
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2023

Graph neural point process for temporal interaction prediction Graph neural point process for temporal interaction prediction

Wenwen XIA

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Shengdong LI

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, and the Graphics and Human Computer

Interfaces Commons

Citation Citation
XIA, Wenwen; LI, Yuchen; and LI, Shengdong. Graph neural point process for temporal interaction
prediction. (2023). IEEE Transactions on Knowledge and Data Engineering. 35, (5), 4867-4879.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7547

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7547&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7547&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Graph Neural Point Process for Temporal
Interaction Prediction

Wenwen Xia, Yuchen Li, and Shenghong Li, Senior Member, IEEE

Abstract—Temporal graphs are ubiquitous data structures in many scenarios, including social networks, user-item interaction
networks, etc. In this paper, we focus on predicting the exact time of future interactions between node pairs on a temporal graph. This
problem can support interesting applications including time-sensitive items recommendation, congestion prediction on road networks,
etc. We present the Graph Neural Point Process (GNPP) to tackle this problem. GNPP relies on the graph neural message passing
and the temporal point process framework. Most previous graph neural models devised for temporal graphs either utilize the
chronological order information or rely on specific point process models, ignoring the exact timestamps and complicated temporal
patterns. In GNPP, we adapt a time encoding scheme to map real-valued timestamps to a high-dimensional vector space so that the
temporal information can be modeled precisely. Further, GNPP considers the structural information of graphs by conducting message
passing aggregation on the constructed line graph. The obtained representation defines a neural conditional intensity function that
models events’ generation mechanisms for predicting interactions’ time between node pairs. We evaluate this model on several
synthetic and real-world temporal graphs where it outperforms recently proposed neural point process models and graph neural
models devised for temporal graphs. We further conduct ablation comparisons and visual analyses to shed some light on the learned
model and understand the functionality of important components comprehensively.

Index Terms—Temporal graphs, Graph neural networks, Point processes

F

1 INTRODUCTION

G RAPHS are ubiquitous data structures in modern appli-
cations, ranging from social networks, financial trans-

actions and e-commerce platforms. For many practical sce-
narios, these graphs are often combined with temporal
information, indicating dynamic characteristics, i.e., temporal
graphs. For example, financial transactions have occurring
timestamps; users’ browsing records for products on e-
commerce platforms are associated with timestamps as well.
The dynamic patterns on graphs are of both research and
practical interest, e.g., counting pattern’s occurrences and
predicting future interactions [1], [2].

We define a temporal graph as a graph with a times-
tamp sequence attached on its edges, representing times
of occurred historical events between adjacent nodes 1. In
this paper, we study the problem of predicting future event
time for adjacent nodes using the timestamp sequences of

• This work was done when visiting Singapore Management University.

• Wenwen Xia is with the School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: xiawenwen@sjtu.edu.cn

• Yuchen Li is with the School of Computing and Information Sys-
tems, Singapore Management University, Singapore 178902. E-mail:
yuchenli@smu.edu.sg

• Shenghong Li is with the School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
He was also with the MoE Key Lab of Artificial Intelligence, AIInstitute,
Shanghai Jiao Tong University, Shanghai 200240, China (Corresponding
author). E-mail: shli@sjtu.edu.cn

Manuscript received April 19, 2005; revised August 26, 2015.
1. In the following, we may use the term temporal graph and dynamic

graph indiscriminately.

observed events between all adjacent nodes on a temporal
graph. This problem can benefit many downstream appli-
cations. For example, user-item interaction networks are
generally dynamic. By using the interaction graph informa-
tion, recommendation systems may suggest proper items
at the right moment to optimize its service quality and
competitiveness [3]. Another example is traffic congestion
prediction on a road network. Accurate traffic congestion
time prediction for road segments helps navigation systems
plan more intelligent routes [4]. The above applications
necessitate predicting future event times precisely between
nodes on temporal graphs.

Recently, graph representation learning and graph neu-
ral networks (GNNs) [5] on static graphs [6], [7], [8], [9],
[10] and on dynamic graphs [1], [11], [12], [13], [14], [15]
have surged and become a popular tool to tackle predic-
tion problems on dynamic graphs. However, these works
can not be trivially adapted to the problem studied in
this paper. Existing methods mainly focus their models
on future link prediction [1], [11], [14], [16], [17] or fu-
ture node state prediction tasks [1], [14], while the exact
time prediction is rarely studied. Furthermore, predicting
exact event times requires fine-grained representation of
observed timestamps, while most graph learning models
only take advantage of the chronological order of events.
For example, some works partition dynamic graphs into
ordered snapshots, and then embed each snapshot and
combine them to obtain a dynamic representation [16], [18].
The coarse-grained processing discretizes the continuous
temporal graph and eliminates exact timestamp informa-
tion in each snapshot. Some other works adopt RNNs or
temporal random walks to capture the sequential property
[1], [12], [13], [19]. However, these methods only leverage

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

0.0

2.5 (u, v) interactions

0

20

Te

m
po

ra
l i

nt
er

ac
tio

ns

(u, k) interactions

0 20 40 60 80 100
Time line (splitted into 100 intervals)

0

50 (v, k) interactions

(a) Interaction counts (case 1)

u k

v

(b) Influence pattern (case 1)

0

50 (u, v) interactions

0

5

Te

m
po

ra
l i

nt
er

ac
tio

ns

(u, k) interactions

0 20 40 60 80 100
Time line (splitted into 100 intervals)

0

5 (v, k) interactions

(c) Interaction counts (case 2)

u k

v

(d) Influence pattern (case 2)
Fig. 1. We plot real interaction counts on two temporal triangle instance
on the CollegeMsg dataset, and denote the three node pairs as (u, v),
(u, k) and (v, k). We split the time into 100 intervals and count number of
interactions at each interval. We can see that in Figure 1(a), interaction
count of (v, k) increases gradually only after some earlier interactions
on (u, v) and (u, k), which indicates that interactions on neighbor node
pairs may stimulate interactions occurred on (v, k), depicted in Figure
1(b). Figure 1(c) and 1(d) are for the other sample, in which (u, v) and
(v, k) may suppress interaction occurrence on (u, k).

the sequential order information of events as well, while the
exact timestamp information and their correlations can not
be modeled appropriately.

Another line of research for temporal events is closely
related to stochastic processes, i.e., temporal point process
[20]. Our work is inspired by the temporal point process
framework because of its precise time modeling capability.
Previous temporal point process models use either deter-
ministic functions or learnable neural networks to define
a conditional intensity function (CIF) to model a sequence
of temporal events [21], [22], [23], [24], [25]. While these
models regard each temporal sequence as independent to
train model parameters. In our context of temporal graphs,
these timestamp sequences are attached to edges, ans these
edges are correlated via graphical structures. Training these
temporal point process models with independent data sam-
ples may overlook the correlation information in the graph
structure. For instance, comments from friends on social
networks may have positive stimuli for a user’s behavior.
In contrast, activities from strangers may have much less
influence. There exist some prior works considering both
graphical structures and point processes [26], [27], [28].
However, most of these graph neural point process models
adopt the Hawkes process or its variants and learn pro-
cess parameters, which constraints their learning space and
may induce inappropriate priors [29]. In contrast, we do
not impose such priors and directly learn neural intensity
functions to model neighbor’s influences on targeted node
pairs that we focus on.

In this paper, we propose a novel graph neural point
process (GNPP) model to enable fine-grained prediction on
temporal graphs. To utilize timestamp information precisely
and build sequence correlations based on graph structures,
we build GNPP by leveraging the message passing mecha-
nism and the point process framework.

Fig. 2. From a message passing perspective, we treat each edge on a
temporal graph as an edge-node. Hence temporal interaction informa-
tion between node pairs are regarded as node features on the new line
graph, facilitating the adoption of the message passing mechanism to
model proximal neighbors’ influence on the targeted node pair.

