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ABSTRACT
We propose SoLoc, a lightweight probabilistic fingerprinting-based
technique for energy-free device-free indoor localization. The sys-
tem harnesses photovoltaic currents harvested by the photovoltaic
cells in smart environments for simultaneously powering digital
devices and user positioning. The basic principle is that the location
of the human interferes with the lighting received by the photo-
voltaic cells, thus producing a location fingerprint on the generated
photocurrents. To ensure resilience to noisy measurements, SoLoc
constructs probability distributions as a photovoltaic fingerprint
at each location. Then, we employ a probabilistic graphical model
for estimating the user location in the continuous space. Results
show that SoLoc can localize the user at sub-meter accuracy in a
real indoor environment.

CCS CONCEPTS
• Networks → Location based services; • Human-centered
computing → Ubiquitous and mobile computing;

KEYWORDS
photovoltaic-based localization, deep learning, indoor localization,
device-free localization, energy-free localization
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1 INTRODUCTION
Indoor positioning has been a hot topic in both academia and in-
dustry to find an alternative system for GPS in indoor settings.
Therefore, various technologies have been proposed to realize this
and meet the increasing demand for indoor location-based ser-
vices [1, 7, 22, 28, 29, 33, 34]. For instance, WiFi has been widely
used for indoor positioning due to the availability of WiFi access
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points (APs) [1, 7, 22, 28, 29, 34]. Different signals, e.g., channel
state information (CSI) [34], Received Signal Strength Indicator
(RSSI) [1, 7, 28], and Round Trip Time (RTT)[22] have been used.
However, WiFi suffers from issues that affect real deployments in
practice such as wireless channel dynamics, fading, interference,
and environmental noises; leading to unstable performance.

In the era of the Internet of Things (IoT) and sustainability, bil-
lions of devices are aimed to be connected with a low (or zero)
energy consumption profile [36]. Therefore, we are witnessing
more emerging technologies that are more attractive [14], includ-
ing cellular, Zigbee, Light, LoRa, backscatters, etc. Cellular signals
have been recently adopted for indoor positioning [2, 18–21, 24–
27, 30, 31] due to its low energy consumption profile. Cellular-based
systems are designed to map the long-range signals from the cov-
ering base stations to the corresponding user location inside the
building. However, the received signals are noisy due to the long
propagation range [20]. ZigBee is an IEEE 802.15.4-based technol-
ogy of bidirectional wireless communication of short distance and
low power consumption. However, ZigBee is not a favorable option
due to the lack of support by the majority of most commercial
on-the-shelf devices.

Light-emitting diodes (LEDs) are a new lighting technology offer-
ing a long lifetime and energy-saving light emission source. LEDs
often exist with high density compared to WiFi APs. Additionally,
light sensors are mainly used to sense the position and direction of
the light emitters and thus estimate the user’s location. This can
be realized using current light-based localization measuring the
light intensity received by the user’s smartphone equipped with
a light sensor or camera, as in [10, 37]. Nevertheless, these tech-
niques are used to pinpoint devices carried by users, i.e., called
device-based techniques, which limits the widespread adoption of
such solutions. For example, using LEDs for localization introduces
a number of hardware challenges, e.g., the device sensitivity to the
incident light, the sensor type and form factor, the sensor place-
ment and orientation, and sampling rate [5]. Besides, device-based
approaches cannot be a suitable solution for various applications
such as intrusion detection and elderly tracking, etc. Additionally,
all the aforementioned techniques require continuous sensing that
consumes the battery, especially with battery-restricted devices.
This raises the need for developing the next generation of indoor
positioning systems that are not only device-free but also energy-
efficient.
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Figure 1: SoLoc concept and basic idea.

Towards this end, a promising solution is to leverage energy har-
vesters to convert ambient energy into electrical energy to power
the sensing devices[11–13, 23]. With the continuous development
of IoT and their pervasive applications [6, 8, 9, 16, 35], many manu-
facturers has already considered this solution. Specifically, many
modern IoT devices are equipped with solar cells 1 in an attempt to
enable completely battery-free operation [15]. Motivated by this,
we attempt to answer the following question: is it possible to find a
relation between the user location in the environment and the amount
of harvested energy?

In this paper, we study how the amount of harvested energy
encodes information about the underlying physical processes and
thus, the photovoltaic (solar) cells can be used as a sensor. Addition-
ally, we propose SoLoc: a system that uses photocurrent generated
by the photovoltaic cells to localize users in the vicinity in a device-
free manner. The basic principle is that the location of the bystander
interferes with the lighting received by the photovoltaic cells, thus
producing a location fingerprint on the generated photocurrents.
SoLoc employs a probabilistic approach to estimate the user location
whose pattern matches the captured photocurrent with maximum
likelihood. This approach yields a sub-meter localization accuracy
confirming its ability to handle the uncertainty of the measured
noisy photocurrents while ensuring low computational require-
ments.

