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Revisiting Local Descriptor for Improved Few-Shot
Classification
JUN HE, RICHANG HONG∗, and XUELIANG LIU, Intelligent Interconnected Systems Laboratory
of Anhui Province, Hefei University of Technology, China and Institute of Artificial Intelligence, Hefei
Comprehensive National Science Center, China
MINGLIANG XU, Zhengzhou University, China
QIANRU SUN, Singapore Management University, Singapore

Few-shot classification studies the problem of quickly adapting a deep learner to understanding novel classes
based on few support images. In this context, recent research efforts have been aimed at designing more and
more complex classifiers that measure similarities between query and support images, but left the importance
of feature embeddings seldom explored. We show that the reliance on sophisticated classifiers is not necessary,
and a simple classifier applied directly to improved feature embeddings can instead outperform most of
the leading methods in the literature. To this end, we present a new method named DCAP for few-shot
classification, in which we investigate how one can improve the quality of embeddings by leveraging Dense
Classification and Attentive Pooling. Specifically, we propose to train a learner on base classes with abundant
samples to solve dense classification problem first and then meta-train the learner on a bunch of randomly
sampled few-shot tasks to adapt it to few-shot scenario or the test time scenario. During meta-training, we
suggest to pool feature maps by applying attentive pooling instead of the widely used global average pooling
(GAP) to prepare embeddings for few-shot classification. Attentive pooling learns to reweight local descriptors,
explaining what the learner is looking for as evidence for decision making. Experiments on two benchmark
datasets show the proposed method to be superior in multiple few-shot settings while being simpler and more
explainable. Code would be made public at: https://github.com/Ukeyboard/dcap/.
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1 INTRODUCTION
Deep neural networks have achieved remarkable success in a variety of fields, such as object
detection [4, 35], segmentation [18, 76], action recognition [52, 61], image captioning [3, 78], cross-
modal retrieval [71, 72] and especially image classification [22, 39, 59, 60], since AlexNet [26]
won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. However, the
success hinges on the ability to apply gradient-based optimization routines to high-capacity models
given hundreds if not thousands of training examples as supervision [49]. If the training data
is scare, studies [11, 65] have shown that deep learning models would fail to learn. In contrast,
humans can learn fast even when taught by shown a few examples. To give deep learning models
the generalization ability of humans, recently there has been an increasing interest in few-shot
classification [11, 17, 21, 24, 37, 40, 42, 44, 48, 53, 69, 77].
Few-shot classification aims to tackle the problem of learning a novel set of classes based on

few support images. Generally, given a learner that is conceptually composed of an embedding
network and a classifier, one straightforward approach towards this problem is transfer learning,
i.e. fine-tuning a pre-trained embedding network, as well as a newly initialized classifier, on the
few support images so as to adapt them to the target recognition task, since transfer learning is
proven effective in conventional supervised learning scenarios. Whereas, in few-shot setting, the
naive learning procedure is at high risk of overfitting due to the lack of training examples. Data
augmentation or regularization techniques [16, 66] may alleviate overfitting by increasing data
diversity or shrinking model searching space, yet they can not solve it. To tackle the challenge,
Vinyals et al. [65] introduced an innovative learning paradigm called meta-learning, by following
the idea of “learning to learn”. Instead of directly optimizing the learner upon the few support
images, meta-learning assumes the existence of a set of base classes with sufficient examples per
class, divided into disjoint meta-training, meta-validation and meta-testing splits, and proposes to
train the learner on a collection of few-shot tasks randomly sampled from the meta-training split
(also referred as meta-training set), targeting at learning transferable knowledge from these similar
tasks to facilitate the learning of novel classes when applied to a new task. Effective and elegant,
meta-learning has become the de facto solution to few-shot classification.
While more and more meta-learning approaches are proposed, we notice that most of them

concentrate on reformulating the classifier that is responsible for measuring the similarities between
query and support images, but leave the feature embeddings that are used for classification seldom
explored. For example, Vinyals et al. [65] proposed an attention-based classifier by comparing
a query against all support images. Snell et al. [54] computed the squared Euclidean distances
from the query to all category prototypes for classification. Sung et al. [58] and He et al. [17]
formulated the classifier as a relation network that learns to estimate the similarity of a query-
support pair. Zhang et al. [77] in addition proposed an uncertainty-aware classifier, by taking
observation noises in the query-support similarities into account. As for the feature embeddings,
these methods typically apply global average pooling (GAP) over feature maps to simply prepare
embeddings for the classifier that follows. We argue that the undue emphasis on the classifier in
previous work overly undervalues the importance of feature embeddings. Thus, in an orthogonal
direction, we propose to tackle few-shot classification differently from the perspective of acquiring
more discriminative and robust embeddings in this work. To be specific, we follow a two-stage
training paradigm for model optimization and representation learning, namely pre-training and
meta-finetuning. Whenever a set of novel classes with few support images and a set of base classes
with sufficient examples are provided, our first step is to train the learner on the base classes to
perform large-scale classification with standard cross-entropy loss. After that, we fine-tune the
learner on randomly sampled few-shot tasks in the meta-training set to adapt it to the few-shot
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scenario or the test time scenario. Without bells and whistles, we demonstrate that the two-stage
training is able to achieve good results and, especially, the pre-training can bring more than 4%
improvement on average over models meta-trained from scratch, which indicates the effectiveness
of good embeddings.
In addition to the two-stage training, we further propose to leverage dense classification and

attentive pooling to improve the quality of feature embeddings. Particularly, we propose to perform
dense classification over local descriptors in the pre-training stage. In meta-finetuning, we develop
an attentive pooling strategy for summarizing local descriptors into a compact image-level embed-
ding for few-shot classification. The proposition of dense classification is based on the observation
that local descriptors within the same feature map generated by a GAP-pretrained model1 often
exhibit severe semantic discrepancy2 (see Fig 1). The discrepancy is somewhat counterintuitive
because convolutional layers are technically locally connected layers and each local descriptor in
the final feature map thus generally has a large enough receptive field that probably covers the
same semantic region of the input image. We show that dense classification in a DC-pretrained
model3 can eliminate the discrepancy by enforcing semantic consistency among local descriptors.
The idea of attentive pooling, on the other hand, is inspired by two insights. First, not all local
image regions are equally representative to describe the target object in image. For example, as
illustrated in Fig 1, the target object could only occupy a small proportion of the image, or even be
contaminated by distractors. Second, the GAP strategy used in existing work does not deal with
spatial information and forces to attach equal importance to each local descriptor, which not only
causes information loss but also hinders the learner from attending to informative image regions,
affecting the classifier negatively. By attentive pooling, we aim to select more informative local
descriptors to build better image embeddings for the good of performance. We find that such a
pooling strategy can consistently outperform its GAP counterparts.
We dub our method DCAP, i.e. Dense Classification pre-training plus meta-finetuning with

Attentive Pooling for few-shot classification. Our contributions are as follows:
• Firstly, we formulate meta-learning as a two-stage training paradigm, where we introduce a
dense classification pre-training stage to reduce semantic discrepancy among local descriptors
and devise an attentive pooling strategy in meta-finetuning to select more informative local
descriptors for few-shot classification.