Note that our goal is to predict precise future interaction
times for a given node pair, which may be influenced by
neighborhood node pairs (two node pairs are called neigh-
bors when they share one common node). Take temporal
triangles on the CollegeMsg dataset as example, we plot
two concrete temporal triangle instances in Figure 1. We
plot interaction counts on these temporal edges w.r.t time in
Figure 1(a) (case 1) and Figure 1(c) (case 2) respectively. For
Figure 1(a), we can find that the interaction count of node
pair (v, k) increases only after some previous interactions
on its neighbor node pairs (u, v) and (u, k), indicating
that neighbor node pairs’ events have positive influences
for the node pair (v, k), as depicted in Figure 1(b). While
for case 2, the interaction count of (u, k) decreases after
some interactions on (u, v) and (v, k), which may indicate
suppression effects from neighbor node pairs. Therefore, it is
important to capture these influence patterns, i.e., previous
interactions’ influence for the occurrence of interactions on
their neighbor node pairs. Hence, we use the line graph of
the original graph and regard the event prediction problem
for node pairs as the time prediction for nodes on the line
graph, as shown in the Figure 2. In this way, the node
representations capture the interaction influences through
the message passing mechanism 2.

For each node on the line graph, we construct its
unique neural CIF function using its representation and
a globally-shared module for modeling its dynamic pat-
tern and conducting predictions. Each node’s representation
is computed considering its timestamp sequence and its
neighbors’ sequences. We adopt two self-attention modules
to capture these two aspects respectively. Furthermore, to
characterize timestamps in a fine-grained manner, we adopt
a time encoder to map each real-valued timestamp to a
high-dimensional vector. The position encoding proposed
in [30] provides a reasonable but discrete scheme, making
it inappropriate for continuous times. Instead, we reveal
that two recently proposed time mapping schemes [14],
[25] are mathematically equivalent with an analysis of their
run-time difference. This saves us from tedious empirical
evaluations between the two schemes. More importantly, it
also provides insights for future works pertaining to time-
sensitive prediction and reasoning tasks.

Our contributions include (1) modeling events occur-
rence patterns for temporal graph node pairs under the
message passing and point process framework by GNPP.

2. If no specific instructions, in the following a node indicates one on
the line graph, i.e., a node pair on the original graph.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(2) leveraging precise real-valued time embedding on tem-
poral graphs and revealing the equivalence of two time en-
coding schemes; (3) conducting performance comparisons
with several baselines, visualizing learned components, and
discussing the optimization objectives in detail. The imple-
mentation of the GNPP model is released 3.

2 PRELIMINARIES

2.1 Temporal point process

Temporal point process is a widely adopted tool for model-
ing event sequences. Some seminal models include Hawkes
process [31], self-correcting process [32] and Poisson pro-
cess. The sequential data that these models focus on can be
denoted as x = {x1, x2, x3, · · · , xNT

}. Each xi represents a
temporal event, which can be a simple real-valued time ti
in the single-variable case, or a tuple of time and event type
(ti,mi) in the multi-variable case, where mi ∈ M is the
event type.M is the type space and is generally discrete.

The event distribution of a process model is character-
ized by the CIF λ(t|Ht) whereHt is the history (without loss
of generality, we present the single-variable case here). Let
f(tn+1|Htn) be the the conditional density function (CDF)
of the next event time tn+1 and F (t|Htn) be the corre-
sponding cumulative distribution function (CUDF). Then
the λ(t|Ht) is defined by

λ(t|Ht) =
f(tn+1|Htn)

1− F (t|Htn)
(1)

Further, λ(t|Ht) has a practical interpretation: for an infini-
tisemal interval dt, we have λ(t|Ht)dt = E[N(t, t+ dt)|Ht],
which is the expectation of number of events will occur
during the region dt, and N(A) is a counting measure of
set A ⊆ X . The log-likelihood for an observed sequence
x = {xi}NT

i=1 can be obtained by

l(x) =
NT∑
i=1

log λ(ti|Hi)−
∫ T

0
λ(τ |Hτ)dτ (2)

For instance, the seminal Hawkes process [31] defines its
CIF as

λ(ti|Hi) = µ+ α
∑
ti<t

exp(−β(t− ti)) (3)

which means all past events have an exponentially decaying
stimulus for future events’ occurrence, combined with a
constant base stimulus µ.

2.2 Message passing framework

GNNs utilize the message passing (MP) mechanism to cap-
ture the graph structure information [5], [33]. MP iteratively
updates a node’s representation by aggregating it’s neigh-
bors’ representations. Generally each iteration captures 1-
hop neighbors’ information. Let G = (V,E) denote a static
graph where V is the node set and E is the edge set. For one
layer’s transformation, the MP process can be formulated as

aku = AGG({hk−1v |v ∈ N(u)})
hku = COMB({hk−1u ,aku})

(4)

3. https://github.com/xiawenwen49/GNPP-code.git.

The instantiations of AGG and COMB operations are critical
and diverse for different GNNs. For instance, for the GCN
model, Hk = ÃHk−1W k, in which AGG and COMB are
integrated by the normalized Laplacian matrix Ã [6]. While
for the GAT model, the AGG is implemented using attention
mechanism, and the COMB is composed of concatenation
and linear transformation [7].

3 GNPP ARCHITECTURE

3.1 Problem formulation

Definition 1 (Temporal graph). A temporal graph is denoted
by G = (V,E, T), where V is the node set, E is the edge set and
T is the timestamp set. For node i and node j, if (i, j) ∈ E, then
Tij = {t1, · · · , tl} represents l interaction/event timestamps on
edge (i, j) where ti ∈ R≥0. If (i, j) /∈ E, then Tij = ∅. We
further define Tii = {0} for all node i. All these timestamps in T
are currently observed and the maximum value is Tmax.

Definition 2 (The problem). Given a node pair (i, j) and the
currently observed temporal graph G, we aim to predict the time
of next interaction between node i and node j after Tmax. We
assume at least one timestamp has been observed on (i, j).

3.2 Overview of GNPP

We present the framework of the GNPP model and the real-
valued timestamp processing scheme in Figure 3. The time
encoder is essentially a mapping that transforms each real-
valued timestamp to a high-dimensional vector. Then GNPP
will aggregate all these timestamp vectors from a node itself
and its neighbors respectively. The aggregation is conducted
using self-attention modules to capture neighborhood and
ego influence patterns. Finally, we define a CIF based on
the obtained representations and optimize model param-
eters using likelihood maximization under the temporal
point process framework. In the below we will first present
the forward computation layer of GNPP then the concrete
timestamp processing and the optimization details.

3.3 Self-attention message passing

As illustrated in Figure 2, each node pair is regarded as a
node, hence the following ”nodes” refer to node pairs of
the original temporal graph. GNPP considers the depen-
dency between each node’s event occurrence pattern with
its neighbors. Following the message-passing framework,
we aggregate event activities of neighbor nodes and com-
bine the aggregated feature with the central node’s activity
feature to obtain high-level representations. We implement
the aggregation operation using self-attention, and the ag-
gregation can be naturally equipped with the ”multi-heads”
mechanism. We describe the computation details as follows.

We clarify that the space of event occurrence time isX :=
[0, T) ⊂ R≥0. The timestamps set of node u is denoted by
xu and the set size is |x|. For the k-th attention head, we first
map a real-valued time t to a d-dimensional feature vector
using a time encoder φ(k)(t) : R≥0 → Rd. Details of the
time encoding function will be presented in Section 3.4. For

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

time encodingtime encoder

Time encoding sketch

learned points

time encoding

Atten

Atten hidden pdf func
Linear

GNPP model frameworkOriginal temporal graph

C
O

M
B

Fig. 3. The left part is the framework of the GNPP model. When operating on the line graph, each node will aggregate both its own historical
timestamps and those from its neighbors, by two different self-attention modules. The learned representation support the subsequent CIF function
and the exact time prediction. The right part is the sketch of the time encoding scheme. Some ω samples are optimized by gradient descent directly,
acting like they are sampled from a hidden probability distribution.

attention head k, the aggregation and combination of the
first layer for node u is presented as follows

a(k)uneig
(t) = AGGneig(φ(k)(t), {φ(k)(tvj)|tvj ≤ t, tvj ∈ xv, v ∈

N(u)})
a(k)uself

(t) = AGGself(φ
(k)(t), {φ(k)(tuj)|tuj ≤ t, tuj ∈ xu})

h(k)
u (t) = COMB({auneig (t),auself (t)})

(5)
For subsequent layer transformations, the φ(k)(t), φ(k)(tvj)
and φ(k)(tuj) in Eq (5) are just concatenated by former
layer’s h(k)

u (t), h(k)
v (t) and h

(k)
u (t) respectively.

