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Notoriously, immutability is one of the most striking properties of blockchains. As the data contained in blockchains may be
compelled to redact for personal and legal reasons, immutability needs to be skillfully broken. In most existing redactable
blockchains, fine-grained redaction and effective deletion of harmful data are mutually exclusive. To close the gap, we propose a
fine-grained and controllably redactable blockchain with harmful data forced removal. In the scheme, the originator of the
transaction has fine-grained control over who can perform the redaction and which portions of the transaction can be redacted.
(e redaction transaction is performed after collecting enough votes from miners. All users can provide the index of the block
containing the harmful data to receive rewards, which are borne by the malicious user who initially posted the data. Miners can
forcibly remove the harmful data based on the index.(emalicious user will be blacklisted if the reward is not paid within a period
of time, and any transaction about such user will not be performed later. In addition, the scheme supports the redaction of
additional data and unexpended transaction output (UTXO) simultaneously. We demonstrate that the scheme is secure and
feasible via formal security analysis and proof-of-concept implementation.

1. Introduction

(e first application of blockchains is Bitcoin [1, 2], which
has revolutionized the financial industry. Ever since, hun-
dreds of such cryptocurrencies rise which do not rely on a
central trusted authority. (e applications of blockchains go
far beyond their use in cryptocurrencies [3–6]. Recently,
blockchains have entered numerous domains of applica-
tions, such as supply chains, digital twins, insurance,
healthcare, or energy. In brief, a blockchain is a decen-
tralized, distributed, potentially public, and immutable log of
objects.

Blockchains can be of different types. (ey can be public
as Bitcoin or Ethereum, where the consensus protocol is
executed between many pseudonymous participants. Here,
the blockchain can be read and written by everyone. Such
public blockchains can also be viewed as permissionless
because everyone can join the system, participate in the

consensus protocol, and establish smart contracts. Block-
chains, however, can also be private (also called enterprise or
permissioned blockchains) such as Hyperledger, Ethereum
Enterprise, Ripple, or Quorum. Here, all the participants and
their (digital) identities are known to one or more trusted
organizations. Actors have write and read permissions. Such
private blockchains can thus be viewed as permissioned
because they restrict the actors who can contribute to the
consensus on the system state to validate the block trans-
actions. Once an object (such as a block or a transaction) is
included in the blockchain (be it private or public), it is
persisted and cannot be altered ever again. While immu-
tability is a crucial property of the blockchain, it is often
desirable to allow breaking the immutability for personal
and legal reasons.

(e debate about the immutability of the blockchain
becomes more acute due to the adoption of the General Data
Protection Regulation (GDPR) by the European Union
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(EU). Several provisions of the GDPR are essentially in-
compatible with the immutable blockchains. In particular,
the GDPR imposes that the data have the right to be for-
gotten, while blockchains such as Bitcoin and Ethereum do
not allow to remove any data [7]. In addition, by using the
immutability of a blockchain, malicious users can broadcast
illegal or harmful data, such as (child) pornography and
violence information around the world by spending a small
fee. (e data will be permanently stored and cannot be
modified after they are stable on the chain. It is an enormous
challenge for law enforcement agencies such as Interpol
[8, 9]. One idea is to “filter” all incoming data to check for
malicious content before inserting the data into the chain.
However, the recent work of Matzutt et al. [10] showed that
the above idea is not feasible. Hence, how to skillfully break
the immutability of blockchains is an important and urgent
problem to be solved.

To solve the above problem, Ateniese et al. [11] first
introduced the concept of redactable blockchain and pro-
posed an elegant solution based on chameleon hash func-
tions [12]. (e solution addresses the redaction problem of
blockchains at the block level, which is coarse grained.

(e redactable blockchain shouldmeet the following two
properties: (1) the originator of a transaction can specify a
fine-grained access control policy about who can modify the
transaction and which portions of the transaction can be
redacted; (2) the harmful information contained in the
previous block can be removed. Unfortunately, there is no
redactable blockchain that meets both requirements.

In this paper, we explored how to effectively realize the
fine-grained redactable blockchain. Our thought for real-
izing fine-grained redaction and effective deletion of
harmful data simultaneously is shown in Figure 1. In order
to support fine-grained access control, a promising way is
to adopt the policy-based chameleon hash function (PCH)
[13], which allows the originator of a transaction to specify
a fine-grained access control policy about who can modify
the transaction. However, it may incur the following issue
by adopting the PCH. (e malicious originator of the
transaction may design an access policy that only allows
him/her to modify the transaction to store undeletable
harmful information in a blockchain. (is does not satisfy
the second property. To solve the above problem, we try to
combine the technology proposed in [14]. (e technology
allows all users to create removal transactions by spending
some transaction fees. Miners then vote on the transaction,
and the harmful information is removed if enough votes are
collected within a period of time. Obviously, this does not
motivate users to actively remove harmful information
from the chain because the user is not only rewarded for
doing so but also needs to spend transaction fees. In order
to motivate users, in this paper, the users create removal
transactions without spending transaction fees. If the
transaction passes the verification, the originator will ob-
tain the reward paid by the malicious user who posted the
harmful information. In addition, this technique only
supports the deletion of additional information in the block
and needs to store some “old state,” that is, the hash value of
the original transaction.

In practice, the redactable blockchains should meet the
following three properties: (1) the originator of a transaction
can specify a fine-grained access control policy about who
can modify the transaction and which portions of the
transaction can be redacted; (2) the harmful information
contained in the previous block can be removed; (3) the data
type that can be redacted is various. In order to support the
redaction of various data types, we adopt the idea of the
scheme in [15]. In this paper, the blockchain protocol not
only supports removing additional information of the block
but also redacting UTXO in the transaction. In order to
reduce the storage space, we try to adopt a policy-based
sanitizable signature [16]. However, in this way, the number
of blocks of the signed data cannot be changed, and the set of
inadmissible blocks needs to be stored. To solve this
problem, we propose an improved policy-based sanitizable
signature which allows that the number of blocks of the
message m can be changed.

1.1. Contributions. In this paper, we first explore how to
effectively realize the fine-grained redaction of blockchains
while removing the harmful data. We then propose a fine-
grained and controllably redactable blockchain protocol
with harmful data forced removal. In a nutshell, the con-
tribution of this paper can be summarized as follows:

(i) We propose a fine-grained and controllably
redactable blockchain protocol with harmful data
forced removal. Our scheme not only supports the
usual redaction of transactions but also the forced
removal of harmful information in the blockchain.
(e originator of the transaction can specify a fine-
grained access control structure about who can
redact the transaction and which portions of the
transaction can be redacted. Authorized users may
spend transaction fees to initiate a redaction
transaction to redact the above transaction. Any
user can initiate a transaction that contains the
index of the block included harmful information
without spending transaction fees. If the block does
contain the harmful information, the miner who
creates the new block can forcibly delete the harmful
information. (us, the harmful data can be re-
moved; even the malicious users specify an access
control that only they can modify the data. (e user
who provided the index of the block can receive the
reward which is borne by the malicious user who
initially posted the data. (e malicious user will be
blacklisted if the rewards are not paid within a
period of time, and any transaction about the user
will not be performed later. Furthermore, the
scheme supports not only the redaction of addi-
tional data but also UTXO, i.e., unspent transaction
outputs.

(ii) We present an improved policy-based sanitizable
signature scheme, which is based on the scheme in
[16]. In our scheme, the number of blocks of the
signed data can be changed, and the set of
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inadmissible blocks does not need to be stored.
Users who satisfy the access control policy can
modify the portions of the signed data that are
allowed to be modified. (e authorized users can
generate the valid signatures for the modified data
without interacting with the original signer. (e
data owner does not need to collect the identities of
the candidate authorized users in advance as the
proxy signature schemes would require.

(iii) We demonstrate that the proposed scheme is secure
and feasible via formal security analysis and proof-
of-concept implementation. Specifically, we im-
plement a full-fledged blockchain system, which
achieves all the basic functionalities of Ethereum
Enterprise. Separately, the blockchain system, in-
cluding a subset of Ethereum Enterprise’s script
language, allows the authorized user to redact the
transaction and the miner to delete the harmful
data. We evaluate the performance of the block-
chain system for chain validation in different sce-
narios. (e results show that the redactable
blockchain protocol produces only an insignificant
(no more than 3.8%) overhead compared to the
immutable blockchain.

1.2. Related Work. (e concept of sanitizable signature was
introduced by Ateniese et al. [17]. A sanitizable signature
scheme allows a sanitizer to update the signed data without
interacting with the original signer. In order to ensure the
security of the scheme, two necessary security requirements
are defined in their scheme: (1) unforgeability, that is, only
authorized sanitizers can generate the new valid signatures
for the updated data; (2) transparency, that is, the updated
data and their signatures are indistinguishable from the
original information and corresponding signatures.

Unfortunately, they did not give a complete definition of the
sanitizable signature nor did they provide the formal security
analysis. Brzuska et al. [18, 19] provided the formal defi-
nition of sanitizable signatures and gave the formalized
definition of the basic security requirements. (ey intro-
duced five formal security requirements, unforgeability,
immutability, privacy, transparency, and accountability, and
analyzed the relationships between these security require-
ments. Canard et al. [20] proposed a generic construction of
the trapdoor sanitizable signature. In this scheme, the
sanitizer can generate the valid signature for the updated
data after receiving the trapdoor key from the original
signer. Using an accountable chameleon hash, Lai et al. [21]
proposed an accountable trapdoor sanitizable signature.
However, neither of the above two schemes gives the
concrete construction of the sanitizable signature. After that,
many concrete sanitizable signature schemes were proposed
[22–24]. All of the above sanitizable schemes are not suitable
for blockchain rewriting since none of the aforementioned
schemes support fine-grained control over candidate
sanitizers.