• Secondly, we justify the importance of pre-training in the acquisition of strong represen-
tation ability and validate the effectiveness of meta-finetuning in the acquisition of fast
generalization ability. We show that (i) pre-training can bring more than 4% improvement
on average over models meta-trained from scratch, but (ii) a pre-trained model in inference
mode performs no better than random guessing unless an extra meta-finetuning is carried
out.

• Last but not least, we demonstrate that the reliance on sophisticated classifier in prior
art is not necessary and set up a new baseline where a simple nearest-centroid classifier
outperforms most of the leading methods by a large margin. On basis of empirical evaluation
onminiImagenet [65] and tieredImagenet [45] datasets, we provide insights for best practices
in implementation.

1A GAP-pretrained model refers to the model in which feature maps are pooled into feature embeddings by applying GAP
before classification in the pre-training stage.
2By semantic discrepancy, we mean two local descriptors have a small cosine similarity score (e.g. 0.1) but they ought to
have a big one (e.g. 1.0).
3A DC-pretrained model refers to the model pre-trained with dense classification over local descriptors enabled in the
pre-training stage.
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Fig. 1. Cosine similarities between local descriptors. From top to bottom: sample images, similarities
between local descriptors in the feature map generated by a GAP-pretrained model, and similarities between
local descriptors in the feature map generated by a DC-pretrained model. From left to right: salient target
object in the middle (ideal example for training and testing), small target object in clear background, and
small target object contaminated by distractors.

2 RELATEDWORK
2.1 Meta-learning for Few-shot Classification
Meta-learning provides a paradigm where a learner gains experience over plenty of related but
distinguished tasks and thereafter uses the experience to efficiently solve similar but previously
unseen tasks [70]. This ‘learning-to-learn’ is recognized to show many benefits, including but not
limited to data and compute efficiency [20]. To learn from few examples, few-shot classification
thus has widely adopted this very paradigm and achieved promising results. Approaches in this
line can be broadly grouped into two: optimization-based [1, 11, 28, 33, 41, 44, 48] and metric-
based [17, 24, 29, 42, 54, 65]. In this part, we briefly review the two branches and cite some known
work in the literature. For a complete list of recent work on meta-learning, we refer readers to [2, 20].

Optimization-based approaches intend to train a meta-learner either to learn a general opti-
mization algorithm as an alternative of the SGD optimizer for updating the target learner during
training, or to learn a good initialization of the learner that allows for quick adaptation to a new
task in a small number of model updating with a small amount of training data. Representative
work in this branch include Meta-learner LSTM [44], MAML [11] and the variants of MAML,
such as Reptile [41], LEO [48], MetOptNet [28] and ALFA [1], to name a few. In Meta-learner
LSTM, the authors described an LSTM-based model that is trained to discover both a task-common
initialization for the learner’s parameters, as well as an update rule for updating the learner’s
parameters. MAML proposed a tiered meta-learning paradigm in which a good initialization of
the learner’s parameters is slowly extracted in its outer-loop training and a fast adaptation within
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several gradient steps is explicitly enforced in the inner-loop fine-tuning. LEO recognized the
difficulties of directly operating on high-dimensional parameters in few-shot setting. Consequently,
it learned a low-dimensional latent space in which optimization-based meta-learning is performed
and from which the high-dimensional parameters can be generated. While optimization-based
approaches have advanced few-shot classification a lot, the efforts they have made are largely
made to advance the meta-learning algorithm [1, 33, 41], with little attention being paid to feature
embeddings. Lately, Raghu et al. [43] investigated the effectiveness of MAML and suggested that the
performance of optimization-based meta-learning is mainly determined by the quality of the learned
embeddings. This finding is very coherent with our emphasis on the importance of high-quality
feature embeddings.
Metric-based approaches normally train the learner to learn an easily transferable embedding

space, where ideally datapoints in the same class keep close to each other and datapoints from
different classes stay far apart. The core idea is related to nearest neighbor algorithms and deep
metric learning [36, 73]. In general, metric-based approaches would transform input data into lower
dimensional embeddings first and then use the embeddings to design proper classifier for clustering
or measuring their similarities. For example, Vinyals et al. [65] presented Matching Networks
which employs an attention mechanism to derive a weighted k-NN classifier. Snell et al. [54]
took the mean vector of support images belonging to the same class as prototype and introduced
a nearest-centroid classifier, i.e. Prototypical Networks. TADAM [42] introduced metric-scaling,
task conditioning and auxilary co-training to boost the performance of Prototypical Networks.
Li et al. [29] further introduced an adaptive margin loss to help separate samples from different
classes. To overcome limitations of using pre-defined distance metrics (e.g. cosine distance [65] and
Euclidean distance [54]) for classification, Sung et al. [58] and He et al. [17] also formulated the
distance metric as a learnable network in order to learn a generic metric that better suits few-shot
setting. In this work, we employ a simple nearest-centroid classifier that is similar to the one
in Prototypical Networks for few-shot classification. But unlike Prototypical Networks who are
famed for the proposed classifier, we focus on producing more powerful embeddings to support the
classifier, by explicitly proposing to leverage dense classification and attentive pooling to improve
the quality of feature embeddings.

2.2 Towards Improving Feature Embeddings
There is a family of meta-learning approaches that devote to improving feature embeddings. Satorras
and Estrach [50] and Kim et al. [25] explored graph neural networks in the context of few-shot
classification and presented graphical models that enhance embeddings by borrowing information
from neighbors in a graph. Similarly, [17, 30, 46] presented graph-like transductive algorithms that
take all unlabeled query images into the embedding propagation procedure so that information
in the unlabeled query images can be leveraged for embedding enhancement. [16, 66] viewed the
problem differently. They presented generative algorithms to generate new training examples, and
proposed to learn better embeddings from more training examples with larger intra-class diversity.
In [56], Su et al. studied the effectiveness of utilizing self-supervised learning (SSL) techniques in
few-shot setting. SSL utilizes the structure information contained already in an image to facilitate
the learning of representations, having been well studied in traditional unsupervised learning with
large unlabeled datasets [9, 13, 27]. Pre-training on large-scale dataset is able to yield embeddings
of high quality. Dhillon et al. [8] and Chen et al. [7] both showed that fine-tuning a well pre-trained
embedding network can produce results rivaling far more complex algorithms in the low-data
regime. Tian et al. [62] also demonstrated that learning supervised or self-supervised representation
on a large-scale dataset, followed by learning a linear classifier on top of this representation, could
outperform leading few-shot approaches.
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2.3 Local Descriptors in Few-shot Classification
In existing few-shot classification approaches, feature maps are usually pooled or flattened into
embedding vectors before classification. In [31], Li et al. proposed to leverage local descriptors for
better classification. They built an image-to-class classifier in which each class is represented by all
local descriptors from support images belonging to that class, and computed the image-to-class
similarity score by summing the similarities between each local descriptor in a query image and its
k-nearest neighbors in the local descriptor space of that class. Wu et al. [68] introduced a deformable
embedding network to embed an image as a set of local descriptors. They in addition proposed
to consider spatial relationship of semantic objects in two images when computing similarity
scores for classification. Likewise, given an image represented as a set of local descriptors, [21] and
[24] proposed to adaptively match two images to highlight relevant regions so as to build more
discriminative embeddings. We donot follow the complex image-to-image adaptation but instead
present a simple attentive pooling to highlight informative regions. The assumption is that, relevant
regions in two images would stand out spontaneously if they are the key to correct classification.