We implement the AGGneig/self by the self-attention
mechanism [30], which is computed as follows

AGG{φ(t), {φ(tj)}nj=1} =
n∑
j=1

S(
(Qφ(t))TKφ(tj)√

dk
)V φ(tj)

(6)
where S is the softmax layer, Q,K, V are learnable param-
eters and dk is the input feature dimension. If xu is empty,
we compute Eq (6) by adding a 0 as the unique key. We
implement the COMB function using a concatenation and a
linear transformation as follows.

COMB{auneig (t),auself (t)} = Wc[auneig (t),auself (t)] (7)

For multi-head attention which attends to information from
different representation subspaces, we simply concatenate
outputs from different heads.

hu(t) = [h(0)
u (t),h(1)

u (t), · · · ,h(K−1)
u (t)] (8)

Based on the above definitions, we define the CIF for
a single node u (a node pair we are interested in on the
original temporal graph) as follows:

λu(t|Hu,t) = g(wThu(t) + b) (9)

where g(x) : R→ R+ is a monotonically increasing positive
definite function to ensure the positiveness of conditional
intensity function. As adopted in some previous works [22],
[24], [25], we choose the softplus function g(x) = α log(1 +
ex/α), which is a ”smooth” version of the Relu function,
where α > 0 is an adjustable scalar.

3.4 Time encoding

In this section, we present the precise processing of real-
valued timestamp information, i.e., time encoding. In our

GNPP model, the temporal information is completely en-
coded by the time encoding function φ.

A most common instance for the time encoding φ(t) is
position encoding [30], as indicated in Eq (10).

φpe(i) := [· · · , sin(
i

100002j/d
), cos(

i

100002j/d
)]

d
2
j=0 (10)

where d is an even dimension number. While i represents
an integer, which is the discrete order for encoding. Hence,
position encoding can only handle discrete integers i ∈ N0.
Though we can first discretize a continuous value and
then encode it using the position encoding, we loss their
continuous representations. More importantly, the (general-
ized) inner product structure φ(·)TQKφ(·) equipped with
fixed frequency φpe(·) in Eq (6) can not model arbitrary
influence patterns between timestamps, i.e., it is constrained
by predefined position encoding parameters.

Recently, two time encoding schemes are proposed to
model a general influence function considering the inner
product structure of time encodings. One is the harmonic
encoder [14] from the GNNs area and the other is the Fourier
encoder [25] from the point process area. The main idea of
these two encoding schemes is to construct a time mapping
function φ(·), such that a shift-invariant kernel function
K(t1, t2) : R × R → R, defined by the inner product of
two time encodings K(t1, t2) = ψ(t1 − t2) = φ(t1)Tφ(t2)
is positive semi-definite. In this way, the kernel function
K(t1, t2) models the triggering effect of two events with
time interval t1−t2. We show that they are both based on the
Bochner’s theorem and are mathematically equivalent, to
unveil their underlying properties and adopt an appropriate
encoding scheme.

Theorem 1 (Bochner’s theorem). A continuous function k(x)
on Rd is positive semi-definite if and only if k(x) is the Fourier
transformation of a non-negative Borel measure p(ω).

As stated in [34], if ψ(·) is properly scaled such that
ψ(0) = 1, Bochner’s theorem guarantees that p(ω) ≥ 0
and

∫
Rd p(ω)dω = 1. In other words, we have p(ω) as a

probability measure, and if we denote ξω(x) = ejωx, the
kernel function becomes an expectation of ξω(x)ξω(y)∗, as
indicated in Eq (11).

K(x, y) = ψ(x− y) = ψ(y − x) =

∫
Rd

p(ω)e−jω(y−x)dω

=

∫
Rd

p(ω)ejω(x−y)dω = Eω∼p(ω)[ξω(x)ξω(y)∗]

(11)

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Note that a positive semi-definite function ψ(·) implicitly
indicates that ψ is even, hence the equation ψ(x − y) =
ψ(y−x) holds and p(ω) is real. Since the p(·) and the K(·, ·)
are both real, the imaginary part of Fourier transform basis
can be ignored and the following equation holds:

K(t1, t2) = Eω∼p(ω)[cos(ω(t1 − t2))]

= Eω∼p(ω)[cos(ωt1) cos(ωt2) + sin(ωt1) sin(ωt2)]
(12)

The expectation in Eq (12) can be approximated by different
ways. The harmonic encoder adopt the following encoding
scheme

φh(t) :=

√
1

d
[cos(ω1t), sin(ω1t), · · · , cos(ωdt), sin(ωdt)]

(13)
where {ωi}di=1 are learnable parameters. The Fourier en-
coder is

φf (t) :=

√
1

d
[
√

2 cos(ω1t+ b1), · · · ,
√

2 cos(ωdt+ bd)] (14)

where {ωi}di=1 are sampled from a neural network based
distribution and {bi}di=1 are random values uniformly sam-
pled from [0, 2π].

We can show that they are both unbiased approxima-
tions of the expectation Eω∼p(ω)[cos(ω(t1− t2))]. Since the b
is uniformly sampled in [0, 2π], we calculate the expectation
of the inner product term φf (t1)Tφf (t2) over b as

Eb∼[0,2π][2 cos(ωt1 + b) cos(ωt2 + b)]

=

∫ 2π

0

1

2π
2 cos(ωt1 + b) cos(ωt2 + b)db

=

∫ 2π

0

1

2π
[cos(ω(t1 − t2)) + cos(ω(t1 + t2) + 2b)]db

= cos(ω(t1 − t2))
(15)

which indicates that φh(t1)Tφh(t2) and φf (t1)Tφf (t2) are
equal taking expectation of ω over p(ω).

Revealing the equivalence helps to mitigate tedious eval-
uations on choosing an appropriate time encoding scheme
for continuous timestamp representations. Moreover, the
mathematical equivalence bridges the continuous time en-
coding methods in temporal graphs neural models and
neural time series models. However, we note that there
is a subtle difference between the two encoders. Since
the distribution p(ω) determines the kernel function, the
harmonic encoder proposes to directly learn ω samples,
while the Fourier encoder firstly learns the distribution p(ω)
and then samples points from the learned distribution. The
subtle difference results in different parameters and learning
efficiency. Besides, our experimental results in Section 4.7 re-
veal and verify the efficiency difference under both forward
and backward computations. Considering that, we adopt
the harmonic encoding φh(t) as timestamp representations,
since it is more efficient and requires less learnable param-
eters. We show the sketch of this time encoding scheme in
the right part of Figure 3.

3.5 Learning and inference

For all observed nodes and their associated event time
sequences, we optimize the model using maximum likelihood

estimation based on Eq (2). The log-likelihood in Eq (2) is
computed by substituting λ(t|H) with λu(t|Hu,t) for a node
u on the line graph with observed sequence Hu. For the
integral

∫ T
0 λ(τ |Hτ)dτ in Eq 2, which is intractable for an

analytic form. We adopt the Monte Carlo approach in Eq
(16) for approximation [22], [24], [35].∫ T

0
λ(τ |Hτ)dτ ≈ T

K

K∑
i=1

λ(τi|Hτi), τi ∼ U [0, T] (16)

Once the λu(t|Hu) function is obtained, we can compute
the conditional density function fu(t|Hu) of next event time
tn+1 according to Eq (1).

fu(t|Hu) = λu(t|Hu) exp

(
−
∫ t

tn

λu(τ |Hu)dτ

)
(17)

And the prediction of tn+1 for node u is computed by

t̂n+1 =

∫ +∞

tn

τfu(τ |Hu)dτ (18)

In practice, computing the double integral for t̂n+1 by
approximation leads to efficiency problem. Hence, we add
another prediction module which takes hu(tn) as input
and directly computes the prediction for next event time
tn+1, as in Eq (19). This prediction approach yields better
computational efficiency and stability.

t̂n+1 = wT
p hu(tn) + bp (19)

We adopt the mean square error (MSE) to measure the
prediction error by Eq (20).

lmse(u) =
1

nu − 1

nu∑
j=2

(t̂j − tj)2 (20)

where nu is the observed sequence length for node u. Note
that we conduct nu − 1 predictions for each timestamp
sequence, ignoring the first record. We sum up the predic-
tion error and the negative log-likelihood to obtain the final
optimization objective.

