.

Then, the user generates eight (41 + m)-dimensional data

vectors Q.v by Eq. 12,

Q.v = (Q.lv,Q.kv, θ + k), (12)

where θ is the number of “1” in Q.lv and k is the number of

query keywords.

Finally, the query Q is encrypted as a trapdoor TQ by

EASPE.TrapGen and TQ is outsourced to the cloud server.

398

Algorithm 5: Trapdoor Generation

Input: Q = {Q.l,Q.k,R}
Output: TQ

1 Q.l is encoded an t-character Geohash code and then

converted as an 8-dimensional order vector Q̃.l;

2 Q̃.l is converted as a 40-dimensional binary vector Q.lv;

3 Q.k is converted as Q.kv;

4 Q.v = (Q.lvj ,Q.kv, θ + k);

5 Q.v is encrypted as TQ = (M−1
1 Q̂.v′,M−1

2 Q̂.v′′);
6 return TQ.

Query. After receiving the user’s trapdoor, the cloud server

returns the id of the object that meets the query requirements

to the user. The details are shown in Algorithm 6.

Algorithm 6: Query

Input: Enc(D) = {C1, C2, . . . , Cn}1≤i≤n and TQ

Output: Result
1 Initialize a set Result = ∅;
2 for 1 ≤ i ≤ n do
3 Calculate CT

i · TQ;

4 if CT
i · TQ = 0 then

5 Result.add(idi);

6 return Result.

Correctness. For each oi ∈ D, CT
i ·TQ is calculated as CT

i ·
TQ = oi.v

T ·Q.v by EASPE.Query. For example, if oi.v
T ·

Q.v = (oi.lv,oi.kv,−1) ·(Q.lv,Q.kv, θ+k) = 0, because

(oi.lv ·Q.lv) − θ = 0 indicates that oi and Q have t same

Geohash prefixes, i.e., oi is within the query range, (oi.kv ·
Q.kv)− k = 0 indicates that oi contains all query keywords,

oi meets query requirements and its identity identifier idi is

returned to the user.

Remark 2: By converting the order vector as a binary

vector, each object only needs to generate an encrypted index

and the user only needs to generate a trapdoor, which greatly

reduces the calculation and storage overhead of the SKQ.

VI. SECURITY ANALYSIS

In this section, we analyze the security of our two schemes

under the threat models defined in Section IV. There are three

main operations: DataEncryption, TrapdoorGeneration and

Query. The results show that our schemes make the cloud

server unable to learn any critical information except encrypted

objects and trapdoors.

A. Data Encryption

As described in the threat model defined in Section IV,

the adversary who conducts chosen-plaintext attack has more

information than the adversary launching ciphertext-only at-

tack, so the adversary launching chosen-plaintext attack is

more powerful. In other words, if our two schemes can

safely resist chosen-plaintext attack, they can also safely resist

ciphertext-only attack. Therefore, we directly prove that our

two schemes are secure against IND-CPA. And because the

two schemes use the same encryption method, we take LSKQ

as a representative for detailed proof.

Under the chosen-plaintext attack, the cloud server can

obtain not only the ciphertext but also the corresponding

plaintext. For example, this can happen when some adversaries

submit their data and collude with the cloud server. We will

first simulate the security game played between an adversary

A and a challenger C in chosen-plaintext attack.

• Given a security parameter λ, the adversary A gener-

ates two datasets D0 = (d0,1, d0,2, . . . , d0,n) and D1

= (d1,1, d1,2, . . . , d1,n) with the same dimension to C,

where di,j is a spatio-textual data, i ∈ {0, 1}, j = 1,
2, . . . , n.

• The challenger C runs KeyGeneration to generate the

secret key.

• Phase 1: A submits di,j to C, i ∈ {0, 1}, j = 1, 2, . . . , n.

Then, C responses with a ciphertext Ci,j through Data
Encryption.

• With D0, D1, C chooses a uniform bit b ∈ {0, 1}
and calculates the ciphertext Cb,j of db,j through Data
Encryption. After that Cb,j is returned to A.