Attribute-based encryption schemes can provide fine-
grained access control [25–27]. In order to provide fine-
grained access control, some attribute-based sanitizable
signature schemes are proposed [16, 28–30]. (e scheme in
[28] did not give the specific construct of the attribute-based
sanitizable signature.(e scheme in [29] did not support the
expressive access structure. (e scheme in [30] only pro-
vided an all-or-nothing solution for data modification. (e
number of blocks of the signed data cannot be changed, and
the set of inadmissible blocks needs to be stored in [16]. In a
real environment of blockchain rewriting, the number of
blocks of the transaction may be changed, and the set of
inadmissible blocks does not need to be contained in its
signature. (erefore, in this paper, we improve the policy-
based sanitizable signature scheme [16] and propose an

Constructing a redactable blockchain that meets the following three properties:
(1) The originator of a transaction can specify a fine-grained access control policy about who can modify the

transaction and which portions of the transaction can be redacted
(2) The harmful information contained in the previous block can be removed

(3) The data type that can be redacted is various

Goal

(1) Adopt the policy-based
chameleon hash function

(PCH)[13]

Does not satisfy the
second property

(3) The users create removal
transactions without spending

transaction fees and will
obtain the reward paid by the

malicious user

(2) Try to combine the
technology proposed in [14]

Does not motivate users
to actively remove

harmful information

(4) Adopt the idea of the
scheme in [15]

Does not support the
redaction of various

data types

(5) Adopt the policy-based
sanitizable signature [16]

Needs to store some
“old state”

(6) Achieve the goal

Figure 1: (e flowchart of the idea.
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improved policy-based sanitizable signature. In this paper,
the number of blocks of the signed data can be changed, and
the set of inadmissible blocks does not need to be stored.
Furthermore, we present a fine-grained and controllably
redactable blockchain protocol with harmful data forced
removal based on the improved policy-based sanitizable
signature scheme.

1.3. Organization. (e rest of this paper is organized as
follows. In Section 2, we briefly review the preliminaries
required in this paper. (e system model and design goals
are given in Section 3. In Section 4, we introduce the
proposed improved policy-based sanitizable signature
scheme. We describe the proposed blockchain protocol in
Section 5. In Section 6, we introduce the security analysis of
the proposed protocol. We evaluate the performance of the
proposed protocol in Section 7. Finally, we come to the
conclusion in Section 8.

2. Preliminaries

2.1. Notions. We list the notations used in our scheme in
Table 1.

2.2. Access Structure. A collection A ∈ 2U\ ∅{ } is an access
structure on U, where U denotes attributes’ universe. If a set
is contained in A, it is the authorized set. Otherwise, it is an
unauthorized set. A collection A is monotone if C ∈ A for
∀B, C ∈ A and B⊆C.

2.3. Public Key Encryption. A public key encryption scheme
Π consists of the following five algorithms:

(i) PPGenΠ(1κ): this algorithm takes the security pa-
rameter κ as the input and outputs the public pa-
rameters PPΠ.

(ii) KGenΠ(PPΠ): this algorithm takes the public pa-
rameters PPΠ as the input and outputs the public
and private key (pkΠ, skΠ).

(iii) EncΠ(pkΠ, m): this algorithm takes the public key
pkΠ and the message m as the input and outputs a
ciphertext c.

(iv) DecΠ(skΠ, c): this algorithm takes the private key
skΠ and the ciphertext c as the input and outputs the
message m.

(v) KVrfΠ(skΠ, pkΠ): this algorithm takes the public
and private key (pkΠ, skΠ) as the input and outputs
1 if skΠ belongs to pkΠ. Otherwise, it outputs 0.

(e detailed definition of correctness and security of the
public key encryption (PKE) is given in [16]. In this paper,
we require correctness and IND-CCA2 security for PKE.

Definition 1. (Π IND-CCA2 security). A public encryption
scheme Π is IND-CCA2 secure [16] if for any probabilistic
polynomial-time (PPT) adversaryA, there exists a negligible
function ] such that

Pr ExpIND−CCA2
A,Π (k) � 1􏽨 􏽩 −

1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ](k). (1)

(e corresponding experiment is depicted in Figure 2.

2.4. Digital Signature. A digital signature scheme Σ consists
of the following four algorithms:

(i) PPGenΣ(1κ): this algorithm takes the security pa-
rameter κ as the input and outputs the public pa-
rameters PPΣ.

(ii) KGenΣ(PPΣ): this algorithm takes the public pa-
rameters PPΣ as the input and outputs signer’s
public and private key (pkΣ, skΣ).

(iii) SignΣ(skΣ, m): this algorithm takes the private key
skΣ and the message m as the input and outputs the
signature σ.

(iv) VerfΣ(pkΣ, m, σ): this algorithm takes the public
key pkΣ, the message m, and the signature σ as the
input and outputs 1 if σ is valid. Otherwise, it
outputs 0.

(e formal security definition of the digital signature is
given in [16]. In this paper, we require correctness and
existential unforgeability (eUNF-CMA) for the digital
signature.

Table 1: Notations.

Notation Meaning
A A monotone collection
U (e attributes’ universe
Π A public key encryption scheme
k (e security parameter
PPΠ (e public parameters of Π
(pkΠ, skΠ) (e public and private key of Π
m (e message
c (e ciphertext
Σ A digital signature scheme
PPΣ (e public parameters of Σ
(pkΣ, skΣ) (e signer’s public and private key in Σ
σ (e signature in Σ
L A NP-language
Ω A noninteractive proof system for L

crsΩ A common reference string
x (e statement
ω (e corresponding witness
π (e proof
PPPCH (e public parameters of PCH
(skPCH, pkPCH) (e master key pair of PCH
S (e set of attributes
skS (e user’s secret key in PCH
h (e hash value
r (e randomness
m′ (e modified message
r′ (e new randomness
PPP3S (e public parameters of P3S
(skP3S, pkP3S) (e master key pair of P3S
(sksigP3S, pk

sig
P3S) (e signer’s key pair in P3S

(sksanP3S, pk
san
P3S) (e sanitizer’s key pair in P3S

M (e description of modification

4 Security and Communication Networks



Definition 2. (Σ unforgeability). A digital signature scheme
Σ is unforgeable [16] if for any PPTadversaryA, there exists
a negligible function ] such that

Pr ExpeUNF−CMA
A,Σ (k) � 1􏽨 􏽩

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ](k). (2)

(e corresponding experiment is depicted in Figure 3.

2.5. Noninteractive Zero-Knowledge Proof (NIZK). Let
L � x|∃ω: R(x, w) � 1{ }, where L is a NP-language with
associated witness relation R. A noninteractive proof system
Ω for the language L consists of the following three
algorithms:

(i) PPGenΩ(1κ): this algorithm takes the security pa-
rameter κ as the input and outputs the common
reference string (CRS) crsΩ.

(ii) ProveΩ(crsΩ, x,ω): this algorithm takes CRS crsΩ,
the statement x, and the corresponding witness ω as
the input and outputs the proof π.

(iii) VerifyΩ(crsΩ, x, π): this algorithm takes CRS crsΩ,
the statement x, and the proof π as the input and
outputs 1 if π is valid. Otherwise, it outputs 0.

(e security of the noninteractive zero-knowledge proof
(NIZK) is given in [16]. In this paper, we require com-
pleteness for NIZK. In addition to completeness, we require
two standard security notions for zero-knowledge proofs of
knowledge: zero knowledge and simulation-sound extract-
ability. We define them analogous to the definitions given in
[16]. Informally speaking, zero knowledge says that the
receiver of the proof π does not learn anything except the
validity of the statement.

Definition 3. (completeness). A noninteractive proof system
is called complete if for all k ∈ N, crsΩ←rPPGen(1k), x ∈ L,
ω such that R(x,ω) � 1, π←rProveΩ(crsΩ, x,ω), it holds
that VerifyΩ(crsΩ, x, π).

2.6. Policy-Based Chameleon Hashes. A policy-based cha-
meleon hash (PCH) allows the user, who owns attributes’ set
that satisfied the access structure, to compute a hash collision
[13]. Specifically, a PCH contains the following six PPT
algorithms:

(i) PPGenPCH(1κ): this is the public parameters’ gen-
eration algorithm. It takes the security parameter κ
as the input and outputs the public parameters
PPPCH.

(ii) MKeyGenPCH(PPPCH): this is the master key gen-
eration algorithm. It takes the public parameter
PPPCH as the input and outputs the master key pair
(skPCH, pkPCH).

(iii) KGenPCH(skPCH,S): this is the user’s secret key
generation algorithm. It takes the master secret key
skPCH and the set of attributes S⊆U as the input and
outputs the user’s secret key skS.

(iv) HashPCH(pkPCH,A, m): this is the hash algorithm. It
takes the master public key pkPCH, the access
structure A ∈ 2U\ ∅{ }, and the message m as the
input and outputs the hash value h and the ran-
domness r.

(v) VerifyPCH(pkPCH, m, h, r): this is the verification
algorithm. It takes the master public key pkPCH, the
message m, the hash value h, and the randomness r

as the input and outputs a bit b � 1 if h and r are
valid. Otherwise, b � 0.

(vi) AdaptPCH(pkPCH, skS, m, m′, h, r): this is the adap-
tion algorithm. It takes the public key pkPCH, the
user’s secret key skS, the message m, the modified
message m′, the hash value h, and some randomness
r as the input and outputs a new randomness r′.

(e detailed definition of correctness and security of the
policy-based chameleon hash is given in [13].

2.7. Policy-Based Sanitizable Signature. A policy-based
sanitizable signature (P3S) allows the user, who owns at-
tributes’ set that satisfied the access structure, to modify the
data and generate the valid signatures for the modified data
[16]. Specifically, a P3S contains the following ten PPT
algorithms:

(i) ParGenP3S(1λ): this is the public parameters’
generation algorithm. It takes the security pa-
rameter λ as the input and outputs the public
parameters PPP3S.

(ii) SetupP3S(PPP3S): this is the master key generation
algorithm. It takes the public parameters PPP3S as
the input and outputs the master key pair
(skP3S, pkP3S).