The rest of the paper is structured as follows. Section 2 moti-
vates the adoption of photovoltaic cells. Section 3 introduces the
detailed implementation of the proposed SoLoc system. We validate
SoLoc performance in Section 4. Finally, we conclude the paper in
Section 5.

2 MOTIVATION
2.1 Energy Harvesters
Photovoltaic cells are the most commonly used energy harvester
to power IoT devices [11, 32]. This is because they are widely avail-
able and easily installed in indoor and outdoor environments. Also,
they are used in various applications, including handheld calcula-
tors, garden lights, and wearable devices [11–13]. Bhatti et. al., [3],
showed that visible light offers higher efficiency and robustness
compared to other energy harvesters, e.g., kinetic energy. Addi-
tionally, when the indoor user interferes with the ambient light,
this yields distinct harvesting patterns depending on her location.
This observation introduces a unique opportunity to use photo-
voltaic cells as a sensor for location estimation as well as energy
harvesting.

1A solar/photovoltaic cell is a semiconductor-based device that generates an electric
current (photocurrent) when light falls on its surface.
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Figure 2: SoLoc installed in the environment.

2.2 Photovoltaic cells in the market
The global market for Indoor photovoltaics (IPV) cells was $140
million USD in 2017 [14]. This is achieved due to their coupling
to the IoT market. However, recent market studies expect signif-
icant growth of the annual IPV market size with more than 850
million and one billion USD by 2023 and 2024, respectively. This
will accompany the demand for photovoltaic cells with 60 million
devices annually. This market is growing at an unprecedented pace
compared to other energy harvesters. Given the dense presence of
indoor ambient lighting, IoT manufacturers tend to improve com-
mercialization by equipping modern smart devices with PV cells
for energy harvesting. This has set true with the development of
a new type of cells that are transparent and thin. This unleashes
unique opportunities for context-aware sensing as well as energy
harvesting in indoor environments. User location is one of the most
valuable context information for a large number of applications.

3 THE SOLOC SYSTEM
We present the details of the proposed system. The system consists
of two stages: Sensing Stage and Intelligence Stage.

3.1 The Sensing Stage
3.1.1 The basic idea. The rationale behind SoLoc, is using photo-
voltaic cells as a sensing device for enabling indoor localization
based on solar energy harvesting theory. Photovoltaic cells are de-
vices that convert the energy of light into electrical energy through
the photovoltaic effect [17]. The amount of generated energy is
usually measured by photocurrent, which is a function of several
factors, such as intensity, angle, wavelength of the incident light and
the cell characteristics (form factor and current density2). Current
density is a measure of photovoltaic energy harvesting efficiency
depending on the wavelength of the incident light, i.e., the light
spectrum. Current density increases linearly with the light inten-
sity [4]. Therefore, the light received by a photovoltaic cell may be
blocked when the user is in the proximity of the cell, and thus, the
generated photocurrent will decrease (Fig. 1). In this vein, when
multiple photovoltaic cells are exploited, a specific human location
will leave a unique signature on the photocurrent measurements of
different cells, thereby enabling accurate human positioning.

3.1.2 Implementation. We used off-the-shelf commercial photo-
voltaic cell (Fig.2) of 15.5% efficiency with dimensions (length, width
and depth) of 10cm, 7cm and 0.15cm. For capturing the photocurrent
readings from a photovoltaic cell, we connected the photovoltaic
cell to an analog to digital converter (ADC) whose output is fed
2the current density is defined as the amount of photocurrent generated per unit area
(e.g.,𝑚𝐴/𝑐𝑚2).



to a Raspberry Pi (RPI) module (Fig. 2). The RPI is connected to
the environment’s LAN via Wi-Fi module. The measurements are
recorded using our Python implementation, which sends an HTTP
request to the installed RPIs to get the response of photocurrent
readings from their connected photovoltaic cells. These readings
are aggregated into one sample, which is stored in our fingerprint
database.

3.2 The Intelligence Stage
The SoLoc system works in two subsequent phases: an offline fin-
gerprinting phase and an online tracking phase. During the offline
phase, the system tabulates the recorded photocurrent from the
photovoltaic cells at predefined reference locations in the area of
interest, resulting in a so-called photovoltaic map. In the tracking
phase, the system uses the captured photocurrent received from
the photovoltaic cells to find the reference locations whose pattern
is the most similar. Then, SoLoc processes these locations to obtain
a more accurate location of the user in the continuous space.

