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Abstract: In this study, we investigate an appointment sequencing and scheduling problem with heterogeneous user delay 
tolerances under service time uncertainty. We aim to capture the delay tolerance effect with heterogeneity, in an 
operationally effective and computationally tractable fashion, for the appointment scheduling problem. To this end, we first 
propose a Tolerance-Aware Delay (TAD) index that incorporates explicitly the user tolerance information in delay 
evaluation. We show that the TAD index enjoys decision-theoretical rationale in terms of Tolerance 
sensitivity, monotonicity, and convexity and positive homogeneity, which enables it to incorporate the frequency and 
intensity of delays over the tolerance in a coherent manner. Specifically, the convexity of TAD index ensures a tractable 
modeling of the collective delay dissatisfaction in the appointment scheduling problem. Using the TAD index, we then 
develop an appointment model with known empirical service time distribution that minimizes the overall tolerance-aware 
delays of all users. We analyze the impact of delay tolerance on the sequence and schedule decisions and show that the 
resultant TAD appointment model can be reformulated as a mixed-integer linear program (MILP). Furthermore, we extend 
the TAD appointment model by considering service time ambiguity. In particular, we encode into the TAD index a moment 
ambiguity set and a Wasserstein ambiguity set, respectively. The former captures effectively the correlation among service 
times across positions and user types, whereas the latter captures directly the service time data information. We show that 
both of the resultant TAD models under ambiguity can be reformulated as polynomial-sized, mixed-integer conic programs 
(MICPs). Finally, we compare our TAD models with some existing counterpart approaches and the current practice using 
synthetic data and a case of real hospital data, respectively. Our results demonstrate the effectiveness of the TAD 
appointment models in capturing the user delay tolerance with heterogeneity and mitigating the worst-case delays. 

 
Keywords: joint appointment sequencing and scheduling, delay tolerance, user heterogeneity, linear programming, 
ambiguity 

 

1. Introduction 

Managing users’ delay or waiting experience is of fundamental importance in many service delivery systems. For waiting 
experience, users are heterogeneous in terms of not only the characteristics of their service time distributions but also their 
tolerability to delays. Various research works in the literature suggest the important influence of user delay tolerance on 
waiting experience. For instance, in a healthcare setting, the level of patients’ satisfaction in outpatient care service 
decreases rapidly once the delay exceeds a given threshold (Huang 1994, McCarthyet al. 2000, Hill and Joonas 2005, 
Bleustein et al. 2014). The delays may have a bigger impact in hospital emergency 
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departments, because exceeding delay tolerances of medical attention can lead to serious consequences (Chan 
et al. 2005, Robinson and Chen 2011, Nikolova et al. 2016). Some healthcare studies have emphasized the impor
tance of managing the delay tolerance of users with heterogeneity in improving the service outcomes (Cayirli et al. 
2008, Sharif et al. 2014). In particular, recent empirical studies have revealed that understanding the patient pref
erence (e.g., delay to care) can actually make the waiting less irritating (Bleustein et al. 2014, Liu et al. 2018). These 
effects on delay experience are also observable in other industries. For instance, Taylor (1994) showed with an 
empirical study on airline services that managing customers’ perceptions of delay can be more effective in 
enhancing the service quality than managing only the actual waiting times.

Incorporating the users’ delay tolerance into the design of the service system naturally raises two key ques
tions for managers: (1) how to estimate or acquire the users’ delay tolerance; and (2) how to design the service 
system given the acquired delay tolerance information of users? On the first question, there are several methods 
to do so. A common practice is that companies, hospitals, and/or authorities estimate the users’ delay tolerance 
from the user profile or acquired users’ feedback. For instance, in healthcare services, the patient classification 
system1 categorizes patients as to how sick they are and alerts the hospital on necessary care needed for them 
(Malloch and Meisel 2013). The estimation of users’ delay tolerances requires different domain-specific skills and 
is beyond the scope of our current work.

In this paper, we focus on the second question. In particular, we study one aspect of the service system, which 
is the joint appointment sequencing and scheduling problem. More specifically, we consider a single server and 
a set of heterogeneous users who seek appointments with the server. The objective is to determine the order 
(sequence) and the appointment time (schedule) for each user by optimizing the overall user delay experience 
according to the characteristics of users’ delay tolerances and service times.

In the appointment-scheduling literature, most papers optimize the trade-off between the expected (weighted) 
total waiting time (delay) and some cost-related performance in the appointment system (see, e.g., Gupta and 
Denton 2008, Kong et al. 2013, Mak et al. 2015, Wang et al. 2019). However, the objective of total expected waiting 
time may not capture the effects of user delay tolerance with heterogeneity as identified in empirical studies 
(Hill and Joonas 2005, Bleustein et al. 2014, Liu et al. 2018). Also, the criterion of expected weighted delay, where 
higher weights are placed on positions whose waiting times are less acceptable, is rather ad hoc and works only 
when the user sequence is known a priori. Consequently, such criterion does not extend readily to joint sequenc
ing and scheduling problems where the positions assigned to users depend on the sequence (see Remark 3 in 
Section 4). As for the cost-related performance criterion, it has been witnessed in healthcare studies and practices 
that financial cost-measurement approaches (e.g., from the perspective of service suppliers) can obscure the 
value in healthcare and lead to cost containment efforts that are ineffective and sometimes even counterproduc
tive. On the other hand, the challenges of managing the waiting experience are magnified in cases where hospi
tals attempt to schedule patients’ requests for appointments on the day they call. This is referred to as Advanced 
Access system (Murray and Tantau 2000). Implementation of the advanced access system in practice is computa
tionally challenging because the appropriate scheduling of patients to doctors has to be done efficiently and 
promptly (Kiran and O’Brien 2015). Thus, how to capture the user delay tolerance with heterogeneity in the 
appointment sequencing and scheduling in an operationally effective and computationally efficient fashion 
remains a crucial yet challenging research question to be explored.

In this paper, we propose a Tolerance-Aware Delay (TAD) index to characterize users’ dissatisfaction toward 
appointment delays by capturing coherently the effects of delay time distribution and delay tolerance with the 
users’ heterogeneity in the appointment-scheduling problem under service time uncertainty. The TAD index 
incorporates explicitly the delay tolerance information of different users, accounts sensitively for both the fre
quency and intensity of delays above tolerance, and yields a computationally tractable decision criterion in virtue 
of its convexity. Using the TAD index to model the tolerance-incorporated delay dissatisfaction of each user, we 
develop a TAD-based appointment sequencing and scheduling model that minimizes the overall tolerance- 
aware delay performance of all users in both situations of known service time distribution and ambiguity. We 
show several operational properties of the TAD model that imply its capability in adapting the appointment 
decisions to the heterogeneous delay tolerances effectively and derive the convex reformulations of the TAD 
model that justify its computational tractability. We also demonstrate the effectiveness of the TAD model in our 
numerical studies and a case study with real outpatient data.

Our work is most related to Qi (2017) in the literature, which proposed a delay unpleasantness measure 
(DUM) that also considered the users’ delay tolerance information for scheduling appointments. Nevertheless, 
the DUM model in Qi (2017) focused on the unfairness issue and optimized the worst-case tolerance- 
incorporated delay performance across all users, which is different from our objective of considering the overall 
tolerance-aware delay performance. Moreover, the criterion of DUM is nonconvex, which poses computational 
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difficulties in optimizing the overall delay performance of all users and, therefore, might not be suitable for situa
tions that require a quick response time, such as the aforementioned advanced access system. A more compre
hensive discussion on the research gap is provided in the Literature Review (Section 2). The major contributions 
of our study can be summarized as follows: 

1. We propose a Tolerance-Aware Delay (TAD) index for measuring the delay performance in the appointment
scheduling problem, which captures the users’ delay tolerance with heterogeneity in an operationally effective and 
computationally tractable fashion. In particular, we show that the TAD index enjoys decision-theoretical rationale 
in terms of tolerance sensitivity, monotonicity, convexity, and positive homogeneity, which ensure its capturing of the fre
quency and the intensity of the delays over tolerance in a coherent fashion. Computationally, the convexity of the 
TAD index ensures a tractable modeling2 for collective delay dissatisfaction (i.e., overall delay performance of all 
users) in the appointment scheduling problem.

2. We develop a TAD-based appointment sequencing and scheduling model with a known empirical service
time distribution that minimizes the total tolerance-aware delay level. We analyze the impacts of user tolerance on 
the sequence and scheduling decisions with our TAD model and obtain the following insights. (i) For identically 
distributed service times, it is always optimal to sequence the user with the lowest delay tolerance to the first posi
tion. (ii) If the user delay-tolerance at some position is decreased, then the optimal scheduling policy would 
increase the delay buffering for that position (i.e., increasing the scheduled service time duration of some front 
users) so as to mitigate the expected delay of the user at that position. Computationally, the TAD model with 
empirical service time distribution can be transformed into a mixed-integer linear program (MILP).

3. We also extend the proposed TAD appointment model to the situation of service time ambiguity. In particu
lar, we encode into the TAD index a moment ambiguity set and a Wasserstein ambiguity set, respectively. The for
mer captures effectively the correlation among service times across positions and user types, whereas the latter 
captures directly the service time data information. We show that both of the resultant TAD models under ambigu
ity can be reformulated as polynomial-sized, mixed-integer conic programs (MICPs).

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature, and research 
gaps are established. In Section 3, we introduce the Tolerance-Aware Delay (TAD) index and also present its 
characteristics and decision-theoretical properties. In Section 4, we model the appointment sequencing and 
scheduling problem using the TAD index with a known empirical service time distribution and discuss the asso
ciated operational properties and tractable model reformulation. In Section 5, we extend the TAD model by con
sidering the distributional ambiguity of service times. We present the numerical experiments using synthetic 
data and a case study with real outpatient data in Section 6, and we conclude our study by including future 
research directions in Section 7. All proofs are presented in the E-companion.

Notations
Given i, N ∈ N with i ≤ N, we use [i; N] to denote the running indices {i, i+ 1, : : : , N} and use [N] to denote the 
complete index set {1, 2, : : : , N}. We denote “∨” as the “max” operator and (r)+ :� r ∨ 0 for any r ∈ R. We use “P” 
to represent a specific probability distribution and “F” to represent a set of distributions for modeling the distri
butional ambiguity, that is, ambiguity set or distributional set. When F � {P}, it reduces to the case of a specific 
probability distribution P. We use P(Ξ) to represent the set of all probability distributions P supported on Ξ. We 
use tilde to denote a random variable, for example, j̃ ∈ Rn, and use j̃ ~ P to denote that the random variable j̃ fol
lows probability distribution P. For a random variable j̃ ∈ Rn with distribution P and function g : Rn ⊢→ Rm, we 
denote EP(g(j̃)) as the expectation of random variable g(j̃)with the probability measure P.

2. Literature Review
The literature on appointment scheduling is vast, in which there are generally two approaches to solve the 
appointment scheduling problem. The first approach solves for the exact appointment time for each user (Chen 
and Robinson 2014, Samorani and LaGanga 2015, Jiang et al. 2019, Kong et al. 2020, Shehadeh et al. 2021, 
Homem-de-Mello et al. 2022, Zacharias et al. 2022). The second approach first divides the planning horizon into 
a number of appointment positions (time slots) and thereafter determines the number of users to be scheduled in 
each position (Zacharias and Pinedo 2017, Wang et al. 2019, Zacharias and Yunes 2020, Benjaafar et al. 2023). 
Also, many papers focus on a single server and disregard downstream resources (e.g., downstream recovery 
units) by noting that sequencing for both upstream (e.g., upstream surgery units) and downstream activities 
would lead to a class of complex combinatorial and multicriteria stochastic optimization problems (Shehadeh 
and Padman 2022), which is challenging and usually studied in surgery scheduling with recovery resources (Liu 
et al. 2019, Bai et al. 2022) that is beyond the scope of our study. Furthermore, most of the studies consider 
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minimizing the delay, that is, waiting time for users, and idle time and overtime for servers. Only limited papers 
study the lateness over the random due dates; one of the few examples is Wu and Zhou (2008), in which the 
authors used a dynamic programming algorithm to solve a single-server scheduling problem with stochastic due 
dates and processing times for the purpose of minimizing the maximum lateness. In our study, we employ the 
first approach and consider the case of single-server and delay tolerance heterogeneity. In this section, we review 
only the streams of studies considering service time uncertainty in appointment scheduling that are closely 
related to our work, which are summarized in Table 1. We learn from the table that the majority of literature 
models the (cost for) waiting time, idle time, and overtime as objective while ignoring the delay tolerance hetero
geneity. Other streams, such as appointment scheduling with focus on no-shows and/or service interruptions, 
can be found in reviews from Ahmadi-Javid et al. (2017) and Marynissen and Demeulemeester (2019). For more 
reviews with multiple servers, see Ahmadi-Javid et al. (2017), Marynissen and Demeulemeester (2019), Kuiper 
and Lee (2022), and Wu and Zhou (2022) and the references therein.