L =
∑

u∈Gline

−l(xu) + βlmse(u) (21)

where β is an adjustable hyperparameter.

4 EXPERIMENTS

In this section, we conduct experiments on three synthetic
datasets and three real-world datasets. We compare our
GNPP with seven graph neural models devised for temporal
graphs and three recently proposed neural point process
models. We evaluate these models using the rooted mean
square error (RMSE) of predicted next event time and the
log-likelihood (LL) value. Both metrics are widely adopted
in previous works [22], [24], [25]. We compute the RMSE
by predicting every held-out event time for every data
sequence, i.e., for a sequence with length L, we make L− 1
predictions according to histories until the latest observation
time. For the settings of the GNPP model, we adopt 2
attention heads and 1-layer aggregation. This is because we
experimentally observe that the 2-hop enclosing subgraph
of a node on the line graph is generally sizeable and may

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

induce redundant information. The dimensions of the time
encoder and the number of hidden units are set to 128, and
the batch size is set to 1. We adopt the Adam optimization
[36] and approximate the intergral in Eq (16) with 200 MC
samples. We adopt 100 training epochs for GNPP. For all
other parameters of baselines, we use default settings in
their codes and original papers. More detailed settings could
be found in the code released.

4.1 Baseline methods

In this section, we discuss baselines we used in experi-
ments, including three neural point process models, i.e.,
Transformer Hawkes Process (THP) [24], Self-Attentive
Hawkes Process (SAHP) [37], and Neural Network Point
Process (NNPP) [38], and seven graph neural models, i.e.,
TGAT [14], TGN [13], GHNN [28], HTNE [26], DySAT
[16], CTDNE [11], and GAT-LSTM. GAT-LSTM is a GAT
model equipped with the harmonic encoder and an LSTM
module as a naive GNN extended baseline, while others are
originally devised for temporal graphs.

For three neural point process models, timestamp se-
quences for all observed temporal edges are directly feed
into these models. For TGAT, GHNN, TGN, HTNE, DySAT
and CTDNE, we construct node pairs like (u, v, ti, ti+1)
from the original temporal graph. We extract representations
of ru(ti) and rv(ti) from these learned models. Then we use
a linear transformation to predict t̂i+1 = wT [ru(ti)|rv(ti)].
For GAT-LSTM, the construction of the line graph is re-
quired. The timestamp sequence of each node (on the line
graph) will firstly be encoded using a harmonic encoder,
then the encoding sequence is passed through the LSTM
module. The outputs of the LSTM module are regarded as
node features and feed into the GAT model for the next
event time prediction. Note that for THP, SAHP, NNPP, and
our GNPP, we can evaluate both the LL and the RMSE.
While for other models, we can only evaluate the RMSE
since they can not produce LL values.

4.2 Datasets

We conduct evaluations on three synthetic datasets and
three real-world datasets. For each dataset, we split node
pairs with a 70%-15%-15% scheme for train, validation and
test. For a node pair, only historical timestamps before its
label timestamp (which we aims to predict) on itself and
neighbor node pairs can be observed.
Synthetic datasets. The synthetic temporal graphs are
generated by two steps. Firstly, we generate a random
Watts–Strogatz small-world graph [39] Ḡ = (V̄ , Ē). We set
all synthetic graphs to have 500 nodes and 1000 edges. Sec-
ondly, we simulate a point process with |Ē| event types, re-
garding each edge as an event type. For an edge (event type)
e, the event occurred on its neighbors may has negative,
positive, or null influence for its own future occurrences,
i.e., making the interactions occur more frequently, rarely
or as it is. Hence, we simulate a correlated effect between
adjacent edges. For positive or negative influence, we adopt
the commonly used Hawkes process to model the influence.
For the independent case, we adopt the in-homogeneous

TABLE 1
The statistics of all datasets related to timestamps on graphs, including

the average number of timestamps per edge (Average |Tij |), the
minimum and the maximum of timestamps.

Model Average |Tij | Min t Max t
Hawkes-negative 17.4 0 99.9
Hawkes-positive 23.5 0 99.9
In-homogeneous 61.7 0 89.7

Wikipedia 8.6 0 2678373.0
Reddit 2.3 0 99995.034

CollegeMsg 4.3 0 1098777142.0

Poisson process for all edges. The intensity function of an
edge for all three cases can be summarized using Eq (22).

λe(t) = µ(t)︸︷︷︸
base intensity

+ α
∑
τn<t

exp(−β1(t− τn))︸ ︷︷ ︸
neighbor influence

+ γ
∑
τs<t

exp(−β2(t− τs))︸ ︷︷ ︸
self-influence

(22)

Note that τn represents a timestamp of an event that occurs
on e’s neighbor edges N(e), while τs represents one that
occurs on e itself. These three scenarios correspond to three
parameter settings

1) Hawkes-negative, µ(t) = 1.0, α = −0.2, γ = 0.5,
β1 = 2, β2 = 2.

2) Hawkes-positive, µ(t) = 0.1, α = 0.5, γ = 0.1, β1 =
2, β2 = 2.

3) In-homogeneous Poisson, µ(t) =

max(sin(t)√
t+1+0.1t

, 0.001), α = 0, γ = 0.

Note the difference of parameter α in Hawkes-negative and
Hawkes-positive, which simulates negative neighbor influ-
ence and positive one respectively. We conduct simulations
in time range [0, 100] using the Tick library [40]. Simulated
time sequences are attached to corresponding edges on
original graphs to obtain three temporal graphs.
Real-world datasets. We also conduct evaluations on three
real-world temporal graphs.
Wikipedia is a temporal graph containing edited pages and
users as nodes. Each edition between a user and an edge is
recorded with a timestamp. This temporal graph contains
about 9300 nodes and 160000 temporal edges. [1].
Reddit is an online community that records interactions
between active users and their posts under subreddits. It
has about 11000 nodes and 700000 temporal edges. [1]
CollegeMsg is a communication graph that records private
Email interactions of an online society at the University of
California, Irvine. This temporal graph contains about 2000
users and 60000 temporal edges [41].

In addition to the topological information, we also sum-
marize timestamps-related statistics of all datasets in Table
1. Besides, since our model works on the line graph and
large graphs have significantly more edges than nodes,
constructing the line graph may be impractical because of
memory and computation constraints. Considering the local
property of GNNs, the line graph that GNPP operates on
is not necessarily constructed completely. Small overlapped
subgraphs centered on diverse nodes are sufficient.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE 2
The RMSE comparison of all models on three synthetic temporal

graphs (the smaller the better).

Model Hawkes-neg Hawkes-pos Poisson
THP 24.61 21.79 7.54

SAHP 11.62 2.86 12.89
NNPP 59.26 14.90 9.86
GHNN 38.27 37.43 18.04
TGAT 35.96 33.51 3.19
TGN 12.01 1.36 12.51

HTNE 16.04 15.87 28.55
GAT-LSTM 85.52 92.84 85.40

DySAT 9.205 9.03 15.57
CTDNE 9.11 8.79 15.79
GNPP 2.42 8.21 2.50

TABLE 3
The LL comparison for neural point process models on three synthetic

temporal graphs (the larger the better).