Figure 2: Π IND-CCA2 security.

Figure 3: Σ unforgeability.
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(iii) KGenSigP3S(PPP3S): this is the signer’s key pair
generation algorithm. It takes the public param-
eters PPP3S as the input and outputs the signer’s
key pair (sksigP3S, pk

sig
P3S).

(iv) KGenSanP3S(PPP3S): this is the sanitizer’s key pair
generation algorithm. It takes the public param-
eters PPP3S as the input and outputs the sanitizer’s
key pair (sksanP3S, pk

san
P3S).

(v) SignP3S(PPP3S, sk
sig
P3S, m, A,A): this is the signing

algorithm. It takes the public parameters PPP3S, the
signer’s secret key sksigP3S, the message m, the de-
scription of admission A, and the access structure
A as the input and outputs a signature σ.

(vi) AddSanP3S(skP3S, pksanP3S,S): this is the secret san-
itizing key generation algorithm. It takes the
master secret key skP3S, the sanitizer’s public key
pksanP3S, and the set of attributes S as the input and
outputs the secret sanitizing key skS for the
sanitizer.

(vii) VerifyP3S(pkP3S, pk
sig
P3S, σ, m): this is the verification

algorithm. It takes the master public key pkP3S, the
signer’s public key pksigP3S, the signature σ, and the
corresponding message m as the input and outputs a
bit b � 1 if the signature σ is valid. Otherwise, b � 0.

(viii) SanitizeP3S(pkP3S, pk
sig
P3S, sk

san
P3S, skS, σ, m, M): this is

the new signature generation algorithm. It takes
the master public key pkP3S, the signer’s public key
pksigP3S, the sanitizer’s secret key sksanP3S, the secret
sanitizing key skS, the signature σ, the corre-
sponding message m, and the description of
modification M as the input and outputs the new
signature σ′ for the modified message m′.

(ix) ProofP3S(pkP3S, sk
sig
P3S, σ, m): this is the proof gen-

eration algorithm. It takes the master public key
pkP3S, the signer’s secret key sk

sig
P3S, the signature σ,

and the corresponding message m as the input and
outputs the proof πP3S.

(x) JudgeP3S(PPP3S, pkP3S, pk
sig
P3S, σ, m, πP3S): this is the

proof verification algorithm. It takes the public
parameter PPP3S, the master public key pkP3S, the
signer’s public key pksigP3S, the signature σ, the
corresponding message m, and the proof πP3S as
the input and outputs a bit b � 1 if the proof πP3S is
valid. Otherwise, b � 0.

(e detailed definition of correctness and security of the
policy-based sanitizable signature is given in [16].

2.8. Blockchain Protocol. Let Γ denote an immutable
blockchain protocol such as Ethereum Enterprise.(e nodes
in the blockchain protocol obtain their local chain C based
on a common genesis block. (e nodes in the blockchain
protocol collect transactions in the whole blockchain eco-
system and then package these transactions into a new block.
(e chain becomes longer as nodes agree on a new block.
Nodes can access the blockchain protocol through the fol-
lowing interfaces.

(i) C′,⊥􏼈 􏼉←Γ · updateChain: returns the chain C′ if it
is the longer and the valid chain in the blockchain
ecosystem. Otherwise, it returns ⊥.

(ii) 0, 1{ }←Γ · validateChain(C): takes the chain C as
the input and outputs 1 iff the chain is valid
according to the public set of rules.

(iii) 0, 1{ }←Γ · validateBlock(B): takes the block B as the
input and outputs 1 iff the block is valid according to
the public set of rules.

(iv) Γ · broadcast(x): takes the transaction x as the input
and broadcasts it to all nodes in the blockchain
ecosystem.

3. Problem Formulation

3.1. SystemModel. As shown in Figure 4, the system model
of the proposed redactable blockchain protocol consists of
four entities: the trusted authority (TA), the miners, the
users, and the authorized users. Note that the model in this
paper is similar to the model in [13]. It is more applicable to
permissioned blockchains, such as Hyperledger, Ethereum
Enterprise, Ripple, and Quorum.

(i) Trusted authority (TA): trusted authority (TA) is
fully honest and responsible for generating the
signing private key for users who posted the
redactable transaction, issuing the attributes and
attributes’ key for authorized users, and sending
keys to miners.

(ii) Miners: miners are fully honest and have powerful
computing resources. (ey are responsible for
packaging transactions in the network to generate
the new block and removing harmful information
from the previous blocks.

(iii) Users: users may be malicious. (ey can post the
usual transaction or the transaction containing
the index of the block which includes harmful
information to the network. Users get fine-
grained control over which users can redact their
usual transaction and which portions of the
transaction can be redacted. (e malicious users
may specify an access structure that only allows
themselves and their conspirators to redact the
transaction.

(iv) Authorized users: the authorized users are semi-
honest in the sense that they can modify the por-
tions of the transaction that are allowed to be
modified and generate the new valid signatures for
the updated data that are indistinguishable from the
signatures that the originator generated for the
original transaction.

3.2. Design Goals. In order to realize a “healthy” blockchain
protocol, the proposed fine-grained and controllably
redactable blockchain with harmful data forced removal
should satisfy the following properties:
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(i) Controlled redaction: only authorized users can
redact the portions of the transaction that are
allowed to be redacted.

(ii) Accountability: the authorized user who redacts the
transaction can be tracked.

(iii) Correctness: correctness ensures that the redacted
blockchain is “healthy.” Specifically, a “healthy”
blockchain should meet the following characteristics:

(a) Chain growth: let C1 and C2 denote two chains
possessed by two honest users at rounds r1 and
r2, respectively. (en, len(C2) − len(C1)≥ τ·

(r2 − r1), where τ is the speed coefficient and
r2 > r1.

(b) Chain quality: generally speaking, the chain
quality says that the ratio of adversarial blocks in
any segment of a chain held by an honest party
is no more than a fraction 0< μ≤ 1, where μ is
the fraction of resources controlled by the
adversary.

(c) Editable common prefix: the usual common
prefix says that if C1 and C2 are two chains
possessed by two honest users at rounds r1 and
r2, for r2 > r1, C1 is a prefix of C2. It can be
formally denoted as Ck

1 ≤C2, where Ck
1 is the

chain obtained by removing the last k blocks
from C1, k ∈ N is the common prefix parameter.
Note that the proposed editable blockchain
inherently does not satisfy the common prefix.
Suppose the voting phase for the redaction
transaction T∗i is still on at round r1. At round
r2, the voting phase is complete, and T∗i replaces
Ti, i.e., the redacted block B∗i replaces Bi. In Ck

1,
the i-th block is Bi instead of B∗i as in C2. (us,
Ck
1 is not the common prefix of C1 and C2. We

extend this definition. (e chains C1 and C2
satisfy one of the following:

(1) Ck
1 ≤C2

(2) (e voting phase is complete, and B∗i replaces
Bi if B∗i ∈ C

(r2−r1)+k
2 , B∗i ∉ Ck

1

3.3. Breat Model

Definition 4. (controlled redaction). Controlled redaction
ensures that only authorized users can redact the portions of
the transaction that are allowed to be redacted. In order to
formally describe the controlled redaction, we introduce a
game between the challenger C and the adversary
A � (A1,A2). Here, we consider two adversaries. One of
the adversaries is the adversaryA1, who does not possess the
attributes’ set which satisfies the access control policy.
Another is the adversary A2, who tries to redact the in-
admissible portions of the transaction. In order to show how
A1 and A2 attack the redactable blockchain protocol, we
introduce the game between the challenger C and adver-
saries A1 and A2, respectively.

Firstly, we describe the game between the challenger C
and the adversary A1. Trusted authority (group manager) is
viewed as a challenger C, and the unauthorized user is
viewed as an adversaryA1. (is game includes the following
phases:

(i) Setup phase: the challenger C runs the ParGenP3S
and SetupP3S algorithm to generate the public pa-
rameters PPP3S and the master private/public key
pair (skP3S, pkP3S). (en,C holds the master private
key skP3S locally. Finally, C sends the master public
key pkP3S and the public parameters PPP3S to the
adversary A1.

(ii) Query phase:

(a) KGenSanP3S queries: the adversary A1 queries
sanitizer’s private/public key pair for the public
parameters PPP3S. C runs KGenSanP3S algo-
rithm and returns the private/public key pair
(x2, y2) to A1.

(b) Sign queries: the adversary A1 queries the
signature for the master public key pkP3S, the
signature for the transaction m, the set of ad-
missible blocks A, and the access structure A.C
runs KGenSigP3S to generate the signing key and
then runs Sign algorithm to produce the

UsersAuthorized users

· · · · · · · · ·

Miners

Redaction transaction

Network

New block

Trusted authority
(TA)

KeysKeys
Keys

Figure 4: (e system model.

Security and Communication Networks 7



signature σ. Finally,C returns the signature σ to
A1.

(c) AddSanP3S queries: the adversaryA1 queries the
sanitizer’s attribute key for skP3S, pk

San
P3S, and the

attributes’ set S such that A(S) � 0. C runs
AddSanP3S algorithm and returns the sanitizer’s
attribute key skS←(σskS, skS′) to A1.

(d) VerifyP3S queries: the adversary A1 queries the
verification result for pkP3S, pk

Sig
P3S, σ, and m. C

runs VerifyP3S algorithm and returns the result
to A1.

(e) SanitizeP3S queries: the adversaryA1 queries the
sanitizable signature for pkP3S, pk

Sig

P3S, skSan
P3S, skS,

m, σ, and m′. C runs SanitizeP3S algorithm and
returns the new signature σ′ to A1.

(f ) ProofP3S queries: the adversary A1 queries
(πP3S, pk) for pkP3S, sk

Sig
P3S, σ, and m. C runs

ProofP3S algorithm and returns (πP3S, pk) to
A1.

