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Abstract. Face clustering is a promising way to scale up face recog-
nition systems using large-scale unlabeled face images. It remains chal-
lenging to identify small or sparse face image clusters that we call hard
clusters, which is caused by the heterogeneity, i.e., high variations in
size and sparsity, of the clusters. Consequently, the conventional way
of using a uniform threshold (to identify clusters) often leads to a ter-
rible misclassification for the samples that should belong to hard clus-
ters. We tackle this problem by leveraging the neighborhood informa-
tion of samples and inferring the cluster memberships (of samples) in
a probabilistic way. We introduce two novel modules, Neighborhood-
Diffusion-based Density (NDDe) and Transition-Probability-based Dis-
tance (TPDi), based on which we can simply apply the standard Density
Peak Clustering algorithm with a uniform threshold. Our experiments
on multiple benchmarks show that each module contributes to the fi-
nal performance of our method, and by incorporating them into other
advanced face clustering methods, these two modules can boost the per-
formance of these methods to a new state-of-the-art. Code is available
at: https://github.com/echoanran/On-Mitigating-Hard-Clusters.

Keywords: face clustering · diffusion density · density peak clustering

1 Introduction

Face recognition is a classical computer vision task [34,21,13] that aims to infer
person identities from face images. Scaling it up relies on more annotated data
if using deeper models. Face clustering is a popular and efficient solution to
reducing the annotation costs [16,27,15,5].
Problems. Face clustering is challenging due to that 1) recognizing person iden-
tities is a fine-grained task; 2) the number of identities is always large, e.g ., 77k
on MS1M 5.21M dataset [8]; and 3) the derived face clusters are often of high
variations in both size and sparsity, and small or sparse clusters—we call hard
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Fig. 1. (a) and (b) show the ground-truth distribution of the face identity clusters on
MS1M 5.21M dataset [8]. (a) is for cluster size, i.e., the number of samples in a cluster.
(b) is for cluster sparsity, which is defined as the average cosine distance of all pair of

samples in a cluster, e.g ., for cluster C we have Sparsity(C) = 1−
∑

ij∈C,i̸=j cosine<xi,xj>

|C|(|C|−1)

where |C| denotes the cluster size. (c) and (d) show the performances (Pairwise F-score)
of three top-performing methods, GCN(V+E) [31], Pair-Cls [14], and STAR-FC [23],
compared to ours, on five cluster subsets with descending size (from sz-1 to sz-5) and
ascending sparsity (from sp-1 to sp-5), respectively.

clusters—are hard to identify. Figure 1 (a) and (b) show the distributions of
ground-truth clusters on MS1M 5.21M dataset. For Figure 1 (c) and (d), we
first group these clusters into five subsets based on a fixed ranking of size and
sparsity, respectively, and then evaluate three top-performing methods and ours
on each subset. It is clear that the performance drops significantly for hard clus-
ters, e.g ., in subsets sz-5 and sp-5, particularly on metric Recall (see Figure 2).
We think the reason is two-fold: 1) small clusters are overtaken by large ones;
2) samples of sparse clusters are wrongly taken as “on” low-density regions, i.e.,
the boundaries between dense clusters.

Fig. 2. Pairwise precision and recall (of the three
baselines) that elaborates the results in Figure 1
(c) and (d). The recall of hard cluster subsets
shows a significant drop.

We elaborate these based
on Density Peaking Clustering
(DPC) [22] which has shown
the impressive effectiveness in
state-of-the-art face clustering
works [31,14]. DPC requires
point-wise density and pair-wise
distance to derive clustering re-
sults. The density is usually de-
fined as the number of neigh-
bor points covered by an ϵ-ball
around each point [4], and the
distance is standard cosine dis-
tance. We find that both density and distance are highly influenced by the size
and sparsity of latent clusters in face data. For example, 1) smaller clusters
tend to have lower density as shown in Figure 3 (a), so they could be mis-
classified as big ones by DPC, and 2) to identify positive pairs, higher-sparsity
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(lower-sparsity) clusters prefer a higher (lower) distance threshold, as indicated
in Figure 3 (b), so it is hard to determine a uniform threshold for DPC.

Our Solution. Our clustering framework is based on DPC, and we aim to
solve the above issues by introducing new definitions of point-wise density and
pair-wise distance. We propose a probabilistic method to derive a size-invariant
density called Neighborhood-Diffusion-based Density (NDDe), and a sparsity-
aware distance called Transition-Probability-based Distance (TPDi). Applying
DPC with NDDe and TPDi can mitigate hard clusters and yield efficient face
clustering with a simple and uniform threshold.