Uncertainty in service times can have significant impacts on the performance of the appointment scheduling 
problem. A common approach to model uncertain service times is to describe them using probability distribu
tions. This approach is reasonable if there is sufficient historical data available to calibrate the distributions (see, 
e.g., Denton et al. 2007, Gupta and Denton 2008, Erdogan and Denton 2013, Qi 2017, Homem-de-Mello et al.
2022). In addition, as we have shown in Table 1, the majority of literature adopting the stochastic programming
method also employs the empirical distribution.

In some practical situations, it may be difficult to have precise knowledge of the underlying service time distri
butions because of the lack of credible historical data. For instance, in healthcare applications, the available data 
broken down by surgery types and surgeons could be limited (Denton et al. 2007, Macario 2010). Meanwhile, the 
emergence of new medical technologies could also devalue the assumed probability distribution estimated from 
the historical healthcare service data. To this end, a stream of appointment scheduling studies has been proposed 
to employ distributionally robust optimization approaches that harness the limited available distributional infor
mation; see the second half of Table 1. The robust appointment scheduling models focus on the worst-case perfor
mance outcomes over an ambiguity set of all the qualified service time distributions that are partially characterized 
by, for instance, the moment information (Delage and Ye 2010, Wiesemann et al. 2014) and/or empirical informa
tion with statistical metrics, for example, Wasserstein distance (Esfahani and Kuhn 2018, Gao and Kleywegt 2023).

Table 1. Related Literature Review in Appointment Scheduling

References Objective
Delay tolerance 
heterogeneity Uncertainty Approach Sevice time ambiguity

Chen and Robinson (2014) WT/IT/OT ✗ Service time SP Empirical distribution
/No-show
/No-call

Samorani and LaGanga (2015) WT/OT/no. of users ✗ No-show SP ✗

Shehadeh et al. (2021) Cost for WT, IT, and OT ✗ Service time SP Empirical distribution
/Arrival time

Homem-de-Mello et al. (2022) Cost for WT, IT, and OT ✗ Service time SP Empirical distribution
/No-show

Zacharias et al. (2022) Cost for delay ✗ No. of arrivals MDP ✗

Wang et al. (2019) Cost for WT, IT and OT ✗ Walk-in SP ✗

/No-show
Erdogan and Denton (2013) Cost for WT and OT ✗ Service time SP Empirical distribution

/No. of users
/No-show

Mak et al. (2015) WT/OT ✗ Service time DRO Moment
Zhang et al. (2017) Cost for WT ✗ Service time DRO Moment
Jiang et al. (2017) Cost for WT, IT, and OT ✗ Service time DRO Moment

/No-show
Kong et al. (2020) Cost for WT, IT, and OT ✗ Service time DRO Moment

/No-show
Kong et al. (2013) WT/OT ✗ Service time DRO Moment
Qi (2017) Delay unpleasantness measure ✓ Service time DRO Moment
Jiang et al. (2019) Cost for WT, IT, and OT ✗ Service time DRO Wasserstein

/No-show
Our work Tolerance-aware delay ✓ Service time DRO Moment/Wasserstein

Note. WT, Waiting time; IT, idle time; OT, overtime; SP, stochastic programming; MDP, Markov decision process; DRO, distributionally robust 
optimization.
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More specifically, Mak et al. (2015) utilized the information of mean and second marginal moments to partially 
characterize the service time distribution, and the resulting appointment scheduling problem is formulated as a 
second-order cone program (SOCP). Kong et al. (2013) and Zhang et al. (2017) utilized directly the mean and 
covariance matrix to characterize the service time correlation in the appointment scheduling. The former 
includes the nonnegative support information, and the resulting problem is transformed to a copositive program 
(COP), which, however, is not polynomial time solvable in general and is therefore approximated by a semidefi
nite program (SDP) relaxation, whereas the latter relaxes the nonnegative support requirement and derives an 
SDP formulation to approximately solve the (original) problem. Kong et al. (2013) also extended their model to 
include sequence decisions, which leads to a mixed-integer COP. Qi (2017) studied the unfairness and user toler
ance to delays in the appointment sequencing and scheduling under service time uncertainty. In particular, the 
author proposed a delay unpleasantness measure (DUM) based on conditional value at risk (CVaR) and opti
mized the worst-case DUM-based delay performance across all users. Qi (2017) also considered the problem 
with distributional ambiguity and used a mean absolute deviation approach to model the service time correlations 
across positions. Jiang et al. (2017) considered a robust appointment scheduling problem with a mean-support 
ambiguity set for both random service times and no-shows and derived exact mixed-integer nonlinear program
ming reformulations for the problem that are solved by a decomposition algorithm. Jiang et al. (2019) considered 
a data-driven robust appointment scheduling problem that optimized the worst-case expected total operational 
costs (i.e., waiting, idle, and overtime work) over a Wasserstein ball ambiguity set. They derived a COP reformu
lation in the general case. In particular, for the cases of one-norm- and two-norm-based Wasserstein balls, they 
showed that the reformulation reduces tractably to an LP and an SOCP, respectively. More recently, Kong et al. 
(2020) studied a medical appointment scheduling problem with random service times and time-dependent 
patient no-show behavior. They deployed a distributionally robust model, which minimizes the worst-case total 
expected costs of patient waiting and a service provider’s idling and overtime. Their model reformulates into a 
COP or a bilinear COP with time-independent or time-dependent no-shows, respectively, and is approximated 
by the SDP relaxations.

Among the above related studies, Kong et al. (2013), Qi (2017), and Jiang et al. (2019) are most relevant to our 
study in the directions of user delay tolerance effect (Qi 2017), joint sequence and schedule optimization (Kong 
et al. 2013, Qi 2017), and service time ambiguity modeled with Wasserstein ball (Jiang et al. 2019). The research 
gap between our work and these studies can be established as follows: 

(i) We focus on capturing the users’ delay tolerance with heterogeneity in the appointment sequencing and
scheduling operations, for which we propose a Tolerance-Aware Delay (TAD) index for incorporating the delay 
tolerance effect in delay performance evaluation. Our resultant TAD appointment models optimize the overall 
tolerance-aware delay performance under both known service time distribution and ambiguity. These are therefore 
distinct from Kong et al. (2013) and Jiang et al. (2019) because they aim to optimize the expected total actual delay 
cost or operational costs. Furthermore, our TAD appointment models under ambiguity are formed by encoding the 
moment ambiguity set or Wasserstein ambiguity set into the TAD index, which by design have a different model
ing structure from their ambiguity models.

(ii) The DUM appointment models by Qi (2017) also considered the user delay tolerance effect in appointment
sequencing and scheduling with service time uncertainty. Nevertheless, Qi (2017) focused on the unfairness issue 
and optimized the worst-case tolerance-incorporated delay performance across all users, whereas we focus on the 
delay tolerance heterogeneity and optimize the total tolerance-aware delay performance of all users that accounts 
more sensitively for the tolerance heterogeneity (this is also justified by our experiments in Section 6.2). Moreover, 
our proposed TAD index by design is a convex decision criterion, which, therefore, is more computationally suitable 
for total delay performance optimization. Finally, we analyze the impact of delay tolerance with heterogeneity on 
the appointment decisions and also develop the TAD appointment sequencing and scheduling model over Wasser
stein ambiguity set. These have not been considered in Qi (2017).

3. Tolerance-Aware Delay Index: A Convex Decision Criterion
To capture the delay tolerance effect of the users’ dissatisfaction in the appointment scheduling problem, we pro
pose a Tolerance-Aware Delay (TAD) index that enjoys several important appealing features operationally and 
computationally. In this section, we present the definition of the TAD index and discuss its properties.

Definition 1 (Tolerance-Aware Delay Index). Let W be the space of all the real-valued random variables, τ the 
delay tolerance level, and w̃ the delay random variable whose distribution P can be taken from a set F of 
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distributions. The Tolerance-Aware Delay (TAD) index Πτ(w̃) : W ⊢→ R is defined as

Πτ(w̃) :� min
α∈[0,τ] τ�α

�
�
�
� sup
P∈F

CEP(w̃,α) ≤ τ
( )

, (1) 

where CEP(w̃,α) is a certainty equivalent3 (CE) function given by

CEP(w̃,α) :� α+EP[(w̃� α)+], (2) 

and Πτ(w̃) :�∞ if no feasible α can be found.

In the above definition, the certainty equivalent CEP(w̃,α) can be regarded as the expected delay time being 
deteriorated or penalized with a parameter α; we have CEP(w̃, 0) � EP[w̃], and in general we have CEP(w̃,α) ≥
EP[w̃], ∀α ∈ [0,τ]. Here, the parameter α can be regarded as a penalty level so that the penalized expected delay 
time of the user is below the tolerance level τ. Because CEP(w̃,α) is nondecreasing in α, a higher value of α corre
sponds to a higher penalty level and a worse penalized expected delay time. In this sense, the TAD index essen
tially searches for the highest penalty level α? ∈ [0,τ] that is attainable to satisfy the tolerance constraint in (1), 
and the higher such (maximized) attainable penalty level α?, the more satisfactory the user is regarding the pre- 
described tolerance level. Accordingly, the TAD index Πτ(w̃) � τ� α? measures the difference between the upper 
limit of penalty level and the maximized attainable penalty level, which characterizes the dissatisfaction level of 
the user’s delay experience with respect to the delay tolerance.

To further understand the TAD index, let us consider a user whose delay tolerance level is τ and is served 
with a random delay w̃ ~ P with F � {P}. If the user is not particularly delay sensitive, then the delay tolerance τ 
is relatively large, which would be toward the right tail of w̃. In this case, there is very little chance that w̃ would 
exceed τ. As such, the penalty level α can be close to τ, and the resultant value of the TAD index is low (low dis
satisfaction level). On the other hand, if the user is very delay sensitive, then τ is relatively small and would be 
on the left tail of w̃ (i.e., a high chance for w̃ exceeding τ). In this case, α would need to be small so that CE is less 
than τ, and the resultant value of the TAD index would be high (high dissatisfaction level). It is also possible that 
there is no such α, that is, Πτ(w̃) � ∞. From this description, we see that the TAD index measures the delay per
formance via a combination of the likelihood that a user’s tolerance is met and the degree to which the expected 
delay time can be penalized so that the tolerance is still met. In fact, the TAD index is indeed appealing in captur
ing both the intensity and frequency of delays over tolerance. This will be explicitly reflected by Proposition 2
with Example 1.

In addition, we also point out that the above idea of “the largest penalty imposed to the expected delay time to 
make the tolerance met” in the TAD index is also analogous to that in the dual representation of a convex risk 
measure with “acceptable sets”; a convex risk measure can be represented as the “minimal amount of cash” that 
is added to the position to make it acceptable (Föllmer and Schied 2002). A more detailed discussion of the TAD 
index in connection to convex risk measure will be provided in Section 3.1.

Next, we present the TAD index under a given distribution of w̃. More specifically, when w̃ follows a normal 
distribution N(µ,σ2) with expected value µ < τ, by definition we can derive Πτ(w̃) �minα≤τ{τ� α |µ+Λ(α)σ ≤
τ}, where Λ(α) is a function of α given by

Λ(α) :� φ
α�µ

σ

� �
+
α�µ

σ

h i
Φ
α�µ

σ

� �
, (3) 

with φ(·) and Φ(·) being the density function and cumulative distribution function of the standard normal distribu
tion, respectively. Furthermore, Λ(α) is an increasing function of α by noting that the derivative dΛ(α)dα � Φ

α�µ
σ

� �
=σ > 0, 

and this implies that the TAD index Πτ(w̃) can be derived via solving a convex optimization problem and is thus 
computationally suitable. In particular, it admits a closed-form representation, which is formally stated as follows.

Proposition 1 (TAD Index of Normal Delay). If w̃ ~ N(µ,σ2) with µ < τ, then

Πτ(w̃) � τ�Λ�1 τ�µ

σ

� �
, (4) 

where Λ(·) is the Gaussian density-and-distribution function given in (3).