2.4 Attention in Few-shot Classification
An early adoption of attention in few-shot classification isMatching Networks [65], where Vinyals et
al. proposed to attentively propagate label information from support images to construct the logits
of a query image for classification. Laterly, Wu et al. [68] proposed a dual correlation attention
mechanism to overcome sensitivity to spatial locations of semantic objects in two images when
comparing them for similaritymeasurement in the relation network. Hou et al. [21] presented a cross
attention mechanism to highlight relevant regions in two images to enhance feature discriminability.
Jiang et al. [24] developed an attention-based meta-reweighting strategy to adapt the embeddings
of query images by incorporating the embeddings of support images. The image-to-class classifier
proposed in [31] can also be explained as an application of attention mechanism, especially in its
finding k-nearest neighbors of a query local descriptor. Other related work include graph-based
methods [17, 25, 30, 37, 46, 50] and Transformer-based method [10]. Graph-based methods are
intrinsically related because the message passing mechanism in graph is usually interpreted as an
attention-based information propagation action. As for Transformer [64], it is a born attention-based
framework.

3 METHODOLOGY
We consider a learner that adopts a nearest-centroid classifier and propose to train the learner by
following the two-stage training paradigm described in §1, i.e. dense classification pre-training
and meta-finetuning with attentive pooling. We find that the two-stage training ensures a set
of high-quality embeddings, upon which even the simple classifier can achieve results that are
competitive or better than most of the leading few-shot learning approaches. In this section, we
start by establishing preliminaries about problem definition and meta-learning in §3.1; then we
introduce the nearest-centroid classifier employed by our method in §3.2; finally, we detail the
two-stage training paradigm in §3.3 and §3.4.

3.1 Few-shot Classification with Meta-learning
A formal definition of few-shot classification considers the well-organized N -way K-shot few-
shot setting, where the target task T = {Dtrain ,Dtest } contains Ns = N × K labelled support
images Dtrain = {(xsi ,y

s
i )}

Ns
i=1 with y

s
i ∈ Cnovel and Nq unlabeled query images Dtest = {xqi }

Nq
i=1

from the same label space. Cnovel = [c1, c2, ..., cN ] is the set of novel classes to learn in the task.
Assuming a learner A(·;Θ) that is conceptually composed of two parts: an embedding network

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2022.



Revisiting Local Descriptor for Improved Few-Shot Classification 1:7

fθ : X → Rd×h×w and a classifier дφ : Rd → RN , few-shot classification aims to adapt the learner
to correctly label each query image in Dtest based on the supervision provided in Dtrain with the
following objective

Θ̂ = argmin
Θ

L(Dtest | Dtrain ;Θ) + R(Θ), (1)

where Θ = (θ ,φ) is the learner’s parameters, L is the loss function and R is the regularization
term, e.g. weight decay.

Optimizing the learner directly on the few support images in Dtrain is at high risk of overfitting.
Meta-learning presents an efficient way for model optimization in such an extremely low-data
regime. In meta-learning, we would resort to an extra dataset Dbase that has a disjoint label space
Cbase (i.e. Cbase ∩Cnovel = ∅) with sufficient samples per class, and train the learner on a collection
of few-shot tasks randomly sampled from Dbase . Conventionally, the dataset Dbase is divided
into disjoint meta-training, meta-validation and meta-testing splits. From the meta-training split,
we are allowed to sample a set of training tasks Dtrain

meta = {(Dtrain
i ,Dtest

i )}Ii=1, where each task
Ti = (Dtrain

i ,Dtest
i ) instantiates an N -way K-shot few-shot classification problem that mimics

the target task T . The learner is then trained to minimize the average test error on Dtrain
meta , i.e.

Θ⋆ = argmin
Θ
ETi ∈Dtrain

meta
[L(Dtest

i | Dtrain
i ;Θ)] + R(Θ). (2)

We also randomly sample a family of few-shot tasks Dval
meta/Dtest

meta from the meta-validation/meta-
testing split. Dval

meta is used to monitor the learning process for model selection. And, the average
test error onDtest

meta is taken as an indicator of how the learner generalizes to new tasks. By learning
from similar tasks, meta-learning encourages the learner to learn transferable knowledge that
facilitates the learning of novel classes when applied to the target task T .

3.2 The Nearest-centroid Classifier
In Prototypical Networks [54], Snell et al. proposed a classifier that labels a query image based on
its distance to each class centroid. Formally, given the task T , the classifier is defined as follows

y
q
i = argmax

t

es(f
q
i ,ct )/τ∑N

j=1 e
s(fqi ,cj )/τ

, t = 1, 2, . . . ,N (3)

where fqi ∈ Rd denotes the feature embedding of image xqi ∈ Dtest , [c1, c2, . . . , cN ] are the class
centroids, s(·, ·) is a similarity function and τ is the temperature hyperparameter. To clarify, fqi is
given by applying GAP over feature map fθ (x

q
i ) ∈ R

d×h×w , i.e. fqi = GAP(fθ (x
q
i )). The similarity

function s(·, ·) could be cosine similarity or negative Euclidean distance. As for class centroid cj , it
takes the average of support images in the j-th class (i.e. Sj ) as defined by

cj =
1

|Sj |

∑
xs ∈Sj

GAP(fθ (xs )). (4)

Simple but effective, as can be seen in §4, Prototypical Networks provide a strong baseline for
few-shot classification.

In this work, we focus on showing the importance of feature embeddings but not devote to design-
ing as complex a classifier as the many other prior work did, so we adopt a similar nearest-centroid
classifier here for few-shot classification. On top of Prototypical Networks, we make the following
changes. First, we particularly propose to replace the GAP pooling with an attentive pooling
strategy for summarizing local descriptors into image-level embeddings, i.e. fqi = AttPool(fθ (x

q
i )).

Second, in order to reduce the labor required in hyperparameter tuning, we reformulate (3) as
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1:8 He and Hong, et al.

follows to eradicate hyperparameter τ ,

y
q
i = argmax

t

e ⟨f
q
i ,ct /∥ct ∥2 ⟩∑N

j=1 e
⟨fqi ,cj /∥cj ∥2 ⟩

, t = 1, 2, . . . ,N (5)

where the dot product ⟨fqi , cj/∥ cj ∥2⟩ can be viewed as the projection of vector fqi on the cj/∥ cj ∥2
axis.

3.3 Dense Classification Pre-training
The pre-training refers to training the embedding network and a global classifier on the meta-
training split for large-scale classification with standard cross-entropy loss. Let Dtrain

base be the
meta-training split, prior work [7, 8, 57] train with the following objective in this stage

Θ⋆ = argmin
Θ

∑
(x,yb )∈Dtrain

base

Lce (WTGAP(fθ (x)) + b,yb ) + R(Θ), (6)

where Θ = (θ ,W, b) denotes learnable parameters including θ of the embedding network and
(W, b) of the global classifier. Differently, we propose to remove the GAP operator and perform
dense classification over local descriptors, i.e.