3.2.1 Offline phase. During the offline phase, SoLoc constructs the
histogram of the photocurrent measurements of each photovoltaic
cell at each user location. These histograms represent the SoLoc
system’s photovoltaic map. The photocurrent histogram can be
approximated by a parametric distribution such as the Gaussian
distribution. More formally, assume 𝐿 to be a 2𝐷 space. At each
location 𝑙 ∈ 𝐿, we can get a photocurrent vector from 𝑘 photo-
voltaic cells. We denote the 𝑘-dimensional photocurrent space as 𝑆 .
Each element in this space is a 𝑘-dimensional vector whose entries
represent the photocurrent readings from different photovoltaic
cells. We denote samples from the photocurrent space 𝑆 as 𝑠 . We
also assume that the samples from different photovoltaic cells are
independent. The problem becomes, given a photocurrent vector 𝑠
= (𝑠1, ..., 𝑠𝑘 ), we want to find the location 𝑙 ∈ 𝐿 that maximizes the
probability 𝑃 (𝑙/𝑠).

3.2.2 Online Tracking phase. This phase aims to locate the user
in real-time, after deploying the system, using the measured pho-
tocurrent from the installed photovoltaic cells. Specifically, the user
is at an unknown location while each photovoltaic cell produces
a photocurrent corresponding to the received light density in the
area of interest. Then, the measured photocurrent values are used
to estimate the user location with the maximum probability. Given
a photocurrent vector 𝑠 = (𝑠1, ..., 𝑠𝑘 ), we want to find the reference
location 𝑙∗ ∈ 𝐿 that maximizes the probability 𝑃 (𝑙 | 𝑠). This can be
formalized using Bayes’ theorem as:

𝑙∗ = argmax
𝑙

[𝑃 (𝑙 | 𝑠)] = argmax
𝑙

[
𝑃 (𝑠 | 𝑙)𝑃 (𝑙)

𝑃 (𝑠)

]
(1)

Assuming all the reference points have equal probability:

argmax
𝑙

[𝑃 (𝑙 | 𝑠)] = argmax
𝑙

[𝑃 (𝑠 | 𝑙)] (2)

𝑃 (𝑠 | 𝑙) can be calculated using the Gaussian densities of pho-
tocurrent constructed in the offline phase as:

𝑃 (𝑠 | 𝑙) =
𝑘∏
𝑖=1

𝑃 (𝑠𝑖 | 𝑙) (3)
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Figure 3: CDF of the localization error.

A representative location for the most probable reference lo-
cation (𝑙∗) can be reported as the estimated location. However,
estimating the user location as one of the reference discrete loca-
tions leads to poor user experience, especially when the reference
locations are spaced-out. Thus, to track the user in the continuous
space, SoLoc reports the center of mass of all reference locations
weighted by their corresponding probabilities, as:

(𝑙𝑥 , 𝑙𝑦) = (
∑𝑛
𝑖=1 𝑃𝑖𝑙𝑖𝑥∑𝑛
𝑖=1 𝑃𝑖

,

∑𝑛
𝑖=1 𝑃𝑖𝑙𝑖𝑦∑𝑛
𝑖=1 𝑃𝑖

) (4)

where 𝑙𝑖𝑥 and 𝑙𝑖𝑦 are the spatial coordinates of 𝑖𝑡ℎ reference
location, and 𝑃𝑖 is its corresponding probability.

4 EVALUATION
4.1 Environmental Setup
The environment of interest, is equipped with several photovoltaic
cells distributed uniformly on walls. The room is illuminated with
a chandelier of 8 lamps of 40 watt each, i.e., 450 lumens. This light
source is hanged in the center of the room’s ceiling at height 1.9m
from the floor. The experimental area is partitioned into a uniform
virtual grid (i.e., cells have equal sizes). Then, the photocurrent
measurements corresponding to the received light are recorded
while the user is located at an arbitrary grid cell in the environment.
The data is collected while the user stands at the center of each grid
cell (i.e., reference points). We collected 50 samples of photocurrent
readings at 24 locations.

4.2 Performance Evaluation
Fig. 3 shows the cumulative distribution function of the Euclidean
distance error of SoLoc. The figure shows that SoLoc achieves 0.8m
and 1.2 median accuracy using the center of mass and the maximum
probable location methods, respectively. This confirms the efficacy
of smoothing the output location in the continuous space, which
yields fine-grained estimates. This is better than the strawman
approach that always calculates the user location at the center of
the room. Considering that the sensing has been done only with
harvested energy, we believe this result paves the road for the next
generation of battery-less context-aware sensing systems.

5 CONCLUSION
Wepresented SoLoc, an accurate and reliable device-free energy-free
indoor localization system that uses photocurrent measurements
of photovoltaic cells to localize users without wearing or carrying
any device. We showed how SoLoc defines a photocurrent signature
for each location in the environment. These signatures are further



used to build a probabilistic fingerprint database that enable fine-
grained estimation of the user location using probabilistic model.
We evaluated SoLoc in a realistic environment on a regular working
day.
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