(g) JudgeP3S queries: the adversary A1 queries the
judge result for pkP3S, sk

Sig
P3S, σ, and m. C runs

JudgeP3S algorithm and returns the result toA1.

(iii) Challenge phase: the adversary A1 adaptively
chooses the authorized user’s attributes’ set S

(A(S) � 0). (en,A1 runs SanitizeP3S algorithm to
generate the challenged signature σ∗ for the chal-
lenged transaction m∗. Finally, the adversary A1
sends (S, m∗, σ∗) to C.

(iv) Verify phase: the adversary A1 performs polyno-
mial queries as in the query phase. Consider the
adversary A1 has made L queries, and let
Q � skS,S, mi, Ai,Ai, σi􏼈 􏼉

[|Q|]
i�1 denote the set of in-

formation obtained through these queries. C runs
VerifyP3S(pkP3S, pk

Sig
P3S, A,A, m∗, σ∗) algorithm and

outputs a bit b0. If b0 � 1, C checks whether there
exists an i ∈ [|Q|], σ∗) such thatA(S) � 0. If there is
such an i, the challenger C outputs b1 � 1. Other-
wise, C outputs b1 � 0.

We say that the adversaryA1 wins if b1 � 1. In the above
game, we want to show that the adversaryA1, who does not
possess the attributes’ set S such that A(S) � 0, should not
generate the new valid witness for the transaction. (e
adversary’s goal is to correctly generate the valid signature σ′
for the transaction m∗. We set the advantage of a polyno-
mial-time adversary A1 in this game to be Pr[b1 � 1]. We
say the proposed scheme satisfies the unforgeability of the
signature if for any polynomial-time adversary A1, Pr[b1 �

1]< (1/poly(n)) for sufficiently large n, where poly stands
for a polynomial function.

(en, we describe the game between the challenger C
and the adversaryA2. Trusted authority (group manager) is
viewed as a challenger C, and the authorized user is viewed
as an adversaryA2. (is game includes the following phases:

(i) Setup phase: the challenger C runs the ParGenP3S
and SetupP3S algorithm to generate the public pa-
rameters PPP3S and the master private/public key
pair (skP3S, pkP3S). (en,C holds the master private

key skP3S locally. Finally, C sends the master public
key pkP3S and the public parameters PPP3S to the
adversary A2.

(ii) Query phase:

(a) KGenSanP3S queries: the adversary A2 queries
sanitizer’s private/public key pair for the public
parameters PPP3S. C runs KGenSanP3S algo-
rithm and returns the private/public key pair
(x2, y2) to A2.

(b) Sign queries: the adversary A2 queries the
signature for the master public key pkP3S, the
signature for the message m, the set of admis-
sible blocks F, and the access structure A. C
runs KGenSigP3S to generate the signing key and
then runs Sign algorithm to produce the sig-
nature σ. Finally, C returns the signature σ to
A2.

(c) AddSanP3S queries: the adversaryA2 queries the
sanitizer’s attribute key for skP3S, pk

San
P3S, and the

attributes’ set S such that A(S) � 1. C runs
AddSanP3S algorithm and returns the sanitizer’s
attribute key skS←(σskS, skS′) to A2.

(d) VerifyP3S queries: the adversary A2 queries the
verification result for pkP3S, pk

Sig
P3S, σ, and m. C

runs VerifyP3S algorithm and returns the result
to A2.

(e) SanitizeP3S queries: the adversaryA2 queries the
sanitizable signature for pkP3S, pk

Sig
P3S, sk

San
P3S, skS,

m, σ, and m′. C runs SanitizeP3S algorithm and
returns the new signature σ′ to A2.

(f ) ProofP3S queries: the adversary A2 queries
(πP3S, pk) for pkP3S, sk

Sig
P3S, σ, and m. C runs

ProofP3S algorithm and returns (πP3S, pk) to
A2.

(g) JudgeP3S queries: the adversary A2 queries the
judge result for pkP3S, sk

Sig
P3S, σ, and m. C runs

JudgeP3S algorithm and returns the result toA2.

(iii) Challenge phase: the adversary A2 adaptively
chooses the authorized user’s attributes’ set S

(A(S) � 1). (en,A2 runs SanitizeP3S algorithm to
generate the challenged signature σ∗ for the chal-
lenged message m∗ which does not contain all in-
admissible blocks. Finally, the adversary A2 sends
(S, m∗, σ∗) to C.

(iv) Verify phase: the adversary A2 performs polynomial
queries as in the query phase. Consider the adversary
A2 has made L queries, and let
Q � skS,S, mi, Ai,Ai, σi􏼈 􏼉

[|Q|]

i�1 denote the set of in-
formation obtained through these queries. C runs
VerifyP3S(pkP3S, pk

Sig
P3S, A,A, m∗, σ∗) algorithm and

outputs a bit b0. If b0 � 1, C checks whether there
exists an i ∈ [|Q|], m∗ which does not contain all
inadmissible blocks. If there is such an i, the challenger
C outputs b1 � 1. Otherwise, C outputs b1 � 0.

We say that the adversaryA2 wins if b1 � 1. In the above
game, we want to show that the adversary A2, who redacts

8 Security and Communication Networks



the inadmissible blocks, should not generate the new valid
signature. (e adversary’s goal is to correctly generate the
valid signature σ′ for the message m∗. We set the advantage
of a polynomial-time adversary A2 in this game to be
Pr[b1 � 1]. We say the proposed scheme satisfies controlled
redaction if for any polynomial-time adversary A2, Pr[b1 �

1]< (1/poly(n)) for sufficiently large n, where poly stands
for a polynomial function.

Definition 5. (accountability). We say that the proposed
fine-grained and controllably redactable blockchain with
harmful data forced removal satisfies accountability if TA
can extract signer’s identity from any valid transaction’s
signature with nonnegligible probability.

4. The Improved Policy-Based
Sanitizable Signature

4.1. Algorithm Definition. Let PCH denote a policy-based
chameleon hash, Ω label a simulation-sound extractable
noninteractive zero-knowledge proof (NIZK) system, f be a
one-way function, Π denote an IND-CCA2-secure public
key encryption scheme, and Σ be an eUNF-CMA-secure
signature scheme. Specifically, the improved policy-based
sanitizable signature is described as follows:

(i) ParGenP3S(1κ): it takes a security parameter κ as
the input and outputs PPP3S � (crsΩ,PPΠ,PPΣ,
PPPCH, f, h), where PPΠ←PPGenΠ(1κ), crsΩ←
PPGenΩ(1κ), PPΣ←PPGenΣ(1κ), PPPCH←
PPGenPCH(1κ), f: Df⟶ Rf is a one-way
function, and H is a cryptographic hash function.

(ii) SetupP3S(PPP3S): it takes PPP3S as the input and
outputs
(skP3S, pkP3S)←(skPCH, skΣ), (pkPCH, pkΣ), where
(skPCH, pkPCH)←MKeyGenPCH(PPPCH) and
(skΣ, pkΣ)←KGenΣ(PPΣ).

(iii) KGenSigP3S(PPP3S): it takes PPP3S as the input and
outputs (skSigP3S, pk

Sig
P3S)←((x1, skΣ′, skΠ), (y1, pkΣ′,

pkΠ)), where x1←Df, y1←f(x1), (skΠ, pkΠ)←
KGenΠ(PPΠ), and (skΣ′, pkΣ′)←KGenΣ(PPΣ).

(iv) KGenSanP3S(PPP3S): it takes PPP3S as the input and
outputs (x2, y2), where x2←Df and y2←f(x2).

(v) SignP3S(pkP3S, sk
Sig
P3S, m, A,A): it takes pkP3S, sk

Sig
P3S,

the message m, the set of admissible blocks A, and
the access structureA as the input and outputs ⊥ if
A � ∅. Otherwise, it outputs σ←(h, r, A, σm,

A, π, c), where (h, r)←HashPCH(pkPCH, m,A),
σm←SignΣ(skΣ′, (pkP3S, pk

Sig
P3S, A, H(i‖m!A), h,A)),

c←EncΠ(pkΠ, y1), and π←ProveΩ (x1, x2,􏼈 skΠ,
σskS)): (y1 � f(x1)∧ c � EncΠ(pkΠ, y1)∧KVrfΠ
(skΠ, pkΠ) � 1)∨(y2 � f(x2)∧ c � EncΠ(pkΠ, y2)

∧VerfΣ(pkΣ, (y2, pkP3S), σskS) � 1)}(l). Note that
l � (PPP3S, pkP3S, pk

Sig
P3S, h, r,

m, A,A, H(i‖m!A), σm, c).
(vi) AddSanP3S(skP3S, pk

San
P3S,S): it takes skP3S, pkSanP3S,

and the attributes’ set S as the input and outputs
the sanitizing key skS←(σskS, skS′), where σskS←

SignΣ(skΣ, (pkSanP3S, pkP3S)) and skS′←KGenPCH
(skPCH,S).

(vii) VerifyP3S(pkP3S, pk
Sig
P3S, σ, m): it takes pkP3S, pk

Sig
P3S,

σ, and m as the input and outputs 1 if π and σm are
valid, VerifyPCH(pkPCH, m, r, h) � 1, and H(i‖m!A)

can be computed from the message m. Otherwise,
it outputs ⊥.

(viii) SanitizeP3S(pkP3S, pk
Sig
P3S, sk

San
P3S, skS, m, σ, m′): it

takes pkP3S, pk
Sig
P3S, sk

San
P3S, skS, m, σ, and m′ as the

input. If σskS or σ is not valid, it outputs ⊥.
Otherwise, the sanitizer computes r′←
AdaptPCH(pkPCH, skS, m, m′, h, r), c′←EncΠ
(pkΠ, y2), and π′←ProveΩ (x1, x2, skΠ, σskS):􏽮

(y1 � f(x1)∧ c′ � EncΠ(pkΠ, y1)∧KVrfΠ(skΠ,
pkΠ) � 1)∨(y2 � f(x2)∧ c′ � EncΠ(pkΠ, y2)∧
VerfΣ(pkΣ, (y2, pkP3S), σskS) � 1)}(l). Note that l �

(PPP3S, pkP3S, pk
Sig
P3S, h, r′, m′,

A,A, H(i‖m!A), σm, c′). (en, the sanitizer sets
(σ′, m′)←((h, r′, A, σm,A, π, c′), m′). If (σ′, m′) is
not valid, this algorithm outputs ⊥. Otherwise, it
outputs (σ′, m′).