• Phase2: A selects a number of messages and submits

them to C.

• The adversary A takes a guess b′ of b.

Definition 2: LSKQ guarantees the IND-CPA data privacy
if for any polynomial time adversary A, it has at most a
negligible advantage negl(λ), such that

AdvIND−CPA
PESKQ,A (1λ) = Pr(b′ = b)− 1

2
| ≤ negl(λ).

where negl(λ) represents a negligible function.
Theorem 1: LSKQ guarantees the IND-CPA data privacy.

Proof: According to the above analysis, we should prove

that A cannot distinguish C0,j and C1,j , even if the adversary

A has oracle access to DataEncryption. Assume that one of

the messages in D0 is di,j = (d.l, d.k). According to the

process of DataEncryption, di,j is extended to a (44 + m)-
dimensional vector d.v = (d.lv,d.kv,−1, r1, r2, r3), where

r1, r2, r3 are random numbers. Then, d.v is permuted as

d̂.v = π(d.v) by the random permutation π and encrypted

to C0 = (MT
1 d̂.v

′, MT
2 d̂.v

′′) by the random binary vector

s and the matrices M1, M2. Since A has no idea about the

random value r1, r2, r3, the random permutation π, and the

split vector s, he cannot recover the secret key M1, M2 with

the ciphertexts C0.

In Phase 1 and Phase 2 of the game, A can choose different

di,j each time and observe its corresponding ciphertext Ci,j .

However, since d̂.v is a one-time random vector determined

by C, r1, r2, r3 are random numbers and π is a random

permutation, the ciphertext Ci,j is random to A. In other

words, for any message selected by A and its corresponding

ciphertext, A cannot distinguish which messages are actually

encrypted. Therefore, even if A has the ability to access

399

DataEncryption, b′ can only be obtained by random guessing.

So we have

AdvIND−CPA
PESKQ,A (1λ) = Pr(b′ = b)− 1

2
| ≤ negl(λ).

Thus, according to the above analysis, the LSKQ scheme

is secure under ciphertext-only attack and chosen-plaintext

attack.

B. Trapdoor Generation

Theorem 2: LSKQ scheme guarantees the IND-CPA query
content privacy.

Proof: The operations involved in DataEncryption and

TrapdoorGeneration are almost the same, so the security

definition and analysis of DataEncryption is applicable to

TrapdoorGeneration. We skip further details due to space

limitations.

C. Query

The cloud server has all ciphertexts Ci = (MT
1 ôi.v

′,
MT

2 ôi.v
′′) and the trapdoor TQ = (M−1

1 Q̂.v′, M−1
2 Q̂.v′′).

Since M1, M2 are random matrices, s is a random bi-

nary vector and π is a random permutation, the cloud

server cannot obtain oi.v and Q.v, thus, it cannot know

the original dataset and the user’s query information. Then,

the cloud server calculates CT
i · TQ = oi.v

T · Q.v =

ôi.v
T ·Q̂.v = (oi.lv,oi.kv,−1, r1, r2, r3) · (Q.lv,Q.kv,

θ + k, r4, r5, r6) = 0 can get whether CT
i,j · TQj

= 0.

Because r1, r2, r3, r4, r5, r6 are unknown and they are all

random numbers, so even if the cloud server can judge whether

CT
i,j ·TQj = 0, it does not know whether (oi.lv ·Q.lv)−θ = 0

and (oi.kv ·Q.kv)− k = 0. So the cloud server cannot infer

the original data according to the calculation results, thereby

protecting the privacy and security of the data.

VII. PERFORMANCE ANALYSIS

In this section, we conduct a detailed theoretical analysis,

and extensive performance tests on the processes of Data
Encryption, TrapdoorGeneration and Query. The whole ex-

periments were carried out by using Python3.9 programming

language on 64-bit Windows 10 system and completed on

Intel(R) Core(TM) i5-8300h CPU @2.30GHz server.