Fig. 3. (a) The average standard density of clusters
on each subset. (b) The probability density function
on each subset with respect to the positive pairs.
“Pos” indicates “Positive”, and “Neg” for “Negative”.

We first build a transi-
tion matrix where each row
contains the normalized sim-
ilarities (predicted by a pre-
trained model as in related
works [29,31,14,23]) between
a point and its K-nearest
neighbors, and each column
is the transition probability
vector from a point to the
others. Then, for NDDe, we
specify a diffusion process on
the matrix by 1) initializing
a uniform density for each point, and 2) distributing the density to its K-nearest
neighbors, where the distribution strength is proportional to the transition prob-
ability, until converge. The derived NDDe is invariant to the cluster size and thus
free from the issue of small clusters. We provide the theoretical justification and
empirical validation in Section 4.2. For TPDi, we define a relative closeness that
equals the inner product between two points’ transition probability vectors (cor-
responding to two columns on the transition matrix). We assume two points are
close if they have similar transition probabilities to their common neighbors. Our
TPDi can yield more uniform sparsity (in clusters) than conventional distances
such as cosine or Euclidean, and thus free from the issue of sparse clusters. Our
justification and validation are in Section 4.3.

Our main contributions are threefold. 1) We inspect face clustering problem
and find existing methods failed to identify hard clusters—yielding significantly
low recall for small or sparse clusters. 2) To mitigate the issue of small clusters,
we introduce NDDe based on the diffusion of neighborhood densities. 3) To
mitigate the issue of sparse clusters, we propose the relative distance TPDi that
can facilitate a uniform sparsity in different clusters. In experiments, we evaluate
NDDe and TPDi on large-scale benchmarks and incorporate them into multiple
baselines to show their efficiency.
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2 Related Work

Face clustering has been extensively studied as an important task in the field
of machine learning. Existing methods can be briefly divided into traditional
methods and learning-based methods.

Traditional Methods. Traditional methods include K-means [18], HAC [24], DB-
SCAN [6] and ARO [20]. These methods directly perform clustering on the ex-
tracted features without any supervision, and thus they usually seem simple but
have obvious defects. K-means [18] assumes the cluster shape is convex and DB-
SCAN [6] assumes that the compactness of different clusters is homogeneous.
The performances of these two methods are limited since both assumptions are
impractical for face data. The scale of unlabeled face images is usually large,
and from this perspective, traditional methods are low-efficient and thus not
suitable for face clustering task. The computational efficiency of HAC [24] is
not acceptable when handling millions of samples. To achieve better scalability,
Otto et al . [20] proposed ARO that uses an approximate rank-order similarity
metric for clustering, but its performance is still far from satisfactory.

Learning-based Methods. To improve the clustering performance, recent works
[33,29,32,31,7,23,14,28] adopt a learning-based paradigm. Specifically, they first
train a clustering model using a small part of data in a supervised manner and
then test its performance on the rest of the data. CDP [33] proposed to aggregate
the features extracted by different models, but the ensemble strategy results in a
much higher computational cost. L-GCN [29] first uses Graph Convolutional Net-
works (GCNs) [12] to predict the linkage in an instance pivot subgraph, and then
extracts the connected components as clusters. LTC [32] and GCN(V+E) [31]
both adopt two-stage GCNs for clustering with the whole K-NN graph. Specifi-
cally, LTC generates a series of subgraphs as proposals and detects face clusters
thereon, and GCN(V+E) learns both confidence and connectivity via GCNs. To
address the low-efficiency issue of GCNs, STAR-FC [23] proposed a local graph
learning strategy to simultaneously tackle the challenges of large-scale train-
ing and efficient inference. To address the noisy connections in the K-NN graph
constructed in feature space, Ada-NETS [28] proposed an adaptive neighbor dis-
covery strategy to make clean graphs for GCNs. Although GCN-based methods
have achieved significant improvements, they only use shallow GCNs resulting
in a lack of high-order connection information, and in addition, their efficiency
remains a problem. Pair-Cls [14] proposed to use pairwise classification instead
of GCNs to reduce memory consumption and inference time. Clusformer [19]
proposed an automatic visual clustering method based on Transformer [25].