(ix) ProofP3S(pkP3S, sk
Sig
P3S, σ, m): it takes pkP3S, sk

Sig
P3S, σ,

and m as the input and outputs (πP3S, pk), where
pk←DecΠ(skΠ, c), πP3S←ProveΩ (skΠ, x1): pk �􏼈

DecΠ(skΠ, c)∧KVrfΠ(skΠ, pkΠ) � 1∧y1 � f (x1)}

(l), and l � (PPP3S, pkP3S, pk
ig
P3S, σ, pk, m).

(x) JudgeP3S(pkP3S, pk
Sig
P3S, pk, πP3S, σ, m): it takes pkP3S,

pkSigP3S, pk, πP3S, σ, and m as the input. If σ and πP3S
are valid, it outputs 1. Otherwise, it outputs 0.

(e improved policy-based sanitizable signature replaces
the inadmissible block set m!A in [16] with H(i‖m!A) to allow
that the number of blocks of the message m can be changed,
and the set of inadmissible blocks does not need to be stored.
Here, m!A denotes the set of blocks that are not allowed to be
modified. (e security definition and analysis are given in
Appendixes A and B, respectively.

5. The Proposed Protocol

5.1. AnOverview. (e workflow of the proposed blockchain
protocol can be described as follows. Firstly, users can
generate a local chain C based on the common genesis block
genesis and initialize the redaction transaction list R, the
removal transaction list D, the penalty payment transaction
list P, and the blacklist L to be empty. After that, users run
Γ · updateChain to obtain the longest chain in the blockchain
network. When the user wants to redact the previous
transaction, he/she first broadcasts a redaction transaction
by spending some transaction fees. (e transaction will be
added to the list R if it is valid. (e miners vote on the
transaction. (e transaction can be executed if enough votes
are collected within a period of time as shown in Figure 5.
When a user finds harmful information contained in a block,
he/she creates a removal transaction containing the index of
the block without spending transaction fees. Miners create

Security and Communication Networks 9



new blocks that contain at least one transaction in D and one
in P if they are not empty. (e miner removes the harmful
information from the block according to the provided index.
Meanwhile, the miner generates a penalty payment trans-
action added to P as shown in Figure 6. (e transaction will
be removed from list P after the penalty is paid by the
malicious user. If the malicious user fails to pay the penalty
within a period of time, he/she will be added to the blacklist
L. After that, all transactions relating to the malicious user
will never be performed.

5.2. Description of the Proposed Protocol. (e proposed
blockchain protocol runs in a sequence of rounds r and
consists of the following six algorithms (Figures 7–10):

(i) Initialization: get the local chain C←genesis, where
genesis denotes a common genesis block. Set round
r←1, and initialize empty lists R, D, P, and L.

(ii) Chain update: at the beginning of each round r,
users run C′,⊥􏼈 􏼉←Γ · updateChain to get the lon-
gest chain C′ in the blockchain network.

(iii) Propose a redaction: the user proposes a redaction
of the transaction TA by spending some transaction
fees.

(a) Firstly, the user creates a redaction transaction
redactT using the new transaction T∗A as shown
in Figure 7. In this process, the improved policy
sanitizable signature is used to generate the
witness for the transaction. We can see from
Figure 7 that the hash values h for TA and (T∗A)

are the same. (erefore, the hash value of this
block will not be changed after redacting the
transaction.

(b) (en, he/she runs Γ · broadcast(T∗A) to broad-
cast the redacted transaction to the blockchain
network.

T∗

A

R

PREV_H TS

T∗

k

T∗

l

A A∗

Voting period

Propose redaction

H (T∗

A)H (T∗

A)H (T∗

A)

TX_ROOT

H (A||B)

B C D

H (C||D) H (A||B)

B C D

H (C||D)

NONCE

PREV_H TS

TX_ROOT NONCE

(a)

T∗

k

T∗

l

A∗ A∗

H (T∗

A)H (T∗

A)H (T∗

A)

R

Voting period: accept

PREV_H TS

TX_ROOT NONCE

PREV_H TS

TX_ROOT NONCE

H (A||B)

B C D

H (C||D) H (A||B)

B C D

H (C||D)

T∗

A

(b)

Figure 5:(e redaction of the transaction. (a) Proposing a redaction A∗ for a transaction A. (b) After a successful voting phase, A∗ replaces
A in the chain.

10 Security and Communication Networks



(c) Finally, miners add the transaction rdactT to
the list R if the data τ2 are UTXO. Otherwise, the
transaction is discarded.

(iv) Propose a removal of harmful information when the
user finds that the transaction TD, contained in the
block with the index I, has the harmful information.

(a) Firstly, as shown in Figure 8, the user creates a
removal transaction removeT, which does not
cost transaction fee and contains the block’s
index I and the transaction TD.

(b) (en, he/she broadcasts the transaction
removeT.

D

PREV_H TS

TX_ROOT NONCE

T∗k

T∗l

D∗

Step 1: propose a harmful information
removing transaction

TD

TD

P

TD

Step 2: contained in the new block if
the transaction is valid

TP

TP

Step 3: generate a penalty payment
transaction added to P

Step 4: remove the harmful
information from the block

H(A||B) H(C||D)

A B C

Figure 6: (e removal of harmful information.

T∗A

Witness: h, r,...

TA

in: .......

Out-script 1: τ1
Amount: α1

Out-script 2: τ2

Witness: h, r′,...

in: .......

Out-script 2: τ∗2

Witness: ......

redactT

in: .......

Out-script: TA, T∗A

Out-script 1: τ1
Amount: α1

Figure 7: (e transaction redactT.

Witness: ......

remove T

in: .......

Out-script: TD, I

Figure 8: (e transaction removeT.

Witness: ......

TP

in: .......

Out-script: pen, ad

Figure 9: (e transaction penatlyT.

Security and Communication Networks 11



(c) (e transaction removeT will be added to the
list D if the block I does contain the harmful
information. Meanwhile, the penalty payment
transaction TP will be created and added to the
list P. As shown in Figure 9, the transaction TP

contains the amount of the penalty pen and the
address ad of the malicious user who posts the
harmful information. (e transaction TP will be
removed from the list P after the malicious user
pays the penalty.

(v) Redacting the chain:

(a) For the candidate transaction TA in the list R,
the miner substitutes it with the new transaction
T∗A if the voting process on it has been com-
pleted and enough votes v≥ ρ have been col-
lected within a period of time t.(e transaction
TA is discarded if the votes v< ρ within a period
of time t. If the voting on TA is still in progress,
nothing will be done. Here, ρ denotes the
threshold of votes and can be specified by
consensus among all users in the blockchain
network.

(b) For the candidate transaction TD in the list D,
the miner removes the harmful information
from TD which is contained in the block with
the index I.

(c) For the candidate transaction TP in the list P,
the miner first verifies whether the malicious
user pays the penalty within a period of time t1.
If the malicious user pays the penalty, the
transaction is removed from P. If the malicious

user does not pay the penalty within a specified
period of time, the user is added to the blacklist
L, and the transaction TP is removed from the
list P.

(vi) Creating a new block: the miner collects all trans-
actions from the network for the r − th round and
builds a new block B which meets the following
conditions:

(a) It contains at least one transaction in D and one
in P if they are not empty.

(b) It contains a vote H(TA) on the candidate
transaction in the listR if the voting on TA is still
in process and the miner is willing to endorse.

(c) All transactions contained in it comply with the
usual transaction rules in the Ethereum En-
terprise blockchain, and the validation process
is shown in Figure 10.

Finally, if all blocks contained in the local chain C satisfy
Γ · validateBlock(B) � 1 and Γ · validateChain(C) � 1, the
miner extends the local chain C←C‖B and broadcasts the
extended chain to the blockchain network.

6. Security Analysis

In this section, we analyze the security of the fine-grained
and controllably redactable blockchain protocol with
harmful data forced removal in terms of correctness, con-
trolled redaction, and accountability.

Theorem 1 (correctness). The correctness of a blockchain
consists of the following three aspects:

(1) Chain growth: if the based immutable blockchain
protocol Γ satisfies chain growth, the extended editable
blockchain protocol Γ′ also satisfies chain growth.

(2) Chain quality: if the based immutable blockchain
protocol Γ satisfies chain quality, the extended edit-
able blockchain protocol Γ′ also satisfies chain growth
for any ρ> μ. Here, ρ denotes the ratio of blocks
containing the votes of the redacted transaction within
a period of time.

(3) Common prefix: if the based immutable blockchain
protocol Γ satisfies the common prefix, the extended
editable blockchain protocol Γ′ also satisfies the
common prefix.

Proof.

(1) Chain growth: we note that the redaction in Γ′
cannot reduce the length of the chain C by removing
a block from the chain. (us, the redact operations
have no effect on the length of the chain. In con-
clusion, Γ′ satisfies chain growth if Γ satisfies chain
growth.

(2) Chain quality: suppose the adversary A posts a
malicious redaction transaction T∗i for the previous

Received transaction T

Address ad contained in T is 
in L?

Yes Discard T

T is in R? Yes

T depends on the 
redacted data?

T is minded 
to chain?

Assume T is valid,
process as usual

Yes

Yes

No

No

No

Process T
as usual

No

Figure 10: (e verification of the received transaction T.
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transaction Ti. A mines at most μ ratio of blocks in
the voting phase because the adversary only has μ
computational power.(us, T∗i cannot be performed
due to ρ> μ. In conclusion, only the honest redaction
transaction T∗i can be performed and added to the
chain.

