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A B S T R A C T   

Prior studies on learning from failure primarily focus on how individuals learn from failure feedback given by 
other individuals. It is unclear whether and how the advent of machine feedback may influence individuals’ 
learning from failures. We suggest that failure feedback provided by machines facilitates learning in two ways. 
First, it focuses individuals’ attention on their failures, leading them to learn from these failures. Second, it serves 
as a catalyzer, motivating individuals to learn more from failure feedback given to them by other individuals as 
well. In addition, this catalyzing effect is stronger if the failure feedback from machines and by other individuals 
pertain to related tasks. Using a dataset of 1.5 million observations from an online programming contest com-
munity, we find support for our predictions. We contribute to the learning literature by demonstrating both the 
direct effect and the catalyzing effect of machine failure feedback on individuals’ learning.   

1. Introduction 

Learning is a process in which knowledge is created through the 
transformation of prior experience (Kim, 1998), potentially translating 
this experience into superior performance (Kolb, 1984). A key dimen-
sion of prior experience is whether its outcome was a success or a failure 
(KC et al., 2013). Because failures provide valuable learning opportu-
nities for individuals to adjust their practices, learning from failure is 
critical to improve performance (Sitkin, 1992). Failures can be 
communicated to an individual through feedback given by different 
sources (Ilgen & Davis, 2000; Jordan & Audia, 2012), such as a super-
visor (Fedor et al., 2001) or a peer (Ashford & Tsui, 1991). 

The literature on learning from failure focuses primarily on how 
humans learn from failure feedback given by other humans (see a review 
by Dahlin et al., 2018). However, in many contexts, it is becoming 
increasingly common for individuals to receive failure feedback given by 
machines as well as by humans (Rahwan et al., 2020). For example, 
coders who work in companies receive feedback about coding errors 
from their supervisors or peers, as well as from machines (e.g., Microsoft 
Visual C++). Considering a different setting, Luo et al. (2021) note that, 
in addition to human coaches, organizations are now using artificial 
intelligence coaches to provide feedback to their sales agents and to 

foster learning. Despite its increasing prevalence, we have limited un-
derstanding about how machine feedback influences individuals’ 
learning, including how machine feedback and human feedback might 
interact to affect individuals’ learning. These are important issues, with 
implications for whether and how organizations should implement 
machines as a feedback source. 

Building on the literature on learning from failure, we propose that 
machine failure feedback has both a direct effect and a catalyzing effect 
on individuals’ learning from failure. The direct effect reflects the idea 
that machine failure feedback draws individuals’ attention to their 
failures, stimulating them to learn from these failures. The catalyzing 
effect reflects the idea that machine failure feedback also increases in-
dividuals’ awareness of those failures that are identified by human 
failure feedback, which then motivates these individuals to deploy more 
resources to learn from human failure feedback as well. In addition, we 
expect this catalyzing effect to be stronger if the failure feedback from 
machines and by other individuals pertain to related tasks. We test our 
predictions using data from the activities of 93,145 contestants in an 
online programming contest community, yielding about 1.5 million 
observations. This setting is well suited to test our hypotheses because 
contestants can receive failure feedback from humans, who are members 
in the community (whom we refer to as “peers” when discussing our 
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setting), as well as from machines. In addition, in this setting learning 
outcomes can be measured precisely and objectively. Our analyses of 
this large dataset provide support for our hypotheses. Our study enriches 
the learning literature by demonstrating that machine failure feedback 
plays a key and thus far understudied role on individual learning, and 
also contributes to the literature on human–machine interaction by 
showing that machines can significantly impact the dynamics of 
learning between individuals. 

2. Theory and hypotheses 

Failure is performance that falls short of a desired outcome (Cannon 
& Edmondson, 2001). For example, an employee’s creative idea might 
be rejected by an organization’s evaluation committee (Wilhelm et al., 
2019), the cardiac procedure performed by a surgeon might be unsuc-
cessful (KC et al., 2013), a project leader might not find the expected 
outcome in their project (Burgers, Van Den Bosch, & Volberda, 2008; 
Shepherd et al., 2011), researchers might revisit interventions in orga-
nizations that ended up being unsuccessful (Hodgkinson & Wright, 
2002), or an entrepreneur’s new venture might not survive (Ucbasaran 
et al., 2013; Boso et al., 2019; Amankwah-Amoah, Adomako, & Berko, 
2022). Learning from failure is a process by which individuals reflect on 
what might have gone wrong in their practices and develop solutions to 
avoid similar mistakes in the future, ultimately improving performance 
(Dahlin et al., 2018; Zellmer-Bruhn & Gibson, 2006). 

2.1. Learning from failure as a consequence of peer feedback 

One key mechanism that connects failure and subsequent learning is 
motivation to learn (Dahlin et al., 2018). Motivation to learn from 
failure refers to the resources that are expended by individuals in ac-
tivities that relate to learning from failure. These resources can include 
time, attention, and effort. Learning from failure requires individuals to 
allocate resources to identify and analyze the causes of their failures, 
and search for and implement solutions to improve performance and 
prevent similar failures from recurring (Ellis et al., 2014). Even though 
failure feedback does offer an opportunity for correcting mistakes and 
learning new ways of doing things, not taking any actions following 
failure feedback would keep an individual from learning (Eskreis-Win-
kler & Fishbach, 2019). Hence, the performance-enhancing effect of 
failure feedback depends on an individual’s willingness to expend time, 
attention, and effort to learn from the feedback received. 

Prior studies have examined how people learn from their failures 
(Dahlin et al., 2018). In many cases, failure is revealed to individuals by 
feedback from external parties, i.e., by sources other than the in-
dividuals themselves (Ilgen & Davis, 2000). Peers are one external 
source of failure feedback, insofar as failure feedback from them can 
make failures visible to a focal actor and trigger learning (Baum & 
Dahlin, 2007). This visibility raises the focal individual’s awareness that 
some of his or her practices might be problematic (Kim & Miner, 2007). 
As a result, this individual will be motivated to learn from these failures, 
for example by taking actions to scrutinize the failure information, 
figuring out the cause of failures, and remedying problematic practices. 
This process results in learning from failures, i.e., it generates subse-
quent performance improvement by reducing the chances that those 
mistakes happen again. 

Research in different settings has documented that individuals learn 
from their failures when those failures are brought to their attention by 
peers. For example, in a field experiment, Ellis and Davidi (2005) 
showed that the performance of soldiers improved when they were 
debriefed on their failures after each training day. Similarly, Ellis, 
Mendel, and Nir (2006) reported that students’ performance improved 
after they experienced failed events (i.e., they did not win a prize in the 
game), which were pointed out to them in a laboratory study. 

In line with the findings in this body of literature, our baseline pre-
diction is that peer failure feedback promotes learning, which leads to 

performance improvement. 

Baseline hypothesis: An individual learns from prior peer failure feed-
back, such that there is a positive relationship between the amount of peer 
failure feedback that the individual previously received and the in-
dividual’s current performance. 

2.2. The role of machines in learning from failure 

Research has shown that machine feedback can influence human-
–human interactions. For example, in a set of experiments, Shirado and 
Christakis (2017) showed that machines can improve coordination be-
tween humans. In another experimental study, Jung, Martelaro, and 
Hinds (2015) found that machines can enhance team functioning by 
regulating core team processes, such as conflict. In a related study, 
Traeger and colleagues (2020) demonstrated that machines can posi-
tively shape human conversational dynamics in human-robot teams. 

Machines are increasingly being used as a source of feedback (e.g., 
Merle, St-Onge, & Sénécal, 2022; Van der Kleij, Feskens, & Eggen, 
2015). As a result, humans can receive negative feedback provided by 
machines. Such negative feedback can shape human behaviors. For 
example, two studies found that negative feedback from machines 
promotes people’s energy conservation behavior (Midden & Ham, 2009; 
Ham & Midden, 2014). The authors suggest that machines can exert a 
“social influence” on humans, which in turn changes human behavior. In 
other words, machines can serve as sources of feedback, which then 
leads to behavioral change in humans. Just as humans can provide both 
positive and negative feedback to other individuals to affect their 
learning (e.g., Arbel, Murphy, & Donchin, 2014), machines can provide 
positive as well as negative feedback to humans in their feedback- 
providing role. Humans tend to be selective and biased in how they 
learn from other humans (Tourish & Hargie, 2012), but machines have 
the potential to be a source that yields more objective learning. The 
research by Midden and Ham (2009) and Ham and Midden (2014) found 
that negative feedback provided by machines is more effective in 
shaping humans’ behaviors, as compared to positive feedback given by 
machines. We build on insights from this stream of literature to propose 
that machine failure feedback has both a direct effect and a catalyzing 
effect on individuals’ learning from failures, as we detail below in turn. 

First, machine failure feedback can directly impact individuals’ 
learning from failures. The mechanism here is similar to how peer failure 
feedback enhances individuals’ learning from failures, as we outlined in 
developing the baseline hypothesis. Machine failure feedback raises 
individuals’ attention to their failures, increasing their awareness that 
there might be errors in their existing practices. As a result, individuals 
will be motivated to expend time, attention, and effort to identify the 
cause of these failures and search for and implement solutions to adjust 
their practices. These arguments lead us to hypothesize that: 

Hypothesis 1. An individual learns from prior machine failure feedback, 
such that there is a positive relationship between the amount of machine 
failure feedback that the individual previously received and that individual’s 
current performance. 