Proposition 1 reveals that the TAD index of a normal delay distribution is exactly the difference between the 
delay tolerance and the inverse Gaussian density-and-distribution function of the standardized expected-delay- 
under-tolerance, that is, τ�µσ .
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Remark 1. As we have emphasized in Literature Review (Section 2), our proposed TAD index shares several 
properties with the delay unpleasantness measure (DUM) in Qi (2017), including in capturing the delay tolerance 
effect, which is most relevant to our TAD index in the appointment scheduling literature. Leveraging the closed- 
form expression presented in Proposition 1, we can illustrate the difference clearly. Consider the random delay 
w̃ that follows a normal distribution N(µ,σ2) with µ < τ, and it is not difficult to show that the DUM becomes

ρDUM
τ (w̃) � inf

α≥0
α

�
�
�
�
�

φ
�
Φ�1(1� α)

�

α
≤
τ�µ

σ

8
<

:

9
=

;
, 

which is distinct from our TAD index as in (4). Also, it can be seen that both the TAD and DUM utilize the infor
mation of standardized expected-delay-under-tolerance (τ�µσ ), and our closed-form expression (4) implies its 
computational convenience.

Next, when delay follows an empirical distribution, we can also have the following formula for the TAD index 
to be readily evaluated.

Proposition 2 (TAD Index of Empirical Delay). Let delay w̃ ~ P̂ :�
P

k∈[K]δwk pk, where δ is the Dirac delta function, and
assume w.l.o.g. w1 < w2 <⋯< wK. If 0 < Πτ(w̃) < ∞, then

Πτ(w̃) �
XK

k�k?+1
(wk� τ)

pkP
l∈[k?] pl

" #

, (5) 

where

k? :� max l ∈ [K]

�
�
�
�
�
wl < τ, wl +

XK

k�l+1
(wk � wl)pk ≤ τ

( )

: (6) 

We emphasize that Equation (5) also justifies explicitly the appealing structure of the TAD index that captures 
both the intensity and frequency of delays over tolerance. This can be further illustrated by comparing the TAD 
index with the probability measure of delay over tolerance as follows.

Example 1 (Probability of Intolerable Delays). Consider the following two uncertain service delays, w̃A and w̃B,

w̃A �
5 minutes, w:p: 0:79
15 minutes, w:p: 0:21, w̃B �

5 minutes, w:p: 0:80
25 minutes, w:p: 0:20:,

��

where w.p. refers to with probability. Suppose that a user has a tolerance level of τ � 10 minutes. The probability 
P[w̃ > τ] is a natural candidate to quantify the delay dissatisfaction experienced. Under this criterion, w̃B is pref
erable because P[w̃A > 10] � 0:21 > 0:20 � P[w̃B > 10]. However, the probability criterion focuses only on the 
delay probability and cannot reflect the intensity of “bad” delays (i.e., the delays that exceed τ � 10). Note that 
w̃B, albeit with a slightly better probability, is actually much worse in delay intensity. In contrast, the TAD index 
is able to capture this effect by noting that Π10(w̃A) �

105
79 <

15
4 �Π10(w̃B):

3.1. Key Properties of TAD Index
In this subsection, we explore several key properties of the TAD index, which shows its potential as a coherent 
decision criterion for evaluating the tolerance-aware dissatisfaction of users toward uncertain delays.

Theorem 1 (Decision-Theoretical Properties of the TAD Index). The TAD index satisfies the properties as follows: 
1. Tolerance Sensitivity:

(a) Full satisfaction: If P{w̃ ≤ τ} � 1, ∀P ∈ F , then Πτ(w̃) � 0.
(b) Abandonment: If supP∈FEP[w̃] > τ, then Πτ(w̃) � ∞.
(c) Delay-tolerance translation: Πτ(w̃ + η) �Πτ�η(w̃), ∀η ∈ [�ω,τ] with P[w̃ ≥ ω] � 1.

2. Monotonicity:
(a) Πτ1(w̃) ≤ Πτ2(w̃) for any delay tolerance thresholds τ1,τ2 with τ1 ≥ τ2.
(b) Πτ(w̃1) ≤ Πτ(w̃2) for any delays w̃1, w̃2 with w̃1 ≤ w̃2.

3. Convexity: Πλτ1+(1�λ)τ2(λw̃1 + (1�λ)w̃2) ≤ λΠτ1(w̃1) + (1�λ)Πτ2(w̃2), ∀λ ∈ [0, 1].
4. Positive homogeneity: Πλτ(λw̃) � λΠτ(w̃), ∀λ > 0.
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In Theorem 1, the properties under tolerance sensitivity emphasize the ability of the TAD index in capturing the 
tolerance awareness. Part 1(a) implies that the delays that are almost surely below the tolerance threshold τ, are 
always most preferred or satisfactory under the TAD (Πτ(w̃) � 0). Part 1(b) states that delays w̃ that exceed τ in 
expectation are least preferred or intolerable (Πτ(w̃) � ∞). In other words, if a design cannot even meet the 
appointment delay tolerance requirement by users in expectation, it will not be considered as a reasonable option 
for the optimal design. This is important in ensuring good service quality, for example, in the time-critical con
text of healthcare. We highlight that Part 1(b) also serves to mitigate the unfairness in evaluating total delay dis
satisfaction, which helps achieve a good trade-off between mean and worst-case delay performance in collective 
delay dissatisfaction (Section 3.2). This is also justified by our computational studies (Sections 6.1 and 6.4). Part 
1(c) states that the dissatisfaction associated with a delay w̃ reduced (increased) by a constant amount is equiva
lent to that associated with w̃ by a user with tolerance increased (reduced) by that same constant amount. This 
property reveals a critical feature of the TAD index on how the user’s delay dissatisfaction hinges on the interac
tions between the actual delay experienced and the delay-tolerance.

Part 2(a) states that users with lower tolerance are always no less dissatisfied than those with higher tolerance 
for any given delay w̃. Part 2(b) states that if the delay w̃1 is always no longer than another w̃2, then the latter is 
never more satisfactory for any given τ.

Part 3 shows that the TAD index is a convex function jointly in (w̃,τ) ∈W × R. The convexity ensures a compu
tationally appealing structure of our TAD-based appointment optimization models that minimizes the total 
delay dissatisfaction (see Proposition 3 in Section 4 and Proposition 9 in Section 5) where the delay w̃ and toler
ance level τ are functions of decisions.

Part 4 implies that scaling the delay tolerance excess (w̃� τ) by a positive multiplier results in the dissatisfac
tion level being scaled by the same multiplier. Note that Πτ(w̃) �Π0(w̃� τ) by delay tolerance translation in Part 
1(c).

We also point out that our proposed TAD index has a decision-theoretical interpretation, which can be well 
reflected through its connection with the well-known coherent risk measures (Artzner et al. 1999) in the following 
remark.

Remark 2 (Connection to Coherent Risk Measures). The properties of the TAD index presented in Theorem 1
share some similarities with the well-known concept of coherent risk measure (Artzner et al. 1999) that is popular 
in risk management. It is known that a (monetary) risk measure is coherent if it has the properties of translation 
invariance, monotonicity, convexity, and positive homogeneity (Föllmer and Schied 2002). Indeed, the TAD index in 
Theorem 1 also enjoys the properties of monotonicity, convexity, and positive homogeneity in a more general 
manner by incorporating the effects of the delay tolerance.4 Moreover, the TAD index strengthens the property 
of translation invariance into the tolerance sensitivity (Part 1, (a)�(c), of Theorem 1) so as to stress the tolerance 
awareness in the delay evaluation.

3.2. Modeling Collective Delay Dissatisfaction with the TAD Index
Suppose we have multiple users i ∈ [I], where each user i has a delay tolerance τi and experiences the delay w̃i . 
The convexity is critical for measuring the total (collective) delay dissatisfaction in a tractable fashion, which is 
preserved by the proposed TAD index (Theorem 1, Part 3). In particular, it is natural to consider the total TAD 
level across all users, that is, 

P
i∈[I]Πτi(w̃i). Alternatively, the convexity also allows us to consider the other var

iants of the collective delay dissatisfaction with the TAD index, for example, maxi∈[I]Πτi(w̃i), which is also tracta
ble. In this study, we focus on the total TAD level across all users as the collective delay dissatisfaction criterion 
for our appointment scheduling problem because this criterion accounts more sensitively for the delay tolerance 
heterogeneity of different users (as justified by our experiments in Section 6.2). We will show that both the TAD- 
based appointment models under empirical distribution and distributional ambiguity result in computationally 
appealing reformulations in Sections 4 and 5, respectively.

4. TAD-Based Appointment Sequencing and Scheduling
In this section, we introduce the appointment scheduling problem with multiple user tolerance levels under ser
vice time uncertainty. We then model the problem using the TAD index, which minimizes the total TAD level. 
In particular, we focus on the case of known empirical service time distribution for the computational reformu
lation of the model in Section 4.2. The computational reformulation with service time ambiguity is discussed in 
Section 5.

8 



4.1. Problem Description
We consider a problem of joint appointment sequencing and scheduling with multiple types of users. Let I 
denote the number of the available appointment positions and i denote the index of positions, with i ∈ [I], in 
order of the sequence to be served. Let J be the total number of the user types or categories, with j indexing the 
user category, j ∈ [J], and Nj the number of category j users, where 

P
j∈[J]Nj � I. The total session length of

the planning horizon is fixed and is denoted by L. Denote rj as the delay tolerance of users in category j and τi 
the delay tolerance of the user sequenced in position i. The latter is now a function of the individual tolerances 
(r′j s) and the sequencing, which will be specified later in (9). We denote the service time of user category j 
sequenced in position i as a random variable ξ̃ij. Given a list of users known by category (and hence, tolerance 
levels rj), the manager assigns a position to each user in the appointment sequence and schedules the correspond
ing appointment time for each position.

Let xij ∈ {0, 1} denote the sequencing decision, where xij � 1 if position i is assigned to a user of category j, and xij 
� 0 otherwise, for i ∈ [I], j ∈ [J]. Let yi ∈ R+ denote the scheduling decision, that is, the appointment time for the ith
position, for i ∈ [I]. The feasible set for x is defined as

X :� x ∈ {0, 1}I×J

�
�
�
�
�

X

j∈[J]
xij � 1, ∀i ∈ [I];

X

i∈[I]
xij �Nj, ∀j ∈ [J]

8
<

:

9
=

;
, (7) 

where the equality constraints ensure that each position is filled with one user, and all users are allocated. The 
feasible set for the appointment times y is defined as

Y :� {y ∈ RI
+ |y1 � 0, yi�1 ≤ yi, ∀i ∈ [2; I], yI ≤ L}, (8) 

which requires that users are served in chronological order according to the sequence indexed in i ∈ [I]. Note 
that service staff overtime is permitted, but the last user must be scheduled before time L so that staff working 
hours are well utilized (at least according to plan).

Because of the user heterogeneity and the sequencing decision x, the resulting service time for each position i 
depends on the type of user assigned to that position and is given by

x⊤i j̃i �
X

j∈[J]
ξ̃ijxij, 

with j̃i :� (ξ̃i1, ξ̃i2, : : : , ξ̃iJ)
⊤ and xi :� (xi1, xi2, : : : , xiJ)

⊤. Similarly, denote that r :� (r1, r2, : : : , rJ)
⊤, the delay tolerance 

threshold τi(x) for each position i, which also depends on the user assignment, is

τi(x) � r⊤xi �
X

j∈[J]
rjxij: (9) 

Let w̃i(x, y) denote the appointment delay for the user in position i. For the first position, it is trivial that the delay 
w̃1(x, y) ≡ 0. For the other positions, the waiting times are given by

w̃i(x, y) �max{0, yi�1 + w̃i�1(x, y) + x⊤i�1j̃i�1� yi}, ∀i ∈ [2; I]:

The above recursion form can be equivalently expressed in the following format:

w̃i(x, y) � max
t∈[i�1]

Xi�1

l�t
x⊤l j̃l � (yi � yt)

( )!+

, ∀i ∈ [2; I]: (10) 

Given (x, y), the TAD index at position i, with tolerance level τi(x) � r⊤xi, is denoted as Πτi(x)[w̃i(x, y)]. Hence, the 
appointment scheduling problem that minimizes the collective delay dissatisfaction can be expressed as

min
x,y

X

i∈[2;I]
Πτi(x)[w̃i(x, y)]

�
�
�
�
�

x ∈ X , y ∈ Y

( )

: (11) 

As for the total TAD level minimization in our TAD appointment model (11), we point out that by the full satis
faction property (Part 1(a) of Theorem 1), if the delay of each user is below his or her tolerance almost surely, 
then our TAD appointment model also achieves its lowest value, that is, 

P
i∈[2;I]Πτi(x)[w̃i(x, y)] � 0. Furthermore,

the abandonment property (Part 1(b) of Theorem 1) ensures that if the delay of even one user exceeds his or her 
tolerance in expectation (for some P in F ), then 

P
i∈[2;I]Πτi(x)[w̃i(x, y)] � ∞. This enables our TAD appointment
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model to reject the extremely bad and/or unfair appointment solutions when evaluating the total delay dissatis
faction across different users, which is also justified in our computational studies (Section 6.1).

