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ABSTRACT
Video transformer naturally incurs a heavier computation burden
than a static vision transformer, as the former processes 𝑇 times
longer sequence than the latter under the current attention of qua-
dratic complexity (𝑇 2𝑁 2). The existing works treat the temporal
axis as a simple extension of spatial axes, focusing on shortening
the spatio-temporal sequence by either generic pooling or local
windowing without utilizing temporal redundancy.

However, videos naturally contain redundant information be-
tween neighboring frames; thereby, we could potentially suppress
attention on visually similar frames in a dilated manner. Based on
this hypothesis, we propose the LAPS, a long-term “LeapAttention”
(LA), short-term “Periodic Shift” (P-Shift) module for video trans-
formers, with (2𝑇𝑁 2) complexity. Specifically, the “LA” groups long-
term frames into pairs, then refactors each discrete pair via atten-
tion. The “P-Shift” exchanges features between temporal neighbors
to confront the loss of short-term dynamics. By replacing a vanilla
2D attention with the LAPS, we could adapt a static transformer
into a video one, with zero extra parameters and neglectable compu-
tation overhead (∼2.6%). Experiments on the standard Kinetics-400
benchmark demonstrate that our LAPS transformer could achieve
competitive performances in terms of accuracy, FLOPs, and Params
among CNN and transformer SOTAs. We open-source our project
in https://github.com/VideoNetworks/LAPS-transformer .

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding.
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Video classification; Transformer; Shift; Leap attention
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(a) Video Tensor (b) Leap Attention

(c) Plain Temporal Shift (d) Periodic Shift

Figure 1: Manipulations on tensor. (a) None; (b) Leap Atten-
tion: pairing frames with long-term temporal steps; (c). Plain
Temporal Shift; (d) Periodic Shift: shifting features with pe-
riodicity. 𝐷,𝑚, 𝑧,� denotes total dim, number of heads, dim
per head and zeros padding. Features of same hue originates
from the same attention head 𝑴 {1,2,3} . (The figure is best
viewed in color)
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1 INTRODUCTION
Transformers recently swept research areas such as NLP [49], vi-
sion [10], and video understanding [1] and became the de-facto
standards. However, the transformer inherently contains attention
mechanism of quadratic complexity, thus innating a disadvantage
when dealing with long sequences. This problem is particularly
evident with the video input for having 𝑇 1 longer sequence than
the image (𝑁 ), boosting the attention complexity to (𝑇 2𝑁 2).

1𝑇 refers to the number of frames
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Current video transformers mainly treat the temporal axis as
a simple extension of spatial axes, resorting to generic operators
like pooling [11], local windowing [34], or factorization of spatio-
temporal attention [1] to reduce complexity. However, videos are
temporally redundant. Temporally neighboring frames are gener-
ally similar despite being different in micro details. These details
gradually accumulate into a qualitative change with enough time
evolution. Inspiringly, we suggest avoiding imposing attention on
temporally adjacent frames. Alternatively, we could pair frames
with a long-term skipped step in between and then apply atten-
tion to each pair. This dilated manner would be computationally
economical. We also launch a cost-effective variant of the Shift
operator to capture micro details.

To connect long-term temporal relations, we propose Leap At-
tention. Similar to the dilated convolutions [60], the LA picks frame
pairs with discrete temporal distances for attention inputs. As a
result, the temporal reception field is expanded at a low computa-
tion cost (see Figure 1b). Besides, to equip the LA with multi-scale
temporal reception fields, we loop the skipped step in a multiple
pyramid way according to layer’s depth. We experimentally verify
that the LA could surpass the performance of 2D attention and
approach 3D attention with an economic complexity (2𝑇𝑁 2).