In addition to its direct effect on individuals’ learning, we argue that 
machine failure feedback also has a catalyzing effect, by which it can 
enhance how much individuals learn from failure feedback provided by 
peers. KC and colleagues (2013) argued that other people’s failures 
capture the attention of a focal individual and elicit a motivational 
response for this individual to learn from their own failures, so that they 
can evade similar failures and adverse consequences. Complementing 
this argument, we suggest that machine failure feedback ends up being 
motivational for individuals to learn from failure feedback that is given 
by peers as well. When individuals receive more machine failure feed-
back, we expect that they would be more likely to be aware of the po-
tential to learn from peer failure feedback as well. Accordingly, when 
they have received more machine failure feedback, individuals will be 
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more motivated to allocate resources to learn from peer failure feedback. 
In contrast, a lower level of machine failure feedback might lead in-
dividuals to believe that there are not many genuinely problematic is-
sues with their routines, and that there is no urgency to take remedial 
action. As a result, lower level of machine failure feedback – compared 
to higher level of machine failure feedback – leaves individuals less 
likely to be stimulated to learn from peer failure feedback. For example, 
coders who work in organizations can receive feedback about coding 
errors from their supervisors or peers, as well as from machines. In this 
scenario, our suggestion is that more machine failure feedback would 
also raise individuals’ attention to failure feedback from humans and 
highlight the potential to learn from that type of failure feedback as well. 

In summary, we argue that machine failure feedback raises in-
dividuals’ awareness of the potential to learn in general. This motivates 
individuals to allocate resources to learn more from peer failure feed-
back as well. Accordingly, our expectation is that machine failure 
feedback positively moderates the relationship between peer failure 
feedback and individual performance, such that this relationship is more 
positive if the individual received more machine failure feedback, and 
less positive if the individual received less machine failure feedback. 

Hypothesis 2. Prior machine failure feedback amplifies the positive rela-
tionship between prior peer failure feedback and current performance. 

To the extent that individuals can receive failure feedback on 
different types of tasks, the relatedness between machine failure feed-
back and peer failure feedback may vary, in terms of the tasks on which 
that feedback is provided (Schilling et al., 2003). We propose that how 
much machine failure feedback improves learning from peer failure 
feedback, i.e., the catalyzing effect in H2, depends on the relatedness of 
the tasks on which feedback is given. Related stimuli can more easily 
activate people’s awareness to the learning process (Müller et al., 2016; 
Wang & Nickerson, 2019), In contrast, people are less responsive to 
unrelated stimuli (Hodgkinson & Wright, 2002). In line with this 
reasoning, we suggest that when machine failure feedback is received on 
tasks that are related to tasks on which peer failure feedback is received, 
machine failure feedback will more strongly amplify the relationship 
between peer failure feedback and learning. Machine failure feedback 
that is more related to peer failure feedback, in terms of the tasks on 
which that feedback is given, is more motivational. As a result, it drives 
individuals to allocate more time, attention, and effort to scrutinize the 
peer feedback and learn from it. In comparison, a lower level of relat-
edness between machine failure feedback and peer failure feedback does 
not raise the awareness of individuals to the potential to learn from peer 
failure feedback to the same degree. Therefore, we predict that: 

Hypothesis 3. The moderating effect of prior machine failure feedback on 
the relationship between prior peer failure feedback and current performance 
is stronger if prior machine failure feedback is more related to prior peer 
failure feedback. 

3. Data and methods 

3.1. Setting 

We collected data from an online community that hosts program-
ming contests. These contests offer opportunities for members of this 
community, which range from students to professionals, to practice and 
improve their coding skills. Our data covers the period from February 
2010, when this online community was launched, to October 2018. 
There are 988 contests in this time period. On average, this online 
community organizes a contest every four days. About 1,775 contestants 
are registered in each contest. Contests last for 4.8 h on average. Our 
sample has 1,474,753 contest-participant observations, which come 
from the activities of 93,145 contestants. 

Machine failure feedback. Contestants typically have five to six pro-
gramming problems to solve in a contest. A problem solution is a piece of 

code written in a programming language (e.g., C, C++, Java, or Python). 
Once the problem solution is submitted, it is automatically and imme-
diately evaluated by the system (i.e., an automated machine). This 
process is referred to as a “machine test” in this community. After this 
test is completed, the machine provides two types of feedback. If the 
solution solves the problem, the machine returns feedback indicating 
that the solution is a success. If the solution does not solve the problem, 
the machine provides feedback suggesting that the solution contains 
errors. However, the machine does not specify what these errors are (the 
feedback is simply that the code has errors, in that it does not solve the 
problem). Hence the contestants need to inspect their code and figure 
out why their solution failed, and correct the errors. In addition to such 
feedback during contests, this community also allows contestants to 
practice (in non-contest settings) using problems that were used in 
earlier contests. During such practice, contestants can again receive 
machine feedback. In other words, individuals in this community can 
receive machine feedback in contests, as well as during practice sessions, 
which take place outside of contests. 

Peer failure feedback. In addition to machine failure feedback, con-
testants can also receive failure feedback from other contestants (i.e., 
peers) during contests. This is possible because this community allows 
contestants to view and identify errors in others’ codes during the 
contest. Contestants can view another person’s code for each problem, 
but only if they submit and “lock” their own solution first, so that they 
cannot change it anymore for that problem. If a contestant finds errors in 
the code of another person, then the contestant can suggest a test (i.e., a 
set of input data) on which the contestant expects that the solution by 
that other person will fail. This procedure is called “hacking” another 
contestant’s solution. If the hacking is successful, the person receives a 
piece of feedback suggesting that his or her solution failed. Similar to the 
failure feedback given by machine, the failure feedback provided by 
peers does not specify what the errors are (as in the machine case, the 
feedback is simply that the code has errors, in that it does not solve the 
problem). Hence the feedback receiver needs to inspect their code and 
figure out why their solution failed, and correct the errors. 

Calculation of performance. Contestants’ performance is calculated 
when a contest is over. Performance is a sum of two parts. The first part 
is the points a contestant earns by solving problems during a contest, 
which are calculated as follows: Each minute taken by the contestant to 
solve a problem decreases the problem’s value by X/250 points per 
minute (where X is a problem’s initial, or full, points). The number of 
points a contestant gets for solving a problem equals the current value of 
the problem (in points) minus penalties. The penalties are determined 
based on the number of failed solutions by the contestant that have been 
submitted for this problem, multiplied by 50 points. In order to maxi-
mize the points that they earn for a problem, a contestant should submit 
a solution as soon as possible, but also make sure that the solution will 
pass the tests, i.e., be a success. For example, if a problem has initial 
value of 500 points, and a contestant solves the problem in the third 
trial, after two minutes, then the points they will earn for this problem 
are 500 – (500/250) * 2 – 2 * 50 = 396. 

The second part is the points a contestant earns in a contest as a result 
of successful and unsuccessful hacks. A contestant earns 100 points for a 
successful hack (of another contestant’s submitted solution) and loses 50 
points for an unsuccessful hack. 

Based on the sum of these two parts, a total sum of points is calcu-
lated for each contestant. The contestants are ranked in a leaderboard, 
which indicates the final ranking in that contest. In cases when multiple 
contestants obtain the same points, their ranks are the same. An illus-
tration of the process of a contest is shown in Fig. 1. 

3.2. Dependent variable 

Performance. We measure Performance by a contestant’s rank in a 
given contest, which reflects a contestant’s relative performance 
compared to others in this contest. Rank is a frequently used measure to 
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assess individuals’ relative performance (e.g., Bhattacharjee et al., 2007; 
Groysberg et al., 2008; Kuhnen & Tymula, 2012). As we described 
above, contestants are ranked based on the total points they obtain in a 
contest, which is the sum of points earned from solving problems and 
from hacking. For example, if a contestant solved three problems in a 
contest and obtained 236, 358, and 532 for each problem, and also made 
two successful hacks and one unsuccessful hack, the final points are 
1,276 (236 + 358 + 532 + 100*2 – 50*1). 

The highest rank in a contest is 1 and the lowest rank is equal to the 
number of contestants in that contest. As the number of contestants 
varies across contests, we normalize the rank to 0–1 range using a 
min–max normalization. The smaller the normalized rank, the better the 
performance. Then, for easier interpretation, we reverse code this 
normalized rank by subtracting it from 1 and multiplying it by 100. As a 
result, performance ranges from 0 to 100, where the larger the number, 
the better the performance. The way we normalize rank and calculate 
performance is shown in formula (1) below. 

Performance =

(

1 −
rank − min(rank)

max(rank) − min(rank)

)

*100, (1)  

where rank is focal contestant’s rank in a contest. min(rank) and max 
(rank) are the minimum and maximum rank, respectively, in a contest. 
In our setting, min(rank) is 1 and max(rank) is the total number of 
contestants in a contest. In our additional analyses, we also consider a 
different measure of performance, which we discuss after presenting the 
main results. 