In general, existing learning-based methods have achieved significant im-
provements by focusing on developing deep models to learn better representation
or pair-wise similarities, but they failed to identify and address the aforemen-
tioned hard cluster issues. In this paper, we explore face clustering task from
a new perspective. Based on DPC [22], we propose a size-invariant point-wise
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density NDDe and a sparsity-aware pair-wise distance TPDi, which can be in-
corporated into multiple existing methods for better clustering performance,
especially on hard clusters.

3 Preliminaries

Problem Formulation. Given N unlabelled face images with numerical fea-
ture points X = {x1, x2, · · · , xN} ⊂ IRN×D, which are extracted by deep face
recognition models, face clustering aims to separate these points into disjoint
groups as X = X1

⋃
X2...

⋃
Xm, such that points with the same identity tend

to be in the same group, while points with different identities tend to be in
different groups.
Data Preprocessing. Following the general process of learning-based face
clustering paradigm, the dataset X is split into a training set and a test set,
X = Xtrain

⋃
Xtest. For a specific learning-based face clustering method, a clus-

tering model is first trained on Xtrain in a supervised manner, and then the
clustering performance is tested on Xtest. Without loss of generality, we always
denote the features and labels as X = {x1, x2, · · · , xN} and l = {l1, l2, · · · , lN},
respectively, for both training stage and test stage.
Density Peak Clustering (DPC). DPC [22] identifies implicit cluster centers
and assigns the remaining points to these clusters by connecting each of them to
the higher density point nearby, which is adopted by several state-of-the-art face
clustering methods [31,14]. In this paper, we also adopt DPC as the clustering
algorithm. Given point-wise density ρ = {ρ1, ρ2, · · · , ρN} and pair-wise distance
(dij)N×N , for each point i, DPC first finds its nearest neighbor whose density is
higher than itself, i.e.,

ĵ = argmin{j|ρj>ρi}dij ,

If ĵ exists and diĵ < τ , then it connects i to ĵ, where τ is a connecting threshold.
In this way, these connected points form many separated trees, and each tree
corresponds to a final cluster. Note that τ is uniform for all clusters, so consistent
point-wise density ρ and pair-wise distance (dij)N×N are essential for the success
of DPC. To solve hard cluster issues, we propose a size-invariant density called
Neighborhood-Diffusion-based Density (NDDe) and a sparsity-aware distance
called Transition-Probability-based Distance (TPDi) for better ρ and (dij)N×N .

4 Method

Figure 4 shows the overall framework consisting of four steps. First, we construct
a transition matrix by learning the refined similarities between each point and its
K-nearest neighbors using a model consisting of a feature encoder F and a Multi-
Layer Perceptron (MLP). The second step uses our first novel module: computing
Neighborhood-Diffusion-based Density (NDDe) by diffusing point-wise density
on the neighboring transition matrix, which is invariant to cluster size. The
third step is our second novel module: computing Transition-Probability-based
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Fig. 4. Overview. Our method consists of four steps: (1) Constructing transition matrix
P . Feature encoder F is for feature refinement, which can be Transformer, GCNs, or
a feature aggregation module, and after that, an MLP is used to predict the similarity
between each anchor point and its neighbors. (2a) Computing NDDe for each point
through a diffusion process. (2b) Computing TPDi to measure the distance between
points. (3) Applying DPC with NDDe and TPDi to obtain final clustering result.

Distance (TPDi) by introducing a relative closeness, which is aware of cluster
sparsity. Fourth, we directly apply DPC with NDDe and TPDi to derive the
final clustering result.

4.1 Constructing Transition Matrix

The standard way of construction the transition matrix is to compute the sim-
ilarity between the deep features of pair-wise samples. The “similarity” can be
the conventional cosine similarity or the learned similarity in more recent works
such as [31,14,23]. To reduce the memory consumption of using GCNs [31,23]
for similarity learning, Pair-Cls [14] simply learns the similarity via pair-wise
classification by deciding whether two points share the same identity. However,
in Pair-Cls, all pairs are completely independent during training. We argue that
the similarity between a point and one of its neighbors usually depends on the
similarities between the point and its other neighbors. Therefore, in our work,
we adopt the same pair-wise classification, i.e., using an MLP to predict the
similarity, and besides that, we leverage a collaborative prediction manner by
considering the similarities between each point (as an anchor) and its neighbors
as a whole to improve the robustness of the prediction, similar to [19,14].