Θ⋆ = argmin
Θ

∑
(x,yb )∈Dtrain

base

r∑
j=1

Lce (WT f jθ (x) + b,yb ) + R(Θ), (7)

where feature map fθ (x) is regared as a set of r = h × w local descriptors in Rd with f jθ (x)
representing the j-th item in set. Though, from theMathematics point of view, GAP-pretraining in (6)
and DC-pretraining in (7) are almost identical, we experimentally demonstrate that GAP-pretraining
would lead to severe semantic discrepancy among local descriptors (see Fig 1) when maintaining
image-level semantics. DC-pretraining can alleviate the problem by forcing to classify each local
descriptor correctly, which explicitly enforces semantic consistency among local descriptors. In
practice, we transform the image label yb into one-hot hard label yb and apply label smoothing [59]
with smoothing parameter ϵ = 0.1 to turn it into a soft label ỹb for model training.

3.4 Meta-finetuning with Attentive Pooling
The pre-training in general ends up with a tiny classification loss which indicates the presence
of a set of good embeddings. However, we find that the pre-trained embeddings are not well-
prepared for few-shot classification unless an extra meta-finetuning is thereafter performed. By
meta-finetuning, we mean to fine-tune the pre-trained embedding network on the meta-training set
Dtrain

meta to perform nearest-centroid few-shot classification following the standard meta-learning
paradigm described in §3.1.
In this meta-training stage, previous work usually apply GAP over feature maps to pool local

descriptors in the feature map into compact image-level embeddings for few-shot classification. We
argue that different local descriptors represent different image regions and, as a consequence, they
should be of different importances during the pooling operation. Thus, we propose to reweight
local descriptors right before summarizing them into the image-level embedding so that some
informative local descriptors in a featuremapwill surpass the other less informative local descriptors
to contribute a more discriminative feature embedding. As illustrated in Figure 2, given a training
task Ti = (Dtrain

i ,Dtest
i ) where Ti ∈ Dtrain

meta , images are first encoded into the embedding space,
each represented by a 3-d feature map in Rd×h×w . We next summarize each feature map into an
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Fig. 2. Meta-finetuning for 5-way 1-shot setting. Images are first encoded into feature maps by the pre-
trained embedding network, and further shrink into image-level embeddings by applying attentive pooling.
Losses from both nearest-centroid classification over image-level embeddings and global class classification
over local descriptors are added for model optimization.

image-level embedding in Rd by applying attentive pooling, which takes the form

fattx = AttPool(fθ (x)) =
r∑
j=1

α j
x f

j
θ (x), s.t. α j

x =
Aj
x∑r

i A
i
x

(8)

where α j
x denotes the importance coefficient of the j-th local descriptor in the feature map. The

attention map Ax , as illustrated in Figure 3, is estimated by a simple regressor f attϕ with Ai
x =

σ (f attϕ ([fGAPx , f iθ (x)])), where [·] is the concatenation operator and σ is the well-known logistic
function. Finally, we compute the few-shot classification loss on task Ti as follows

Lmeta =
−1

|Dtest
i |

∑
(x,y)∈Dtest

i

log(px(ŷ = y |Dtrain
i )),

s.t. px(ŷ = y |Dtrain
i ) =

e ⟨f
att
x ,cy/∥cy ∥2 ⟩∑N

j=1 e
⟨fattx ,cj /∥cj ∥2 ⟩

(9)

where px(ŷ = y |Dtrain
i ) is the probability of query image x being classified right. Learnable

parameters and the regularization term are omitted in (9) for brevity.
Intuitively, the attentive pooling explains what the learner is looking for as evidence for decision

making for few-shot classification. By strengthening the activations of some local descriptors while
suppressing the activations of the others, it intends to select more informative local descriptors
to build better embeddings for classification. Nevertheless, one challenge we experienced is that
the generated attention map Ax tends to be quite unevenly distributed, with one or several local
descriptors getting much higher attention scores and in turn overwhelming the whole feature map,
leading to information loss during pooling. This is because the attention regressor f attϕ works in an
unsupervised manner and is implicitly optimized during the overall learning procedure. To avoid
this issue, we impose an entropy regularization on the normalized attention map, which takes the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:10 He and Hong, et al.

Spatial
GAP

tile 0.5 0.6 0.6

0.3 0.5 0.8

0.5 0.4 0.7

𝐴!

𝑓"#$$

∑

×
𝒇!"## ∈ ℝ$

∑

𝑓%(𝒙) ∈ ℝ$×'×(

𝒇!)*+ ∈ ℝ$

Fig. 3. Attentive pooling module. Tensor fθ (x) represents the feature map of input image x, and fGAPx
denotes its visual representation after applying GAP. The feature map is seen as h ×w local descriptors in
Rd (here h = 3,w = 3) with each representing a local region of the input image. We concatenate each local
descriptor and fGAPx together before feeding the new generated vectors into regressor f attϕ to estimate region

importances. Local descriptors are scaled accordingly and pooled into an image-level embedding fattx in Rd

before used for few-shot classification.

form

Lentropy =
1

|Dtest
i |

∑
x∈Dtest

i

r∑
j=1

α j
x logα

j
x . (10)

The regularization guarantees a smoother attention map.
It is also worthy to mention that we simultaneously perform global classification over local

descriptors alongside few-shot classification in meta-finetuning. It follows that

Lce =
1

|Dtest
i |

∑
(x,yb )∈Dtest

i

r∑
j=1

Lce (WT f jθ (x) + b,yb ), (11)

where parameters (W, b) are initialized from the pre-trained global classifier and fixed. This dense
classification encourages local descriptors to maintain their semantics when fine-tuned for few-shot
classification, playing a role of knowledge distillation. We regularize the global classification with
label smoothing too. For input image (x,yb ), the soft label of a local descriptor f

j
θ (x) is given by

setting the smoothing parameter ϵ = 1−Aj
x . The combination of the aforementioned meta-training

loss, entropy regularization and the global classification loss leads to the overall learning objective
of meta-finetuning, which takes the form

min
Ω

ETi ∈D
train
meta

(Lmeta + βLentropy + γLce ) + R(Ω), (12)

where Ω = (θ ,ϕ) are learnable parameters of both the pre-trained embedding network fθ and the
randomly initialized attention regressor f attϕ . (β,γ ) are weights to balance the effects of different
losses. As we shall see, the meta-finetuning can quickly adapt a pre-trained model to few-shot
setting, much faster and better than meta-training from scratch.

4 EXPERIMENTS
In this section, we evaluate the benefits of different components of our proposed DCAP and
compare our results with prior arts on two benchmark datasets, i.e. miniImagenet [65] and
tieredImagenet [45].
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4.1 Datasets
miniImagenet. The miniImagenet dataset is a derivative of the larger ILSVRC-12 dataset [47]. It
consists of 60,000 color images of size 84 × 84 that are divided into 100 classes with 600 images
each. We follow [44, 54] to split the dataset into 64 base classes for meta-training, 16 novel classes
for meta-validation, and 20 novel classes for meta-testing, respectively.
tieredImagenet. The tieredImagenet dataset is another derivative of the ILSVRC-12 dataset. It
contains more than 700,000 images, divided into 608 classes with the average number of images in
each class being more than 1200. Particularly, it has a hierarchical structure with all its 608 classes
derived from 34 high-level nodes in ILSVRC-12. The 34 top categories are divided into 20 meta-
training (351 classes), 6 meta-validation (97 classes) and 8 meta-testing (160 classes) categories. This
high-level split provides a more challenging and realistic few-shot setting where the meta-training
set is distinctive enough from the meta-testing set semantically.