Moreover, we also remark that the above TAD model (11) can be readily extended to handle the server over
time and server idle time. In particular, we can introduce an additional delay as w̃I+1(x, y) �max{0, yI + w̃I(x, y) +
x⊤I j̃I � L} to model the server overtime (spent by the doctor). Hence, given an overtime tolerance τI+1, we can 
incorporate the additional ΠτI+1[w̃I+1(x, y)] into (11) to minimize jointly delay and overtime dissatisfaction. Simi
larly, note that the server idle time is just L+ w̃I+1(x, y)�

P
i∈[I]x⊤i j̃i. Thus, given an idle time tolerance τidle, we

can also incorporate server idle time in the objective function. The corresponding TAD models incorporated with 
overtime and idle time are provided in E-companion EC D.

The following proposition shows the convexity of TAD objective function in (11).

Proposition 3. The objective function 
P

i∈[2;I]Πτi(x)[w̃i(x, y)] of the TAD appointment model (11) is a convex function
with respect to (x, y).

Proposition 3 implies that the TAD appointment model can yield in computationally attractive formulations. 
Specifically, we show later that it leads to a mixed-integer linear program for the case under known distribution 
(Section 4.2) and a mixed-integer second-order conic program for the case under distributional ambiguity (Sec
tion 5).

By definition (1) and that τi(x) � r⊤xi, we can rewrite the TAD model (11) explicitly as

min
x,y

X

i∈[2;I]
(r⊤xi� αi)

s:t: αi + sup
P∈F

EP[(w̃i(x, y)� αi)
+
] ≤ r⊤xi, ∀i ∈ [2; I]

w̃i(x, y) � max
t∈[i�1]

Xi�1

l�t
x⊤l j̃l� (yi� yt)

( )!+

, ∀i ∈ [2; I]

0 ≤ αi ≤ r⊤xi, ∀i ∈ [2; I]
x ∈ X , y ∈ Y, (12) 

where x, y are decision variables, and X and Y are feasible sets defined by (7) and (8), respectively, and each αi is 
an auxiliary variable used to determine the level of TAD index at position i.

Remark 3 (On the Sequence Dependency of Delay Tolerance). Model (12) shows that the TAD model captures, for 
each position i, the interdependency between the sequencing x, scheduling y, service time distribution j̃, and 
(sequence-dependent) delay tolerance τi(x) � r⊤xi simultaneously. It is noteworthy to mention that some 
appointment studies (see, e.g., Kong et al. 2013, Mak et al. 2015, Kong et al. 2020) have employed the expected 
delay model with “expected weighted waiting time and overtime,” where higher weights are placed on positions 
whose delays are less acceptable. However, such an approach might not be suitable for our joint appointment 
sequencing and scheduling problem by recalling that the delay tolerance

τi(x) � r⊤xi �
X

j∈[J]
rjxij 

in each position i now depends on the user type assigned (i.e., the sequence decision x).

Remark 4 (Delay Tolerance Regularization). In practical applications, if the tolerance levels of users are too low 
(e.g., when certain users are not comfortable for long waiting) or their delay times are too long (e.g., when the 
server is over-utilized), it is possible that the problem (12) becomes infeasible. To deal with this issue, we propose 
a practical regularization approach that is commonly used in statistics/machine learning (Xu et al. 2009, Sugi
yama 2015, Bertsimas et al. 2019) to ensure the feasibility of the TAD appointment scheduling model. Specifically, 
we increase (relax) the original delay tolerance levels r in the TAD model to θr,θ ≥ 1, where θ is a relaxation fac
tor. We then solve the following regularized TAD model,

min
x,y,θ

X

i∈[2;I]
Πτθi (x)

[w̃i(x, y)] +Ωθ

�
�
�
�
�
θ ≥ 1, x ∈ X , y ∈ Y

( )

, (13) 

where τθi (x) :� (θr)⊤xi, and Ωθ is the regularization term with Ω being a given sufficiently large number. The 
regularized TAD model (13) is always feasible and can be regarded as a reasonable approximation to the 
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problem (12) in the following sense. Because of the sufficiently large penalty Ω, if the problem (12) is feasible, then 
the solution θ? is equal (or very close) to 1. As such, we do not lose (much) in optimality. If the problem (12) is infeasi
ble, the model returns an optimal appointment solution (x?, y?) with the tightest relaxation θ? for relaxing the delay 
tolerance levels, and the resulting tolerance levels preserve the original ranking and proportional relation.

It is noted that the regularized TAD model (13) is also computationally attractive. In fact, the bilinear terms θxi 
in the relaxed tolerance level τθi (x) � r⊤(θxi) can be readily linearized without increasing the number of integers. 
Specifically, the regularized TAD model (13) is equivalent to the MIP formulation

min
x,y

X

i∈[2;I]
(r⊤zi� αi) +Ωθ

s:t: αi + sup
P∈F

EP[(w̃i(x, y)� αi)
+
] ≤ r⊤zi, ∀i ∈ [2; I]

w̃i(x, y) � max
t∈[i�1]

Xi�1

l�t
j̃
⊤

l xl� (yi� yt)

( )!+

, ∀i ∈ [2; I]

zij ≤ θ+ (1� xij)θ, ∀i ∈ [2; I], j ∈ [J]

zij ≤ θxij, ∀i ∈ [2; I], j ∈ [J]
0 ≤ αi ≤ r⊤zi, ∀i ∈ [2; I]
θ ≥ 1, x ∈ X , y ∈ Y,

(14) 

where a, z and θ are auxiliary variables, and θ can be any upper bound of θ. Clearly, model (14) preserves the 
structure of the TAD model (12), with the sequence decision x being the only binary variable.

4.2. Empirical TAD Model, Reformulation, and Properties
We focus on the appointment scheduling problem given an empirical service time distribution, that is, F � {P̂}, 
where we assume that user service times j̃ are identified as scenarios jk � (ξk

ij)I×J with probabilities pk, ∀k ∈ [K], 
which yield the service time distribution as

P̂ :�
X

k∈[K]
pkδjk , (15) 

where δ is the Dirac delta function.
Based on the empirical service time distribution given in (15), given appointment decision (x, y), we can 

express the delay scenarios k for each position i as follows:

wk
i (x, y) � max

t∈[i�1]

Xi�1

l�t

X

j∈[J]
ξk

ljxlj� yi + yt

0

@

1

A

0

@

1

A

+

, ∀i ∈ [2; I], k ∈ [K]: (16) 

Accordingly, the TAD index Πτi(x)[w̃i(x, y)] at each position i given (x, y) can be written as

Πτi(x)[w̃i(x, y)] � min
0≤α≤τi(x)

r⊤xi� α

�
�
�
�
�
α+

X

k∈[K]
pk

�
wk

i (x, y)� α
�+
≤ r⊤xi

( )

:

Furthermore, under the empirical service time distribution, we are able to represent the TAD level Πτi(x)[w̃i(x, y)]
of each position i in a closed-form expression. To this end, given decision (x, y), we let w.l.o.g. the delay realiza
tions in (16) for each position i ∈ [2; I] be sorted such that

wk
i (x, y) ≤ wk′

i (x, y), when k < k′: (17) 

Then, by Proposition 2, we have the following representation for the TAD index of each position.

Corollary 1. Given (x, y) and assuming that the service time probability distribution is given in (15), the ranking in (17) 
applies. If 0 < Πτi(x)[w̃i(x, y)] < ∞, then the TAD index of position i can be calculated by

Πτi(x)[w̃i(x, y)] �
XK

k�m?
i +1
(wk

i (x, y)� r⊤xi)
pkP

l∈[m?
i ]

pl

" #

, (18) 
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where each wk
i (x, y) is given by (16) and

m?
i :�max m ∈ [K] wm

i (x, y) < r⊤xi, wm
i (x, y) +

XK

k�m+1
pk(wk

i (x, y)�wm
i (x, y)) ≤ r⊤xi

�
�
�
�
�

)

:

(

(19) 

Furthermore, with the service time distribution (15), the problem (12) is a stochastic optimization problem that 
can be formulated as a mixed integer linear program (MILP).

Proposition 4 (MILP for the Empirical TAD Model). The TAD appointment model (12) with empirical service time distri
bution (15) has the MILP reformulation

min
x, y

X

i∈[2;I]
(r⊤xi � αi)

s:t: αi +
X

k∈[K]
pkγik ≤ r⊤xi, ∀i ∈ [2; I]

�αi ≤ γik, ∀i ∈ [2; I], k ∈ [K]
Xi�1

l�t

X

j∈[J]
ξk

ljxlj + yt � yi � αi ≤ γik, ∀i ∈ [2; I], t ∈ [i� 1], k ∈ [K]

γik ≥ 0, ∀i ∈ [2; I], k ∈ [K]
0 ≤ αi ≤ r⊤xi, ∀i ∈ [2; I]
x ∈ X , y ∈ Y,

(20) 

where γik, ∀i ∈ [2; I], k ∈ [K] and αi, ∀i ∈ [2; I] are auxiliary variables.

Remark 5. Leveraging on the reformulation (20) of the TAD model with empirical distribution, the regularized 
TAD model (14) also has an MILP reformulation without inducing additional integers.

Leveraging on the results in Corollary 1 and Proposition 4, in the following we highlight some observations of 
the TAD appointment model on how the appointment scheduling and sequencing operations are impacted by 
the tolerance levels rj, ∀j ∈ [J].

Proposition 5 (Tolerance Impact on Sequence). If the service times j̃j, j ∈ [J] are identically distributed, then the first 
position is always assigned to the user of the lowest delay tolerance in the sequence solution, that is,

x?1j? � 1, j? ∈ argmin
j∈[J]

rj:

The above result is actually trivially reasonable, which demonstrates that the first (best) position (which never 
suffers from delays) should be assigned to the user with lowest delay tolerance if the service times for each cate
gory of users have little difference. Furthermore, the following proposition reveals the impact of delay tolerance 
on the scheduling operations.

Proposition 6 (Tolerance Impact on Schedule). Given a fixed sequence decision x, denote the optimal scheduling solution 
by y?(t) with delay tolerance levels t � (r⊤xi)i∈[I]. For each position i ∈ [2; I], there exists a threshold ∆i(x, t) ≥ 0 such that 
if the tolerance level τi � r⊤xi is decreased to τ[i � τi�∆ with ∆ > ∆i(x, t), then

EP̂[w̃i(x, y?(t[))] < EP̂[w̃i(x, y?(t))], 

and there exists some t ∈ [i� 1] such that

y?i (t
[)� y?t (t

[) > y?i (t)� y?t (t):

Proposition 6 implies how the optimal scheduling policy y? is affected by the delay tolerance changes; when the 
delay tolerance at some position i is decreased beyond some threshold level, then the expected delay of the user 
at position i decreases strictly, that is, EP̂[w̃i(x, y?(t[))] < EP̂[w̃i(x, y?(t))]: In particular, this expected delay reduc
tion is realized by increasing the delay buffering for position i, that is, increasing the scheduled service dura
tion(s) for some front position(s): y?i (t[)� y?t (t[) > y?i (t)� y?t (t), for at least one t ∈ [i� 1].
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5. TAD Appointment Model Under Service Time Ambiguity
In this section, we extend the TAD model using known service time distribution in Section 4.2 to a model that 
involves distributional ambiguity, that is, by allowing the distributional set F to contain partially characterized 
service time distributions. In particular, it is noted that in the TAD appointment scheduling problem (12) under 
ambiguity set F , for each i ∈ [2; I], the TAD index is expressed as

Πτi(x)[w̃i(x, y)] � min
α∈[0,τi(x)]

r⊤xi � α α+ sup
P∈F

EP[(w̃i(x, y)� α)+] ≤ r⊤xi

�
�
�
�

)

:

(

(21) 

In the forthcoming subsections, Sections 5.1 and 5.2, we first investigate the tractable reformulations for the TAD 
index Πτi(x)[w̃i(x, y)] under moment and Wasserstein ambiguity sets, respectively. Then, the resultant MIP for
mulations of the TAD appointment model are presented in Section 5.3.