Here, we elaborate a general formulation. For a sample point i, we first find
its K-nearest neighbors denoted as nbri = {i1, · · · , ik}, and then generate the
following token sequence:

x̃i = [xi, xi1 , xi2 , · · · , xik ].
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Our similarity prediction model first takes x̃i as input, and outputs k + 1
features after feature encoder F :

{ti, ti1 , · · · , tik} = F(x̃i),

where F can be Transformer [25], GCNs [31,23] or a simple feature aggregation
module [14] (aggregate features of neighbors and concatenate to the feature of
anchor). Then, for each neighbor ij , j = 1, ..., k, ti are concatenated with tij and
fed into an MLP with Sigmoid function to estimate the probability of that i and
ij share the same identity:

pij = MLP([ti, tij ]).

Assuming lij is the ground-truth label, lij = 1 if li = lij and lij = 0 vice
versa. The total loss function is formulated as:

L = −
N∑
i=1

k∑
j=1

(lij log pij + (1− lij) log(1− pij)). (1)

Once the model converges, its predicted similarity takes the anchor’s feature as
well as its respective neighborhoods’ features into consideration. Then, we can
derive the similarity matrix ŜN×N by applying this model on the test set.

Finally, we assume di =
∑N

j=1 ŝij as the measure of the volume around
point i, and generate the probability transition matrix P with each element as
pij = ŝij/di. The size of P is N × N . Please note that Ŝ is a sparse matrix
where each row contains k + 1 non-zero elements (itself and its top-K nearest
neighbors). Therefore, P is also sparse. We highlight that the above approach
is not the only way to construct the transition matrix P , and we show the results
of using other approaches to obtain P in the experiment section.

4.2 Neighborhood-Diffusion-based Density

In this section, we propose a new definition of the point-wise density, called
NDDe, to alleviate the issue of small-size clusters. In the transition matrix P ,
each element Pij denotes the probability from one point i to its specific neighbor
j. It satisfies the conservation property, i.e.,

∑
j Pij = 1, which induces a Markov

chain on X. Denoting L = I − P as the normalized graph Laplacian, where I
is the identity matrix. We can specify a diffusion process as follows,{

∂
∂tρi(t) = −Lρi(t),

ρi(0) = 1.
(2)

where ρi(t) is the density of point i at t-th step. Starting from a uniformly ini-
tialized density, the diffusion process keeps distributing the density of each point
to its K-nearest neighbors, following the corresponding transition probabilities
in P , until converged to a stationary distribution. The diffusion density thus can
be induced as:

ρi = lim
t→∞

ρi(t). (3)
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Fig. 5. (a) and (b) show the average values of the standard density and our NDDe
on five cluster subsets from MS1M 5.21M dataset, respectively. NDDe is shown to be
more uniform, i.e., small clusters are alleviated. (c) and (d) show the probability density
functions of using the conventional cosine distance and TPDi on five cluster subsets
from MS1M 5.21M dataset, respectively. Using TPDi makes it easier to decide a more
uniform threshold to separate positive and negative pairs, in all subsets including the
sparsest one “sp-5”.

Justification of local properties of diffusion density. The diffusion process is local
because each point transits its density to K-nearest neighbors and itself (based
on the transition matrix P ). If considering the ideal situation when P is closed,
which means pij > 0 if and only if xi and xj share the same identity, we have
the following theorem.

Theorem 1. Assume the dataset X can be split into m disjoint clusters: i.e.,

X = X1

⋃
...
⋃
Xm. Define ρ̄i =

∑
j∈Xi

ρ(j)

|Xi| is the average density of Xi, and

we have ρ̄1 = · · · = ρ̄m = 1 where |Xi| is the number of points in Xi.

Theorem 1 demonstrates that the average diffusion densities in all clusters
are the same regardless of cluster sizes. In a dynamic sense, the diffusion process
can elevate the density of latent small clusters, and thus enable DPC algorithm
to identify density peaks in such clusters. To further demonstrate our claim,
we divide clusters in MS1M 5.21M dataset into five subsets according to clus-
ter sizes and calculate the average diffusion density for each subset. As shown
in Figure 5(a)(b), compared with the standard density, the average NDDe for
different subsets are much more comparable.