3.3. Independent variables 

Prior peer failure feedback. Hacking is a process through which a 
contestant identifies failures in other contestants’ code and makes the 
presence of failures in their code known to them. Based on this, we 
consider a hack to constitute failure feedback provided by a human peer 
to the feedback receiver. Accordingly, to assess our baseline hypothesis, 
we count the number of times that a contestant was hacked by other 
contestants in prior contests (excluding the current contest) to measure 
Prior peer failure feedback. 

Prior machine failure feedback. Whenever a contestant’s submitted 

solution to a problem does not pass the system test, we take this to be an 
instance of a contestant receiving failure feedback from a machine. In 
line with this, to test Hypothesis 1, we measure Prior machine failure 
feedback by counting the number of times that a focal contestant’s so-
lutions failed machine tests in previous contests (excluding the current 
contest). 

Because the distribution of these two independent variables is 
skewed, we log transform them. We test the moderation effect postu-
lated in Hypothesis 2 by using an interaction variable between Prior peer 
failure feedback and Prior machine failure feedback. 

3.4. Moderating variables 

The tasks on which participants receive machine failure feedback in 
this setting can be more or less related to tasks on which participants 
also receive peer failure feedback. To test Hypothesis 3, we disaggregate 
Prior machine failure feedback into two categories, based on the tasks on 
which that feedback is provided. One category consists of machine 
failure feedback received for tasks that are more related to tasks on 
which Prior peer failure feedback is received. The other category consists 
of machine failure feedback received for tasks that are less related to 
those tasks on which Prior peer failure feedback is provided. We use two 
ways to perform this disaggregation. 

The first way we disaggregate tasks into those that are more or less 
related to each other leverages the fact that this online community has 
two types of problems. One type is contest problems, which are origi-
nally developed by this onine community and used in contests that are 
hosted by this online community. The other type is gym problems, which 
are collected by this online community from external sources (e.g., 
Facebook Hacker Cup) and provide practice opportunities for members 
in this community. Contestants can receive failure feedback from peers 
(i.e., hacks) only in contest problems, but not in gym problems. There-
fore, we consider failure feedback given by a machine in contest prob-
lems to be more related to failure feedback given by peers, as compared 
to failure feedback given by a machine in gym problems. Accordingly, to 
test Hypothesis 3, we disaggregate Prior machine failure feedback into 
Prior machine failure feedback in contest problems (the number of failed 
solutions a contestant had in previous contest problems) and Prior ma-
chine failure feedback in gym problems (the number of failed solutions a 

Fig. 1. An illustration of the process of a contest. Note: A human icon on the left of the box indicates that the step is completed by a contestant. A robot icon on the 
left of the box indicates that the step is performed by the system. 
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contestant had in previous gym problems). 
The second way we disaggregate Prior machine failure feedback le-

verages the fact that problems A and B in a contest are the easier 
problems, compared to the rest (i.e., problems C, D, E, …). Because a 
clear majority (72.7 %) of failure feedback given by peers (i.e., hacks) 
occurs in problems A and B, we suggest that failure feedback given by a 
machine in problems A and B would be more related (in terms of the 
tasks on which feedback is provided) to failure feedback given by peers. 
Based on this argument, we also test Hypothesis 3 by disaggregating 
Prior machine failure feedback into Prior machine failure feedback in 
problems A and B (the number of failed solutions of a contestant had in 
problems A and B) and Prior machine failure feedback in the rest of the 
problems (the number of failed solutions of a contestant had in the rest of 
the problems). 

All of the moderating variables above are log transformed in light of 
their skewed distribution. 

3.5. Control variables 

Past performance. We measure a contestant’s past performance by 
using the average performance of this contestant in prior contests. We 
control for past performance to account for contestants’ underlying 
skills or ability. If a contestant performed well in past contests, she is 
likely to continue to perform well. 

Status. We measure status using a contestant’s Elo rating at the time 
that they join the contest. A person’s status indicates their hierarchical 
position in a social system (e.g., Piazza & Castellucci, 2014). Elo ratings 
(which are also used in chess, tennis, and some video games) indicate a 
contestant’s relative standing compared to other contestants in a hier-
archy. Status confers multiple advantages that might positively affect 
performance. The highest Elo rating in our sample is 3,739. We divided 
this measure by 100 to facilitate the reporting of the coefficients and 
standard errors. 

Knowledge specialization. Every problem in a contest has a list of tags 
(e.g., dynamic programming, data structure) that specify the knowledge 
required to solve it. We use these tags to measure a contestant’s 
Knowledge specialization with respect to problems asked in the current 
contest. Specifically, we first aggregate the tags for all the problems 
solved by the contestant in past contests, and then sum the number of 
times each tag in the current contest appears in this aggregated tag list. 
Knowledge specialization is measured as the number of times that tags (for 
all the problems in the current contest) appear in that aggregated tag 
list, normalized by the total length of the aggregated list. For example, if 
the aggregated list of tags for a contestant is [a, a, a, b, b, c, d, e, f, g, h, h] 
and the tags in focal contest are [a, b, c, d, e], then the contestant’s 
Knowledge specialization is (3 + 2 + 1 + 1 + 1) / 12 = 0.667. 

Prior unsuccessful hacks from peers. As mentioned earlier, to assess the 
baseline hypothesis, we use the number of times that a contestant was 
hacked – successfully – by peers in prior contests. However, because a 
hack attempt can also be unsuccessful, we control for Prior unsuccessful 
hacks from peers, which is the number of times that a contestant was 
unsuccessfully hacked by peers in prior contests. An unsuccessful hack 
attempt occurs when a contestant believes they identified an error in the 
code of another contestant, but the code is in fact able to process the 
suggested input as expected, without an error. We control for this var-
iable because if a contestant was unsuccessfully hacked by peers in prior 
contests, she might become confident about her solutions, which can 
positively affect her performance in current contest, or she might 
become complacent, which can negatively affect performance in current 
contest. Given its skewness, we used a logarithmic transformation of this 
measure. 

Experience of hacking peers in prior contests. Similar to how a contes-
tant can be hacked by peers, she can also hack peers, and these hacks 
may be successful or unsuccessful. We use two variables to control for 
the focal contestant’s experience of hacking peers in prior contests. The 
first is Prior successful hacks to peers, which is the total number of times 

that a contestant successfully hacked peers in prior contests. The second, 
Prior unsuccessful hacks to peers, is the total number of times that a 
contestant unsuccessfully hacked peers in prior contests. We control for 
Prior successful hacks to peers because successful hacks to peers can in-
crease the contestant’s confidence, which can positively affect her per-
formance in a focal contest, or make her complacent, which can 
negatively affect performance. We control for Prior unsuccessful hacks to 
peers because these can discourage the contestant and dent her confi-
dence, which could negatively affect performance in current contest, or 
the contestant might learn from this experience, therefore increasing 
performance in the current contest. We use a log transformation, in light 
of the skewed distribution of these two measures. 

Influence of hacks in the focal contest. During the current contest (i.e., 
the one for which we assess performance), a contestant can hack others 
or be hacked by others. We use four variables to control for the influence 
of such hacking events on a contestant’s performance in a focal contest. 
Number of successful hacks sent by focal contestant in focal contest is the 
number of times the contestant hacked others successfully in the current 
contest. We control for this because a contestant earns 100 points for a 
successful hack, which positively contributes to performance. Number of 
unsuccessful hacks sent by focal contestant in focal contest is the number of 
times the contestant was unsuccessful in hacking others in the current 
contest. We control for this because contestants lose 50 points for an 
unsuccessful hack, negatively affecting the total points they gather in a 
contest and their ranking. Number of successful hacks received by a 
contestant in focal contest is the number of times the contestant was 
hacked successfully by others in the current contest. If a contestant’s 
solution is successfully hacked by others, this solution is marked as 
failed, which reduces performance. Finally, Number of unsuccessful hacks 
received by a contestant in focal contest, is the number of times the 
contestant was hacked unsuccessfully by others in the current contest. If 
a contestant’s solution is hacked unsuccessfully by others, she may 
become more confident, which can positively influence performance. As 
with other similar measures, we logarithmically transformed these four 
measures. 

3.6. Analyses 

We used ordinary least squares (OLS) regressions that consistently 
include fixed effects for contests, contestants, and rooms. We used fixed- 
effects estimations based on the results of a Hausman test (p < 0.001). 
Because of the multiple fixed-effects that we include in all of our models, 
contest characteristics (e.g., number of participants in the contest, 
duration of contest), non-time-varying contestant attributes (e.g., 
ethnicity, sex), and room characteristics (e.g., number of contestants in 
the room) are not separately estimated, since they do not vary within the 
fixed-effects control variables in our observation period. We use robust 
standard errors that are clustered at the contest, contestant, and room 
level, to take into account the possible non-independence of observa-
tions across the same contest, contestant, and room. 