5.1. Moment TAD Index Model
In this subsection, we use the descriptive statistical information of the support and mean and twofold variance 
bounds of service times to characterize the distribution of service times j̃. The resulting moment ambiguity set 
FM is specified as

FM :� P ∈ P(Ξ)

j̃ ~ P, P[j̃ ∈ Ξ] � 1

EP[ξ̃ij] � µij, ∀i ∈ [I], j ∈ [J]

EP[(ξ̃ij�EP(ξ̃ij))
2
] ≤ Vij, ∀i ∈ [I], j ∈ [J]

EP[(ξ̃ij + ξ̃ℓκ �EP(ξ̃ij + ξ̃ℓκ))
2
] ≤ Dℓκij , ∀i, ℓ ∈ [I], j,κ ∈ [J], (i, j)≠ (ℓ,κ)

�
�
�
�
�
�
�
�
�
�
�
�
�

9
>>>>>>>=

>>>>>>>;

,

8
>>>>>>><

>>>>>>>:

(22) 

where we assume that µij > 0, Vij > 0, and Dℓκij > 0 for technical convenience and Ξ � RI×J
+ . In the ambiguity set F , 

the first two groups of constraints represent the nonnegative support and the mean values of the service times,
respectively. The third and fourth groups of constraints describe the variance bounds of marginal service times
and the sum of two service times, respectively. In particular, these variance-bound constraints capture the possi
ble correlations of the service times across user types and positions in a tractable fashion. This can be noted by
recalling that

EP[(ξ̃ij + ξ̃ℓκ �EP(ξ̃ij + ξ̃ℓκ))
2
] � EP[(ξ̃ij�EP(ξ̃ij))

2
] +EP[(ξ̃ℓκ �EP(ξ̃ℓκ))2] + 2Cov(ξ̃ij, ξ̃ℓκ), 

for all i, ℓ ∈ [I], j,κ ∈ [J], (i, j)≠ (ℓ,κ) and that the total number of variance-bound constraints in (22) is M � (I × J)2, 
which is polynomial with respect to the problem size.

With the above notations, we have the following equivalent reformulation for the TAD index model (21) with 
F � FM that leverages on the standard conic duality arguments for DRO problems (see Shapiro 2001). In particu
lar, we can arrive at a polynomial-sized second-order cone program (SOCP) formulation of the TAD index at 
each position i ∈ [2; I].

Proposition 7. Given the ambiguity set F � FM and a sequence and schedule solution (x, y), if the TAD index 
Πτi(x)[w̃i(x, y)] < ∞, then it solves the SOCP

min
α∈[0,τi(x)]

r⊤xi� α (23) 

s:t:
X

(l, j)∈A
µljblj +

X

(l, j)∈A
Vljdljlj +

X

(l, j)∈A

X

(ℓ,κ)∈A\{(l, j)}
Dℓκlj dljℓκ +λ ≤ r⊤xi� α (24) 

X

(l, j)∈A

X

(ℓ,κ)∈A
µljvljℓκ +

X

(ℓ,κ)∈A\{(l, j)}
µℓκvljℓκ

0

@

1

A�
X

(l, j)∈A

X

(ℓ,κ)∈A

πljℓκ + ζljℓκ

2 +λ+ α ≥ 0 (25) 

X

(l, j)∈A

X

(ℓ,κ)∈A
µljvljℓκ +

X

(ℓ,κ)∈A\{(l, j)}
µℓκvljℓκ

0

@

1

A�
X

(l, j)∈A

X

(ℓ,κ)∈A

πljℓκ + ζljℓκ

2 +λ ≥ 0 (26) 

X

(l, j)∈A

X

(ℓ,κ)∈A
µljνtljℓκ +

X

(ℓ,κ)∈A\{(l, j)}
µℓκνtljℓκ

0

@

1

A�
X

(l, j)∈A

X

(ℓ,κ)∈A

φtljℓκ +ψtljℓκ

2 +λ+ α ≥ yt� yi, ∀t ∈ [i� 1] (27)
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vljlj +
X

(ℓ,κ)∈A\{(l, j)}
vljℓκ +

X

(ℓ,κ)∈A\{(l, j)}
vℓκlj ≤ blj, ∀(l, j) ∈A (28) 

νtljlj +
X

(ℓ,κ)∈A\{(l, j)}
νtljℓκ +

X

(ℓ,κ)∈A\{(l, j)}
νtℓκlj ≤ blj, ∀t ∈ [i� 1], l ∈ [I] \ [t; i� 1], j ∈ [J] (29) 

νtljlj +
X

(ℓ,κ)∈A\{(l, j)}
νtljℓκ +

X

(ℓ,κ)∈A\{(l, j)}
νtℓκlj ≤ blj� xlj, ∀t ∈ [i� 1], l ∈ [t; i� 1], j ∈ [J] (30) 

ζljℓκ�πljℓκ ≤ 2dljℓκ, ∀(l, j) ∈A, (ℓ,κ) ∈A (31) 
ψtljℓκ�φtljℓκ ≤ 2dljℓκ, ∀(l, j) ∈A, (ℓ,κ) ∈A, t ∈ [i� 1] (32) 

‖(vljℓκ ,πljℓκ)
⊤
‖2 ≤ ζljℓκ, ∀(l, j) ∈A, (ℓ,κ) ∈A (33) 

‖(νtljℓκ ,φtljℓκ)
⊤
‖2 ≤ ψtljℓκ, ∀(l, j) ∈A, (ℓ,κ) ∈A, t ∈ [i� 1] (34) 

v, p, z ∈ RM, n, w, c ∈ RM×(i�1), b ∈ RI×J, d ∈ RM
+ ,λ ∈ R: (35) 

where v, p, z, n, w, c, b, d,λ are auxiliary variables with the index set A :� {(l, j) : l ∈ [I], j ∈ [J]}.

5.2. Wasserstein TAD Index Model
Let M(Ξ) be the space of all probability distributions supported on Ξ with EQ[‖j‖p] < ∞ for any Q ∈M(Ξ)
where ‖ · ‖p is the p-norm with p ≥ 1. According to the optimal transportation theory (Kantorovich and Rubinstein 
1958, Villani 2008), the type-1 Wasserstein distance (a.k.a. Kantorovich metric)5 between any two probability dis
tributions P and Q supported on Ξ, denoted by W(·, ·) : M(Ξ) ×M(Ξ) ⊢→ R+, is the minimum transportation cost 
of moving from P to Q subject to the cost metric ‖ · ‖p:

W(P,Q) :� inf
Π

EΠ[‖j� z ‖p]

�
�
�
�
�

Π is joint distribution of j and z
with marginals P and Q, respectively

( )

: (36) 

Given the empirical distribution P̂ as given in (15), the Wasserstein ambiguity set of service time distributions, 
parameterized by φ ≥ 0, can be defined as

FW :� {P ∈M(Ξ) |W(P, P̂) ≤ φ}: (37) 

In particular, when φ � 0, the Wasserstein ambiguity set reduces to the singleton, that is, FW � {P̂}, which leads 
to the empirical case as discussed in Section 4.2. Finally, we consider the support to be a nonnegative polyhe
dron, that is, Ξ � {j ∈ RIJ

+ : Bj ≥ q} with B � (bs
ij)S×IJ ∈ RS×IJ. We next show that the TAD index under the Wasser

stein ambiguity set FW also has a tractable formulation of a norm conic program.

Proposition 8. Given the ambiguity set F � FW and a sequence and schedule (x, y), if the TAD index Πτi(x)[w̃i(x, y)] < ∞, 
then it solves the norm conic program

min
α∈[0,τi(x)]

r⊤xi� α (38) 

s:t: ηφ+
X

k∈[K]
pkγk ≤ r⊤xi� α (39) 

γk ≥�α, ∀k ∈ [K] (40) 
X

l∈[I]

X

j∈[J]
ξk

ljz
kt
lj +

X

s∈[S]
λkt

s qs + yt� yi ≤ γk + α, ∀k ∈ [K], t ∈ [i� 1] (41) 

‖zkt‖p∗ ≤ η, ∀k ∈ [K], t ∈ [i� 1] (42) 

zkt
lj +

X

s∈[S]
λkt

s bs
lj� xlj ≥ 0, ∀k ∈ [K], t ∈ [i� 1], l ∈ [t, i� 1], j ∈ [J] (43) 

zkt
lj +

X

s∈[S]
λkt

s bs
lj ≥ 0, ∀k ∈ [K], t ∈ [i� 1], l ∈ [I]\[t, i� 1], j ∈ [J] (44) 

l ≤ 0,γk ≥ 0, ∀k ∈ [K] (45) 

where η, g, l � (λkt
s )S×K×(i�1) and Z :� (zkt

lj )I×J×K×(i�1) are auxiliary variables, and ‖ · ‖p∗ is the dual norm of ‖ · ‖p.

It is noted from Proposition 8 that the evaluation of the Wasserstein TAD index Πτi(x)[w̃i(x, y)] solves an LP 
when the order p ∈ {1,∞} for the cost metric ‖ · ‖p, and it solves an SOCP when p � 2.
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5.3. Mixed-Integer Conic Program Reformulations
Finally, because feasible set X is a finite set of binaries and Y is a polytope, Propositions 7 and 8 lead directly to a 
reformulation of a mixed-integer second-order cone program (MISOCP) or a mixed-integer conic program 
(MICP) for the TAD appointment model (12) under ambiguity, respectively. These MIP reformulations are for
mally presented as follows with proof being omitted.

Proposition 9 (MICPs for TAD Model under Ambiguity). Given the ambiguity set F � FM or F � FW, if the TAD 
appointment scheduling problem (12) is feasible, then it solves an MISOCP,

min
x,y

X

i∈[2;I]
(r⊤xi� αi)

s:t: [vi, pi, zi, ni, wi, ci, bi, di,λi,αi] ∈ {(24)–(35)}, ∀i ∈ [2; I]
x ∈ X , y ∈ Y, 0 ≤ αi ≤ r⊤xi, ∀i ∈ [2; I]

(46) 

where vi, pi, zi, ni, wi, ci, bi, di,λi,αi, ∀i ∈ [2; I] are auxiliary variables, or an MICP,

min
x,y

X

i∈[2;I]
(r⊤xi� αi)

s:t: [ηi, gi, li, Zi,αi] ∈ {(39)–(45)}, ∀i ∈ [2; I]
x ∈ X , y ∈ Y, 0 ≤ αi ≤ r⊤xi, ∀i ∈ [2; I]

where ηi, gi, li, Zi,αi, ∀i ∈ [2; I] are auxiliary variables

Renark 6. Leveraging on the reformulations of the TAD model under distributional ambiguity in Proposition 9, 
the regularized TAD model (14) also has the MISOCP and MICP, respectively, with the same number of integers.

6. Numerical Experiments
The numerical studies are organized as follows. In Section 6.1, we investigate the impact of the delay tolerance 
levels on the sequencing and scheduling solutions under a given service time distribution. We compare the TAD 
model with the expected delay (ED) model that minimizes the expected total delay, which is common in many 
existing studies (Ahmadi-Javid et al. 2017). We also compare the TAD model with the DUML model6 (Qi 2017), 
which adopts lexicographic minimization procedure and optimizes the worst-case tolerance-incorporated delay 
performance across users based on CVaR measure. We perform out-of-sample tests on the three models under 
different parameter settings and compare their average and worst-case performance. In Section 6.2, we investi
gate the impact of the number of user categories on the relative performances of the three models. Furthermore, 
we evaluate in Section 6.3 the performance of the TAD model under service time ambiguity. Finally, in Section 
6.4, we demonstrate the performance of the TAD model in a case study with real outpatient data. Moreover, 
additional numerical experiments are provided in E-companion EC E, which includes (E.1) impact of idle time 
tolerance and (E.2) impact of sample size. All the models are coded in Python and solved with Gurobi (version 
9.5.0). The data and codes for the numerical studies are available in the IJOC GitHub repository (Wang et al. 
2023).

6.1. Impact of User Delay Tolerance Thresholds
In this section, we study the impact of user delay tolerance (DT) on the scheduling with the above three models. 
We consider an appointment scheduling problem with 10 users from two categories, named Type 1 and Type 2, 
with a session length of 20 time units. Type 1 (Type 2) has N1 (N2) number of users with DT denoted by r1 (r2). 
The service times of Type 1 users follow an uniform distribution U[0,δ], where δ is assumed to be uniformly dis
tributed in [3, 4]. The service times of Type 2 users follow a normal distribution N(2,σ2), where σ is uniformly 
distributed in [0, 1=3].

We generate 1,000 samples with the above distributions and solve the TAD model (20), the DUML model, and 
the ED model. We assume that N1 � N2, and we vary r2 from 0.5 to 2 while fixing r1 � 1. For each set (r1, r2), we 
solve the three models to obtain their respective solutions (x, y). Table 2 shows the results obtained on the sched
uled appointment time for each position (scheduling decision y) and the user type assigned at each position 
(sequencing decision x).