4.3 Transition-Probability-based Distance

In this section, we introduces our new definition of the pair-wise distance, called
TPDi, to solve the issue of varying sparsity in latent face clusters. TPDi depicts
the similarity between two points based on their respective transition proba-
bilities (in P ) to the common neighbors. Assuming Cij = nbri ∩ nbrj contains
the common neighbors in the K-nearest neighbors of both point i and j. TPDi
between them is defined as:

dij = 1−
∑
c∈Cij

√
picpjc. (4)
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Algorithm 1: Pseudocode for our method

Input: Face dataset X = {x1, . . . , xN}, number of nearest neighbors K,
pre-trained similarity prediction model Φ, convergence threshold ϵ,
connecting threshold τ .

Output: clusters C.
1 procedure CLUSTERING
2 for each point i:

3 Find its K-nearest neighbors nbri = {ik}Kk=1 and construct x⋆
i ;

4 Inference the similarities {si,j}Kj=1 between them via Φ(x⋆
i );

5 Obtain the pair-wise similarity matrix ŜN×N , and compute PN×N ;
6 Compute the point-wise density ρN×1 via NDDe(P );
7 Compute the pair-wise distance (dij)N×N via TPDi(P );
8 Obtain clusters C via DPC(ρ, (dij)N×N );
9 end procedure

10 function NDDe(P )
11 Initialize ρpre = {1}N×1

12 while ||ρ− ρpre||2 > ϵ:
13 ρ = ρpre; ρpre = P × ρ;
14 return ρ
15 end function
16 function TPDi(P )
17 for each pair of points i, j:
18 Compute dij as shown in Eq. 4;
19 return (dij)N×N

20 end function

We highlight that TPDi has three impressive properties: (1) By Cauchy-

Schwarz inequality, we have
(∑

c∈Cij

√
picpjc

)2

≤ (
∑

c∈Cij
pic)(

∑
c∈Cij

pjc) ≤ 1,

so it is easy to check 0 ≤ dij ≤ 1, which implies that dij can be a valid metric.
(2) dij = 0 if and only if pic = pjc for all c = 1, ..., N , which implies that dij is
small when i and j share as many as common neighbors. It is consistent with the
motivation of TPDi. (3) Compared with cosine distance, TPDi of negative pairs
and positive pairs are better separated, regardless of cluster sparsity (Figure
5(c)(d)). So it is easier to choose a uniform threshold for TPDi.

Remark 1. If considering a simple case when each point transits to its neighbors

with equal transition probability 1
K , we have dij = 1 − 2Jaccard(i,j)

(1+Jaccard(i,j)) , where

Jaccard(i, j) is the Jaccard similarity [9]. This implies that the TPDi is a gen-
eralization of Jaccard distance, which also demonstrate the feasibility of TPDi.

4.4 Overall Algorithm

The overall clustering procedure is summarized in Algorithm 1. In our imple-
mentation, we use an iterative method as an approximation of Eq. 3.
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5 Experiments

5.1 Experimental Settings

Datasets. We evaluate the proposed method on two public face clustering
benchmark datasets, MS1M [8] and DeepFashion [17]. MS1M contains 5.8M
images from 86K identities and the image representations are extracted by Ar-
cFace [5], which is a widely used face recognition model. MS1M is split into
10 almost equal parts officially. Following the same experimental protocol as
in [31,23,14], we train our model on one labeled part and choose parts 1, 3,
5, 7, and 9 as unlabeled test data, resulting in five test subsets with sizes of
584K, 1.74M, 2.89M, 4.05M, and 5.21M images respectively. For DeepFashion
dataset, following [31], we randomly sample 25,752 images from 3,997 categories
for training and use the other 26,960 images with 3,984 categories for testing.

Metrics. The performances of face clustering methods are evaluated using two
commonly used clustering metrics, Pairwise F-score (FP ) [3] and BCubed F-
score (FB) [1]. Both metrics are reflections of precision and recall.

Implementation Details. Our similarity prediction model consists of one
transformer encoder layer [26] as F and an MLP. The input feature dimen-
sion, feedforward dimension, number of heads for F are set to 256, 2048, 8,
respectively. LayerNorm [2] is applied before Multi-head Attention module and
Feed Forward module in F , according to [30]. Dropout is set to 0.2. The MLP
consists of three linear layers (512 → 256, 256 → 128, 128 → 1) with ReLU as
the activation function for the first two layers and Sigmoid for the last layer.
Adam [11] is used for optimization. For the computation of NDDe, we set the
number of top nearest neighbors K to 80 for MS1M and 10 for DeepFashion
(the same as previous works [14,31]). Convergence threshold ϵ is set to 0.05.
Connecting threshold τ is searched within the range of [0.5, 0.9] with a step of
0.05 on MS1M 584K dataset, and is fixed to 0.7 for all experiments.