(3) Common prefix: if the chain C2 is not redacted, Γ′
runs as the immutable blockchain Γ. (us, Γ′ satisfies
the common prefix. If the chain C2 is redacted and
the redacted block B∗i replaces Bi in C2, the voting
phase for the block B∗i is completed, and enough
votes are received. In conclusion, the extended ed-
itable blockchain protocol Γ′ also satisfies the
common prefix. □

Theorem 2 (controlled redaction). In the proposed scheme,
for each PPTadversaryA, it is computationally infeasible to
generate a valid signature for the redacted transaction.

Proof. To prove this theorem, we consider two types of
adversaries. One of the adversaries is the adversary A1 who
does not possess the attributes’ set which satisfies the access
control policy. Another is the adversary A2, who tries to
redact the inadmissible portions of the transaction. In order
to show how A1 and A2 attack the redactable blockchain
protocol, we introduce the two games between the chal-
lengerC and adversariesA1 andA2, respectively. Firstly, we
define a game between the challenger C and the adversary
A1.

Game 1: in Game 1, both the challenger C and the
adversary A1 perform as defined in the security definition.

(i) Setup phase: the adversaryA1 does as in the “(reat
Model.”

(ii) Query phase: the adversary A1 does as in the
“(reat Model.”

(iii) Challenge phase: the adversary A1 adaptively
chooses the authorized user’s attributes’ set S

(A(S) � 0). (en,A1 runs SanitizeP3S algorithm to
generate the challenged signature σ∗ for the chal-
lenged transaction m∗. Finally, the adversary A1
sends (S, m∗, σ∗) to C.

(iv) Verify phase: the adversary A1 performs polyno-
mial queries as in the query phase. Consider the
adversary A1 has made L queries, and let
Q � skS,S, mi, Ai,Ai, σi􏼈 􏼉

[|Q|]
i�1 denote the set of in-

formation obtained through these queries. C runs
VerifyP3S(pkP3S, pk

Sig
P3S, A,A, m∗, σ∗) algorithm and

outputs a bit b0. If b0 � 1, C checks whether there
exists an i ∈ [|Q|], σ∗) such thatA(S) � 0. If there is
such an i, the challenger C outputs b1 � 1. Other-
wise, C outputs b1 � 0.

Suppose b1 � 1, that is, the adversaryA1 wins, we can say
that the adversaryA1 breaks the security of the policy-based
sanitizable signature because the adversary’s goal is to
correctly generate the valid signature σ′ for the transaction
m∗. According to the security of the policy-based sanitizable

signature (unforgeability), the probability of each adversary,
who does not possess the attributes’ set S such that
A(S) � 0, is negligible.

(en, we define a game between the challengerC and the
adversary A2.

Game 2: in Game 2, both the challenger C and the
adversary A2 perform as defined in the security definition.

(i) Setup phase: the adversaryA2 does as in the “(reat
Model.”

(ii) Query phase: the adversaryA2 does as the adversary
A2 in the query phase.

(iii) Challenge phase: the adversary A2 adaptively
chooses the authorized user’s attributes’ set S

(A(S) � 1). (en, A2 runs SanitizeP3S algorithm to
generate the challenged signature σ∗ for the chal-
lenged message m∗ which does not contain all in-
admissible blocks. Finally, the adversary A2 sends
(S, m∗, σ∗) to C.

(iv) Verify phase: the adversary A2 performs polyno-
mial queries as in the query phase. Consider the
adversary A2 has made L queries, and let
Q � skS,S, mi, Ai,Ai, σi􏼈 􏼉

[|Q|]

i�1 denote the set of in-
formation obtained through these queries. C runs
VerifyP3S(pkP3S, pk

Sig
P3S, A,A, m∗, σ∗) algorithm and

outputs a bit b0. If b0 � 1, C checks whether there
exists an i ∈ [|Q|], m∗ which does not contain all
inadmissible blocks. If there is such an i, the
challenger C outputs b1 � 1. Otherwise, C outputs
b1 � 0.

Suppose b1 � 1, that is, the adversaryA2 wins, we can say
that the adversaryA2 breaks the security of the policy-based
sanitizable signature because the adversary’s goal is to
correctly generate the valid signature σ′ for the transaction
m∗. According to the security of the policy-based sanitizable
signature (immutability), the probability of each adversary,
who redacts the inadmissible blocks, is negligible.

In conclusion, the proposed blockchain protocol ach-
ieves controlled redaction. In other words, only authorized
users can redact the admissible portions of the transaction
Ti. □

Theorem 3 (accountability). In the proposed blockchain
protocol, trusted authority (group manager) can extract the
identity of the originator of the transaction or the authorized
user from any valid witness with nonnegligible probability.

Proof. We prove accountability by a sequence of games.

(i) Game 0: as Game 0 in [16].
(ii) Game 1: as Game 0, but we replace crsΩ with the one

generated by (crsΩ, τ)←SIM1(1κ), i.e., the simula-
tor SIM1 takes the security parameter 1κ as the input
and then outputs (crsΩ, τ). Finally, the challengerC
keeps the trapdoor τ and starts simulating all proofs.

(iii) Assume towards contradiction that the adversary
behaves differently. We can then build an adversary
B which breaks the zero-knowledge property of the
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underlying proof system. (e reduction works as
follows. Our adversaryB receives crsΩ from its own
challenger and embeds it into PPP3S and generates
all other values honestly. All proofs are then gen-
erated using the oracle provided and embedded
honestly. (en, whatever A outputs is also output
by B. |Pr[S0] − Pr[S1]| is negligible, where Pr[SX]

denotes the advantage of the adversary in Game X.
Note that this also means that all proofs are now
simulated, even though they still prove valid
statements.

(iv) Game 2: as Game 1, but we replace crsΩ with the one
generated by (crsΩ, τ, ξ)←ξ1(1κ), i.e., the simulator
ξ1 takes the security parameter 1κ as the input and
then outputs (crsΩ, τ, ξ). Finally, the challenger C
keeps the trapdoors τ and ξ. Let E2 be the event that
A can distinguish this replacement with non-
negligible probability. Moreover, note that, by
definition, crsΩ is exactly distributed as in the prior
hop.

(v) As we only keep one additional value, i.e., ξ, this is
only an internal change. |Pr[S1] − Pr[S2]| is
negligible.

(vi) Game 3: as Game 2, but we abort if the adversary
outputs valid (pk∗, m∗, σ∗) for which we cannot (as
the holder of skSigP3S ) calculate pk which makes
JudgeP3S(pk

∗, pkSigP3S, pk, πP3S, σ∗, m∗) output 0. Let
this event be E3.
If E3 occurs, we have a bogus proof π contained in
σ∗ as it proves a false statement. (us, B proceeds
as in the prior game (doing everything honestly, but
using simulated proofs and simulated crsΩ) and can
simply return the statement claimed to be proven by
π and π itself. |Pr[S2] − Pr[S3]| is negligible.
In conclusion, the proposed blockchain protocol
achieves accountability. □

7. Performance

In this section, we first give functionality comparison among
our redactable blockchain protocol and several related
redactable blockchain protocols [11, 13–15]. (en, we an-
alyze the computational burden of our redactable blockchain
protocol through several experiments.

7.1. Functionality Comparison. We give functionality com-
parison among our scheme and the related schemes
[11, 13–15]. As shown in Table 2, our scheme is the only one
that satisfies all of the following properties: fine-grained
access control, controllable edit, accountability, and sup-
porting the redaction of both additional information and
UTXO. (e schemes in [11, 14] cannot support fine-grained
access control. (e scheme in [13] cannot effectively support
harmful data deletion. All of these related redactable
blockchain protocols cannot support controllable edit, ac-
countability, and the editing of both additional information
and UTXO.

7.2. Proof-of-Concept Implementation. To evaluate the
practicality of the proposed blockchain protocol, we im-
plement a full-fledged blockchain system in Python 3.5.3,
which is carried out on a desktop with an Intel Core (TM) i5-
4300 CPU @ 2.13GHz and 8.0GB RAM.

(e blockchain system can achieve all the basic func-
tionalities of Ethereum Enterprise. Separately, the block-
chain system, including a subset of Ethereum Enterprise’s
script language, allows the authorized user to redact the
transaction and theminer to delete the harmful data.We rely
on the PoW consensus mechanism as Ethereum Enterprise
does.

We evaluate the performance of the blockchain system
for chain validation in different scenarios. In order to
measure the cost time of chain validation, we validate
chains containing different number of blocks and re-
daction transactions. A new chain is created and validated
50 times in each experiment, and the cost time of chain
validation is the arithmetic mean of the run time of all
runs. Each chain consists of up to 50,000 blocks, which
approximate a one-year snapshot of the Ethereum En-
terprise. Each block includes 1000 transactions
(Figures 11–14).

(i) Overhead Compared to the Immutable Blockchain.
In order to evaluate the overhead of the redactable
blockchain protocol with no redactions per-
formed compared to the immutable blockchain,
in the series of experiments, the length of chains
ranges from 10,000 to 50,000 blocks. As shown in
Figure 11, the redactable blockchain protocol has
only a more tiny overhead than the immutable
blockchain. With the increase of the length of the
chain, the overhead is smaller. (e reason is that
the only extra step of the redactable blockchain is
to check if any votes are contained in the new
block. (e run time of this step is negligible
compared to the time of chain validating when the
length of the chain is larger enough.

(ii) Overhead by the Number of Redactions. In order to
evaluate the overhead of the redactable blockchain
protocol with the increasing number of redactions
compared to the redactable blockchain with no
redaction, in the series of experiments, the number
of redactions ranges from 1000 to 5000. As shown in
Figure 12, the overhead is linear in the number of
redactions because we need to collect the votes for
the redaction in the voting phase.