To capture short-term micro variations, we complement the LA
with Periodic Shift. This P-Shift is inspired by the TSM [30], but is
customized according to the multi-head mechanism. Recalling that
channels of CNN feature are generally sourced from an identical
network path, while Multi-Head Self-Attention (MSHA) channels
are generated with a latent periodicity. As𝑚 heads independently
yield sub-channels (𝑧-dim) for a total𝐷-dim output, every 𝑧 out of𝐷
channels originates from the same head. Our P-Shift complies with
this characteristics and periodically shifts each 𝑧-dim sub-feature of
head (Figure 1d). We compare it with a simple copycat named “plain
shift” (Figure 1c) and observe a better experimental performance.

The complete LAPS module is a cascade of the LA and P-Shift
as in Figure 2. It inherits the merit of zero-parameter from both
submodules. Thus, it can flexibly convert a static transformer into
a video one by replacing the 2D attention. Besides, it could directly
load a checkpoint from the 2D pre-training and converge in a few
epochs. Extensive experiments on the standard video benchmark
verify the efficacy, training/inference efficiency, and flexibility. Our
contributions are summarized below:

• Leap Attention adjusts generic spatio-temporal attention
into a dilated manner, thus achieving a high cost-effective for
video transformers. We also adopt a multi-pyramid strategy
to equip the LA with multi-scale temporal reception fields.

• Periodic Shift is customized according to the multi-head
mechanism, which separately imposes a temporal shift on
the output of each attention head. It serves for capturing
short-term micro variations between temporal neighbors,
with a zero-parameter/FLOPs cost.

• LAPS (their cascade) is a zero-parameter, lightweight-FLOPs
attention alternative. It can flexibly replace a generic 2D at-
tention and convert a static vision transformer into a video
one, facilitating the possibility of developing a video trans-
former with strong 2D backbones.

2 RELATEDWORKS
Our work is relevant to research areas in video and image under-
standings. Specifically, the prior covers researches in 3D convolu-
tional networks and video transformers; the latter contains recent
progress like image transformers. We will review them as below.

Convolutional Neural Networks for video understanding
have been extensively studied and widely applied to video-text
pre-training [36], cross-modal analysis [29], video detection [19],
ecommerce [6–8], adversarial attack [4, 53–55], interactive search
[37, 58], retrieval [17, 18, 26, 57, 62, 64, 66], hyperlinking [9, 20, 21,
39], and caption [2, 47, 61], in the CNN era; we select and review
representative 3D-CNNs as follows. C3D [48] is a pure 3D-CNN
pilot based on a new 3D Conv operator and easily outperforms
2D counterparts on video tasks. Then, the I3D [3] increases the
depth of network by migrating 3D convs into inception-net [45],
and is pre-trained on a large-scale video benchmark named Kinetics
to prevent overfitting. To compress parameters and FLOPs, P3D
[40] factorizes 3D convolution kernel into a combination of 2D spa-
tial + 1D temporal kernels. This factorization demonstrates good
efficiency and efficacy, thus gaining popularity in later network
design. DB-LSTM [24] learns long-range video sequences with Bi-
directional LSTM. To further optimize efficiency, TSM [30] adopts
the zero-parameter/FLOP Shift operators for temporal modeling.
Consequently, it could keep the same complexity2 as the 2D back-
bone. Furthermore, TIN [42] and Gate-Shift [44] extend temporal
shift with adaptive steps, which is predicted by sub-networks. Ru-
biksNet [12] further reduces computations by proposing a 3D shift
operator, which learns 3D steps to shift channels along both spatial
and temporal axis. Several works [22, 27, 33, 35, 46, 50] study the
impact of long short-term axial contexts on video tasks. They suc-
cessfully verified that long short-term axial contexts of videos can
be utilized in a squeeze-and-excitationmanner and are beneficial for
content recognition. Small-Big Network [25] proposes to enlarge
the spatial-temporal reception field by paralleling a 3D pooling
branch on par with convolutional branches, balancing efficiency
and efficacy. Non-Local [51] attempt to implant self-attention into
CNNs. Furthermore, CBA-QSA [23] enhances attention with com-
pact bilinear mapping to emphasize local evidence for sport clas-
sification. The SlowFast [14] and X3D [13] are SOTAs of 3D-CNN.
Specifically, the prior is designed into dual-paths form, one path for
semantics and another for motion. The latter relies on searching
hyperparameters (e.g., resolution, channels, depth) from a template
network, optimizing efficiency and efficacy simultaneously.