It is not surprising that the ED model gives the same solution under different sets of (r1, r2), because the ED 
model is indifferent to the value of DT. On the contrary, as r2 increases from 0.5 to 2, the TAD model and the 
DUML model adjust their solutions accordingly, and more Type 2 users (with higher DT) are sequenced to the 
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later positions. This suggests that the TAD and DUML models are able to utilize the DT information to mitigate 
the delay accumulation phenomenon of later users in appointment systems (Cayirli and Veral 2003). We also 
observe that there are more scheduling adjustments in the positions for the TAD model compared with the 
DUML model, which suggests that the TAD model is more sensitive toward changes in DT. One possible expla
nation is that the DUML model focuses on the lexicographic min-max fairness, whereas our TAD model focuses 
on the overall tolerance-aware delay performance, which can therefore capture more sensitively the DT effects 
across all positions. Furthermore, in all cases of (r1, r2), the TAD model assigns the user with the lower DT to the 
first position. This observation is consistent with Proposition 5.

We next evaluate the three models using out-of-sample tests. Using their respective solutions (x, y), we imple
ment it on 5,000 generated sample instances based on the assumed service time distributions. We evaluate the 
models based on the following measures. The proportion of delay over tolerance (DOT) (‘P’) shows the propor
tion of users (i.e., instances) who wait longer than their DT before service starts. The expected DOT (‘E’) shows 
that the expected time users wait beyond their DT. The standard deviation of the DOT (‘S’) indicates the variabil
ity of the waiting time by users beyond their DT. The expected waiting time (‘W’) shows the expected waiting 
time of users. We summarize the mean and worst case of these measures across all positions in the comparison 
of the TAD model with the ED model and the DUML model in Tables 3 and 4, respectively.

Table 3 shows that the TAD model outperforms the ED model under the mean and worst-case DOT perfor
mance criteria in proportion (‘P’), expectation (‘E’), and standard deviation (‘S’). For example, the improvement 
of the ‘E’-performance is 1,233.3% for (N1, N2) � (3, 7), (r1, r2) � (1:5, 1). The positive values in the statistics ‘P’ and 

Table 3. Out-of-Sample Performance Comparisons of the TAD and ED Solutions, Where a Positive Value Indicates That the 
TAD Model Outperforms the ED Model Under the Intended Performance Criterion

(N1, N2) (r1, r2)

Mean performance across positions Worst-case performance across positions

Pm
ED

a

Pm
TAD
� 1 Em

ED
b

Em
TAD
� 1 Sm

ED
c

Sm
TAD
� 1 Wm

ED
d

Wm
TAD
� 1 Pw

ED
Pw

TAD
� 1 Ew

ED
Ew

TAD
� 1 Sw

ED
Sw

TAD
� 1 Ww

ED
Ww

TAD
� 1

(5, 5) (1, 1.5) 19.5% 57.2% 67.9% �38.3% 87.7% 150.0% 77.5% �12.1%
(1, 1) 15.0% 53.3% 45.5% �30.2% 113.9% 135.5% 57.1% 68.9%

(1.5, 1) 41.3% 56.9% 59.3% �28.9% 94.7% 138.3% 70.0% 45.9%
(7, 3) (1, 1.5) 1.8% 29.9% 2.3% �22.8% 63.8% 101.9% 29.5% 56.2%

(1, 1) 1.5% 19.8% 4.7% �22.8% 57.1% 99.3% 37.5% 53.4%
(1.5, 1) 18.3% 38.2% 22.4% �24.3% 88.9% 102.5% 41.7% 42.7%

(3, 7) (1, 1.5) 260.5% 344.4% 509.9% �72.4% 340.9% 722.0% 265.9% �59.7%
(1, 1) 148.2% 221.4% 286.0% �42.1% 155.3% 222.3% 82.9% 40.0%

(1.5, 1) 433.3% 1,233.3% 106.5% �61.6% 362.0% 994.4% 381.8% �64.2%
aPm

A , Pw
A: the mean and worst-case proportion of DOT for model A across all positions.

bEm
A , Ew

A: the mean and worst-case expected DOT for model A across all positions.
cSm

A , Sw
A: the mean and worst-case StD of DOT for model A across all positions.

dWm
A , Ww

A : the mean and worst-case expected waiting time for model A across all positions.

Table 2. Appointment Schedule and Sequence Solutions (i.e., Time and Type) of the ED, TAD, and DUML Models with 
Different Delay Tolerance Thresholds (r1, r2)

Position

ED model

TAD model with tolerance (r1, r2) DUML model with tolerance (r1, r2)

(1, 0.5) (1,1) (1,1.5) (1,2) (1,0.5) (1,1) (1,1.5) (1,2)

Time Type Time Type Time Type Time Type Time Type Time Type Time Type Time Type Time Type

1 0.00 2 0.00 2 0.00 2 0.00 1 0.00 1 0.00 2 0.00 2 0.00 1 0.00 1
2 2.06 2 1.91 2 1.59 2 2.13 2 2.48 1 1.79 2 1.51 2 1.81 2 2.03 2
3 4.20 2 4.00 2 3.75 2 4.41 1 5.13 1 3.87 2 3.55 2 4.39 1 4.50 1
4 6.30 1 6.05 2 5.88 2 6.77 2 7.35 2 5.48 1 5.51 1 6.93 1 7.09 1
5 8.50 1 7.97 1 7.84 1 9.02 1 9.59 2 8.17 1 8.26 1 9.02 2 8.92 2
6 11.47 2 10.88 2 10.71 2 11.68 2 11.59 2 11.16 2 10.78 2 10.98 2 11.49 2
7 13.55 1 12.82 1 12.68 1 13.70 1 13.89 1 12.76 1 12.81 1 13.51 1 13.84 1
8 16.33 2 15.27 1 15.22 1 16.31 2 16.40 2 15.42 1 15.40 1 16.43 2 16.31 1
9 18.42 1 17.78 1 17.76 1 18.46 2 18.44 1 18.42 2 18.00 2 17.79 2 19.16 2
10 20.00 1 20.00 1 20.00 1 20.00 1 20.00 2 20.00 1 20.00 1 20.00 1 20.00 2
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‘S’ suggest that the TAD model is also more effective in controlling the variability of the actual DOT levels. This 
shows the ability of the TAD index in capturing the tolerance effects. The ED model outperforms the TAD model 
in mean expected waiting time (‘Wm’), which is not surprising because this is the optimization objective of ED 
model. Interestingly, although the TAD model does not prioritize the worst-case expected waiting time (‘Ww’) 
directly, it does so indirectly by considering the DT effect in individual positions. The TAD model generally out
performs the ED model in the worst-case expected time (see the 10th column of Table 3). Note that the abandon
ment property (Part 1(b) of Theorem 1) of the TAD index helps mitigate the worst-case delays.

Table 4 shows that the TAD model outperforms the DUML model in terms of mean DOT performance in all 
‘P’, ‘E’, and ‘S’ statistics under most of the cases. It is also not surprising that the DUM model generally outper
forms the TAD model in worst-case DOT performance, because the former optimizes the worst-case perfor
mance. Interestingly, Table 4 shows that in most cases the TAD model outperforms the DUML model in terms of 
both mean and worst-case expected waiting time across all positions (the 6th and the 10th columns of Table 4). 
This “adaptive” performance in worst-case waiting time of the TAD model may also be attributed by the aban
donment property of the TAD index, which helps reject the decisions that lead to extremely long waiting times. 
The DUML model, which (by design) prioritizes the worst-case probability level such that the associated CVaR 
of delay at each position is within tolerance, does not necessarily ensure the optimality in worst-case expected 
waiting time.

Finally, Table 5 shows the computational time in seconds for the ED, TAD, and DUML models. It illustrates 
that the computational time for the TAD model is slightly more than the ED model, for example, 102.3 seconds 
versus 98.0 seconds under (N1, N2) � (3, 7), (r1, r2) � (1, 1), whereas the TAD model could generally outperform 
the ED model for the above-mentioned measures as we discussed before. Meanwhile, our TAD model is more 
efficient than the DUML model, which benefits from the convexity of the TAD index that ensures a computation
ally suitable reformulation.

To summarize, in appointment applications where the users’ delay experiences are strongly related to the DT 
(e.g., healthcare), the TAD model can adapt the scheduling appropriately to users’ DT to provide a good DOT 
performance with moderate computational time. In addition, the TAD model also avoids the extremely bad and 
unfair waiting times across positions.

6.2. Impact of User Heterogeneity
In this section, we study the impact of the number of user categories. We vary the number of user categories 
(denoted as J) from two to five and the tolerance levels from 0.5 to 1.5. Let ΓJ be the set containing the DT of each 

Table 4. Out-of-Sample Performance Comparisons of the TAD and DUML Solutions, Where a Positive Value Indicates That 
the TAD Model Outperforms the DUML Model Under the Intended Performance Criterion

(N1, N2) (r1, r2)

Mean performance across positions Worst-case performance across positions

Pm
DUML

Pm
TAD

� 1
Em

DUML

Em
TAD

� 1
Sm

DUML

Sm
TAD

� 1
Wm

DUML

Wm
TAD

� 1
Pw

DUML

Pw
TAD

� 1
Ew

DUML

Ew
TAD

� 1
Sw

DUML

Sw
TAD

� 1
Ww

DUML

Ww
TAD

� 1

(5, 5) (1, 1.5) 27.8% 22.2% 21.2% 38.8% �25.0% �29.6% �17.2% 18.6%
(1, 1) 55.1% 51.9% 51.2% 27.9% �29.7% �44.0% �32.1% 25.4%

(1.5, 1) 2.1% 9.8% 7.0% �5.4% �29.8% �16.6% �2.0% �4.0%
(7, 3) (1, 1.5) 29.0% 40.4% 27.1% 20.8% �23.1% �23.9% �8.6% 21.6%

(1, 1) 17.2% 30.1% 20.5% 13.6% �33.1% �33.8% �8.9% �25.9%
(1.5, 1) 13.5% 16.8% 12.4% 20.7% �38.0% �36.5% �10.1% 16.0%

(3, 7) (1, 1.5) 42.2% 21.1% 14.5% �25.3% 15.4% �39.6% �44.4% 0.2%
(1, 1) �17.8% �7.6% 24.5% 19.1% �43.5% �47.9% �24.1% 0.1%

(1.5, 1) 3.9% �29.7% �42.1% 59.9% 81.8% 10.9% �31.0% 28.2%

Table 5. Computational Time (in Seconds) of the ED, TAD, and DUML Models with Different Numbers of Users (N1, N2) 
and Delay Tolerance Thresholds (r1, r2)

(N1, N2) (3, 7) (5, 5) (7, 3)

(r1, r2) (1, 1.5) (1, 1) (1.5, 1) (1, 1.5) (1, 1) (1.5, 1) (1, 1.5) (1, 1) (1.5, 1)

ED 97.7 98.0 97.8 100.7 99.3 98.7 93.3 94.6 94.0
TAD 102.8 102.3 109.4 112.0 108.4 105.6 117.2 110.8 115.9
DUML 8,362.5 7,697.6 8,370.5 7,144.8 6,436.5 7,678.1 6,691.7 6,132.2 6,710.4
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category and ΨJ the set containing the respective number (of users) in each category. For example, for J � 2, we 
consider τ1 � 0:5,τ2 � 1:5, N1 � 5, N2 � 5. Thus, we have Γ2 � {0:5, 1:5} and Ψ2 � {5, 5}. We also consider the fol
lowing cases: Γ3 � {0:5, 1, 1:5} with Ψ3 � {3, 4, 3} for J � 3, Γ4 � {0:5, 0:8, 1:2, 1:5} with Ψ4 � {3, 2, 3, 2} for J � 4, and 
Γ5 � {0:5, 0:8, 1, 1:2, 1:5} with Ψ4 � {2, 2, 2, 2, 2} for J � 5. Table 6 illustrates a similar pattern as we found in Section 
6.1. More specifically, the TAD model outperforms the ED model in both mean and worst-case DOT performance 
measures, and meanwhile, it also outperforms the DUML model in mean DOT performance criteria across differ
ent user categories. It is worth noting that the mean DOT performance improvement of the TAD model over the 
ED and DUML models generally increases as heterogeneity increases (J increases). One possible explanation is 
that the TAD model captures this by considering the sum of user’s TAD index. In contrast, the DUML model 
focuses more on the worst-case situation across all positions, whereas the ED model is indifferent to users’ DT.