A. Theoretical Analysis

We analyzed the theoretical complexity of the SKQ, LSKQ

and Privacy-Preserving Keyword Similarity Search scheme

(GRQ+MSSAC) [29] in terms of computational overheads,

storage overheads and communication overheads of Data
Encryption, TrapdoorGeneration and Query. TABLE IV gives

the detailed comparison results of the there schemes.

SKQ uses ASPE to encrypt data, which encryption key

is sk = {M1, M2}, where M1 and M2 are two random

(36+m)× (36+m) dimensional invertible matrices. Without

losing generality, we assume that the size of each ciphertext

is |U |. In DataEncryption phase, the data owner needs to

encrypt all objects in the dataset, where each object contains 8

ciphertexts. Therefore, the total time complexity of the process

is O(16n(36 + m)2), and the storage overhead is 8n|U |. In

TrapdoorGeneration phase, the main overhead is taken by

encrypting the query content once, so the total time complexity

of the process is O(16(36+m)2), and the storage cost is 8|U |.
In Query phase, the cloud server needs to calculate the product

of each encrypted object and the trapdoor, where each object

contains only 8 ciphertexts, so the total time complexity of the

process is O(16n(36 +m)).
LSKQ is similar to the SKQ, but the LSKQ only needs to

generate a ciphertext for each object and query user, which

encryption key is sk = {M1, M2}, where M1 and M2

are two random (44 +m)× (44 +m) dimensional invertible

matrices. Without losing generality, we assume that the size of

each ciphertext is |V |. In DataEncryption phase, the total time

complexity of the process is O(2n(44+m)2), and the storage

overhead is n|V |. In TrapdoorGeneration phase, the total time

complexity of the process is O(2(44+m)2)), and the storage

cost is |V |. In Query phase, the total time complexity of the

process is O(2n(44 +m)).
GRQ+MSSAC first proposes a Geometric Range Query

(GRQ) scheme, which uses ASPE to encrypt the spatial

location to find objects located in the query region. Then,

based on GRQ, a Multi-dimensional Spatial keyword Simi-

larity search scheme with role Access Control (MSSAC) is

proposed by integrating the polynomial function and random-

izable matrix multiplication, which finds the object with the

highest keyword similarity. This scheme does not support

search for spatial location and keywords at the same time.

Without loss of generality, we assume that the degree of

polynomial fit is η, the number of roles is s, the size of each

ciphertext is |X| for GRQ, and the size of each ciphertext is

| Y | for MSSAC. In DataEncryption phase, the data owner

needs to encrypt the spatial geographic coordinates of the

object for GRQ, the keywords and roles of the object for

MSSAC. Thus, the total time complexity of the process is

O(n(2(η + 2)2 + 3(m + 3 + 2s)3)), and the storage cost

is t(|X| + |Y |). In TrapdoorGeneration phase, the query

content needs to be encrypted, so the total time complexity

of the process is O(4(η + 2)2 + 3(m + 3 + 2s)3), and the

storage overhead is 2|X|+ |Y |. In Query phase, the total time

complexity of the process is O(t(4(η+2)+ (m+3+2s)3)).

B. Performance Evaluation

We use the real dataset Yelp academic dataset business 1 to

perform performance testing and specific analysis on the Data
Encryption, TrapdoorGeneration and Query processes of the

SKQ, LSKQ and GRQ+MSSAC [29].

DataEncryption. For SKQ and LSKQ, the factors that affect

the computational costs are the size of the vector and the size

of the dataset n (i.e. the number of objects in the dataset), and

the dimension of the vector is only determined by the size of

the keyword set W (i.e. m). Therefore, (1) let m = 200 and s

1https://www.yelp.com/dataset

400

TABLE III
COMPARISON OF THEORETICAL ANALYSIS.