(iii) Overhead by the Number of Removals. In order to
evaluate the overhead of the redactable blockchain
protocol with the increasing number of removals
compared to the redactable blockchain with no
removal, in the series of experiments, the number of
removals ranges from 1000 to 5000. As shown in
Figure 13, the overhead is linear in the number of
removals because the miner generating the new
block needs to remove the harmful information
from the previous block.
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(iv) Overhead by the Voting Parameter ρ. In order to
evaluate the overhead of the redactable block-
chain protocol with different voting periods, in
the series of experiments, we set that the number
of redactions is 1000, and the threshold ratio of
the votes is ρ≥ (1/2). As shown in Figure 14, the
overhead is small and is most linear in the voting
period.

8. Conclusions

In this paper, we proposed a fine-grained and controllably
redactable blockchain with harmful data forced removal.
Our scheme not only supports the usual redaction of
transactions but also the forced removal of harmful infor-
mation in the blockchain. (e originator of the transaction

Table 2: Comparison of functionality among our redactable blockchain protocol and related protocols.

Protocols Fine-grained access control Controllable edit Harmful data deletion Accountability Data type
[11] × × √ × Additional information
[13] √ × × × Additional information
[14] × × √ × Additional information
Ours √ √ √ √ Additional information and UTXO
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could specify a fine-grained access control structure about
who could redact the transaction and which portions of the
transaction could be redacted. Any user could initiate a
transaction that contains the index of the block which in-
cluded harmful information without spending transaction
fees. If the harmful information is contained in a block, it
was forced to be deleted by the miner who created the new
block. (e user who provided the index of the block could
receive the reward which was borne by the malicious user.
(e malicious user would be blacklisted if rewards were not
paid within a period of time, and any transaction about the
user would not be performed later. Furthermore, the scheme
supported not only the redaction of additional data but also
UTXO. Finally, we demonstrated that the scheme was secure
and feasible via formal security analysis and proof-of-con-
cept implementation.

Note that the proposed fine-grained and controllably
redactable blockchain protocol with harmful data forced
removal is suitable for permissioned blockchains, such as
Hyperledger, Ethereum Enterprise, Ripple, and Quorum.
(ere is another type of blockchain called permissionless
blockchain, such as Bitcoin and Ethereum. Constructing the
redactable permissionless blockchain protocol is a challenge
and an interesting open problem. In our future work, we will
also focus on designing more sophisticated solutions to the
redactable permissionless blockchain protocol.

Appendix

A. Security Definition of the Improved Policy-
Based Sanitizable Signature

In the following, we give the security definition of the im-
proved policy-based sanitizable signature. Due to the limited
space, we select several security aspects to highlight, and the
rest of the security aspects can be seen in [16].

Definition 6. (unforgeability). In order to formally describe
the unforgeability of the signature, we introduce a game be-
tween the challenger C and the adversaryA to show how the
adversary A is against the unforgeability of the signature.
Trusted authority (groupmanager) is viewed as a challengerC,
and the unauthorized user is viewed as an adversaryA in our
security definition. (is game includes the following phases:

(i) Setup phase: firstly, the challenger C runs the
ParGenP3S and SetupP3S algorithm to generate the
public parameters PPP3S and the master private/
public key pair (skP3S, pkP3S). (en, C holds the
master private key skP3S locally. Finally,C sends the
master public key pkP3S and the public parameters
PPP3S to the adversary A.

(ii) Query phase:

(a) KGenSanP3S queries: the adversary A queries
sanitizer’s private/public key pair for the public
parameters PPP3S. C runs KGenSanP3S algo-
rithm and returns the private/public key pair
(x2, y2) to A.

(b) Sign queries: the adversary A queries the sig-
nature for the master public key pkP3S, the
signature for the message m, the set of admis-
sible blocks A, and the access structure A. C
runs KGenSigP3S to generate the signing key and
then runs Sign algorithm to produce the sig-
nature σ. Finally,C returns the signature σ toA.

(c) AddSanP3S queries: the adversary A queries the
sanitizer’s attribute key for skP3S, pk

San
P3S, and the

attributes’ set S such that A(S) � 0. C runs
AddSanP3S algorithm and returns the sanitizer’s
attribute key skS←(σskS, skS′) to A.

(d) VerifyP3S queries: the adversary A queries the
verification result for pkP3S, pk

Sig
P3S, σ, and m. C

runs VerifyP3S algorithm and returns the result
to A.

(e) SanitizeP3S queries: the adversary A queries the
sanitizable signature for pkP3S, pk

Sig
P3S, sk

San
P3S, skS,

m, σ, and m′. C runs SanitizeP3S algorithm and
returns the new signature σ′ to A.

(f ) ProofP3S queries: the adversary A queries
(πP3S, pk) for pkP3S, sk

Sig
P3S, σ, and m. C runs

ProofP3S algorithm and returns (πP3S, pk) toA.
(g) JudgeP3S queries: the adversary A queries the

judge result for pkP3S, sk
Sig
P3S, σ, and m. C runs

JudgeP3S algorithm and returns the result to A.

(iii) Challenge phase: the adversary A adaptively
chooses the authorized user’s attributes’ set S

(A(S) � 0). (en, A runs SanitizeP3S algorithm to
generate the challenged signature σ∗ for the chal-
lenged message m∗. Finally, the adversary A sends
(S, m∗, σ∗) to C.

(iv) Verify phase: the adversaryA performs polynomial
queries as in the query phase. Consider the ad-
versary A has made L queries, and let
Q � skS,S, mi, Ai,Ai, σi􏼈 􏼉

[|Q|]

i�1 denote the set of in-
formation obtained through these queries. C runs
VerifyP3S(pkP3S, pk

Sig
P3S, A,A, m∗, σ∗) algorithm and

outputs a bit b0. If b0 � 1, C checks whether there
exists an i ∈ [|Q|], σ∗ such that A(S) � 0. If there is
such an i, the challenger C outputs b1 � 1. Other-
wise, C outputs b1 � 0.

We say that the adversary A wins if b1 � 1. In the above
game, we want to show that the adversary A, who does not
possess the attributes’ set S such that A(S) � 0, should not
generate the new valid signature. (e adversary’s goal is to
correctly generate the valid signature σ′ for the message m∗.
We set the advantage of a polynomial-time adversary A in
this game to be Pr[b1 � 1]. We say the proposed scheme
satisfies the unforgeability of the signature if for any poly-
nomial-time adversary A, Pr[b1 � 1]< (1/poly(n)) for suf-
ficiently large n, where poly stands for a polynomial function.

Definition 7. (immutability). In order to formally describe
the immutability of the signed data, we introduce a game
between the challengerC and the adversaryF to show how
the adversary F is against the immutability of the signed
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data. Trusted authority (group manager) is viewed as a
challenger C, and the authorized sanitizer is viewed as an
adversary F in our security definition. (is game includes
the following phases:

(i) Setup phase: firstly, the challenger C runs the
ParGenP3S and SetupP3S algorithm to generate the
public parameters PPP3S and the master private/
public key pair (skP3S, pkP3S). (en, C holds the
master private key skP3S locally. Finally,C sends the
master public key pkP3S and the public parameters
PPP3S to the adversary F.

(ii) Query phase:

(a) KGenSanP3S queries: the adversary F queries
sanitizer’s private/public key pair for the public
parameters PPP3S. C runs KGenSanP3S algo-
rithm and returns the private/public key pair
(x2, y2) to F.

(b) Sign queries: the adversary F queries the sig-
nature for the master public key pkP3S, the
signature for the message m, the set of admis-
sible blocks F, and the access structure A. C
runs KGenSigP3S to generate the signing key and
then runs Sign algorithm to produce the sig-
nature σ. Finally, C returns the signature σ to
F.

(c) AddSanP3S queries: the adversary F queries the
sanitizer’s attribute key for skP3S, pk

San
P3S, and the

attributes’ set S such that A(S) � 1. C runs
AddSanP3S algorithm and returns the sanitizer’s
attribute key skS←(σskS, skS′) to F.

(d) VerifyP3S queries: the adversary F queries the
verification result for pkP3S, pk

Sig
P3S, σ, and m. C

runs VerifyP3S algorithm and returns the result
to F.

(e) SanitizeP3S queries: the adversary F queries the
sanitizable signature for pkP3S, pk

Sig
P3S, sk

San
P3S, skS,

m, σ, and m′. C runs SanitizeP3S algorithm and
returns the new signature σ′ to F.

(f ) ProofP3S queries: the adversary F queries
(πP3S, pk) for pkP3S, sk

Sig
P3S, σ, and m. C runs

ProofP3S algorithm and returns (πP3S, pk) toF.
(g) JudgeP3S queries: the adversary F queries the

judge result for pkP3S, sk
Sig
P3S, σ, and m. C runs

JudgeP3S algorithm and returns the result to F.

(iii) Challenge phase: the adversary F adaptively
chooses the authorized user’s attributes’ set S

(A(S) � 1). (en, F runs SanitizeP3S algorithm to
generate the challenged signature σ∗ for the chal-
lenged message m∗ which does not contain all in-
admissible blocks. Finally, the adversary F sends
(S, m∗, σ∗) to C.

(iv) Verify phase: the adversaryF performs polynomial
queries as in the query phase. Consider the ad-
versary F has made L queries, and let
Q � skS,S, mi, Ai,Ai, σi􏼈 􏼉

[|Q|]

i�1 denote the set of in-
formation obtained through these queries. C runs

VerifyP3S(pkP3S, pk
Sig
P3S, A,A, m∗, σ∗) algorithm and

outputs a bit b0. If b0 � 1, C checks whether there
exists an i ∈ [|Q|], m∗ which does not contain all
inadmissible blocks. If there is such an i, the
challenger C outputs b1 � 1. Otherwise, C outputs
b1 � 0.