3.7. Model specification 

In our baseline hypothesis, we proposed that prior peer failure 
feedback is positively related to individuals’ current performance, and 
then proposed in Hypothesis 1 that prior machine failure feedback is 
also positively related to individuals’ current performance. The model 
shown in equation (1) is used to test the baseline hypothesis and Hy-
pothesis 1: 

Performanceic = β0 + β1PeerFeedbacki + β2MachineFeedbacki +Controlsi

+ δc + δi + δr + εi

(1)  

where Performanceic refers to contestant i’s performance in contest c, 
PeerFeedbacki refers to the amount of peer failure feedback that 
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contestant i received before contest c, MachineFeedbacki refers to the 
amount of machine failure feedback that contestant i received before 
contest c, δc, δi, and δr refer to contest, contestant, and room fixed ef-
fects, and εi refers to random error term. If β1 and β2 are positive and 
significant, then the baseline hypothesis and Hypothesis 1 are 
supported. 

We proposed in Hypothesis 2 that prior machine failure feedback 
amplifies the positive relationship between prior peer failure feedback 
and current performance. The model shown in equation (2) is used to 
test Hypothesis 2: 

Performanceic = β0 + β1PeerFeedbacki + β2MachineFeedbacki

+ β3MachineFeedbacki*PeerFeedbacki +Controlsi

+ δc + δi + δr + εi

(2)  

where Performanceic refers to contestant i’s performance in contest c, 
PeerFeedbacki refers to the amount of peer failure feedback that 
contestant i received before contest c, MachineFeedbacki refers to the 
amount of machine failure feedback that contestant i received before 
contest c, MachineFeedbacki*PeerFeedbacki refers to the interaction term 
between prior machine failure feedback and prior peer failure feedback, 
δc, δi, and δr refer to contest, contestant, and room fixed effects, and εi 
refers to random error term. Hypothesis 2 is supported if β3 is positive 
and significant. 

We proposed in Hypothesis 3 that the moderating effect of prior 
machine failure feedback on the relationship between prior peer failure 
feedback and current performance is stronger if prior machine failure 
feedback is more related to prior peer failure feedback. The model 
shown in equation (3) is used to test Hypothesis 3: 

Performanceic = β0 + β1PeerFeedbacki + β2MachineFeedbackMoreRelatedi

+ β3MachineFeedbackLessRelatedi

+ β4MachineFeedbackMoreRelatedi*PeerFeedbacki

+ β5MachineFeedbackLessRelatedi*PeerFeedbacki

+Controlsi

+ δc + δi + δr + εi

(3)  

where Performanceic refers to contestant i’s performance in contest c, 
PeerFeedbacki refers to the amount of peer failure feedback that contestant 
i received before contest c, MachineFeedbackMoreRelatedi refers to ma-
chine failure feedback that is more related to peer failure feedback, 
MachineFeedbackLessRelatedi refers to machine failure feedback that is less 
related to peer failure feedback, MachineFeedbackMoreRelatedi* 
PeerFeedbacki refers to the interaction term between prior machine failure 
feedback that is more related to peer failure feedback and prior peer 
failure feedback, MachineFeedbackLessRelatedi*PeerFeedbacki refers to the 
interaction terms between prior machine failure feedback that is less 
related to peer failure feedback and prior peer failure feedback, δc, δi, and 
δr refer to contest, contestant, and room fixed effects, and εi refers to 
random error term. Hypothesis 3 is supported if β4 has a stronger positive 
effect than β5. 

4. Results 

We present descriptive statistics and correlations in Table 1.1 
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1 The correlation table shows that Status and Past performance are correlated 
(r = 0.79), including both of these variables in our estimations may lead to 
concerns about collinearity. We conducted a robustness check by removing 
Status from our estimations and the hypotheses remain supported (p < 0.001 for 
H1, H2, H3). 
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4.1. Tests of baseline hypothesis and hypotheses 1 and 2 

To test the baseline hypothesis and Hypotheses 1 and 2, we use the 
regression results in Table 2. Model 1 includes all the control variables. 
We enter Prior peer failure feedback and Prior machine failure feedback 
separately in Models 2 and 3. Both variables have positive and signifi-
cant coefficients (β = 5.592, p < 0.001 for the former; β = 5.451, p <
0.001 for the latter). To test the baseline hypothesis and Hypothesis 1, 
we enter these two variables together in Model 4. The two variables 
remain positive and significant (β = 2.386, p < 0.001 for the former; β =
4.874, p < 0.001 for the latter), which is consistent with our baseline 
hypothesis and Hypothesis 1. An individual learns from Prior peer failure 

feedback and Prior machine failure feedback, such that Prior peer failure 
feedback and Prior machine failure feedback have a positive effect on the 
individual’s Performance in a current competition. In Model 5, we test 
Hypothesis 2 by adding the interaction variable between Prior peer 
failure feedback and Prior machine failure feedback. The coefficient of this 
interaction is positive and significant (β = 1.064, p < 0.001), suggesting 
that Prior machine failure feedback positively moderates the relationship 
between Prior peer failure feedback and Performance, supporting Hy-
pothesis 2. 

The plot of this interaction effect is shown in Fig. 2. The dashed line 
depicts the relationship between Prior peer failure feedback and Perfor-
mance when there is a high level of Prior machine failure feedback, and the 

Table 2 
OLS fixed-effects models predicting Performance.   

(1) (2) (3) (4) (5) 

Prior unsuccessful hacks from peers 5.224*** 2.768*** 2.293*** 1.556*** 1.166*** 
(0.084) (0.073) (0.068) (0.068) (0.068) 

Prior successful hacks to peers 0.688*** 0.607*** 0.794*** 0.748*** 0.473*** 
(0.085) (0.081) (0.078) (0.077) (0.077) 

Prior unsuccessful hacks to peers 1.525*** 0.737*** 0.699*** 0.450*** 0.139 
(0.090) (0.086) (0.083) (0.083) (0.083) 

Past performance 0.110*** 0.084*** 0.049*** 0.044*** 0.044*** 
(0.006) (0.005) (0.005) (0.005) (0.005) 

Status 0.468*** 0.540*** 0.702*** 0.708*** 0.537*** 
(0.049) (0.046) (0.046) (0.046) (0.046) 

Knowledge specialization − 3.643*** − 2.732*** 0.487 0.438 0.417 
(0.663) (0.641) (0.621) (0.618) (0.618) 

Number of successful hacks received by focal contestant in focal contest − 10.874*** − 9.699*** − 10.911*** − 10.405*** − 10.504*** 
(0.420) (0.419) (0.413) (0.416) (0.416) 

Number of unsuccessful hacks received by focal contestant in focal contest 5.048*** 4.393*** 4.248*** 4.053*** 3.932*** 
(0.212) (0.212) (0.210) (0.210) (0.210) 

Number of successful hacks sent by focal contestant in focal contest 8.461*** 8.404*** 8.318*** 8.309*** 8.260*** 
(0.235) (0.234) (0.231) (0.231) (0.231) 

Number of unsuccessful hacks sent by focal contestant in focal contest − 2.274*** − 2.440*** − 2.536*** − 2.579*** − 2.598*** 
(0.205) (0.203) (0.202) (0.202) (0.202) 

Prior failure feedback given by peers  5.592***  2.386*** − 3.075***  
(0.109)  (0.098) (0.256) 

Prior failure feedback given by machine   5.451*** 4.874*** 4.884***   
(0.073) (0.070) (0.071) 

Prior failure feedback given by machine * Prior failure feedback given by peers     1.064***     
(0.048) 

Contest fixed effects Included Included Included Included Included 
Contestant fixed effects Included Included Included Included Included 
Room fixed effects Included Included Included Included Included 
Constant 34.083*** 30.531*** 9.139*** 10.266*** 13.109***  

(0.752) (0.729) (0.786) (0.783) (0.804) 
N 1,474,753 1,474,753 1,474,753 1,474,753 1,474,753 
R2 0.608 0.612 0.617 0.617 0.618 

Robust standard errors are in parentheses. Two-tailed tests. *** p < 0.001. All models include fixed effects for contestant, contest, and room. 

Fig. 2. Plot of the interaction between Prior machine failure feedback and Prior peer failure feedback in Model 5 of Table 2.  
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solid line demonstrates the same relationship when there is a low level of 
Prior machine failure feedback. The dashed line has a positive slope, 
whereas the solid line is almost flat, which is consistent with Hypothesis 
2 that a higher level of prior machine failure feedback has a catalyzing 
effect, that is, it enables individuals to learn more from prior peer failure 
feedback. 

4.2. Tests of hypothesis 3 

The results in Tables 3 and 4 are used to test Hypothesis 3. In Table 3, 
we disaggregate the moderator Prior machine failure feedback into Prior 
machine failure feedback in contest problems and Prior machine failure 
feedback in gym problems. We enter the interaction variable between Prior 
peer failure feedback and Prior machine failure feedback in contest problems 
and the interaction variable between Prior peer failure feedback and Prior 

Table 3 
OLS fixed-effects models predicting Performance (moderator is decomposed into two parts).   