Overhead Phase SKQ LSKQ GRQ+MSSAC [29]

Computation overhead
DataEncryption O(16n(36 +m)2) O(2n(44 +m)2) O(n(2(η + 2)2 + 3(m+ 3 + 2s)3))

TrapdoorGeneration O(16(36 +m)2) O(2(44 +m)2) O(4(η + 2)2 + 3(m+ 3 + 2s)3)
Query O(16n(36 +m)) O(2n(44 +m)) O(n(4(η + 2) + (m+ 3 + 2s)3))

Storage overhead
DataEncryption 8n|U | n|V | n(|X|+ |Y |)

TrapdoorGeneration 8|U | |V | 2|X|+ |Y |
Query −− −− −−

(a) (b) (c) (d)

Fig. 8. Overhead of DataEncryption. (a) Computational overhead varying with n; (b) Storage overhead varying with n; (c) Computational overhead varying
with m; (d) Storage overhead varying with m.

(a) (b) (c) (d)

Fig. 9. Overhead of TrapdoorGeneration. (a) Computational overhead varying with k; (b) Storage overhead varying with k; (c) Computational overhead
varying with m; (d) Storage overhead varying with m.

= 15, we test the computational and storage costs of the three

schemes by varying n from 1000 to 10000. The test results are

shown in Fig. 8 (a) (b); (2) let n = 5000 and s = 15, we test

the computational costs and storage costs of the three schemes

by varying m from 100 to 300. The test results are shown in

Fig. 8 (c) (d).

TrapdoorGeneration. This process is similar to the data

encryption process, which is one-time encryption of the user’s

query content. Therefore, (1) let m = 200 and s = 15, we

test the computational and storage costs of the three schemes

by changing the number of query keywords (i.e. k). The test

results are shown in Fig. 9 (a) (b). (2) let k = 5 and s = 15,

we test the computational costs and storage costs of the three

schemes by varying m from 100 to 300. The test results are

shown in Fig. 9 (c) (d).

Query. At this phase, the cloud server needs to calculate

the product of each encrypted data object and the trapdoor.

Therefore, the factors that affect the computational costs are

the size of the dataset n and the size of the vector. (1) Let m
= 200 and s = 15, we test the computational costs of the three

schemes by varying n from 1000 to 10000. The test results

are shown in Fig. 10 (a). (2) Let n = 5000 and s = 15, we

(a) (b)

Fig. 10. Overhead of Query. (a) Computational overhead varying with n;
(b) Computational overhead varying with m.

test the computational cost of the three schemes by varying

m from 100 to 300. The test results are shown in Fig. 10 (b).

It can be seen from the above theoretical analysis and

extensive specific experimental results that the LSKQ scheme

is very efficient.

VIII. CONCLUSION

In this paper, we enhance the security of ASPE by adding

some random numbers and a random permutation, and use

401

enhanced ASPE and Geohash algorithm to propose a naive

privacy-preserving spatial keyword query scheme to achieve

approximate spatial range query, which only requires users

to provide less information about the query range, and then

build a unified index for spatial range and multiple keywords

to propose a lightweight spatial keyword query scheme, which

greatly decreases storage and computational costs and is more

in line with the actual query habits. As part of our future work,

we will attempt to design a tree index to further improve search

efficiency.

ACKNOWLEDGMENTS

This work was supported by the National Natural Sci-

ence Foundation of China (No. 62072361, No.62125205),

Key Research and Development Program of Shaanxi (No.

2022GY-019), the Fundamental Research Funds for the

Central Universities (No. JB211505), Henan Key Labora-

tory of Network Cryptography Technology & State Key

Laboratory of Mathematical Engineering and Advanced

Computing (No. LNCT2020-A06), National Natural Sci-

ence Foundation of China (No.U21A20464, No. 61872283,

No.61802243), the Natural Science Basic Research Pro-

gram of Shaanxi(No.2021JC-22) and the China 111Project

(No.B16037). The work of Kim-Kwang Raymond Choo was

supported only by the Cloud Technology Endowed Professor-

ship.