Model Hawkes-neg Hawkes-pos Poisson
THP -10.29 -3.99 -0.31

SAHP -5.67 -3.63 -1.25
NNPP -7.73 -4.38 -4.81
GNPP -4.37 -4.60 -39.83

4.3 Synthetic datasets results

We first summarize the RMSE and LL in Table 2 and Table 3
respectively. The best and the second-best result are shown
in bold and underlined respectively. For the RMSE metric,
we can see that our method performs the best on Hawkes-
neg and Poisson datasets and the second-best on Hawkes-
pos dataset. For the LL metric, our method achieves the
best on the Hawkes-neg dataset and performs relatively
worse on Hawkes-pos and Poisson datasets. The reason is
that Hawkes-pos and Poisson process are more consistent
with the model form defined in THP and SAHP. The linear
interpolation form in THP and the exponential form in
SAHP make it more efficient to achieve a higher likelihood.
Note that the RMSE target and the LL target are sometimes
inconsistent. For instance, for the Poisson dataset, GNPP has
a smaller (worse) likelihood in Table 3, while a better predic-
tion error in Table 2. And we will discuss this inconsistency
in detail in Section 5.

To understand the learned GNPP model more, we visu-
alize the learned lambda scores on these synthetic datasets.
The lambda score is the model’s output before passed
through the softplus function, i.e., the wThu(t) + b in Eq
(9). To visualize the contributed score from the ego-attention
module and the neighbor-attention module separately, we
set the bias b = 0 and number of attention heads to 1
for both AGGneig and AGGself. Hence the lambda score
contributed from AGGneig and AGGself can be computed by
w[0 : d]Tauneig (t) and w[d : 2d]Tauself (t), respectively.

We choose 20 points in the time range [0, 20] at equal
intervals and obtain 20 time embeddings. The key, query,
and value embeddings in Eq (6) are all set as these 20
embeddings. We compute auself (t) and auneig (t) by using the
AGGself and AGGneig module on these time embeddings
respectively. Then we can compute the lambda scores using
the linear computation as stated above. Note that a key time
embedding that occurs after a query time embedding will
be ignored, and we put a mask in the attention module to
meet this chronological constraint.

The lambda scores on the synthetic Hawkes-neg dataset

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time interval(self-atten head)

0

1

2

3

4

la
m

bd
a

sc
or

e

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time interval(neig-atten head)

Fig. 4. Visualization of learned lambda scores for the synthetic hawkes-
negative dataset. The horizontal axis represents the query time.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time interval(self-atten head)

0.0

0.5

1.0

1.5

2.0

2.5

la
m

bd
a

sc
or

e

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time interval(neig-atten head)

Fig. 5. Visualization of learned lambda scores for the synthetic hawkes-
positive dataset. The horizontal axis represents the query time.

are shown in Figure 4. We can see that the lambda scores
computed by the self-attention module are positive, while
scores computed by the neighbor-attention module are neg-
ative. Positive lambda scores mean that the learned model
puts positive stimulus for an event that occurred on a
node itself, while negative lambda scores reveal negative
stimulus for an event that occurred on a neighbor node. The
results in Figure 4 reveal that the GNPP model learned to
pose negative influences on neighbor-events and positive
influences on self-events.

For the synthetic Hawkes-positive dataset, we can see
in Figure 5 that the model poses positive lambda scores on
both self-events and neighbor-events. This result shows the
learned model believes both kinds of events have positive
impacts on the occurrence of self-events. The result is also
consistent with the synthetic setting for the Hawkes-positive
dataset. In Figures 4 and 5, we can see that the GNPP model
is capable of capturing positive or negative influence pattern
from events occurred on neighborhood nodes.

4.4 Real-world datasets results
This section evaluates the performance of our method and
baselines on the three real world temporal graphs. We report
the RMSE results and LL results in Table 4 and Table 5
respectively. For all four graph neural baselines, we can
find that TGAT performs better on the CollegeMsg, while
CTDNE is better on the other two datasets. Our method
achieves the best performance for LL on three real datasets.
For the RMSE, we achieve the best on Wikipedia and Col-
legeMsg. The RMSE for Reddit is also relatively close to the
best DySAT. This result indicates that the combination of
self-attention mechanism and time encoding could capture
temporal patterns on graphs more effectively and achieves
better results. Further, we can see that SAHP achieves rel-
atively considerable LL in Table 5, but it performs worse
for RMSE in Table 4. This performance difference further
shows that RMSE and LL are inherently inconsistent. Larger
LL may not lead to smaller RMSE in some scenarios. The

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 4
The RMSE comparison of all models on real-world temporal graphs.

Model Wikipedia Reddit CollegeMsg
THP 17.13 3.77 82.18

SAHP 361.07 427.20 540.62
NNPP 31.47 2.67 105.80
GHNN 116.26 4.47 240.47
TGAT 37.66 1.41 188.36
TGN 23.81 1.46 170.91

HTNE 12.72 1.61 665.95
GAT-LSTM 60.82 2.13 406.65

DySAT 22.79 0.86 318.51
CTDNE 22.51 0.82 320.78
GNPP 11.14 1.08 29.75

TABLE 5
The LL comparison for neural point process models on real-world

temporal graphs.

Model Wikipedia Reddit CollegeMsg
THP 0.31 0.45 -1.56

SAHP -1.07 -1.05 -2.32
NNPP -5.40 -2.80 -6.10
GNPP 9.85 3.50 -0.77

phenomenon of this inconsistency is analogous to that in
Section 4.3. We will discuss the LL-RMSE inconsistency here
and that in Section 4.3 in Section 5.

4.5 Ignore neighbors VS Consider neighbors

In this section, we conduct an ablation study to evaluate
the effectiveness of neighborhood information aggregation
structure in our model on real-world cases. We compare per-
formance between GNPP with neighbor attention module
AGGneig (denoted GNPP) and its counterpart without this
module (denoted GNPP-neig) on three real-world datasets.

The results of LL and RMSE comparison are shown
in Figure 6. We can see that for both metrics, the model
with the neighbor attention module achieves a better perfor-
mance, which indicates that the neighbor information aggre-
gation mechanism benefits the temporal pattern capturing
and future event time prediction. Besides, this aggregation
mechanism has a larger influence on the LL metric than on
the RMSE metric. We can see that in Figure 6(a), GNPP-
neig has a much smaller likelihood than that of GNPP.
While in Figure 6(b), the difference of RMSE between GNPP-
neig and GNPP is relatively smaller than the difference of
LL. The observed difference is due to lmse(u), which we
introduced in the optimization objective in Eq (21). lmse(u)
helps to narrow down the gap between GNPP and GNPP-
neig for RMSE to some extent. Considering the results in
Figure 6, we can conclude that the message aggregation

Wikipedia Reddit CollegeMsg
Dataset

60

40

20

0

LL

GNPP-neig
GNPP

(a) LL comparison

Wikipedia Reddit CollegeMsg
Dataset

0

10

20

30

R
M

S
E

GNPP-neig
GNPP

(b) RMSE comparison

Fig. 6. Evaluation of the GNPP model between with and without neigh-
bor attention module.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20key time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

qu
er

y
tim

e

Learned self-attention

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20key time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

qu
er

y
tim

e

Learned neighbor-attention

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. Visualization of learned attention heads on the synthetic Hawkes-
neg dataset.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20key time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

qu
er

y
tim

e

Learned self-attention

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20key time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

qu
er

y
tim

e

Learned neighbor-attention

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. Visualization of learned attention heads on the synthetic Hawkes-
pos dataset.

from neighbors helps to promote model performance in
modeling event patterns on temporal graphs.

4.6 Attention analysis
In this section, we visualize the learned attention weights on
synthetic Hawkes-negative and Hawkes-positive datasets to
gain more insights into the learned GNPP model. We con-
struct 20 time encodings as keys and queries for attention
weight computation. These time encodings are obtained in
the same way as in Section 4.3. For each query encoding, we
add masks on keys that are later than that query to adhere
to the chronological constraint. We visualize both the self-
attention module and the neighbor-attention module on the
Hawkes-negative dataset in Figure 7. We can see that for
the left figure in Figure 7, attention weights are large on the
diagonal and decay fast for farther key encodings. While for
the right neighbor-attention module, the weights are much
smaller than the self-attention module and decay faster.
This is because the likelihood optimization objective for
the Hawkes-negative process forces the model to pay more
attention to self-occurred events, since self-events stimulus
more events while neighbor-events leads to less lambda
summation terms in Eq (2).