Finally, we record the computational time of ED, TAD, and DUML models with different numbers of user cate
gories as well as sample size in Table 7; it shows that as either heterogeneity across user categories or sample 
size increases, the computational time for each model increases, which is not surprising, although it is worth not
ing that it implies the same pattern as what we found in Section 6.1, that is, that the computational time for the 
TAD model is comparable to the ED model but more computationally suitable than the DUML model, which 
again justifies the benefit in computation of our proposed TAD model.

6.3. Impact of Service Time Distribution Ambiguity
Finally, we study the performance of the TAD model under distributional ambiguity with the MISOCP reformu
lation (46), which we refer to as the r-TAD model. To investigate the impact of the service time ambiguity, we 
compare the r-TAD model’s performance with that of the TAD model under different out-of-sample variability 
situations. Specifically, we use the 1,000 samples generated in Section 6.1 to estimate the mean values and vari
ance bounds and use these as inputs to solve the r-TAD model. The computational times for the r-TAD model 
are between 4,500 and 5,800 seconds for the instances of Table 8. We then compare the solution of the r-TAD 
model with the solution of the TAD model (20). We increase the variability of the 5,000 out-of-sample scenarios 
by varying δ from δ ~ U[3, 4] to δ ~ U[1:5, 5:5] and σ from σ ~ U[0, 1=3] to σ ~ U[0:3, 1=3] of the service time 
distributions.

Table 8 shows that the relative performance of the r-TAD model over the TAD model improves with increas
ing variability in the out-of-sample data. In the low-variability case, that is, when the out-of-sample data are 

Table 6. Out-of-Sample Performance Comparisons of Three Models for Different Numbers of User Types (J)

J

Mean performance across positions Worst-case performance across positions
Pm

ED
Pm

TAD
� 1 Em

ED
Em

TAD
� 1 Sm

ED
Sm

TAD
� 1 Wm

ED
Wm

TAD
� 1 Pw

ED
Pw

TAD
� 1 Ew

ED
Ew

TAD
� 1 Sw

ED
Sw

TAD
� 1 Ww

ED
Ww

TAD
� 1

2 27.8% 68.6% 8.0% �49.3% 87.7% 149.6% 75.3% �12.2%
3 1.4% 44.8% 17.3% �42.2% 74.7% 176.9% 71.6% 17.3%
4 14.2% 52.0% 27.4% �67.4% 140.4% 277.5% 101.1% 157.2%
5 121.7% 156.8% 44.6% �30.1% 136.7% 190.3% 35.6% 101.3%

J

Mean performance across positions Worst-case performance across positions
Pm

DUML

Pm
TAD

� 1
Em

DUML

Em
TAD

� 1
Sm

DUML

Sm
TAD

� 1
Wm

DUML

Wm
TAD

� 1
Pw

DUML

Pw
TAD

� 1
Ew

DUML

Ew
TAD

� 1
Sw

DUML

Sw
TAD

� 1
Ww

DUML

Ww
TAD

� 1

2 30.8% 36.5% 28.1% 7.7% 2.8% 0.1% �0.6% �32.7%
3 37.2% 41.0% 30.9% 21.8% �13.9% �21.4% �12.7% �12.2%
4 44.8% 68.7% 39.5% �1.4% �7.7% 26.7% 27.3% �10.0%
5 54.7% 67.3% 33.5% 28.5% �8.0% �16.9% �9.4% 1.4%

Table 7. Computational Time (in Seconds) of the ED, TAD, and DUML Models with Different Numbers of User Types (J) 
and Sample Size (K), Where OOT Represents Out of Time (more than 20,000)

Model

K � 100 K � 500 K � 1,000

J � 2 J � 3 J � 4 J � 5 J � 2 J � 3 J � 4 J � 5 J � 2 J � 3 J � 4 J � 5

ED 2.2 7.6 12.2 16.6 32.1 84.6 147.5 273.9 99.3 395.5 687.0 1,282.9
TAD 2.7 10.5 13.4 34.0 36.4 141.5 174.7 283.6 124.5 633.7 784.7 1,727.7
DUML 129.1 291.3 681.1 762.5 2,005.4 5,224.6 15,390.3 OOT 7,225.8 OOT OOT OOT
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drawn from the original given service time distributions with δ ~ U[3:0, 4:0],σ ~ U[0:0, 1=3], the TAD model gen
erally achieves better DOT performances. This is not surprising, because the TAD solution is obtained using the 
sample drawn from the distributions with the same (δ,σ). This performance diminishes when the variability 
increases. In the case of high out-of-sample variability with δ ~ U[1:5, 5:5],σ ~ U[0:3, 1=3], the r-TAD model out
performs the TAD model in DOT performance criteria across most instances. This demonstrates the robustness 
of the r-TAD model in maintaining the performance under high variability in the service times.

6.4. A Case Using Real Patient Data
In this section, we use three months of outpatient data collected from a comprehensive hospital in Singapore to 
evaluate the performance of the TAD model. Appointments for morning sessions start at 0830 and end at 1130. 
The afternoon sessions start at 1400 and end at 1700, and the hospital schedules 10 patients in each session (for 
each doctor). Figure 1, (a) and (b), illustrates the distributions of the waiting times (minutes) and consulting times 
(minutes) of the outpatient data, respectively. We also summarize the statistics for waiting time and consulting 
time in Table 9, which shows that the average waiting time and consulting time per patient are 32.9 and 
15.1 minutes, respectively. It implies that the consulting time under different types, that is, first visit and revisit, 
are significantly different, which motivates us to divide the patients via their types for further analysis.

We depict the performance of the TAD model under two studies. In Section 6.4.1, we consider two categories 
of patients: first-visit patients and revisit patients. The follow-up consultation for revisiting patients usually has 
different service time characteristics from first-visit patients. In Section 6.4.2, we assume that the patients are cate
gorized according to the length of the consulting time. This covers more general situations in practice. For 
instance, the consulting times for young patients are usually shorter than that for the elderly. The consultation 
for patients with some chronic diseases could take a longer time than others.

6.4.1. Categorizing Patients as First Visits and Revisits. In the first study, we categorize the patients in terms of 
first visits (FV) and revisits (RV), with delay tolerance (DT) as rFV and rRV, respectively. Given a parameter β, we 
assume that a (1� β) proportion of patients in that category are not satisfied with the waiting experience. We 
estimate the DT of each category by approximating it as the β�percentile of the historical waiting times, from the 

Figure 1. (Color online) Distributions of Waiting Time (a) and Consultation Time (b) Identified from Data 

(a) Waiting time [minutes] (b) Consulting time [minutes]

Table 8. Out-of-Sample Performance Comparisons Between r-TAD and TAD (N1, N2) � (5, 5)

(r1, r2) Variability Level in Out-of-Sample Scenarios
Pm

TAD
Pm

rTAD
� 1 Em

TAD
Em

rTAD
� 1 Sm

TAD
Sm

rTAD
� 1

(1, 1.5) Low variabilitya �19.5% �31.2% 17.1%
Medium variabilityb 24.5% 1.8% 28.9%
High variabilityc 40.7% 13.3% 33.0%

(1, 1) Low variability �13.8% �26.8% �5.0%
Medium variability 13.9% �6.8% �0.6%
High variability 40.0% 22.4% 0.5%

(1.5, 1) Low variability �20.9% �33.3% �8.3%
Medium variability 7.3% �9.1% �1.6%
High variability 20.2% 0.7% �0.4%

aLow variability: out-of-sample scenarios generated with δ ~ U[3:0, 4:0],σ ~ U[0:0, 1=3].
bMedium variability: out-of-sample scenarios generated with δ ~ U[2:0, 5:0],σ ~ U[0:2, 1=3].
cHigh variability: out-of-sample scenarios generated with δ ~ U[1:5, 5:5],σ ~ U[0:3, 1=3].
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first two months’ data. As a comparison, we vary β. Specifically, we set β to be 20%, 30%, and 40% and refer to 
these cases as Cases A1, A2, and A3, respectively (see Table 10).

For each case, we solve for the appointment decisions (x, y) from the respective ED, TAD, and DUML models 
and record computational times. To evaluate, we implement out-of-sample tests using the third month’s data. 
For each position, we record the proportion of patients with positive delay over tolerance (DOT), the expected 
DOT, the standard deviation of the DOTs, and the waiting time. We compute the mean of the above measures 
across the positions and refer to them as ‘Pm’, ‘Em’,’Sm’, and ‘Wm’, respectively. We also compute the worst case 
of the above measures across all positions and refer to them as ‘Pw’, ‘Ew’,’Sw’, and ‘Ww’, respectively. We sum
marize the results in Table 11.

The TAD model has the best mean DOT performance in all cases (see column ‘Pm’ to column ‘Sm’ of Table 11). 
Although the ED model optimizes expected time, it has the worst mean DOT performance because it ignores the 
tolerance effects. For the worst-case performance, the DUML model outperforms the TAD model in ‘Pw’, whereas 
TAD is better in ‘Ew’ and ‘Sw’. This could be due to (i) the out-of-sample effects and/or (ii) the design of the 
DUML model, whose optimization criterion based on CVaR is the worst-case probability (confidence) level 
across positions, which does not ensure optimality in ‘Em’ and ‘Sm’ criteria.

It is not surprising that the ED model has the best mean performance of expected waiting time. However, the 
ED model results in an extremely long waiting for some positions (specifically the last one) by noting that mean 
and worst-case waiting time (‘Wm’ and ‘Ww’) are 3.2 and 40.904 minutes, respectively. In contrast, both the TAD 
model and DUML model can mitigate this unfairness issue, and the TAD model has the best performance in 
worst-case waiting time in most cases. These superior performances of the TAD model show again its ability in 
mitigating the unfairness and extremely bad delay worst-case performance, which are consistent with our 
numerical results in Section 6.1.

6.4.2. Categorizing Patients with Consulting Time. In the second study, we categorize the patients, by the length 
of their consulting times, into three categories: Type I (0 to 15 min), Type II (15 to 30 min), and Type III (above 
30 min). We let rI, rII, and rIII denote the DT of patients for each category, respectively. Similarly, we consider 
three cases and set rI, rII, and rIII as 20%, 30%, and 40% quantiles of the waiting times of respective types of 
patients. We refer to them as cases B1, B2, and B3, respectively (Table 12). We then compare the DOT and waiting 
time performance of three models of TAD, ED, and DUML and present the mean and worst-case out-of-sample 
performance statistics as well as the computational times in Table 13.

Similarly, the TAD model outperforms the ED and DUML models in ‘Em’, ‘Pm’, and ‘Ww’ statistics. The TAD 
model performs very closely to the DUML model in ‘Ew’, ‘Pw’, and ‘Sw’ statistics in Cases B1 and B2 and even 
outperforms the DUML model in case B3. Clearly, the TAD model performs relatively better here than in the first 
study (in Section 6.4.1). This could be due to the higher heterogeneity because we have three categories here as 
compared with two in the first study. This is consistent with observations in Section 6.2 that the TAD model per
forms relatively better when adapting to higher heterogeneity effects.

Finally, the worst-case performance of the ED model is bad in all cases. For instance, when the DT is tight 
(cases B1 and B2), its worst-case proportion of DOT is 100%, and this always happens to the last position. Thus, 

Table 9. Statistics of Waiting Time and Consulting Time

Statistics

Waiting time (minutes) Consulting time (minutes)

First-visit Revisit Total First-visit Revisit Total

Mean 35.7 32.1 32.9 21.3 13.4 15.1
Median 31.0 25.0 27.0 16.0 11.0 12.0
Maximum 148.0 214.0 214.0 230.0 176.0 230.0
Minimum 0.0 0.0 0.0 2.0 1.0 1.0
Std 29.3 30.8 30.5 25.1 11.9 16.1

Table 10. Delay Tolerance Levels of Each Type of Patient Taken as 
Quantiles of Historical Waiting Times

Delay tolerance level Case A1 Case A2 case A3

rFV 15 minutes 22 minutes 25 minutes
rRV 8 minutes 12 minutes 18 minutes
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the ED model that ignores the DT effect could impose a long waiting time for the patient at one individual posi
tion, as we already observed in Section 6.4.1.

We summarize the results from both studies. The TAD model, which considers the sum of the patients’ TAD 
index, performs well in terms of mean performance of DOT and worst-case waiting time against the ED model and 
DUML model. In contrast, the ED model performs badly in mean DOT, worst-case DOT, and waiting time statistics, 
whereas the DUML performs badly in mean waiting time statistics. In worst-case DOT performance, the TAD model 
can also be close to the DUML model. These suggest that the TAD model gives steadily good mean DOT perfor
mance and also protects the worst-case DOT and waiting time performances in practical settings.