(1) (2) (3) (4) 

Past performance 0.045*** 0.043*** 0.045*** 0.042***  
(0.005) (0.005) (0.005) (0.005) 

Status 0.629*** 0.509*** 0.624*** 0.510***  
(0.045) (0.046) (0.045) (0.046) 

Knowledge specialization 0.432 0.443 0.434 0.437  
(0.620) (0.619) (0.620) (0.617) 

Prior unsuccessful hacks from peers 1.461*** 1.106*** 1.450*** 1.083***  
(0.067) (0.068) (0.067) (0.067) 

Prior successful hacks to peers 0.638*** 0.430*** 0.617*** 0.496***  
(0.077) (0.077) (0.076) (0.077) 

Prior unsuccessful hacks to peers 0.346*** 0.085 0.337*** 0.076  
(0.082) (0.083) (0.082) (0.083) 

Number of successful hacks received by focal contestant in focal contest − 10.425*** − 10.519*** − 10.423*** − 10.547***  
(0.416) (0.415) (0.416) (0.415) 

Number of unsuccessful hacks received by focal contestant in focal contest 4.021*** 3.916*** 4.017*** 3.915***  
(0.210) (0.210) (0.209) (0.210) 

Number of successful hacks sent by focal contestant in focal contest 8.281*** 8.249*** 8.278*** 8.262***  
(0.231) (0.231) (0.231) (0.231) 

Number of unsuccessful hacks sent by focal contestant in focal contest − 2.587*** − 2.605*** − 2.585*** − 2.620***  
(0.202) (0.202) (0.201) (0.202) 

Prior machine failure feedback in contest problems 4.714*** 4.818*** 4.750*** 4.646***  
(0.072) (0.072) (0.070) (0.070) 

Prior machine failure feedback in gym problems 1.045*** 0.855*** 0.947*** 1.344***  
(0.041) (0.041) (0.059) (0.060) 

Prior peer failure feedback 2.061*** − 3.090*** 2.002*** − 3.917***  
(0.097) (0.264) (0.106) (0.268) 

Prior machine failure feedback in contest problems * Prior peer failure feedback  1.006***  1.230***  
(0.050)  (0.054) 

Prior machine failure feedback in gym problems * Prior peer failure feedback   0.055 − 0.301***   
(0.031) (0.034) 

Contest fixed effects Included Included Included Included 
Contestant fixed effects Included Included Included Included 
Room fixed effects Included Included Included Included 
Constant 11.724*** 13.631*** 11.719*** 14.084***  

(0.786) (0.804) (0.786) (0.806) 
N 1,474,753 1,474,753 1,474,753 1,474,753 
R2 0.618 0.618 0.618 0.618 

Robust standard errors are in parentheses. Two-tailed tests. *** p < 0.001. All models include fixed effects for contestant, contest, and room. 

Table 4 
OLS fixed-effects models predicting Performance (moderator is decomposed into two parts).   

(1) (2) (3) (4) 

Past performance 0.025*** 0.022*** 0.029*** 0.026***  
(0.005) (0.005) (0.005) (0.005) 

Status 0.693*** 0.607*** 0.483*** 0.531***  
(0.045) (0.046) (0.045) (0.045) 

Knowledge specialization 0.710 0.667 0.692 0.674  
(0.606) (0.603) (0.606) (0.604) 

Prior unsuccessful hacks from peers 1.411*** 1.051*** 1.071*** 1.010***  
(0.067) (0.067) (0.067) (0.067) 

Prior successful hacks to peers 0.830*** 0.619*** 0.540*** 0.549***  
(0.076) (0.076) (0.075) (0.075) 

Prior unsuccessful hacks to peers 0.341*** 0.042 0.079 0.018  
(0.081) (0.082) (0.082) (0.082) 

Number of successful hacks received by focal contestant in focal contest − 10.508*** − 10.625*** − 10.565*** − 10.611***  
(0.414) (0.413) (0.414) (0.413) 

Number of unsuccessful hacks received by focal contestant in focal contest 4.008*** 3.899*** 3.908*** 3.888***  
(0.210) (0.209) (0.209) (0.209) 

Number of successful hacks sent by focal contestant in focal contest 8.308*** 8.269*** 8.261*** 8.260*** 

(continued on next page) 
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machine failure feedback in gym problems in Models 2 and 3. Whereas the 
coefficient of the former interaction variable is positive and significant 
(β = 1.006, p < 0.001), the coefficient of the latter interaction variable is 
only marginally significant (β = 0.055, p = 0.072). We include the two 
interaction variables together in Model 4. The coefficient of the former 
remains positive and significant (β = 1.230, p < 0.001), but the coeffi-
cient of the latter is now negative and significant (β = -0.301, p <
0.001).2 The results in Model 4 suggest that while Prior machine failure 
feedback in contest problems enhances the relationship between Prior peer 
failure feedback and Performance, Prior machine failure feedback in gym 
problems does not have such an effect. A Wald test also indicates that 
these two interactions are significantly different from each other (F =
418.4, p < 0.001). These results support Hypothesis 3. Machine failure 
feedback that is more related to peer failure feedback has a stronger 
moderating effect on the relationship between peer feedback and 
learning outcome, such that it enhances the catalyzing effect of prior 

machine failure feedback. 
The implications of the two interaction variables in Model 4 of 

Table 3 are plotted in Figures 3 and 4. Fig. 3 shows that when there is a 
high level of machine failure feedback (i.e., dashed line), the relation-
ship between peer failure feedback and performance is positive. How-
ever, when there is low level of machine feedback (i.e., solid line), 
performance almost does not change with peer feedback. Fig. 3 suggests 
that Prior machine failure feedback in contest problems positively moder-
ates the relationship between Prior peer failure feedback and Performance. 
However, we observe in Fig. 4 that Prior machine failure feedback in gym 
problems negatively moderates the relationship between Prior peer failure 
feedback and Performance. The visualization in Figures 3 and 4 is 
consistent with Hypothesis 3. 

In Table 4, we disaggregate Prior machine failure feedback into Prior 
machine failure feedback in problems A and B and Prior machine failure 
feedback in the rest of the problems. The coefficients of both of the 
resulting interaction variables are positive and significant (β = 1.112, p 
< 0.001; β = 0.807, p < 0.001) in Models 2 and 3, and remain so in 
Model 4 (β = 0.701, p < 0.001; β = 0.413, p < 0.001). However, the 
moderating effect of Prior machine failure feedback in problems A and B is 
stronger than the moderating effect of Prior machine failure feedback in 
the rest of the problems. For Prior machine failure feedback in problems A 
and B, when this moderator increases from one standard deviation 
below the mean to one standard deviation above the mean, the slope 

Table 4 (continued )  

(1) (2) (3) (4)  

(0.230) (0.231) (0.231) (0.231) 
Number of unsuccessful hacks sent by focal contestant in focal contest − 2.627*** − 2.656*** − 2.635*** − 2.649***  

(0.201) (0.201) (0.201) (0.201) 
Prior machine failure feedback in problems A and B 2.152*** 2.301*** 2.593*** 2.472***  

(0.076) (0.075) (0.073) (0.074) 
Prior machine failure feedback in the rest of the problems 3.065*** 2.994*** 2.685*** 2.826***  

(0.065) (0.064) (0.068) (0.073) 
Prior peer failure feedback 1.746*** − 3.412*** − 1.500*** − 3.163***  

(0.095) (0.229) (0.185) (0.230) 
Prior machine failure feedback in problems A and B * Prior peer failure feedback  1.112***  0.701***  

(0.049)  (0.081) 
Prior machine failure feedback in the rest of the problems * Prior peer failure feedback   0.807*** 0.413***   

(0.041) (0.066) 
Contest fixed effects Included Included Included Included 
Contestant fixed effects Included Included Included Included 
Room fixed effects Included Included Included Included 
Constant 15.073*** 16.525*** 17.721*** 17.343***  

(0.772) (0.782) (0.795) (0.794) 
N 1,474,753 1,474,753 1,474,753 1,474,753 
R2 0.618 0.619 0.619 0.619 

Robust standard errors are in parentheses. Two-tailed tests. *** p < 0.001. All models include fixed effects for contestant, contest, and room. 

Fig. 3. Plot of the interaction between Prior machine failure feedback in contest problems and Prior peer failure feedback in Model 4 of Table 3.  

2 We speculate that this negative interaction effect can result from the 
following: if individuals receive a greater amount of less related machine failure 
feedback (i.e., failure feedback provided by a machine in gym problems), they 
might be distracted to learn from peer failure feedback. In comparison, a 
smaller amount of less related machine failure feedback might not distract in-
dividuals’ as much to learn from peer failure feedback. 

T. Zou et al.                                                                                                                                                                                                                                      



Journal of Business Research 172 (2024) 114417

10

increases by 1.95. In comparison, for Prior machine failure feedback in the 
rest of the problems, when this moderator increases from one standard 
deviation below the mean to one standard deviation above the mean, the 
slope increases by 1.49 (a 30.9 % weaker moderating effect). A Wald test 
also shows that these two interactions are significantly different from 
each other (F = 4.2, p < 0.05). These results are consistent with Hy-
pothesis 3. 

The implications of the two interactions in Model 4 of Table 4 are 
plotted in Figs. 5 and 6. Figs. 5 and 6 demonstrate that when there is a 
high level of machine feedback (dashed line), the relationship between 
peer feedback and performance is positive. However, when there is low 
level of machine feedback (solid line), performance hardly changes with 
peer feedback. As we discussed in the previous paragraph, the moder-
ating effect in Fig. 5 is stronger than the moderating effect in Fig. 6, 
consistent with Hypothesis 3. 