REFERENCES

[1] R. Li, A. X. Liu, A. L. Wang and B. Bruhadeshwar, “Fast and
scalable range query processing with strong privacy protection for cloud
computing,” IEEE ACM Transactions on Networking, vol. 24, no. 4, pp.
2305−2318, 2016.

[2] G. Xiao, F. Wu, X. Zhou and K. Li, “Probabilistic top-k range query
processing for uncertain datasets,” Journal of Intelligent and Fuzzy
Systems, vol. 31, no. 2, pp. 1109−1120, 2016.

[3] K. Xue, S. Li, J. Hong, Y. Xue, N. Yu and P. Hong, “Two-cloud
secure database for numeric-related SQL range queries with privacy
preserving,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 7, pp. 1596−1608, 2017.

[4] C. Zhang, L. Zhu, C. Xu, J. Ni, C. Huang and X. Shen, “Location
Privacy-Preserving Task Recommendation with Geometric Range Query
in Mobile Crowdsensing,” IEEE Transactions on Mobile Computing,
2021, doi: 10.1109/TMC.2021.3080714.

[5] F. Song, Z. Qin, D. Liu, J. Zhang, X. Lin and X. Shen, “ Privacy-
Preserving Task Matching with Threshold Similarity Search via Vehicu-
lar Crowdsourcing,” IEEE Transactions on Vehicular Technology, 2021,
doi: 10.1109/TVT.2021.3088869.

[6] H. Xie, Y. Guo and X. Jia, “A Privacy-preserving Online Ride-hailing
System Without Involving A Third Trusted Server,” IEEE Transac-
tions on Information Forensics and Security, 2021, doi: 10.1109/TIF-
S.2021.3065832.

[7] Y. Zheng, R. Lu, Y. Guan, J. Shao and H. Zhu, “Achieving Efficient and
Privacy-Preserving Exact Set Similarity Search over Encrypted Data,”
IEEE Transactions on Dependable and Secure Computing, 2020, doi:
10.1109/TDSC.2020.3004442.

[8] Q. Tong, Y. Miao, H. Li, X. Liu and R. H. Deng, “Privacy-Preserving
Ranked Spatial Keyword Query in Mobile Cloud-Assisted Fog Comput-
ing,” IEEE Transactions on Mobile Computing, 2021, doi: 10.1109/TM-
C.2021.3134711.

[9] W. K. Wong, D. W. Cheung, B. Kao and N. Mamoulis, “Secure kNN
computation on encrypted databases,” in Proc. International Conference
on Management of data (COMAD’09), pp. 139−152, 2009.

[10] W. Lin, K. Wang, Z. Zhang and H. Chen, “Revisiting security risks
of asymmetric scalar product preserving encryption and its variants,” in
Proc. IEEE International Conference on Distributed Computing Systems
(ICDCS’17), pp. 1116−1125, 2017.

[11] R. Guo, Y. Wu, R. Liu and H. Chen, “LuxGeo: Efficient and Secure
Enhanced Geometric Range Queries,” IEEE Transactions on Knowledge
and Data Engineering, 2021, doi: 10.1109/TKDE.2021.3093909.

[12] Q. Huang, J. Du, G. Yan, Y. Yang and Q. Wei, “ Privacy-
Preserving Spatio-Temporal Keyword Search for Outsourced Location-
Based Services,” IEEE Transactions on Services Computing, 2021, doi:
10.1109/TSC.2021.3088131.

[13] N. Davis, G. Raina and K. Jagannathan, “Taxi Demand Forecasting:
A HEDGE-Based Tessellation Strategy for Improved Accuracy,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 11, pp.
3686−3697, 2018.

[14] R. Gelda, K. Jagannathan, and G. Raina, “Forecasting supply in Voronoi
regions for app-based taxi hailing services,” in Proc. International
Conference on Advanced Logistics and Transport (ICALT’17), pp. 1−6,
2017.

[15] S. Choi, G. Ghinita, H. Lim and E. Bertino, “Secure kNN query
processing in untrusted cloud environments,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 11, pp. 2818-2831, 2014.