4.2 Architecture
Embedding Network.We use two backbones as the architecture of our embedding network fθ
for experiments – Resnet12 and Conv4. Resnet12 [19] contains 4 residual blocks of depth 3 with
3 × 3 kernels. Convolutional layer depth starts with 64 filters and is doubled every next block. A
2 × 2 max pooling is applied at the end of each block for down-sampling. Likewise, the Conv4
refers to a family of networks that contains 4 convolutional blocks, where each block contains a
convolutional layer with 3 × 3 kernels, a batch normalization layer, a relu activation layer and a
2 × 2 max pooling layer. Conv4 networks differs from each other in the number of filters in each
convolutional block. For example, the number of filters in Conv4-64 is (64, 64, 64, 64). Tab 1 lists 4
frequently used Conv4 variants.

Table 1. 4 frequently used Conv4 variants in the literature.

name #filters

Conv4-32 (32, 32, 32, 32)
Conv4-64 (64, 64, 64, 64)
Conv4-128 (64, 64, 128, 128)
Conv4-256 (64, 96, 128, 256)

Attention Regressor. The attention regressor f attϕ is a plain convolutional network of depth 2
with 8 hidden units in our implementation. The first convolutional layer reduces the embedding
space dimension from d × 2 to 8, and the second convolutional layer maps embeddings in the latent
space R8 into attention scores. Each attention score is a scalar that represents the importance of
the corresponding local descriptor. While more sophisticated structures are applicable, it is beyond
the scope of this paper.
Global Classifier. The global classifier used in dense classification pre-training is a single fully
connected layer with no hidden units. This linear layer maps local descriptors in Rd into logits in
R64 (for miniImagenet) or R351 (for tieredImagenet). A softmax transformation then turns the logits
into probability distributions. In meta-finetuning, the auxiliary global classification adopts a global
classifier of the same structure.

4.3 Implementation Details
Pre-training.We train a 64-way global classifier on the meta-training split of miniImagenet and a
351-way global classifier on the meta-training split of tieredImagenet using standard cross-entropy
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loss. In this stage, we follow the conventional deep learning pipeline to horizontally divide each
meta-training class into two parts, one for model training and the other for evaluation. The sample
rate is set to 0.1. That is, for a meta-training class that has 1000 images in total, we randomly sample
100 images out of the pool for evaluation and use the other 900 images for model training. The
learning rate used in this stage is initialized as 0.1. On miniImagenet, we train for 100 epochs with
a batch size of 256. The learning rate decays once at 80. On tieredImagenet, we train for 120 epochs
with a batch size of 512, and accordingly the learning rate decays at 50 and 90. We adopt different
data augmentations when dealing with the two datasets. Particularly, on miniImagenet, we adopt
the random horizontal flip data augmentation only. On tieredImagenet, both random resized crop
and horizontal flip data augmentations are used for model optimization.
Meta-fintuning. The pre-trained embedding network is fine-tuned at a learning rate of 0.001 on
the meta-training set that contains 20k/50k tasks randomly sampled from the meta-training split of
miniImagenet/tieredImagenet for few-shot classification. During meta-finetuning, the attention
regressor is randomly initialized and optimized with an initial learning rate of 0.01. We follow prior
art [21, 28, 74] to consider both 5-way 1-shot and 5-way 5-shot few-shot settings. In 5-way 1-shot
setting, a few-shot task has in total 80 images, where each class contains one support image and 15
query images. In 5-way 5-shot setting, the number of query images per class decreases to 10 so as
to fit in well with the GPU memory. We consider a mini-batch that consists of 4 few-shot tasks and
adopt the same data augmentation (i.e. random horizontal flip) when dealing with both datasets.
The learning rate decays once at 16k and 40k on miniImagenet and tieredImagenet respectively.
Evaluation Protocols. To be consistent with previous work [17, 53, 62, 77], we construct a
meta-evaluation/meta-testing set by randomly sampling 1000 few-shot tasks from the meta-
validation/meta-testing split of each dataset for model validation/testing. Mean accuracy along
with the 95% confidence interval over the 1000 tasks is reported for model comparison. Besides,
we follow [7] to apply consistent sampling when preparing the meta-evaluation/meta-testing set.
Consistent sampling ensures that the same set of tasks are sampled for model evaluation/testing in
each epoch following a deterministic order.

All our experiments are implemented in PyTorch4 on an Ubuntu server with 4 NVIDIA TITAN
Xp GPU cards. In both pre-training and meta-finetuning, we adopt SGD with Nesterov momentum
of 0.9 and weight decay of 0.0005 for model optimization. The learning rate decay is set to 0.1 in
two stages. Unless otherwise specified, we set β = 0.1 and γ = 0.5 in (12) in all experiments.

4.4 Results with ResNet12 Backbone
Tab 2 compares our method with other few-shot algorithms when ResNet12 is used as the backbone
network. As it can be seen, our proposed DCAP can consistently perform better than prior art on
miniImagenet and tieredImagenet under both 5-way 1-shot and 5-way 5-shot settings. Specifically,
our method is around 3%/6.4%, 4%/5.4%, 2.7%/2%, 1.4%/1.5%, 3.5%/2.6%, 2%/1.7%, 2.6%/2.3%,
3.2%/1.3%, 2.6%/2.1%, 1%/0.9% better than Fine-tuning [8], MTL [57], DC [34], CAN [21], FEAT [74],
Meta-Baseline [7], MetaOptNet [28], RFS [62], DSN [53], Meta-UAFS [77] under the 1-shot/5-shot
setting on miniImagenet, respectively. On tieredImagenet, our method is around 1.7%/2%, 0.2%/1%,
1.5%/2%, 4.1%/3.8%, 0.4%/0.9%, 3.9%/2.6%, 1%/1% better than Fine-tuning [8], CAN [21], Meta-
Baseline [7], MetaOptNet [28], RFS [62], DSN [53], Meta-UAFS [77], respectively. Notably, we
observe that Prototypical Networks provide a strong baseline. It not only outperforms SNAIL [40]
and DN4 [31] by a large margin, but also has comparable results against TADAM [42] and even
TPN [37], a transductive method in which all query images arrive simultaneously during inference.
In principle, transductive methods are able to achieve higher performances than inductive methods

4PyTorch: https://pytorch.org
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Table 2. Comparison to prior work onminiImageNet and tieredImageNet (ResNet12).Mean accura-
cies (%) with 95% confidence intervals on miniImageNet and tieredImageNet meta-testing set. † models use
transductive inference. ∗ Results from [53]. ‡ refers to our reimplementation.

miniImageNet 5-way tieredImageNet 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