Figure 8 visualizes attention results on the Hawkes-
positive dataset. Both the self-attention and the neighbor-
attention module pay more weights on key encodings which
are proximal to the query encoding. Further, the weight
decays quickly after a few grids, which means that the atten-
tion module captures the rapid decay influence for both self-
events and neighbor-events. The decaying influence effect
is analogous with that in Figure 7 because both Hawkes-
positive and Hawkes-negative have exponentially decaying
stimulus kernels, as formulated in Eq (22).

4.7 Performance comparison of time encoders
We have mentioned that there may have several different
time encoding schemes to handle these real-valued times-

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Wikipedia Reddit CollegeMsg
Dataset

60

40

20

0
LL

Position encoder
Harmonic encoder

(a) LL comparison

Wikipedia Reddit CollegeMsg
Dataset

0

10

20

30

R
M

S
E

Position encoder
Harmonic encoder

(b) RMSE comparison

Fig. 9. Comparison of LL and RMSE on three real-world datasets
between the harmonic encoder and the position encoder.

64 128 256
Encoder dimension

0

1000

2000

3000

4000

Ti
m
e
(m

s)

Forward
Harmonic Fourier

(a) Forward

64 128 256
Encoder dimension

0

2000

4000

6000

8000

10000

Ti
m
e
(m

s)

Forward and Backward
Harmonic Fourier

(b) Forward and backward

Fig. 10. Efficiency comparison for harmonic encoder and Fourier en-
coder. The running time is accumulated over 104 timestamps. We illus-
trate both forward and backward computation times.

tamps, as in Section 3.4. In this section, we consider investi-
gating the effects of these different time encoders, and the ef-
ficiency comparison between harmonic encoder and Fourier
encoder. We mainly focus on the harmonic encoder and the
position encoder. We conduct experiments on three real-
world datasets and compare the LL and the RMSE metric
for these two encoding schemes. Both encoding dimensions
are set to 128, and other model settings are identical.

LL and the RMSE comparisons are shown in Figure
9(a) and Figure 9(b) respectively. The harmonic encoder
outperforms the position encoder for both metrics, though
the improvements differ across datasets. For the LL metric,
the position encoder degrades the LL largely compared with
the harmonic encoder, especially on the Wikipedia and the
CollegeMsg dataset, as in Figure 9(a). The LL difference is
relatively smaller on the Reddit dataset. We argue that this
result comes from the difference of timestamp scales. The
time scales for Wikipedia and CollegeMsg are much larger
than that of Reddit. Time scales are reflected by the Max
t shown in Table 1. For the RMSE metric, the difference is
smaller on the Reddit dataset and larger on the Wikipedia
and the CollegeMsg dataset. These results are concordant
with those of the LL metric. Besides, we observe that the
comparison results in Figure 9 resemble those in Figure 6,
with some slight differences. This may reveal that both the
neighborhood attention module and the harmonic encoder
are important for a satisfactory model performance.

Figure 10 illustrates the efficiency comparison between
harmonic encoder and Fourier encoder. We accumulate the
computation time for 104 timestamps. We compare the for-
ward computation time and forward+backward time. The
results in Figure 10 show that for all three encoding settings,
i.e., 64, 128, and 256 encoding dimensions, harmonic en-
coder has better efficiency than Fourier encoder. The results
coincide with our analysis in Section 3.4. Moreover, the

larger the encoding dimension, the larger the computational
cost gap. Hence, our analysis in Section 3.4 provides a
basis for selecting an appropriate encoding scheme with
equivalent expressive power while better efficiency.

4.8 Visual insights of time encoders

To understand the effects and functionalities of different
time encoders more intuitively, we visualize the time en-
codings and their inner-products produced by the harmonic
encoder and the position encoder in this section. The har-
monic encoder is trained with the GNPP model on the
Wikipedia dataset. For the position encoder, we replace the
fixed number 10000 in Eq 10 with 1.1×max(T) of Wikipedia
dataset, for a more fine-grained discrete integer encoding.
For both encoders, we fix the encoding dimension to 128.

Figure 11(a) and Figure 11(b) illustrate the images of
time encodings produced by harmonic encoder and position
encoder respectively. We select 100 time encodings from the
time range [0, 100], and the embeddings form a 100 ∗ 128
matrix, which is illustrated as an image. For both Figure
11(a) and Figure 11(b), the left part of the image presents
the cos(ωt) values, while the right part presents the sin(ωt)
values. Firstly, the scale of the learned harmonic encoder
differs from that of the prefixed position encoder. The scale
of learned harmonic may be caused by the timestamp scale
of the specific dataset. While for position encoder, these
time encodings are prefixed 4. The fixed time encodings
may lack flexibility for subsequent model learning and
may induce worse prediction performance, compared with
learnable time encodings. Secondly, we can observe that
for the harmonic encoder, the time encodings show some
specific and intriguing patterns, as for the right part in
Figure 11(a). The encoding values are not as continuous as
these of the position encoder, compared with the right pare
of Figure 11(b). However, these intriguing patterns lead to
continuous inner-products, and to some extent continuous
influence functions, which we will discuss below.

Figure 11(c) and Figure 11(d) illustrate the inner-product
matrix and the induced influence function induced by these
time encodings. The left part of both Figure 11(c) and
Figure 11(d) are computed using the equation Img =
φ(T)×φ(T)T . φ(T) ∈ R100×128 is the time encoding matrix,
and Img ∈ R100×100 represents the inner-product matrix of
time encodings. The right parts of Figure 11(c) and Figure
11(d) plot the first line of their corresponding Image matrix,
indicating the inner-product induced influence w.r.t time in-
tervals (the interval ranges from 0 to 100). Comparing Figure
11(c) and Figure 11(d), we can observe that the learned har-
monic encoder produces time embeddings which result in
continuous inner-product values, while the position encoder
leads to fluctuating ones. The right parts of Figure 11(c) and
Figure 11(d) illustrate this effect more clearly, as we point
out with blue dotted ellipses. The fluctuate curve in the
right part of Figure 11(d) comes from prefixed coefficients
in position encodings. To some extent, inner-product values
of time encodings indicate influence stimulus intensities.

4. Although we can set different maximum time values, i.e., the
denominator in Eq (10), for different datasets, the time encodings are
frozen for the same dataset.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

0 20 40 60 80 100 120

0
20
40
60
80 0.10

0.05
0.00
0.05
0.10

(a) Visualization of harmonic en-
codings

0 20 40 60 80 100 120

0
20
40
60
80 0.5

0.0

0.5

1.0

(b) Visualization of position en-
codings

0 20 40 60 80

0
20
40
60
80

0 25 50 75 100
0.2
0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Continuous inner-product

Continuous influence

(c) Visualization of harmonic en-
coder inner-products

0 20 40 60 80

0
20
40
60
80

0 25 50 75 100

30

40

50

60

30

40

50

60

Fluctuate inner-product Fluctuate influence

(d) Visualization of position en-
coder inner-products

Fig. 11. Visualization of harmonic and position encodings, and visual-
ization of two inner-product induced stimulus functions.

GHNN TGAT TGN HTNE GAT DySAT CTDNE GNPP
0

200

400

600

800

1000

1200

1400

RM
SE

RMSE comparison
With history Without history (0 padding)

Fig. 12. Comparison of 0-padding between GNPP and the baselines.

Hence, this difference supports the conclusion that the learn-
able harmonic encoder is more suitable for capturing the
continuous influence effect on real-world temporal graphs.
While predefined position encodings lack flexibility and
increase time encoding induced biases.

4.9 The effect of padding 0 for fresh node pairs
In this section, we discuss effects of 0-padding for node
pairs without historical timestamps observed. Since point
process baselines require historical timestamps to predict
future ones, they are not eligible for this comparison. We
compare GNPP with those baselines considering the graph
structure. We first select a threshold as Tthr = 0.7 × Tmax.
For node pairs whose first timestamps are larger than Tths,
we select them as test cases and predict their first timestamp,
with other timestamps removed and a 0 padded. The first
timestamp is regarded as the label for all these node pairs.
We conduct experiments on the CollegeMsg dataset and
illustrate results in Figure 12. We can see that all methods
have larger RMSE errors than their original settings. How-
ever, GNPP still holds the smallest error compared with
other baselines . We suggest that the padding trick is a
simple and applicable solution for node pairs without inter-
action history. More advanced methods can be investigated
in future works.