We say that the adversaryF wins if b1 � 1. In the above
game, we want to show that the adversaryF, who redacts the
inadmissible blocks, should not generate the new valid
signature. (e adversary’s goal is to correctly generate the
valid signature σ′ for the message m∗. We set the advantage
of a polynomial-time adversary F in this game to be
Pr[b1 � 1]. We say the proposed scheme satisfies the
unforgeability of the signature if for any polynomial-time
adversary F, Pr[b1 � 1]< (1/poly(n)) for sufficiently large
n, where poly stands for a polynomial function.

Definition 8. (traceability). We say an improved policy-
based sanitizable signature supports traceability if the
trusted authority (group manager) can extract signer’s
identity from any valid signature with nonnegligible
probability.

B. Security Analysis of the Improved Policy-
Based Sanitizable Signature

In this section, we analyze the security of the improved
policy-based sanitizable signature in terms of unforgeability,
immutability, and traceability.

Theorem 4 (unforgeability). Any PPTadversaries can forge
a policy-based sanitizable signature for some message with
negligible probability.

Proof. To prove unforgeability, we use a sequence of games:

(i) Game 0: as Game 0 in [16].
(ii) Game 1: as Game 0, but we replace crsΩ with the one

generated by (crsΩ, τ)←SIM1(1κ), i.e., the simula-
tor SIM1 takes the security parameter 1κ as the input
and then outputs (crsΩ, τ). Finally, the challengerC
keeps the trapdoor τ and starts simulating all proofs.
Assume towards contradiction that the adversary
behaves differently. We can then build an adversary
B which breaks the zero-knowledge property of the
underlying proof system. (e reduction works as
follows. Our adversaryB receives crsΩ from its own
challenger and embeds it into PPP3S and generates
all other values honestly. All proofs are then gen-
erated using the oracle provided and embedded
honestly. (en, whatever A outputs is also output
by B. |Pr[S0] − Pr[S1]| is negligible. Note that this
also means that all proofs are now simulated, even
though they still prove valid statements.

(iii) Game 2: as Game 1, but we replace crsΩ with the one
generated by (crsΩ, τ, ξ)←ξ1(1κ), i.e., the simulator
ξ1 takes the security parameter 1κ as the input and
then outputs (crsΩ, τ, ξ). Finally, the challenger C
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keeps the trapdoors τ and ξ. Let E2 be the event that
A can distinguish this replacement with non-
negligible probability. Moreover, note that, by
definition, crsΩ is exactly distributed as in the prior
hop.
As we only keep one additional value, i.e., ξ, this is
only an internal change. |Pr[S1] − Pr[S2]| is
negligible.

(iv) Game 3: as Game 2, but we abort if the adversary
was able to generate a signature σ∗m on a string never
generated by the signing oracle. Let this event be E3.
Assume, towards contradiction, that event E3 occurs.
We can then construct an adversary B which breaks
the unforgeability of the underlying signature scheme,
namely,B receives pk of the signature scheme.(is is
embedded in pkΣ′ , while all other values are generated
as in Game 2. All oracles are simulated honestly, but
SignP3S′ . (e only change is, however, that the gen-
eration of each σm is outsourced to the signature
generation oracle. (en, whenever E3 occurs, B can
return ((pkP3S, pk

Sig
P3S, A, H(i‖m!A), h,A), σ∗m). (ese

values can easily be compiled using A’s output, i.e.,
(m∗, σ∗). Note that this already includes that the
adversary cannot temper with A. |Pr[S2] − Pr[S3]| is
negligible.

(v) Game 4: as Game 3, but we abort if the adversary
was able to generate (m∗, σ∗) for which m∗ should
not have been derivable. Let this event be E4.
Assume, towards contradiction, that event E4 oc-
curs. We can then construct an adversary B which
breaks the strong insider collision resistance of the
used PCH, namely, B receives pkPCH of the PCH.
(is is embedded in pkP3S, while all other values are
generated as in Game 3. (e GetSan oracle is
simulated honestly. Calls to the SignP3S′ oracle are
done honestly, but the hash is generated using the
HashPCH′ oracle. Calls to the AddSanP3S′ oracle are
simulated as follows. If a key for a simulated san-
itizer (obtained by a call to the GetSan oracle) is to
be generated, it is rerouted to KGenPCH″ . If the
adversary wants to get a key for itself, it is rerouted
to the KGenPCH′ oracle, and the answer is embedded
honestly in the response. Sanitization requests are
performed honestly (but simulated proofs), with the
exception that adaptions for simulated sanitizers are
done using the Adaptpch′ oracle. So far, the distri-
butions are equal. (en, whenever the adversary
outputs (m∗, σ∗) such that the winning conditions
are fulfilled, our reduction B can return
(m∗, r∗, m′

∗
, r′
∗
, h∗). (e values can be compiled

from (m∗, σ∗) and the transcript from the signing
oracle (note that we already excluded that the ad-
versary can temper with the hash h).
|Pr[S3] − Pr[S4]| is negligible.

(vi) Game 5: as Game 4, but we abort if the adversary
was able to generate (m∗, σ∗) but has never made a
call AddSanP3S′ . Let this event be E5.

Assume, towards contradiction, that event E5 occurs.We
can then construct an adversary B which breaks the
unforgeability of used Σ or the one-wayness of the used one-
way function f, namely, B receives pkΣ of Σ and f, and
f(x) � y from its own challenger.(is is embedded in pkP3S
(and, of course, the public parameters), while all other values
are generated as in Game 4. y is embedded in pkSigP3S. For
signing, the proofs are already simulated, and thus, x is not
required to be known. For each call to AddSanP3S for keys for
which the adversary knows the corresponding secret keys,B
calls its signature oracle to obtain such a key. For simulated
sanitizers, those signatures do not need to be obtained as the
proofs are already simulated. (en, whenever the adversary
outputs (m∗, σ∗), B extracts values (x1, x2, skΠ, σ′). If
f(x1) � y, B can return x1 to break the one-wayness of f.
In the other case, B can return ((f(x2), pkP3S), σ′) as its
own forgery attempt for Σ. If extraction fails or a wrong
statement was proven, SSE does not hold. A reduction is
straightforward. |Pr[S4] − Pr[S5]| is negligible. Now, the
adversary can no longer win the unforgeability game; this
game is computationally indistinguishable from the original
game, which concludes the proof. □

Theorem 5 (immutability). For each PPT adversary, the
advantage of generating valid signatures for altered im-
mutable parts is negligible.

Proof. To prove immutability, we use a sequence of games:

(i) Game 0: as Game 0 in [16].
(ii) Game 1: as Game 0, and we abort if the adversary

outputs (pk∗, m∗, σ∗) such that the winning con-
ditions are met. Let this event be E1.

Assume, towards contradiction, that event E1 occurs.We
can then build an adversary B which breaks the unforge-
ability of the used signature scheme, namely, we know thatA
(which also contains the length of the message and all
nonmodifiable blocks along with their location), along with
pkPCH, is signed. As, however, by definition, the message m∗

must be different from any derivable message, A w.r.t. pkPCH
was never signed in this regard. (us, (pk∗, pkSigP3S,
A∗, H∗(i‖m!A), h∗,A∗) was never signed by the signer.

Constructing a reductionB is now straightforward. Our
reduction B receives the public key pkΣ′ (along with the
public parameters) from its own challenger. (is public key
is embedded as pkΣ′. All other values are generated honestly.
If a signature σm is to be generated,B asks its own oracle to
generate that signature, embedding it into the response A

receives. At some point, A returns (pk∗, m∗, σ∗). (e
forgery can be extracted as described above. |Pr[S0] − Pr[S1]|

is negligible. We stress that, by construction, a sanitizer
always exists. Now, the adversary can no longer win the
immutability game; this game is computationally indistin-
guishable from the original game, which concludes the
proof. □

Theorem 6 (traceability). Trusted authority (group man-
ager) can extract the identity of the originator of the
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transaction or the authorized user from any valid witness
with nonnegligible probability.

Proof. We prove traceability by a sequence of games:

(i) Game 0: as Game 0 in [16].
(ii) Game 1: as Game 0, but we replace crsΩ with the one

generated by (crsΩ, τ)←SIM1(1κ), i.e., the simula-
tor SIM1 takes the security parameter 1κ as the input
and then outputs (crsΩ, τ). Finally, the challengerC
keeps the trapdoor τ and starts simulating all proofs.
Assume towards contradiction that the adversary
behaves differently. We can then build an adversary
B which breaks the zero-knowledge property of the
underlying proof system. (e reduction works as
follows. Our adversaryB receives crsΩ from its own
challenger and embeds it into PPP3S and generates
all other values honestly. All proofs are then gen-
erated using the oracle provided and embedded
honestly. (en, whatever A outputs is also output
by B. |Pr[S0] − Pr[S1]| is negligible. Note that this
also means that all proofs are now simulated, even
though they still prove valid statements.

(iii) Game 2: as Game 1, but we replace crsΩ with the one
generated by (crsΩ, τ, ξ)←ξ1(1κ), i.e., the simulator
ξ1 takes the security parameter 1κ as the input and
then outputs (crsΩ, τ, ξ). Finally, the challenger C
keeps the trapdoors τ and ξ. Let E2 be the event that
A can distinguish this replacement with non-
negligible probability. Moreover, note that, by
definition, crsΩ is exactly distributed as in the prior
hop.
As we only keep one additional value, i.e., ξ, this is
only an internal change. |Pr[S1] − Pr[S2]| is
negligible.

(iv) Game 3: as Game 2, but we abort if the adversary
outputs valid (pk∗, m∗, σ∗) for which we cannot (as
the holder of skSigP3S ) calculate pk which makes
JudgeP3S(pk

∗, pkSigP3S, pk, πP3S, σ∗, m∗) output 0. Let
this event be E3.

If E3 occurs, we have a bogus proof π contained in σ∗ as
it proves a false statement. (us, B proceeds as in the prior
game (doing everything honestly, but using simulated proofs
and simulated crsΩ) and can simply return the statement
claimed to be proven by π and π itself. |Pr[S2] − Pr[S3]| is
negligible. □
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