Prototypical Networks∗ [54] ResNet-12 59.25 ± 0.64 75.60 ± 0.48 61.74 ± 0.77 80.00 ± 0.55
Prototypical Networks‡ [54] ResNet-12 59.25 ± 0.70 76.88 ± 0.59 62.15 ± 0.71 81.72 ± 0.53
SNAIL [40] ResNet-12 55.71 ± 0.99 68.88 ± 0.92 - -
TADAM [42] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -
DN4 [31] ResNet-12 54.37 ± 0.36 74.44 ± 0.29 - -
TPN† [37] ResNet-12 59.46 ± - 75.65 ± - - -
Fine-tuning [8] ResNet-12 56.67 ± 0.62 74.70 ± 0.51 64.45 ± 0.70 83.59 ± 0.51
Fine-tuning† [8] ResNet-12 62.35 ± 0.66 74.53 ± 0.54 68.41 ± 0.73 83.41 ± 0.52
MTL [57] ResNet-12 61.20 ± 1.80 75.50 ± 0.80 - -
DC [34] ResNet-12 62.53 ± 0.19 78.95 ± 0.13 - -
CAN [21] ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37
FEAT∗ [74] ResNet-12 61.72 ± 0.11 78.32 ± 0.76 - -
Meta-Baseline [7] ResNet-12 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
MetaOptNet [28] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53
RFS [62] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
DSN [53] ResNet-12 62.64 ± 0.66 78.83 ± 0.45 66.22 ± 0.75 82.79 ± 0.48
Meta-UAFS [77] ResNet-12 64.22 ± 0.67 79.99 ± 0.49 69.13 ± 0.84 84.33 ± 0.59

DCAP (ours) ResNet-12 65.20 ± 0.67 80.93 ± 0.53 70.15 ± 0.74 85.33 ± 0.55

because the transductive methods can leverage information in other query images when dealing
with the current query image while the inductive methods can not.

Note that, RFS and DSN reported in Tab 2 are not the best models as reported in the original
papers. In [62], RFS exploited Born-again [12] strategy to apply knowledge distillation sequentially
to revise the embedding network and its associated base learner multiple times. The strategy is
not adopted by other works, including ours of course. For fair comparison, we report the results
of its variant without Born-again strategy in the table. DSN [53] proposed to refine the prototype
of each class by taking advantage of unlabeled data when addressing semi-supervised few-shot
classification problem and achieved outstanding performance. In this work, we consider the standard
few-shot classification setting but leave the semi-supervised setting untouched. Therefore, we also
choose to report results of its variant that studies the same standard few-shot classification for fair
comparison.

4.5 Results with Conv4 Backbone
To give an overview of the literature, we additionally take a Conv4 as the backbone network,
evaluate our method on miniImagenet and tieredImagenet under both 5-way 1-shot and 5-way
5-shot settings, and compare our method with other works that adopt the same or similar backbone
in Tab 3. Particularly, we follow [17, 53, 54, 58] to adopt the widely used Conv4-64 as described in
Tab 1 for experiments. The Conv4-64 maps an input image of size 84 × 84 into a feature map of
size 64 × 5 × 5. As can be seen, our method can achieve competitive or better performance when
compared to most of the counterparts. For example, our method is around 10%/13%, 2.3%/1.5%,
4%/2.2%, 3.3%/2.2% better than MAML [11], Relation Networks [58], Fine-tuning [8], GNN [50]
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Table 3. Comparison to prior work onminiImageNet and tieredImageNet (Conv4).Mean accuracies
(%) with 95% confidence intervals on miniImageNet and tieredImageNet meta-testing set. a-b-c-d denotes a
Conv4 network with a, b, c, and d filters in each convolutional block. † models use transductive inference. ‡

refers to our reimplementation.

miniImageNet 5-way tieredImageNet 5-way

model backbone 1-shot 5-shot 1-shot 5-shot

MAML [11] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75
Meta-SGD [33] 32-32-32-32 50.47 ± 1.87 64.03 ± 0.94 - -
Meta-Learner [44] 32-32-32-32 43.44 ± 0.77 60.60 ± 0.71 - -
Reptile [41] 32-32-32-32 49.97 ± 0.32 65.99 ± 0.58 - -
TAML [23] 32-32-32-32 49.33 ± 1.8 66.05 ± 0.85 - -
Matching Networks [65] 64-64-64-64 43.56 ± 0.84 55.31 ± 0.73 - -
Prototypical Networks [54] 64-64-64-64 46.14 ± 0.77 65.77 ± 0.70 48.58 ± 0.87 69.57 ± 0.75
Prototypical Networks‡ [54] 64-64-64-64 49.76 ± 0.60 67.63 ± 0.58 51.32 ± 0.68 70.33 ± 0.59
Relation Networks [58] 64-64-64-64 51.38 ± 0.82 67.07 ± 0.69 54.48 ± 0.93 71.31 ± 0.78
DN4 [31] 64-64-64-64 51.24 ± 0.74 71.02 ± 0.64 - -
MetaOptNet [28] 64-64-64-64 52.87 ± 0.57 68.76 ± 0.48 54.71 ± 0.67 71.79 ± 0.59
PARN [68] 64-64-64-64 55.22 ± 0.84 71.55 ± 0.66 - -
Fine-tuning [8] 64-64-64-64 49.43 ± 0.62 66.42 ± 0.53 57.45 ± 0.68 73.96 ± 0.56
Fine-tuning† [8] 64-64-64-64 50.46 ± 0.62 66.68 ± 0.52 58.05 ± 0.68 74.24 ± 0.56
TPN† [37] 64-64-64-64 53.75 ± 0.86 69.43 ± 0.67 57.53 ± 0.96 72.85 ± 0.74
MRN† [17] 64-64-64-64 57.83 ± 0.69 71.13 ± 0.50 62.65 ± 0.84 74.20 ± 0.64
DSN [53] 64-64-64-64 51.78 ± 0.96 68.99 ± 0.69 - -
GNN [50] 64-96-128-256 50.33 ± 0.36 66.41 ± 0.63 - -

DCAP (ours) 64-64-64-64 53.68 ± 0.63 68.62 ± 0.60 55.63 ± 0.73 70.78 ± 0.60
64-64-128-128 55.25 ± 0.61 70.46 ± 0.60 58.75 ± 0.73 72.81 ± 0.61

under 1-shot/5-shot setting on miniImagenet, respectively. We notice that our method is a little bit
inferior to prior art DN4 [31], MetaOptNet [28] and DSN [53] in 5-shot setting. It is also observed
that our method underperforms transductive methods, like TPN [37] and Fine-tuning [8], especially
on tieredImagenet, which is inconsistent with our observation in §4.4. We argue the reason of the
inferiority is two-fold.

• First, dense classification pre-training the light-weight Conv4-64 backbone is more difficult
because of its limited representation ability. In the pre-training stage, by training the Conv4-64
backbone on the meta-training split of miniImagenet/tieredImagenet for dense classification,
we can merely get a top-1 evaluation accuracy of 33.08%/12.21%. In contrast, pre-training
the ResNet12 backbone in this stage gives a top-1 evaluation accuracy of 64.57%/56.88%. The
poorly pre-trained backbone explains why the superiority of our method is not preserved
when switching from ResNet12 to Conv4-64. Even so, we are surprised to observe that the
pre-trained backbone can achieve results that are not bad, or even better than previous work
in 1-shot setting.