4.3. Additional analyses using an alternative dependent variable 

To test our hypotheses, we measured learning outcomes (i.e., per-
formance) using contestants’ ranking in contests. Accordingly, the unit 
of analysis is a contest-contestant observation, based on the contestant’s 
final ranking in these contests. However, a contestant can make multiple 
submissions during a contest, for the different problems that are part of 
that contest. Each of these submissions can be a success (i.e., it passes the 
test) or a failure (i.e., it does not pass the test). Therefore, an alternative 

way to assess learning outcomes is to investigate the success for each 
submission made by a contestant for each of the problems that make up a 
contest. Accordingly, we create an alternative dependent variable, 
Success of a submission, to measure performance in a more granular way. 
The unit of analysis in this instance is a contest-contestant-submission 
observation. Success of a submission is coded 1 if a particular submis-
sion was successful, and 0 if it failed. 

To test Hypotheses 1 and 2, we create two variables including Prior 
peer failure feedback and Prior machine failure feedback. Prior peer failure 
feedback is measured by the count of the number of times that a 
contestant was successfully hacked by other contestants before focal 
submission, whereas Prior machine failure feedback is operationalized by 
counting the number of times that a focal contestant’s solutions failed in 
machine tests before focal submission. These two variables are log- 
transformed due to their skewed distributions. 

To test Hypothesis 3, we disaggregate Prior machine failure feedback 
into two categories, based on the tasks on which that feedback is pro-
vided. One category consists of machine failure feedback given on tasks 
that are more related to tasks on which Prior peer failure feedback is 
provided. The other category consists of machine failure feedback on 
tasks that are less related to those on which Prior peer failure feedback is 
provided. We use two different ways to perform this disaggregation as 
we did for the results reported in Tables 3 and 4. First, we disaggregate 
Prior machine failure feedback into Prior machine failure feedback in contest 
problems and Prior machine failure feedback in gym problems. While Prior 

Fig. 4. Plot of the interaction between Prior machine failure feedback in gym problems and Prior peer failure feedback in Model 4 of Table 3.  

Fig. 5. Plot of the interaction between Prior machine failure feedback in problems A and B and Prior peer failure feedback in Model 4 of Table 4.  
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machine failure feedback in contest problems is measured by the total 
number of failed solutions in contest problems before focal submission, 
Prior machine failure feedback in gym problems measures the total number 
of failed solutions in gym problems before focal submission. Machine 
failure feedback in contest problems is more related to human failure 
feedback than machine failure feedback in gym problems because con-
testants can receive failure feedback from peers (i.e., hacks) only in 
contest problems, but not in gym problems. Second, we split Prior ma-
chine failure feedback into Prior machine failure feedback in problems A and 
B and Prior machine failure feedback in the rest of the problems. While Prior 
machine failure feedback in problems A and B is measured by the total 
number of failed solutions of a contestant had in problems A and B 
before focal submission, Prior machine failure feedback in the rest of the 
problems captures the total number of failed solutions that a contestant 
had in the rest problems before focal submission. The rationale for this 
disaggregation is that the majority (72.7 %) of failure feedback given by 
peers (i.e., hacks) occurs in problems A and B, thus failure feedback 
given by a machine in problems A and B would be more related to failure 
feedback given by peers. These four variables are log-transformed due to 
their skewed distributions. 

We controlled for covariates that might impact the dependent vari-
able. First, since our independent variable Prior peer failure feedback 
captures the number of successful hacks from peers before focal sub-
mission, we also control for Prior unsuccessful hacks from peers, which is 
the number of unsuccessful hacks from peers before focal submission, 
Prior successful hacks to peers, which is the number of successful hacks 
from a focal individual to peers before focal submission, and Prior un-
successful hacks to peers, which is the number of unsuccessful hacks from 
a focal individual to peers before focal submission. These three variables 
are log-transformed due to their skewed distributions. We control for 
Status, as measured by an individual’s Elo ratings. Finally, we control for 
Specialization. To operationalize this variable, we aggregate the tags for 
all the problems solved by the contestant in past contests, and then sum 
the number of times that each tag in the current contest appears in that 
aggregated tag list. Specialization is measured as the number of times 
that tags (for all the problems in the current contest) appear in that 
aggregated tag list, normalized by the total length of the aggregated list. 

The models that we use to estimate this alternative dependent vari-
able are similar to the ones we reported in Tables 2-4. Specifically, the 
model shown in equation (4) is used to test the baseline hypothesis and 
Hypothesis 1, in which we propose that prior peer failure feedback and 
prior machine failure feedback are positively associated with 
performance. 

Successijc = β0 + β1PeerFeedbacki + β2MachineFeedbacki +Controlsi

+ δc + δi + δr + εi
(4)  

where Successijc refers to whether contestant i’s jth submission in contest 
c is successful or failed, PeerFeedbacki refers to the amount of peer failure 
feedback that contestant i received before contest c, MachineFeedbacki 
refers to the amount of machine failure feedback that contestant i 
received before contest c, δc, δi, and δr refer to contest, contestant, and 
room fixed effects, and εi refers to random error term. If β1 and β2 are 
positive and significant, then the baseline hypothesis and Hypothesis 1 
are supported. 

The model shown in equation (5) is used to test Hypothesis 2, in 
which we posit that prior machine failure feedback strengthens the 
positive relationship between prior peer failure feedback and 
performance. 

Successijc = β0 + β1PeerFeedbacki + β2MachineFeedbacki

+ β3MachineFeedbacki*PeerFeedbacki +Controlsi

+ δc + δi + δr + εi

(5)  

where Successijc refers to whether contestant i’s jth submission in contest 
c is successful or failed, PeerFeedbacki refers to the amount of peer failure 
feedback that contestant i received before contest c, MachineFeedbacki 
refers to the amount of machine failure feedback that contestant i 
received before contest c, MachineFeedbacki*PeerFeedbacki refers to the 
interaction term between prior machine failure feedback and prior peer 
failure feedback, δc, δi, and δr refer to contest, contestant, and room fixed 
effects, and εi refers to random error term. Hypothesis 2 is supported if 
β3 is positive and significant. 

The model shown in equation (6) is used to test Hypothesis 3, in 
which we propose that prior machine failure feedback has a stronger 
moderating effect on the relationship between prior peer failure feed-
back and performance if it is more related to prior peer failure feedback. 

Successijc = β0 + β1PeerFeedbacki + β2MachineFeedbackMoreRelatedi

+ β3MachineFeedbackLessRelatedi

+ β4MachineFeedbackMoreRelatedi*PeerFeedbacki

+ β5MachineFeedbackLessRelatedi*PeerFeedbacki

+Controlsi + δc + δi + δr + εi

(6) 

where Successijc refers to whether contestant i’s jth submission in 
contest c is successful or failed, PeerFeedbacki refers to the amount of 
peer failure feedback that contestant i received before contest c, 
MachineFeedbackMoreRelatedi refers to machine failure feedback that is 
more related to peer failure feedback, MachineFeedbackLessRelatedi re-
fers to machine failure feedback that is less related to peer failure 
feedback, MachineFeedbackMoreRelatedi*PeerFeedbacki refers to the 
interaction term between prior machine failure feedback that is more 

Fig. 6. Plot of the interaction between Prior machine failure feedback in the rest of the problems and Prior peer failure feedback in Model 4 of Table 4.  
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related to peer failure feedback and prior peer failure feedback, 
MachineFeedbackLessRelatedi*PeerFeedbacki refers to the interaction 
term between prior machine failure feedback that is less related to peer 
failure feedback and prior peer failure feedback, δc, δi, and δr refer to 
contest, contestant, and room fixed effects, and εi refers to random error 
term. Hypothesis 3 is supported if β4 has a stronger positive effect than 
β5. 

Table 5 presents the results we use to test the baseline hypothesis, as 
well as Hypotheses 1 and 2. The sequence that we enter the variables in 

Table 5 is the same as in Table 2. Fig. A1 (Appendix A) plots the inter-
action in Model 5 in Table 5. Tables 6 and 7 present the results we use to 
test Hypothesis 3. The sequence that we enter the variables in Tables 6 
and 7 is the same as in Tables 3 and 4. Figs. A2 and A3 (Appendix A) plot 
the interactions in Model 4 of Table 6. Figs. A4 and A5 (Appendix A) plot 
the interactions in Model 4 of Table 7. 

Overall, the results in Tables 5-7 are consistent with those in Ta-
bles 2-4. In particular, Model 4 in Table 5 suggests that both prior peer 
failure feedback and prior machine failure feedback are positively 

Table 5 
OLS fixed-effects models predicting Success of a submission.   