5 DISCUSSION AND LIMITATIONS

In this section, we discuss two interesting aspects of our
problem and limitations of our solution.

The first aspect is the objective function. Many previous
temporal point process works adopt the (negative log) like-
lihood as a whole or an important part of the optimization

objective. From prediction results in Section 4.3 and Section
4.4, we observe that a larger likelihood may not lead to a
smaller prediction error. For example, GNPP has a worse
LL in Table 3 with a better RMSE in Table 2, and SAHP
has a better LL in Table 5 with a worse RMSE in Table
4. We argue that the reason comes from the inconsistency
between likelihoods and prediction errors. Investigating the
likelihood in Eq (2), we can find that it consists of two
parts, i.e., the (log) intensity summation on occurred events∑NT

i=1 log λ(ti|Hi), and the negative integral in the whole
period −

∫ T
0 λ(τ |Hτ)dτ . Imaging that a neural network

model aims to achieve a large likelihood value, it may learn
to increase the intensity function values on occurred events,
and decrease the intensity value drastically during the in-
terval of two occurred events. In this way, the neural model
may resemble an impulse function on occurred event times.
However, this kind of neural intensity function impairs its
ability to predict the future, i.e., increasing prediction error.
This circumstance may happen if the model has a high
capacity (roughly speaking, many parameters) and data
sequences are insufficient. Hence, we argue that for this
kind of neural point process models (include ours), either
adjusting the objective function or constraining the model
complexity requires careful consideration.

The second aspect we discuss is the relation between
our model and previous representation learning methods
for dynamic or temporal graphs. In our model, we induce
a CIF function based on high-level node representations,
and these representations aggregate both topological and
temporal information of the temporal graph. From this per-
spective, the model can also be regarded as a more general
edge representation learning model on temporal graphs, as
previous representation learning works [11], [16], [19]. The
whole framework may support other prediction tasks on
temporal graphs, by stacking other neural architectures on
the output representations in Eq (8) with fine-tuning. How-
ever, the generalization ability of representations learned by
the GNPP model requires more verification on other tasks
on temporal graphs, and we may leave this as future works.

There are also some limitations for the proposed model.
Firstly, in the message aggregation process, we do not dis-
tinguish different event types in different neighborhoods.
Instead, we regard all events as homogeneous for all neigh-
bor edges. While in practice, there may have diverse event
types. Secondly, in this work, we model the temporal graph
as a graph with merely timestamp information without
node and edge features. Because many temporal graph
datasets have no auxiliary features. This abstraction may
be over-simplified and integrating these rich features into
model computation appropriately to improve task-specific
performance deserves more consideration.

6 RELATED WORK

Our work is closely related to two research fields: (1) Tem-
poral point process; (2) Graph neural networks.
Temporal point process. Classic temporal point process
models assume pre-defined CIF forms [3], [42]. The CIF
function is used to model future event occurrence den-
sities based on currently observed history. These models
benefit from well interpretability and learning efficiency

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

while suffers constrained capability of modeling complex
dynamics. The success of deep neural networks motivates
some works to introduce neural networks into the temporal
point process framework [21], [22], [23], [24], [25], [43].
[21], [22] propose to utilize RNNs to capture the sequential
information of temporal events and define CIF functions.
[23] adopts reinforcement learning (RL) to model the ob-
served event sequences. [24], [25] both adopt the attention
mechanism to model previous events’ influence on future
events’ occurrence and to define CIF functions. There are
also some works considering both structural correlations
and event histories. [27] models each temporal sequence
using a Hawkes process and sequence correlations using a
GCN with graph regularizers. [28] focuses on knowledge
graphs and combines the Hawkes process and neighbor
information aggregation to conduct future entity or event
time predictions. [44] jointly models both intra-series and
inter-series correlations using GFT and DFT, and adopts a
neural network to learn the patterns lying in the spectral
domain of the GFT-transformed graph signals. However,
most of these graph neural point process models consider
the Hawkes process or variants, e.g., [27], [28], [29], [45],
[46]. In contrast, GNPP directly models the CIF function,
instead of imposing such point process model priors.
Graph neural networks. Recently, GNNs have achieved
noticeable improvements on some graph-related tasks, e.g.,
link prediction [47], [48], [49], node classification [6], [7]
and graph classification [50], [51]. Some seminal works
including GCN [6], GAT [7] and others [8], [10], [14], [52]
have promoted researches that utilizing neural networks
to extract nodes’ representations based on graph struc-
tures. Recently, many works devote to extending GNNs
on temporal graphs [1], [11], [12], [53]. DyRep focuses on
modeling two types of events on temporal graphs using two
correlated temporal point processes. These two processes
are based on node representations aggregated by GNN
layers [12]. TGAT utilizes time encoding and self-attention
to conduct temporal message-passing layers [14]. TGN [13]
devises an embedding module and a memory module to
memorize each achieved event and update the embeddings
of corresponding nodes. HTNE [26], CTDNE [11], JODIE [1]
focus on embedding learning on a temporal graph, by in-
tegrating point processes, random walks or RNN modules.
Note that JODIE is originally devised for bipartite graphs,
and it is non-trivial to extend it to general temporal graphs.
DySAT aggregates node representations using self-attention
and captures temporal information using position encoding
and another self-attention pipeline [16]. Our work differs
from previous ones by capturing precise real-valued times-
tamp information using a mapping function and directly
modeling node pair relations.

7 CONCLUSION

We have presented the Graph Neural Point Process model
that aims to model the temporal event occurrence patterns
on graphs and predict future interaction times. GNPP cap-
tures precise real-valued timestamp information by high-
dimensional vector mapping and utilizes the message-
passing mechanism to obtain both spatial and temporal
information. The representations form the basis of defining

conditional intensity functions in the temporal point process
framework. In empirical evaluations on synthetic and real-
world datasets, GNPP shows better likelihood value and
event prediction error compared with several recently pro-
posed neural point process models and graph neural models
suitable for temporal graphs. Meanwhile, we discuss the
influence of commonly adopted objective functions in tem-
poral prediction tasks. In this work we treat all neighbor
temporal edges indiscriminately, i.e., we regard them as
homogeneous. In the future, we aim to extend the model to
handle the heterogeneity and to utilize node and(or) edge
features in model computation.

ACKNOWLEDGMENTS

This research work is funded by the National Nature Science
Foundation of China under Grant 61971283 and U20B2072,
and Shanghai Municipal Science and Technology Major
Project under Grant 2021SHZDZX0102. Yuchen Li’s work is
supported by the Ministry of Education, Singapore, under
its Academic Research Fund Tier 2 (Award No.: MOE2019-
T2-2-065). Wenwen Xia’s work is also funded by the China
Scholarship Council.

REFERENCES

[1] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embed-
ding trajectory in temporal interaction networks,” in KDD, 2019.

[2] J. Wang, Y. Wang, W. Jiang, Y. Li, and K.-L. Tan, “Efficient sampling
algorithms for approximate temporal motif counting,” in CIKM,
2020.

[3] N. Du, Y. Wang, N. He, and L. Song, “Time-sensitive recommen-
dation from recurrent user activities,” in NIPS, 2015.

[4] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic
spatial-temporal graph convolutional neural networks for traffic
forecasting,” in AAAI, 2019.

[5] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Mon-
fardini, “The graph neural network model,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[6] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR, 2016.

[7] P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero, and
Y. Bengio, “Graph attention networks,” in ICLR, 2018.

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representa-
tion Learning on Large Graphs,” in NIPS, 2017.

[9] W. Xia, Y. Li, J. Wu, and S. Li, “DeepIS: Susceptibility estimation
on social networks,” in WSDM, 2021.