5.2 Method Comparison

We compare the proposed method with a series of clustering baselines, includ-
ing both traditional methods and learning-based methods. Traditional methods
include K-means [18], HAC [24],DBSCAN [6], and ARO [20]. Learning-based
methods include CDP [33], L-GCN [29], LTC [32], GCN (V+E) [31], Clus-
former [19], Pair-Cls [14], STAR-FC [23], and Ada-NETS [28]. Since NDDe and
TPDi can be incorporated into existing face clustering methods for better per-
formance, we also incorporate them into GCN (V+E), Pair-Cls, and STAR-FC
by using the three methods to obtain the transition matrix P , which are denoted
as GCN(V+E)++, Pair-Cls++, and STAR-FC++, respectively.
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Table 1. Comparison on MS1M dataset when training with 0.5M labeled face images
and testing on five test subsets with different numbers of unlabeled face images. FP and
FB are reported. GCN(V+E)++, Pair-Cls++ and STAR-FC++ denote incorporating
NDDe and TPDi into the corresponding methods. + shows the improvements after
using NDDe and TPDi. The best results are highlighted with bold.

#Images 584K 1.74M 2.89M 4.05M 5.21M
Method / Metrics FP FB FP FB FP FB FP FB FP FB

K-means [18] 79.21 81.23 73.04 75.20 69.83 72.34 67.90 70.57 66.47 69.42
HAC [24] 70.63 70.46 54.40 69.53 11.08 68.62 1.40 67.69 0.37 66.96
DBSCAN [6] 67.93 67.17 63.41 66.53 52.50 66.26 45.24 44.87 44.94 44.74
ARO [20] 13.60 17.00 8.78 12.42 7.30 10.96 6.86 10.50 6.35 10.01
CDP [33] 75.02 78.70 70.75 75.82 69.51 74.58 68.62 73.62 68.06 72.92
L-GCN [29] 78.68 84.37 75.83 81.61 74.29 80.11 73.70 79.33 72.99 78.60
LTC [32] 85.66 85.52 82.41 83.01 80.32 81.10 78.98 79.84 77.87 78.86
GCN(V+E) [31] 87.93 86.09 84.04 82.84 82.10 81.24 80.45 80.09 79.30 79.25
Clusformer [19] 88.20 87.17 84.60 84.05 82.79 82.30 81.03 80.51 79.91 79.95
Pair-Cls [14] 90.67 89.54 86.91 86.25 85.06 84.55 83.51 83.49 82.41 82.40
STAR-FC [23] 91.97 90.21 88.28 86.26 86.17 84.13 84.70 82.63 83.46 81.47
Ada-NETS [28] 92.79 91.40 89.33 87.98 87.50 86.03 85.40 84.48 83.99 83.28

GCN(V+E)++ 90.72 89.28 86.06 84.36 85.97 84.24 84.76 83.10 83.69 82.26
Pair-Cls++ 91.70 89.94 88.17 86.50 86.49 84.76 85.25 83.50 83.74 82.61
STAR-FC++ 92.35 90.50 89.03 86.94 86.70 85.16 85.38 83.93 83.94 82.95

Ours 93.22 92.18 90.51 89.43 89.09 88.00 87.93 86.92 86.94 86.06

Results on MS1M. Experimental results on MS1M dataset are shown in Ta-
ble 1, which contains both FP and FB on five test subsets with different scales.
We can observe that 1) Our method consistently outperforms the other methods
in terms of both metrics, especially for large-scale subsets, e.g ., the improvements
of our method on 4.05M and 5.21M subsets are more than 2.5%. 2) By incor-
porating NDDe and TPDi into GCN (V+E), Pair-Cls and STAR-FC, their ++
versions achieve better clustering performance than the original versions, e.g .,
compared to GCN (V+E), the performance gains brought by GCN(V+E)++
are more than 3% on large-scale test subsets, which demonstrates that NDDe
and TPDi can raise the performance of other methods to a new state-of-the-art.