(1) (2) (3) (4) (5) 

Prior unsuccessful hacks from peers 0.0397*** 0.0173*** 0.0152*** 0.0076*** 0.0035*** 
(0.001) (0.001) (0.001) (0.001) (0.001) 

Prior successful hacks to peers 0.0078*** 0.0066*** 0.0084*** 0.0078*** 0.0049***  
(0.001) (0.001) (0.001) (0.001) (0.001) 

Prior unsuccessful hacks to peers 0.0117*** 0.0045*** 0.0045*** 0.0020* − 0.0010  
(0.001) (0.001) (0.001) (0.001) (0.001) 

Status − 0.0011* − 0.0011* − 0.0003 − 0.0003 − 0.0019***  
(0.001) (0.001) (0.001) (0.001) (0.001) 

Specialization − 0.0314*** − 0.0101+ 0.1288*** 0.1205*** 0.1072***  
(0.006) (0.006) (0.007) (0.007) (0.007) 

Prior peer failure feedback  0.0497***  0.0231*** − 0.0294***   
(0.001)  (0.001) (0.003) 

Prior machine failure feedback   0.0447*** 0.0396*** 0.0401***    
(0.001) (0.001) (0.001) 

Prior peer failure feedback * Prior machine failure feedback     0.0106***     
(0.001) 

Contest fixed effects Included Included Included Included Included 
Contestant fixed effects Included Included Included Included Included 
Room fixed effects Included Included Included Included Included 
Constant 0.4132*** 0.3836*** 0.2074*** 0.2170*** 0.2443***  

(0.008) (0.008) (0.010) (0.010) (0.009) 
N 6,237,859 6,237,859 6,237,859 6,237,859 6,237,859 
R2 0.322 0.323 0.324 0.324 0.324 

Robust standard errors are in parentheses. Two-tailed tests. *** p < 0.001. 
All models include fixed effects for contestant, contest, room, and problem. 

Table 6 
OLS fixed-effects models predicting Success of a submission (moderator is decomposed into two parts).   

(1) (2) (3) (4) 

Status − 0.0007 − 0.0020*** − 0.0009 − 0.0020***  
(0.001) (0.001) (0.001) (0.001) 

Specialization 0.1124*** 0.1038*** 0.1132*** 0.1019***  
(0.007) (0.007) (0.007) (0.007) 

Prior unsuccessful hacks from peers 0.0085*** 0.0043*** 0.0082*** 0.0040***  
(0.001) (0.001) (0.001) (0.001) 

Prior successful hacks to peers 0.0069*** 0.0045*** 0.0062*** 0.0049***  
(0.001) (0.001) (0.001) (0.001) 

Prior unsuccessful hacks to peers 0.0017 − 0.0012 0.0014 − 0.0013  
(0.001) (0.001) (0.001) (0.001) 

Prior machine failure feedback in contest problems 0.0306*** 0.0323*** 0.0315*** 0.0316***  
(0.001) (0.001) (0.001) (0.001) 

Prior machine failure feedback in gym problems 0.0073*** 0.0051*** 0.0042*** 0.0081***  
(0.000) (0.000) (0.001) (0.001) 

Prior peer failure feedback 0.0253*** − 0.0328*** 0.0234*** − 0.0381***  
(0.001) (0.003) (0.001) (0.003) 

Prior machine failure feedback in contest problems * Prior peer failure feedback  0.0112***  0.0126***  
(0.001)  (0.001) 

Prior machine failure feedback in gym problems * Prior peer failure feedback   0.0017*** − 0.0019***   
(0.000) (0.000) 

Contest fixed effects Included Included Included Included 
Contestant fixed effects Included Included Included Included 
Room fixed effects Included Included Included Included 
Constant 0.2467*** 0.2658*** 0.2471*** 0.2677***  

(0.009) (0.010) (0.009) (0.010) 
N 6,237,859 6,237,859 6,237,859 6,237,859 
R2 0.324 0.324 0.324 0.324 

Robust standard errors are in parentheses. Two-tailed tests. *** p < 0.001. All models include fixed effects for contestant, contest, room, and problem. 
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associated with performance, which supports the baseline hypothesis 
and Hypothesis 1. In addition, Model 5 in Table 5 shows that the 
interaction between prior peer failure feedback and prior machine 
failure feedback is positive and significant, providing support to Hy-
pothesis 2. The results in Tables 6 and 7 are used to test Hypothesis 3. 
This consistency is in line with our expectation, since participants’ final 
contest performance (the outcome we used for our main analyses) is 
mainly a function of the accuracy of their individual submissions 
throughout a given contest (as captured in this more granular alternative 
dependent variable). As participants’ final performance decreases as the 
number of their failed submissions increases, we also consider the suc-
cess of each of their submissions as a viable alternative measure of their 
performance that enables us to zoom in on a more granular 
performance-related event. 

In Table 6, we disaggregate Prior machine failure feedback into Prior 
machine failure feedback in contest problems and Prior machine failure 
feedback in gym problems. The former is more related to prior peer failure 
feedback than the latter. The results in Model 4 of Table 6 suggest that 
while Prior machine failure feedback in contest problems enhances the 

relationship between Prior peer failure feedback and Performance, Prior 
machine failure feedback in gym problems does not have such an effect. A 
Wald test indicates that these two interactions are significantly different 
from each other (F = 456.2, p < 0.001). These results support Hypothesis 
3. In Table 7, we disaggregate Prior machine failure feedback into Prior 
machine failure feedback in problems A and B and Prior machine failure 
feedback in the rest of the problems. The former is more related to prior 
peer failure feedback than the latter. The results in Model 4 of Table 7 
suggest that while Prior machine failure feedback in problems A and B 
enhances the relationship between Prior peer failure feedback and Per-
formance, Prior machine failure feedback in the rest of the problems does not 
have such an effect. A Wald test indicates that these two interactions are 
significantly different from each other (F = 481.3, p < 0.001). These 
results again support Hypothesis 3. Taken together, the results using this 
alternative dependent variable support our hypotheses. 

4.4. Robustness checks 

First, in the results that we present in Tables 2 to 4, we decided to not 

Table 7 
OLS fixed-effects models predicting Success of a submission (moderator is decomposed into two parts).   

(1) (2) (3) (4) 

Status 0.0004 − 0.0006 − 0.0012 − 0.0000  
(0.001) (0.001) (0.001) (0.000) 

Specialization 0.1111*** 0.0972*** 0.1045*** 0.0971***  
(0.007) (0.007) (0.007) (0.007) 

Prior unsuccessful hacks from peers 0.0083*** 0.0031*** 0.0051*** 0.0035***  
(0.001) (0.001) (0.001) (0.001) 

Prior successful hacks to peers 0.0081*** 0.0051*** 0.0056*** 0.0057***  
(0.001) (0.001) (0.001) (0.001) 

Prior unsuccessful hacks to peers 0.0021 − 0.0019 − 0.0002 − 0.0017  
(0.001) (0.001) (0.001) (0.001) 

Prior machine failure feedback in problems A and B 0.0300*** 0.0323*** 0.0334*** 0.0311***  
(0.001) (0.001) (0.001) (0.001) 

Prior machine failure feedback in the rest of the problems 0.0081*** 0.0075*** 0.0055*** 0.0087***  
(0.001) (0.001) (0.001) (0.001) 

Prior peer failure feedback 0.0228*** − 0.0449*** − 0.0072** − 0.0466***  
(0.001) (0.003) (0.002) (0.003) 

Prior machine failure feedback in problems A and B * Prior peer failure feedback  0.0145***  0.0182***  
(0.001)  (0.001) 

Prior machine failure feedback in the rest of the problems * Prior peer failure feedback   0.0071*** − 0.0037***   
(0.000) (0.001) 

Contest fixed effects Included Included Included Included 
Contestant fixed effects Included Included Included Included 
Room fixed effects Included Included Included Included 
Constant 0.2301*** 0.2468*** 0.2531*** 0.2392***  

(0.009) (0.010) (0.009) (0.009) 
N 6,237,859 6,237,859 6,237,859 6,237,859 
R2 0.324 0.324 0.324 0.324 

Robust standard errors are in parentheses. Two-tailed tests. ** p < 0.01, *** p < 0.001. All models include fixed effects for contestant, contest, room, and problem. 

Table 8 
Robustness check following the method in Bennett and Snyder (2017).  

Time window Peer failure feedback Baseline hypothesis Machine failure feedback H1 

One-year 1.517*** 
(0.075) 

Supported 3.612*** 
(0.054) 

Supported 

Six-month 1.353*** 
(0.066) 

Supported 2.700*** 
(0.043) 

Supported 

Three-month 1.023*** 
(0.062) 

Supported 1.955*** 
(0.035) 

Supported 

These models are estimated with the same set of control variables and fixed effects (including contest, contestant, and room fixed effects) as we report in Tables 2 to 4. 
Robust standard errors are in parentheses. Two-tailed tests. *** p < 0.001. 
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control for success experience, or success feedback given by a machine, 
since success feedback from a machine and failure feedback from a 
machine are highly correlated (r = 0.94). This happens because both 
success and failure feedback go up with an individual’s overall experi-
ence in entering contests. As a result of the high correlation, including 
success feedback in the models yields multicollinearity concerns. How-
ever, since success experience and failure experience can have distinct 
effects on learning outcomes we ran a robustness test by adding success 
feedback to all the models reported in Tables 2 to 4. The results we get 
from these models are consistent with what we present in Tables 2 to 4 
and continue to support all of the hypotheses (p < 0.001). 