[16] P. Wang and C. V. Ravishankar, “Secure and Efficient Range Queries
on Outsourced Databases Using R̂-trees,” in Proc. IEEE International
Conference on Data Engineering (ICDE’13), pp. 314−325, 2013.

[17] H. Zhu, R. Lu, C. Huang, L. Chen and H. Li, “An efficient privacy-
preserving location-based services query scheme in outsourced cloud,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 9, pp. 7729-
7739, 2016.

[18] G. Xu, H. Li, Y. Dai, K. Yang and X. Lin, “Enabling efficient and
geometric range query with access control over encrypted spatial data,”
IEEE Transactions on Information Forensics and Security, vol. 14, no.
4, pp. 870−885, 2018.

[19] C. Wang, N. Cao, J. Li and K. Ren, “Secure ranked keyword search
over encrypted cloud data,” in Proc. IEEE International Conference on
Distributed Computing Systems (ICDCS’10), pp. 253−262, 2010.

[20] C. Wang, K. Ren, S. Yu and K. M. R. Urs, “Achieving usable and
privacy-assured similarity search over outsourced cloud data,” in Proc.
IEEE International Conference on Computer Communications (INFO-
COM’12), pp. 451−459, 2012.

[21] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou and H. liu, “Privacy-
preserving multi-keyword text search in the cloud supporting similarity-
based ranking,” in Proc. ACM Symposium on Information, Computer
and Communications Security (ASIACCS’13), pp. 71−82, 2013.

[22] Y. Zheng, R. Lu, Y. Guan, J. Shao and H. Zhu, “Achieving Effi-
cient and Privacy-Preserving Set Containment Search over Encrypt-
ed Data,” IEEE Transactions on Services Computing, 2021, doi:
10.1109/TSC.2021.3065240.

[23] S. Su, Y. Teng, X. Cheng, K. Xiao, G. Li, and J. Chen, “Privacy-
Preserving Top-k Spatial Keyword Queries in Untrusted Cloud Envi-
ronments,” IEEE Transactions on Services Computing, vol. 11, no. 5,
pp. 796−809, 2018.

[24] X. Meng, H. Zhu and G. Kollios, “Top-k Query Processing on Encrypted
Databases with Strong Security Guarantees,” in Proc. IEEE International
Conference on Data Engineering (ICDE’18), pp. 353−364, 2018.

[25] D. Negi, S. Ray and R. Lu, “Pystin: Enabling Secure LBS in Smart Cities
With Privacy-Preserving Top-k SpatialCTextual Query,” IEEE Internet
of Things Journal, vol. 6, no. 5, pp. 1−1, 2019.

[26] N. Cui, J. Li, X. Yang, B. Wang, M. Reynolds and Y. Xiang, “When
Geo-Text Meets Security: Privacy-Preserving Boolean Spatial Key-
word Queries,” in Proc. International Conference on Data Engineering
(ICDE’19), pp. 1046−1057, 2019.

[27] X. Wang, J. Ma, X. Liu, R. H. Deng, Y. Miao, D. Zhu and Z. Ma, “Search
me in the dark: Privacy-preserving boolean range query over encrypted
spatial data,” in Proc. IEEE International Conference on Computer
Communications (INFOCOM’20), pp. 2253−2262, 2020.

[28] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, and D. Mukhopadhyay,
Result pattern hiding searchable encryption for conjunctive queries, in
Proc. of ACM Conference on Computer and Communications Security
(CCS18), pp. 745−762, 2018.

[29] F. Song, Z. Qin, L. Xue, J. Zhang, X. Lin and X. Shen, “Privacy-
Preserving Keyword Similarity Search over Encrypted Spatial Data
in Cloud Computing,” IEEE Internet of Things Journal, 2021, doi:
10.1109/JIOT.2021.3110300.

402

	Lightweight privacy-preserving spatial keyword query over encrypted cloud data
	Citation

	Lightweight Privacy-Preserving Spatial Keyword Query over Encrypted Cloud Data