Results on Hard Clusters. To demonstrate that our method is capable of
tackling the issues of small clusters and sparse clusters, we conduct experiments
by adding NDDe and TPDi one by one to our baseline model, i.e., the model
with the same transition matrix but the density and distance computed in the
standard way. As shown in the last three rows in Table 2 and Table 3, both
NDDe and TPDi have raised the performance of the baseline model to a new
level, especially on hard clusters.

We also reproduce GCN(V+E), Pair-Cls and STAR-FC for comparison, all
of which employ a clustering algorithm just as or similar to DPC, as shown in the
first two rows in Table 2 and Table 3. It is worth noticing that the improvements
brought by our method over the three top-performing methods keep increasing
on five cluster subsets with descending size or ascending sparsity. As shown in
Figure 6(a)(b), the improvements of our method in terms of Pairwise recall are
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Fig. 6. (a) and (b) show Pairwise precision and recall of three baselines and our method.
Significant improvements of our method in terms of recall can be observed. (c) ROC
curves of the three baselines and our method. (d) Optimal threshold τ for the five test
subsets of MS1M dataset.

more significant than Pairwise precision. All the experimental results show the
success of our method in mitigating hard clusters, owing to NDDe and TPDi.

The Superiority of TPDi. Figure 6(c) shows the receiver operating character-
istic (ROC) curves of three top-performing methods and ours, which are obtained
by computing true/false positive rate at various distance threshold settings. Our
method achieves the highest Area Under Curve (AUC), which illustrates that
TPDi endows our method with a good measure of separability. To show that
by using TPDi, our method can yield efficient face clustering with a uniform

Table 2. The effectiveness of NDDe and TPDi. FP and FB of five cluster subsets
from MS1M 5.21M with descending size (from sz-1 to sz-5) are reported. + shows the
improvement of our method over the three top-performing methods.

sz-1 sz-2 sz-3 sz-4 sz-5 total
FP FB FP FB FP FB FP FB FP FB FP FB

GCN(V+E) 89.06 90.52 84.52 84.81 75.17 75.84 61.28 63.03 44.15 52.49 78.77 79.08
Pair-Cls 90.02 90.65 86.03 86.20 80.21 80.80 72.37 73.72 59.28 65.30 82.19 81.63
STAR-FC 90.47 91.13 85.75 86.11 78.35 78.78 66.49 67.44 46.65 51.21 83.74 82.00

Baseline 57.54 63.45 52.39 55.89 43.84 47.62 37.84 41.77 34.67 42.23 41.49 50.76
+NDDe 83.67 86.06 78.38 78.95 69.63 70.28 60.19 61.49 49.85 54.53 72.47 74.39
+TPDi(Ours) 92.35

+1.88
93.18
+2.05

89.88
+3.85

89.91
+3.71

85.08
+4.87

85.28
+4.48

78.35
+5.98

79.19
+5.47

65.56
+6.28

71.33
+6.03

86.94
+3.20

86.06
+4.06

Table 3. The effectiveness of NDDe and TPDi. FP and FB of five cluster subsets from
MS1M 5.21M with ascending sparsity (from sp-1 to sp-5) are reported. + shows the
improvement of our method over the three top-performing methods.

sp-1 sp-2 sp-3 sp-4 sp-5 total
FP FB FP FB FP FB FP FB FP FB FP FB

GCN(V+E) 94.63 94.66 92.73 91.52 87.47 85.13 77.44 73.09 53.99 45.95 78.77 79.08
Pair-Cls 95.52 95.24 93.22 92.46 89.24 87.66 81.84 78.84 62.73 57.51 82.19 81.63
STAR-FC 96.18 95.27 92.92 91.50 88.50 85.96 80.78 76.54 60.81 53.56 83.74 82.00

Baseline 63.16 63.84 62.23 62.95 57.32 58.09 49.19 50.20 32.98 35.48 41.49 50.76
+NDDe 92.30 91.00 87.47 85.70 82.11 79.30 72.69 69.97 52.53 51.17 72.47 74.39
+TPDi(Ours) 97.25 96.96 95.10 94.59 92.24 91.08 86.23 84.23 69.08 64.83 86.94 86.06
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Fig. 7. Top-20 images ranked by distance, using an image in hard clusters as probe.

connecting threshold τ , we conduct experiments using different τ (from 0.5 to
0.9, with a step of 0.05) on all the test subsets of MS1M dataset, as shown in
Figure 6(d). It can be observed that the best τ is the same for test subsets with
varying scales. To be specific, given τ = 0.7, our method consistently achieves
the highest FP on all test subsets. Figure 7 shows the discovery results of sev-
eral methods with the image in the first column as a probe, and the images are
ranked in ascending order of distance. We can observe that the discovery result
of our method contains the most number of positive images.