• Second, a 64-dimensional feature embedding ismuch less representative than a 1600-dimensional
one. A common practice adopted by prior arts when working with Conv4-64 is to flatten
feature maps in R64×5×5 to construct 1600-dimensional feature embeddings and use the
high-dimensional embeddings in the final classifier for few-shot classification. The resulting
embeddings keep all information that is originally available in the feature maps, including
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spatial information and semantic information, leading to no information loss. In this work, we
provide an alternative way to build embeddings by applying attentive pooling over the feature
maps, which attentively pools feature maps into 64-dimensional embeddings. While attentive
pooling can select to emphasize important local descriptors, the pooling, like GAP, would
inevitably result in information loss. As a result, using the 1600-dimensional embeddings for
few-shot classification unquestionably gains superior results in some cases.

To validate our assumptions, we use a larger Conv4-128 backbone for experiments and find that an
average of 2% improvement can be obtained on all settings.

4.6 Cross-Domain Few-Shot Classification
We further justify the effectiveness of our proposed method under a more challenging cross-domain
few-shot classification setting, where the learner is trained and tested on few-shot tasks collected
from different domains. To be specific, we follow [1, 6, 67] to consider the miniImagenet→ CUB
cross-domain scenario, where the learner is trained on tasks sampled from theminiImagenet dataset
but evaluated on tasks sampled from the CUB-200-2011 dataset [5]. The CUB-200-2011 dataset (also
referred as CUB) contains 11,788 images from 200 bird classes and is originally constructed to serve
fine-grained bird classification. In few-shot setting, the CUB dataset is divided into 100 classes for
meta-training, 50 classes for meta-validation and 50 classes for meta-testing. We randomly sample
1,000 few-shot tasks from its meta-testing split for cross-domain evaluation. Results are reported in
Tab 4. As can be seen, few-shot classification approaches normally suffer significant performance
drop in the presence of domain shift between source and target datasets. Nonetheless, our method
keeps outperforming many other participants in both 5-way 1-shot and 5-way 5-shot cross-domain
few-shot settings.

4.7 Ablation Study
To better understand our method, we analyze DCAP and the following ablated variants on the
miniImagenet dataset with ResNet12 backbone.

• DC-GAP refers to the model that is trained to solve dense classification in pre-training. In
meta-finetuning, it pools feature maps into embeddings by applying GAP.

• GAP-AttPool refers to the model that is trained to solve standard classification in pre-
training where feature maps are pooled into embeddings by applying GAP. Inmeta-finetuning,
it pools feature maps into embeddings by applying attentive pooling.

• GAP-GAP, similar to DC-GAP and GAP-AttPool, is trained to solve standard classification
in pre-training and applies GAP over feature maps in meta-finetuning. It shares the same
pipeline with [7].

• Zero-GAP refers to the model that is meta-trained from scratch where feature maps are
pooled into embeddings by applying GAP.

• Zero-AttPool similarly denotes the model that is meta-trained from scratch where feature
maps are pooled into embeddings by applying attentive pooling.

We follow the naming scheme to give our DCAP the alias DC-AttPool. The results of different
models under 1-shot setting are reported in Tab 5 for straightforward comparisons.
Is pre-training stage necessary? As shown in Tab 5, meta-learning on top of a pre-trained model
can bring 4.3% ∼ 8.5% improvements over models meta-trained from scratch, which demonstrates
the importance of pre-training in few-shot classification. Concretely, the GAP-GAP/DC-GAP
model is about 4.3%/4.9% better than the Zero-GAP model, and the DC-GAP/DC-AttPool model
is around 6.9%/8.5% better than the Zero-AttPool model. We argue the pre-training provides a
model with strong representation ability, whereas the beneficial ability is not fully accessible by

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:16 He and Hong, et al.

Table 4. Performance comparison in the cross-domain setting: miniImagenet → CUB. Experiments
are performed with both two types of backbones. Symbols and organization match Tab 3. "+FT" indicates the
model is fine-tuned towards the target task in evaluation.

miniImageNet→ CUB

model backbone 5-way 1-shot 5-way 5-shot

MAML [6, 11] ResNet-18 - 51.34 ± 0.72
Prototypical Networks [6, 54] ResNet-18 - 62.02 ± 0.70
Baseline [6] ResNet-18 - 65.57 ± 0.70
Baseline++ [6] ResNet-18 - 62.04 ± 0.76
Matching Networks+FT [63, 67] ResNet-10 36.61 ± 0.53 55.23 ± 0.83
Relation Networks+FT [63, 67] ResNet-10 44.07 ± 0.77 59.46 ± 0.71
GNN+FT [63, 67] ResNet-10 47.47 ± 0.75 66.98 ± 0.68
MetaOptNet [28, 38, 67] ResNet-12 44.79 ± 0.75 64.98 ± 0.68
MAML+L2F [1] ResNet-12 - 62.12 ± 0.21
MAML+ALFA [1] ResNet-12 - 61.22 ± 0.22
ALFA+Random Init [1] ResNet-12 - 60.13 ± 0.23
ALFA+MAML+L2F [1] ResNet-12 - 63.24 ± 0.22

DCAP (ours) ResNet-12 49.65 ± 0.70 68.25 ± 0.65

MAML [11, 55] 32-32-32-32 34.01 ± 1.25 48.83 ± 0.62
Bayesian MAML [55, 75] 32-32-32-32 33.52 ± 0.36 51.35 ± 0.16
Matching Networks [55, 65] 64-64-64-64 36.98 ± 0.06 50.72 ± 0.36
Prototypical Networks [54, 55] 64-64-64-64 33.27 ± 1.09 52.16 ± 0.17
Relation Networks [55, 58] 64-64-64-64 37.13 ± 0.20 51.76 ± 1.48

DCAP (ours) 64-64-64-64 39.66 ± 0.54 52.22 ± 0.53

Table 5. 5-way 1-shot accuracy onminiImagenet. In pre-training, “GAP” refers to standard classification
upon image-level embeddings generated by applying GAP. “DC” refers to dense classification over local
descriptors. In meta-learning, “GAP” and “AttPool” stand for global average pooling and attentive pooling,
respectively. We report the results of meta-training from scratch in the first row.

Stage 1: Pre-training Stage 2: Meta-learning
w/pre-training GAP DC GAP AttPool

59.25 ± 0.70 56.69 ± 0.68
✓ ✓ 63.58 ± 0.66 63.57 ± 0.66
✓ ✓ 64.13 ± 0.69 65.20 ± 0.67

straight meta-training on few-shot tasks. Since the meta-training focuses more on transferability,
i.e. the generalization ability across tasks, a model that starts from a randomly initialized state
would struggle to balance the representation ability and the transferability during meta-training,
leading to inferior performance. From Tab 5, our another observation is that models with attentive
pooling are more sensitive to pre-training. We think this is due to the difficulty of optimizing the
attention regressor for the selection of informative local descriptors if the model is meta-trained
from scratch.
Is meta-finetuning stage necessary? Chen et al. [7] suggested that competitive performance
could be obtained on top of a pre-trained model without meta-finetuning. In this work, we have
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Table 6. 5-way 1-shot accuracy on miniImagenet without meta-finetuning. Results of models with
attentive pooling are not given because the attention regressor is not trained yet.