6.4.3. Performance Improvement with the TAD Model Over Current Practice. Finally, we compare the results 
from the TAD model with the results based on the hospital’s schedules made in the third month. We observe 
that the TAD model generally improves the waiting time beyond the patient’s DT level significantly in all cases. 
Because the results are similar for Cases A1, A2, and A3, we present only the out-of-sample results for Case A1 
in Figure 2(a). Similarly, we present only the out-of-sample results for Case B1 in Figure 2(b).

The spikes in Figure 2, (a) and (b), indicate that the majority of the patients from the TAD model experience 
very little waiting beyond their DT level. In contrast, the red bins over [0, 150] in the horizontal axis in both parts 
of the figure indicate that there is a higher proportion of patients with long waiting times beyond their DT result
ing from the hospital’s schedule. Specifically, the TAD model improves the average proportion of the patients 
with zero DOT across different categories of patients from 16% and 15% to 52% and 45% in Case A1 and Case 
B1, respectively.

The higher spike in Figure 2(b) indicates that the TAD model has better improvements in Case B1 than in Case 
A1. Recall that we have two categories in Case A1 and three categories in case B1 based on two different categor
izations. This leads to an important managerial insight that an appropriate categorization of patients can have a 
big impact on the performance of the model. Thus, to improve the waiting experience of users, operations man
agers should not downplay the importance of a good categorization of users.

7. Conclusion
In this paper, we study a joint appointment sequencing and scheduling problem with service time uncertainty. 
We define a new measure, the TAD index, to quantify the users’ dissatisfaction to delay experience. The TAD 

Table 11. Comparison of TAD, DUML, and ED Models in Mean and Worst-Case Performance and Computational Perfor
mance for Cases A1, A2, and A3

(rFV, rRV) Model

Mean performance Worst-case performance

TimePm
a Em

b Sm
c Wm

d Pw
a Ew

b Sw
c Ww

d

Case A1 TAD 12.81% 1.560 5.380 4.900 28.60% 2.560 6.980 11.921 12.6 s
DUML 13.75% 1.844 6.149 5.140 17.70% 2.896 8.284 15.810 1,105.4 s

ED 15.95% 4.730 13.600 3.200 40.60% 8.152 17.142 42.904 11.0 s
Case A2 TAD 11.50% 1.310 4.863 4.948 26.60% 2.146 6.415 12.93 12.3 s

DUML 12.03% 1.579 5.639 8.014 14.70% 2.539 7.587 15.93 1,190.4 s
ED 15.28% 4.419 13.117 3.200 38.30% 7.350 16.640 42.904 11.1 s

Case A3 TAD 7.40% 0.860 4.110 4.850 17.30% 1.311 5.390 14.700 12.4 s
DUML 8.91% 1.098 4.820 7.910 12.70% 1.596 5.886 14.670 1,254.1 s

ED 14.30% 3.930 11.046 3.200 27.70% 5.180 13.919 42.904 11.2 s
aPm and Pw: the mean of and worst-case proportion of DOT across all positions.
bEm and Ew: the mean of and worst-case expected DOT across all positions.
cSm and Sw: the mean of and worst-case standard deviation of DOT across all positions.
dWm and Ww: the mean of and worst-case expected waiting time across all positions.

Table 12. Delay Tolerance Levels of Each Type of Patient Taken as 
Quantiles of Historical Waiting Times

Delay tolerance level Case B1 Case B2 Case B3

rI 7 minutes 12 minutes 18 minutes
rII 11 minutes 15 minutes 21 minutes
rIII 10 minutes 13 minutes 20 minutes
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index is a convex decision criterion that captures the frequency and intensity of delays above tolerance. We use 
the TAD index to minimize the collective delay dissatisfaction level across heterogeneous users in the appoint
ment scheduling problem. The TAD model effectively coordinates the users’ heterogeneous tolerances with the 
service time distribution and adapts the appointment sequence-and-schedule decision to optimize the users’ total 
tolerance-aware delay level. The convexity of the TAD index endows it with an appealing computational advan
tage in modeling the appointment scheduling problem, which enjoys computationally attractive reformulations 
of mixed-integer linear program and mixed-integer conic programs under known empirical distribution and dis
tributional ambiguity, respectively. Also, our TAD model is extended to incorporate overtime and idle time.

We identify several insights of the TAD model. (i) It is always optimal to assign the user of the lowest delay 
tolerance to the first position when service times are identically distributed. (ii) When the delay tolerance at 
some position is decreased beyond some threshold level, then the model increases the scheduled service time 
duration of some front users so as to mitigate the expected delay of the user at that position. (iii) Our computa
tional results show that the proposed TAD model performs consistently well in mean delay-over-tolerance per
formance and also mitigate effectively the worst-case delay-over-tolerance and waiting time. The relative 
performance of the TAD model over existing approaches improves when the number of user categories (hetero
geneity) increases. We also evaluate the TAD model using a case study with real outpatient data, which justifies 
the effectiveness of the TAD model in a practical setting. We highlight an important managerial insight, that 
managers should not neglect the importance of categorization of users because it may lead to potential improve
ment in the system performance.

Finally, in the current paper, we focus only on how to develop the scheduling model for the service system 
given the acquired delay tolerance information of users, and an implicit assumption for our focal setting is that 
the delay tolerance is estimated using the group-level information (e.g., the patient classification system in the 
hospitals). Nevertheless, estimating the delay tolerance using only the group-level information may conflict with 
the user’s individual intention and characteristics in different circumstances that are valuable for the scheduling. 

Table 13. Comparison of TAD, DUML, and ED Models in Mean and Worst-Case Performance and Computational Perfor
mance for Cases B1, B2, and B3

(rI , rII , rIII) Model

Mean performance Worst-case performance

TimePm Em Sm Wm Pw Ew Sw Ww

Case B1 TAD 17.60% 0.645 1.568 5.381 37.70% 2.008 3.566 11.850 42.3 s
DUML 36.20% 1.410 2.530 7.272 37.50% 1.870 3.530 12.751 2,779.1 s

ED 11.25% 1.170 0.260 3.891 100.00% 10.50 2.130 20.520 41.6 s
Case B2 TAD 3.98% 0.149 0.517 5.312 22.90% 1.081 2.553 10.680 43.1 s

DUML 16.30% 0.546 1.450 7.580 21.50% 1.020 2.520 12.503 2,945.2 s
ED 11.10% 0.830 0.230 3.891 100.00% 7.500 2.120 20.520 42.2 s

Case B3 TAD 0.70% 0.019 0.140 6.304 4.70% 0.140 0.260 11.420 42.1 s
DUML 0.71% 0.020 0.143 7.912 4.90% 0.140 0.730 12.684 3,233.1 s

ED 4.41% 0.110 0.210 3.891 37.30% 1.070 1.760 20.520 41.8 s

Figure 2. (Color online) DOT Distributions of Hospital Schedules and TAD Schedules in Case A1 (a) and Case B1(b) 

(a) Delay over tolerance of patients in case A1 (b) Delay over tolerance of patients in case B1
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This issue could be mitigated by utilizing more side information from the users’ features to characterize the 
users’ delay tolerance. In order to address the above issue, as for our future research, we can make the users’ 
delay tolerance and the associated scheduling in a data-driven fashion that adapts to the side information. This 
also leads to several modeling challenges. For instance, how to model the data-driven scheduling problem with 
feature-based delay tolerance in a tractable and incentive-compatible fashion is practice relevant—that is also 
tough—by noting that some of the side information on the users’ feedback of their expected delay time could 
contain misreporting. On the one hand, our proposed framework could be extended to incorporate prescriptive 
approaches with statistical and machine-learning models (Bertsimas and Kallus 2020, Bertsimas and Koduri 
2022, Hu et al. 2022) for more accurately characterizing the service time uncertainty. These interesting and impor
tant topics will be discussed in our forthcoming studies.

Endnotes
1 The characteristics of patients’ delay tolerance can be studied based on the information acquired according to patient classifications, for 
example, the medical department, symptoms, chronic disease history, gender, and age (Moschis et al. 2003, Hill and Joonas 2005). Also, in 
emergency medicine in Canada, the Canadian Triage and Acuity Scale (Bullard et al. 2008) has classified patients into five priority classes, 
and each class associates with an access time threshold standard.
2 The tractability here is in the sense that all the binary variables in the TAD models are merely the sequencing decisions that are present in 
the original (deterministic) appointment scheduling problem, and when binary sequence variables are fixed, the resulting TAD appointment 
models are polynomial-time solvable.
3 The certainty equivalent—as it will imply in the forthcoming discussions—has several appealing properties, which is also closely related to 
the coherent risk measures (Ben-Tal and Teboulle 2007, Drapeau and Kupper 2013, Vinel and Krokhmal 2017).
4 This can be seen if we normalize the uncertain delays w̃ to ṽ :� w̃ � τ (i.e., delay-tolerance excesses) and tolerance τ to zero accordingly; the 
monotonicity, convexity, and positive homogeneity of the TAD index then coincide with those of the coherent risk measures, with respect to ṽ.
5 The more general r-Wasserstein distance (r ≥ 1) can also be defined by setting the cost function as ‖ · ‖rp. In this paper, we follow Esfahani 
and Kuhn (2018) to focus on the 1-Wasserstein distance to construct the ambiguity set.
6 The DUML model with the lexicographic minimization procedure solves a sequence of optimization problems and takes care every user’s 
delay. It should be noted that because the DUM is quasi-convex, each optimization problem is therefore solved with binary search in the 
DUML model.

References
Ahmadi-Javid A, Jalali Z, Klassen KJ (2017) Outpatient appointment systems in healthcare: A review of optimization studies. European J. Oper. 

Res. 258(1):3–4.
Artzner P, Delbaen F, Eber J, Heath D (1999) Coherent measures of risk. Math. Finance 9(3):203–228.
Bai M, Storer RH, Tonkay GL (2022) Surgery sequencing coordination with recovery resource constraints. INFORMS J. Comput. 

34(2):1207–1223.
Ben-Tal A, Teboulle M (2007) An old–new concept of convex risk measures: The optimized certainty equivalent. Math. Finance 17(3):449–476.
Benjaafar S, Chen D, Wang R, Yan Z (2023) Appointment scheduling under a service-level constraint. Manufacturing Service Oper. Management 

25(1):70–87.
Bertsimas D, Kallus N (2020) From predictive to prescriptive analytics. Management Sci. 66(3):1025–1044.
Bertsimas D, Koduri N (2022) Data-driven optimization: A reproducing kernel Hilbert space approach. Oper. Res. 70(1):454–471.
Bertsimas D, Dunn J, Pawlowski C, Zhuo YD (2019) Robust classification. INFORMS J. Optimization 1(1):2–34.
Bleustein C, Rothschild DB, Valen A, Valaitis E, Schweitzer L, Jones R (2014) Wait times, patient satisfaction scores, and the perception of 

care. Amer. J. Management Care 20(5):393–400.
Bullard MJ, Unger B, Spence J, Grafstein E, CTAS National Working Group (2008) Revisions to the Canadian emergency department triage 

and acuity scale (CTAS) adult guidelines. CJEM 10(2):136–142.
Cayirli T, Veral E (2003) Outpatient scheduling in healthcare: A review of literature. Production Oper. Management 12(4):519–549.
Cayirli T, Veral E, Rosen H (2008) Assessment of patient classification in appointment system design. Production Oper. Management 

17(3):338–353.
Chan TC, Killeen JP, Kelly D, Guss DA (2005) Impact of rapid entry and accelerated care at triage on reducing emergency department patient 

wait times, lengths of stay, and rate of left without being seen. Ann. Emerg. Med. 46(6):491–497.
Chen RR, Robinson LW (2014) Sequencing and scheduling appointments with potential call-in patients. Production Oper. Management 

23(9):1522–1538.
Delage E, Ye Y (2010) Distributionally robust optimization under moment uncertainty with application to data-driven problems. Oper. Res. 

58(3):595–612.
Denton B, Viapiano J, Vogl A (2007) Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Management 

Sci. 10(1):13–24.
Drapeau S, Kupper M (2013) Risk preferences and their robust representation. Math. Oper. Res. 38(1):28–62.
Erdogan SA, Denton B (2013) Dynamic appointment scheduling of a stochastic server with uncertain demand. INFORMS J. Comput. 

25(1):116–132.
Esfahani PM, Kuhn D (2018) Data-driven distributional robust optimization using the Wasserstein metric: Performance guarantees and tracta

ble reformulations. Math. Program 171(1–2):115–166.
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