[10] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are
Graph Neural Networks?” in ICLR, 2019.

[11] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh,
and S. Kim, “Continuous-time dynamic network embeddings,” in
WWW, 2018.

[12] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “DyRep: Learning
representations over dynamic graphs,” in ICLR, 2019.

[13] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, “Temporal graph networks for deep learning on
dynamic graphs,” in ICML, 2020.

[14] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive
representation learning on temporal graphs,” in ICLR, 2020.

[15] W. Xia, Y. Li, J. Tian, and S. Li, “Forecasting interaction order on
temporal graphs,” in KDD, 2021.

[16] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “DYSAT:
Deep neural representation learning on dynamic graphs via self-
attention networks,” in WSDM, 2020.

[17] A. Garcı́a-Durán, S. Dumančić, and M. Niepert, “Learning se-
quence encoders for temporal knowledge graph completion,” in
EMNLP, 2020.

[18] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A
survey,” ACM Computing Surveys, vol. 47, no. 1, pp. 1–36, 2014.

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3149927, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[19] X. Chang, X. Liu, J. Wen, S. Li, Y. Fang, L. Song, and Y. Qi,
“Continuous-time dynamic graph learning via neural interaction
processes,” in CIKM, 2020.

[20] J. A. González, F. J. Rodriguez-Cortes, O. Cronie, and J. Mateu,
“Spatio-temporal point process statistics: a review,” Spatial Statis-
tics, vol. 18, pp. 505–544, 2016.

[21] N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and
L. Song, “Recurrent marked temporal point processes: Embedding
event history to vector,” in KDD, 2016.

[22] H. Mei and J. Eisner, “The neural hawkes process: A neurally self-
modulating multivariate point process,” in NIPS, 2017.

[23] S. Li, S. Xiao, S. Zhu, N. Du, Y. Xie, and L. Song, “Learning
temporal point processes via reinforcement learning,” in NIPS,
2018.

[24] S. Zuo, H. Jiang, Z. Li, T. Zhao, and H. Zha, “Transformer hawkes
process,” in ICML, 2020.

[25] S. Zhu, M. Zhang, R. Ding, and Y. Xie, “Deep fourier kernel for
self-attentive point processes,” in AISTATS, 2020.

[26] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, and J. Wu, “Embedding
temporal network via neighborhood formation,” in KDD, 2018.

[27] J. Shang and M. Sun, “Geometric hawkes processes with graph
convolutional recurrent neural networks,” in AAAI, 2019.

[28] Z. Han, Y. Ma, Y. Wang, S. Günnemann, and V. Tresp, “Graph
hawkes neural network for forecasting on temporal knowledge
graphs,” in AKBC, 2020.

[29] Q. Zhang, A. Lipani, and E. Yilmaz, “Learning neural point
processes with latent graphs,” in WWW, 2021.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NIPS, 2017.

[31] A. G. Hawkes, “Spectra of some self-exciting and mutually excit-
ing point processes,” Biometrika, vol. 58, no. 1, pp. 83–90, 1971.

[32] V. Isham and M. Westcott, “A self-correcting point process,”
Stochastic Processes and their Applications, vol. 8, no. 3, pp. 335–347,
1979.

[33] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini, “Computational capabilities of graph neural networks,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 81–102, 2008.

[34] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in NIPS, 2007.

[35] C. Robert and G. Casella, Monte carlo statistical methods. Springer
Science & Business Media, 2013.

[36] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic
optimization,” in ICLR, 2015.

[37] Q. Zhang, A. Lipani, O. Kirnap, and E. Yilmaz, “Self-attentive
hawkes processes,” in ICML, 2020.

[38] T. Omi, N. Ueda, and K. Aihara, “Fully neural network based
model for general temporal point processes,” in NIPS, 2019.

[39] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, pp. 440–442, 1998.

[40] E. Bacry, M. Bompaire, S. Gaı̈ffas, and S. Poulsen, “Tick: a Python
library for statistical learning, with a particular emphasis on time-
dependent modeling,” arXiv, 2017.

[41] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online
community,” Journal of the American Society for Information Science
and Technology, vol. 60, no. 5, pp. 911–932, 2009.

[42] B. Yuan, H. Li, A. L. Bertozzi, P. J. Brantingham, and M. A. Porter,
“Multivariate spatiotemporal hawkes processes and network re-
construction,” SIAM Journal on Mathematics of Data Science, vol. 1,
no. 2, pp. 356–382, 2019.

[43] U. Upadhyay, A. De, and M. Gomez-Rodriguez, “Deep reinforce-
ment learning of marked temporal point processes,” in NIPS, 2018.

[44] D. Cao, Y. Wang, J. Duan, C. Zhang, X. Zhu, C. Huang, Y. Tong,
B. Xu, J. Bai, J. Tong et al., “Spectral temporal graph neural network
for multivariate time-series forecasting,” in NIPS, 2020.

[45] T. Li, T. Luo, Y. Ke, and S. J. Pan, “Mitigating performance
saturation in neural marked point processes: architectures and loss
functions,” in KDD, 2021.

[46] M. Yao, S. Zhao, S. Sahebi, and R. F. Behnagh, “Relaxed clustered
hawkes process for student procrastination modeling in moocs,”
in AAAI, 2021.

[47] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in NIPS, 2018.

[48] M. Zhang, Z. Cui, S. Jiang, and Y. Chen, “Beyond link prediction:
Predicting hyperlinks in adjacency space,” in AAAI, 2018.

[49] L. Cai, J. Li, J. Wang, and S. Ji, “Line graph neural networks for
link prediction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

[50] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley,
“Molecular graph convolutions: moving beyond fingerprints,”
Journal of Computer-Aided Molecular Design, vol. 30, no. 8, pp. 595–
608, 2016.

[51] D. K. Johnson and J. Karanicolas, “Ultra-High-Throughput
Structure-Based Virtual Screening for Small-Molecule Inhibitors
of Protein-Protein Interactions,” Journal of Chemical Information and
Modeling, vol. 56, no. 2, pp. 399–411, 2016.

[52] R. Liao, Z. Zhao, R. Urtasun, and R. S.Zemel, “LanczosNet: Multi-
scale deep graph convolutional networks,” in ICLR, 2019.

[53] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dynamic graph
representation learning via self-attention networks,” in ICLRW,
2019.

Wenwen Xia is a Ph.D. candidate with the
school of electrical information and electric en-
gineering, Shanghai Jiao Tong University. He is
currently visiting the School of Computing and
Information Systems, Singapore Management
University. He received the B.S. degree in in-
formation security from the school of computer
science, Wuhan University. His research inter-
ests mainly focus on novel applications of Graph
Neural Networks and their theoretical expressive
power. He published several papers on some

data mining conferences, including KDD, WSDM, ICDM, etc.

Yuchen Li is an assistant professor with the
School of Computing and Information Systems,
Singapore Management University (SMU). He
received double BSc degrees in applied math
and computer science (both with first-class hon-
ors) and a Ph.D. degree in computer science
from the National University of Singapore (NUS),
in 2013 and 2016, respectively. His research
interests include graph analytics and heteroge-
neous computing. He published in top database
and data mining venues such as SIGMOD,

VLDB, ICDE, KDD, and TheWebConf. He received best paper awards
in KDD and a Lee Kong Chian fellowship.

Shenghong Li received the B.S. and M.S. de-
grees in electrical engineering from the Jilin Uni-
versity of Technology, Jilin, China, in 1993 and
1996, respectively, and the Ph.D. degree in ra-
dio engineering from the Beijing University of
Posts and Telecommunications, Beijing, China,
in 1999. Since 1999, he has been a Research
Fellow, an Associate Professor, and a Profes-
sor with Shanghai Jiao Tong University, Shang-
hai, China. In 2010, he was a Visiting Scholar
with Nanyang Technological University, Singa-

pore. He is currently a Professor with the School of Cyber Space
Security, Shanghai Jiao Tong University. His research interests include
information security, signal and information processing, and artificial
intelligence.

	Graph neural point process for temporal interaction prediction
	Citation

	tkde-3149927-pp.pdf