Table 4. Comparison on DeepFashion dataset.
#Clusters, FP , FB and computing time are
reported. + shows the improvement of our
method over others.
Method #Clusters FP FB Time

K-means [18] 3991 32.86 53.77 573s
HAC [24] 17410 22.54 48.7 112s
DBSCAN [6] 14350 25.07 53.23 2.2s
ARO [20] 10504 26.03 53.01 6.7s
CDP [33] 6622 28.28 57.83 1.3s
L-GCN [29] 10137 28.85 58.91 23.3s
LTC [32] 9246 29.14 59.11 13.1s
GCN(V+E) [31] 6079 38.47 60.06 18.5s
Pair-Cls [14] 6018 37.67 62.17 0.6s
STAR-FC [23] - 37.07 60.60 -
Ada-NETS [28] - 39.30 61.05 -

Ours 8484 40.91 63.61 4.2s

Results on DeepFashion. For
DeepFashion dataset, clustering
task is much harder since it is
an open set problem. It can be
observed that our method also
uniformly outperforms the other
methods in terms of both FP and
FB with comparable computing
time, as shown in Table 4.

5.3 Ablation Study

To demonstrate the effectiveness
of NDDe and TPDi, we conduct
an ablation study on MS1M 5.21M dataset, as shown in Table 5. All these four
methods use the same transition matrix as described in Section 4.1. M1 is our
baseline model, which uses the standard density and cosine distance. M2 is ob-
tained by replacing the cosine distance in M1 with TPDi, M3 is obtained by re-
placing the standard density in M1 with NDDe, and M4 is the proposed method
using both NDDe and TPDi as the density ρ and distance (dij)N×N required by
DPC. Table 5 shows that both NDDe and TPDi contribute to the final clustering
performance. And the improvement brought by NDDe is more significant, which
illustrates that NDDe is essential for the success of our method.

5.4 Face Recognition



14

Table 5. Ablation study of NDDe and TPDi on MS1M. FP and FB are reported.

NDDe TPDi
584K 1.74M 2.89M 4.05M 5.21M

FP FB FP FB FP FB FP FB FP FB

M1 53.03 56.75 47.80 53.84 45.07 52.41 43.29 51.56 41.49 50.76

M2 ! 61.07 59.81 59.29 58.26 58.66 57.40 58.37 57.00 57.88 56.48

M3 ! 82.98 80.33 78.79 77.87 76.32 76.42 74.08 75.28 72.47 74.39

M4 ! ! 93.22 92.18 90.51 89.43 89.09 88.00 87.93 86.92 86.94 86.06

Fig. 8. Rank-1 face identification accuracy on
MegaFace with 1M distractors. The X-axis in-
dicates the ratio of unlabeled to labeled data.

To further show the potential of our
method in scaling up face recogni-
tion systems using large-scale un-
labeled face images, we use our
method to generate pseudo-labels
for unlabeled face images and use
them to train face recognition mod-
els. For a fair comparison, we adopt
the same experimental setting as
in [23,32,31]. We use a fixed num-
ber of labeled data and different ra-
tios of unlabeled data with pseudo-
labels to train face recognition
models and test their performance
on MegaFace benchmark [10] tak-
ing the rank-1 face identification accuracy with 1M distractors as metric. In
Figure 8, the upper bound is trained by assuming all unlabeled data have ground-
truth labels, and the other five curves illustrate that all the methods benefit from
an increase of the unlabeled data with pseudo-labels. And it can be observed
that our method consistently achieves the highest performance given any ratio
of unlabeled data, and improves the performance of the face recognition model
from 58.20% to 80.80%, which is the closest to the upper bound.

6 Conclusion

In this paper, we point out a key issue in face clustering task—the low recall of
hard clusters, i.e., small clusters and sparse clusters. We find the reasons behind
this are 1) smaller clusters tend to have a lower density, and 2) it is hard to set
a uniform (distance) threshold to identify the clusters of varying sparsity. We
tackle the problems by proposing two novel modules, NDDe and TPDi, which
yield the size-invariant density and the sparsity-aware distance, respectively. Our
extensive ablation study shows that each of them contributes to improving the
recall on hard clusters, consistently on multiple face clustering benchmarks.
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