Second, Bennett and Snyder (2017) suggest that a significant rela-
tionship between failure experience and learning outcomes could be 
induced by certain model specifications. Specifically, the authors sug-
gest that regressing learning outcomes on cumulative failure experience 
is problematic. Following their recommendation, to calculate failure 
feedback we use shorter time windows, rather than a contestant’s entire 
history in all previous contests. Whereas in the main models that are 
reported in Tables 2-4 we calculate failure feedback by counting all 
failure feedback prior to the current contest, in this robustness check, we 
recalculate failure feedback (for both peer failure feedback and machine 
failure feedback) using one-year, six-month, and three-month moving 
windows. We present the results in Tables 8 and 9. These results show 
that our baseline hypothesis and Hypotheses 1–3 continue to receive 
support if we use these shorter time windows to calculate failure feed-
back, alleviating the concern that our findings might be mechanically 
induced by the model specification. 

5. Discussion and conclusion 

Studies on machine-human interaction have shown that the presence 
of machines can benefit humans in various ways, such as by further 
engaging and motivating people in their activities (Colombo et al., 
2007). Nevertheless, evidence on whether and how machines impact 
humans’ learning remains relatively scarce. This is an important ques-
tion especially in light of machines’ increasing presence in workplaces. 
We explore this question and find that (i) failure feedback provided by 
machines directly contributes to individuals’ learning; (ii) failure feed-
back provided by machines also amplifies learning from failure feedback 
provided by peers, i.e. the more that individuals receive failure feedback 
from machines, the more that they learn from failure feedback given by 
peers as well, and (iii) this catalyzing effect is stronger when the tasks on 
which individuals receive machine failure feedback are more closely 
related to the tasks on which they receive failure feedback from peers. 

5.1. Contributions of our study 

Our study makes two main contributions. First, it adds to the 
learning literature (Zou, Ertug, & George, 2018). While this literature’s 
traditional focus is on the process of learning from other individuals, we 
demonstrate that machine failure feedback plays a key role on individ-
ual learning. Our analyses suggest that machine failure feedback facil-
itates learning both directly – by leading individuals to learn from their 
failures – and indirectly – by amplifying the learning effect of failure 
feedback provided by other humans. Second, a separate and broader 
literature has shown that machines may shape human–human in-
teractions, such as coordination (Hinds et al., 2004; Kiesler & Hinds, 
2004; Shirado & Christakis, 2017), conflict (Jung et al., 2015), and 
communication (Traeger et al., 2020). Our study adds to this literature 
by showing that machines can impact the dynamics of learning between 
individuals, via its catalyzing effect. Our research opens avenues for 
future research to continue to explore how machines can influence other 
aspects of human learning, both directly on their own and indirectly, in 
terms of how they influence the learning process between humans. 

5.2. Practical implications 

Our findings suggest that the use of machines in organizations to 
provide failure feedback to humans can help people learn more from 
feedback provided by their own peers. Machines can distinguish 
spurious failures from true ones, a distinction that is underexplored in 
failure learning research (Dahlin et al., 2018). The machines in our 
setting are designed by experts to catch almost all possible mistakes in 
contestants’ code. As a result, contestants trust the judgement of ma-
chines. This underscores the importance of programming or designing 
machines such that they are a “competent” and “trustworthy” source of 
failure feedback to humans. Our findings are that machine failure 
feedback has both a direct effect on individuals’ learning as well as a 
catalyzing effect on their learning from failure feedback given by 
humans. From a practical point of view, these findings suggest that or-
ganizations should provide both machine feedback and human feedback 
to their employees, and that machine feedback could help address biases 
that might hamper human-to-human learning. For example, as part of 
their annual performance feedback, organizations can implement an 
information system to provide performance feedback to employees 
based on rich data, such as sales, project progress, and number of patents 
filed, in addition to the currently common practice of providing per-
formance feedback from employees’ supervisors. As many organizations 
are undergoing a digital transformation, this is feasible because such 
data will become increasingly available. 

Table 9 
Robustness check following the method in Bennett and Snyder (2017).  

Time 
window 

Machine failure 
feedback * Peer 
failure feedback 

H2 Machine failure 
feedback in contest 
problems * Peer failure 
feedback 

Machine failure 
feedback in gym 
problems * Peer failure 
feedback 

Machine failure 
feedback in problems A 
and B * Peer failure 
feedback 

Machine failure 
feedback in the rest 
problems * Peer failure 
feedback 

H3 

One-year 0.870*** 
(0.044) 

Supported 1.418*** 
(0.052) 

− 0.304*** 
(0.029) 

0.747*** 
(0.073) 

0.464*** 
(0.057) 

Supported 

Six- 
month 

0.733*** 
(0.042) 

Supported 1.366*** 
(0.051) 

− 0.217*** 
(0.027) 

0.692*** 
(0.064) 

0.448*** 
(0.052) 

Supported 

Three- 
month 

0.509*** 
(0.045) 

Supported 1.124*** 
(0.051) 

− 0.158*** 
(0.028) 

0.635*** 
(0.062) 

0.279*** 
(0.055) 

Supported 

These models are estimated with the same set of control variables and fixed effects (including contest, contestant, and room fixed effects) as we report in Tables 2 to 4. 
Robust standard errors are in parentheses. Two-tailed tests. *** p < 0.001. 
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5.3. Limitations and future research 

The characteristics of our setting point to questions that can be 
explored by future research. For example, machines in our setting have 
no variation in terms of their attributes. Therefore, we cannot investi-
gate questions about what kind of machines might enable individuals to 
learn even more from peer failure feedback. Recent research has found 
that vulnerable machines (machines making vulnerable statements) can 
enhance human-to-human communication more than neutral machines 
(machines making neutral statements) (Traeger et al., 2020). Accord-
ingly, our findings can be expanded and refined in contexts where the 
attributes of machines vary. We show that machines can fuel humans’ 
learning by providing feedback. Future research can explore other 
channels through which machines can facilitate humans’ learning. For 
example, machines might also train humans to identify their own errors, 
which is an important precondition for individuals to take action to 
learn from their errors. 

In addition, machines in our setting provide only one type of failure 
feedback, indicating that there is an error in contestants’ coding. Ma-
chines can be designed to give other types of feedback as well. It is 
unclear whether providing only one type of feedback or multiple types 
of feedback would better enhance individuals’ learning. It might be that 
multiple types of feedback enhance the learning implications of each 
other, such that they amplify learning overall, or they might distract 
individuals from each mistake, such that they undermine learning 
overall. Another characteristic of our setting is that the information that 
is in machine failure feedback and peer failure feedback does not vary. 
The identification of mistakes is done in the same way, with a similar 
amount of text, in particular by providing an example of input which the 
contestant’s code does not process as intended, but without pointing out 
the exact error in the code. It might be that more detailed failure feed-
back, or failure feedback containing more information about the 
possible cause of failure and suggestions about how to remedy it, are 
better for learning, as these might make it easier to identify and un-
derstand the cause of failure. 

While we use contestants’ rank in a contest to measure their per-
formance and to test our hypotheses, we are aware that there are other 
ways to capture contestants’ performance, including the success of 
submissions made by contestants. Even though we also tested our hy-
potheses using that specific alternative measure of performance, both 
measures might be equally appropriate to capture performance in our 
context, we are not able to determine which measure might be the best 

measure in this context to capture performance. Future research can use 
different means to identify which performance measures are the most 
suitable ones in their setting, including the one we study, and investigate 
the generalizability and robustness of our results based on different 
performance metrics. 

Finally, while our focus in this study is on learning from failure, 
machines can also support learning from success feedback. We investi-
gated how machine failure feedback promotes individuals’ learning 
from failure feedback provided by humans. Future research can look 
into how machine success feedback and human success feedback 
interact with each other to influence humans’ learning. 

In conclusion, we propose and find that machines have both a direct 
effect and a catalyzing effect on individuals’ learning. The catalyzing 
effect refers to the finding that the more that humans receive failure 
feedback from machines, the more that they also learn from failures 
identified by human feedback. In addition, the more that the machine 
failure feedback is received for tasks that are closely related to tasks for 
which peer failure feedback is received, the more that it amplifies 
humans’ learning from that peer failure feedback. Our findings suggest 
that machines can be used in organizations to foster learning from 
failures. 
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Appendix A. Plots for the interactions in Tables 5–7

Fig. A1. Plot of the interaction between Prior machine failure feedback and Prior peer failure feedback in Model 5 of Table 5. 
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Fig. A2. Plot of the interaction between Prior machine failure feedback in contest problems and Prior peer failure feedback in Model 4 of Table 6.  

Fig. A3. Plot of the interaction between Prior machine failure feedback in gym problems and Prior peer failure feedback in Model 4 of Table 6.  

Fig. A4. Plot of the interaction between Prior machine failure feedback in problems A and B and Prior peer failure feedback in Model 4 of Table 7.   

T. Zou et al.                                                                                                                                                                                                                                      



Journal of Business Research 172 (2024) 114417

17

Fig. A5. Plot of the interaction between Prior machine failure feedback in the rest of the problems and Prior peer failure feedback in Model 4 of Table 7.  

. 
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