Stage 1: Pre-training
w/pre-training GAP DC GAP AttPool

26.50 ± 0.46 26.21 ± 0.46
✓ ✓ 20.14 ± 0.30 -
✓ ✓ 20.14 ± 0.08 -
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Fig. 4. 5-way 1-shot accuracy onminiImagenet with meta-finetuning. Dense classification pre-trained
models are marked with △. Models that utilize the same pooling in meta-finetuning are colored the same.
Best viewed in color.

different findings. After the pre-training and right before meta-finetuning, we apply GAP over
feature maps and use the resulting embeddings to perform few-shot classification as described in
§3.2. The mean accuracies over 1000 meta-testing tasks are reported in Tab 6. It is astonishing to
observe that the both DC-pretrained and GAP-pretrained models perform just slightly better than
random guessing or even worse than random initialized models. On the contrary, Fig 4 shows that
the models can achieve > 60% accuracies after meta-finetuning for one epoch. It indicates that
meta-learning/meta-finetuning is at the core of the success of few-shot classification.
Influence of dense classification pre-training. Tab 5 and Fig 4 show that meta-finetuning a
DC-pretrained model generally achieves higher accuracies. To identify the reason, we investigate
the effect of dense classification and find that the dense classification pre-training is able to
produce smoother feature maps. The smoothness is evidenced by (i) local descriptors in the feature
map generated by the DC-pretrained model have L2-norm values with a smaller deviation, and
(ii), as shown in Fig 1 and Fig 5, a local descriptor in the feature map generated by the DC-
pretrained model has higher cosine similarities with other local descriptors in its 8-connected
neighborhood, demonstrating some kind of semantic consistency. We hypothesize it is exact the
semantic inconsistency between local descriptors in GAP-pretrained feature maps that makes it
harder to meta-finetune for fast adaptation.
Influence of attentive pooling. Attentive pooling aims to select informative local descriptors
for constructing better embeddings for few-shot classification. As can be seen in Tab 5, applying
attentive pooling when meta-finetuning a DC-pretrained model for few-shot classification gives
the best 5-way 1-shot accuracy onminiImagenet. However, we notice that performance degradation
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Fig. 5. Cosine similarities between local descriptors of a test image. Left: similarities between local
descriptors in the feature map generated by DC-pretrained model. Right: similarities between local descriptors
in the feature map generated by GAP-pretrained model.

Table 7. 5-way 1-shot accuracy onminiImagenet with different loss weights.We report the accuracies
when meta-training from scratch with different loss weights. η and γ balance the effects of meta-learning
and global classification.

Lmeta (η) Lce (γ ) GAP AttPool

1.0 0.5 59.25 ± 0.70 56.69 ± 0.68
0.5 1.0 59.21 ± 0.65 58.42 ± 0.70
1.0 0.0 56.39 ± 0.68 56.51 ± 0.74
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Fig. 6. 5-way 1-shot accuracy on miniImagenet with/without global classification. Left: meta-
finetuning the GAP-GAP model with or without global classification. Right: meta-finetuning the DC-AttPool
model with or without global classification. γ is the loss weight of global classification in (12).

happens when meta-training from scratch (59.25% vs 56.69%). We conjecture that the reason is
two-fold. First, dense classification over local descriptors is much more difficult than standard image
classification over image-level representations. As a result, Zero-AttPool struggles harder than
Zero-GAP to balance the global classification and the few-shot classification when meta-trained
from scratch, resulting in lower accuracy. We confirm this finding by disabling global classification
(i.e. γ = 0) in meta-training. As shown in Tab 7, when the global classification is disabled, Zero-
AttPool runs neck-and-neck with Zero-GAP. We also find that the performance gap between
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Fig. 7. An example of the attention maps generated by the attention regressor. The regressor can
produce attention maps that focus on the target object in image and diminish the impact of background. In
each row, we report a failure case in the last column. Warmer color indicates higher score.

Zero-AttPool and Zero-GAP can be reduced if increasing the loss weight γ of global classification.
Second, the attention regressor cannot be efficiently optimized in meta-training from scratch. This
is because local descriptors in the very beginning are of no semantic information. From the chaos, it
is challenging for the regressor to figure out which descriptor is more important. In other word, the
regressor is error-prone which does harm to the global classification and the few-shot classification.
Only when starting from a pre-trained state, models can benefit from attentive pooling.
Influence of global classification. We perform global classification in parallel with few-shot
classification to enhance the representation ability of feature embeddings and encourage local
descriptors to maintain their semantics during meta-training. Tab 7 shows that the joint learning is
beneficial when meta-training from scratch. To investigate the effect of global classification in our
two-stage training, we examine models without global classification and plot accuracies in Fig 6. As
shown in the figure, global classification can consistently bring improvements when dealing with
both the GAP-GAP model and the DC-AttPool model. Especially, the effect of global classification
on our DC-AttPool is more obvious.

4.8 Visualization
Our method highly relies on the attention regressor to correctly estimate the importance of each
local descriptor within a feature map in order to select informative ones for few-shot classifica-
tion. To check whether the regressor works as expected, we investigate the generated attention
maps. Unsurprisingly, we find that the regressor can learn to concentrate on the target object in
image by assigning higher attention scores to the corresponding descriptors. And conversely, local
descriptors that are related to distractors or the background normally get lower attention scores.
For visualization, we present an example of the attention maps generated by the regressor in Fig 7.
As illustrated, for the three images from class crab, the attention maps can capture the spatial
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information and highlight the target objects properly. But we have to admit that the attention
regressor is not perfect yet. It sometimes makes mistakes in which it fails to make an estimation
that is consistent with our awareness. We conjecture that the failure results from illumination,
view-point, etc.

5 CONCLUSION AND FUTUREWORK
We propose a new method, namely DCAP, to tackle the few-shot classification problem. Instead of
designing complex classifiers as in prior art, in this work, we propose to adopt a simple nearest-
centroid classifier and approach few-shot classification from the perspective of acquiring more
discriminative and robust embeddings. Our DCAP is optimized following a two-stage training
paradigm. In the pre-training stage, we propose to train the embedding network to solve dense
classification problem, and in meta-finetuning we fine-tune the pre-trained model on a family of
few-shot tasks to perform few-shot classification. An attention regressor is further devised in meta-
finetuning to reweight local descriptors when summarizing them into image-level embeddings for
few-shot classification. We find that dense classification effectively eliminates semantic discrepancy
among local descriptors that is observed in previous work. And the attention regressor learns
to select informative local descriptors to build better embeddings. By meta-finetuning a dense
classification pre-trained model with attentive pooling, we reveal that the simple nearest-centroid
classifier is able to yield accuracies that exceed most of the leading methods on two standard
benchmark datasets. In the future, we will try to apply our proposed method for other visual tasks,
such as few-shot visual dialog [14, 15] and few-shot visual relationship detection [32, 51].
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