Image and Video Transformers. Transformers for images and
videos are closely relevant as the latter is often extended from the
prior. We elaborate on recent progress for images first, and then
turn to videos.

Dosovitskiy et. al [10] develops the ViT out of a vanilla language
transformer with a modification on accepting sequential patches
of an image as input. Since the ViT is computationally heavy, later
efforts are devoted to efficiency optimization. For example, Swin
[32] replaces global attention with a local windowed one for re-
ducing the length of tokens. Similar in spirit, the MViT [11] turns
to pooling for length shrinking. The rest works develop hybrid

2In terms of model parameters and FLOPs per frame
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models, such as CMT [16], Visformer [5], CvT [56] and ResT [65],
utilizing efficient convolutions for optimization.

Video transformer often contains an extra temporal module than
the image one. [1] introduces factorization on 3D attention, which
decomposes spatio-temporal attention into a combination of spatial
and temporal attention as P3D. VTN in [38] extracts per-frame fea-
ture, using 2D-CNN or vision transformer, and then refines these
features with a stack of temporal attention encoders. [63] verify
that the Shift operator is still valid for a ViT backbone on video
tasks. Moreover, Video Swin [34], and MViT for video are directly
extended from corresponding 2D transformers by inflating 2D win-
dowing/pooling to 3D ones. There is also attention-free pilot, such
as MLP-3D [41] that optimizes efficiency for video understanding.

3 METHOD
An overview of the Leap Attention with Periodic Shift (LAPS) en-
coder is presented in Figure 2. The LAPSmainly modifies the vanilla
2D Self-Attention from the following two perspectives: (1). Leap
Attention for imposing attention on frame pairs with a long-term
skipped step; (2). Periodic Shift for exchanging features between
short-term adjacent frames. We illustrate the detailed pipeline of
the LAPS video transformer as below.

A video 𝒗 ∈ R𝑇×𝐻×𝑊 ×3 is gridly divided into a sequential ten-
sor 𝒗̃ ∈ R𝑇×𝑁×𝑑 , where 𝑇,𝐻/𝑊, 𝑃 separately denotes clip-length,
height/width and patch-size. 𝑁 = 𝐻 ·𝑊

𝑃2 and 𝑑 = 𝑃2 · 3 represents
amount of patches (also known as tokens) and RGB pixels of a
patch.

The sequential tensor 𝒗̃ is then embedded into 𝐷-dimensional
space as in Equation 1. Hereby, function 𝑓𝑒𝑚 (·) can be achieved by
either a single-layer linear projection or a stack of convolutions.
Notably, we follow the trend in [5] and [56] whom adopt a stack of
convolutions for 𝑓𝑒𝑚 (·) and remove extra [Class] token on vision
tasks.

𝑿0 = 𝑓𝑒𝑚 (𝒗̃) (1)

𝑿0 ∈ R𝑇×𝑁×𝐷

The video tensor 𝑿0 is then fed through several encoders for
representation learning.

3.1 LAPS Encoder
Our video transformer consists of 𝐿 identical LAPS encoders, each
encoder (Figure 2) contains a LAPS module for spatial-temporal
relation modeling and a Multi-Layer Perceptron (MLP) for feature
mapping. The function 𝑓𝑙𝑎𝑝𝑠 (·) and 𝑓𝑚𝑙𝑝 (·) separately represents
the LAPS and MLP module.

˜𝑿𝑙−1 = 𝑓𝑙𝑎𝑝𝑠 (𝑿𝑙−1) + 𝑿𝑙−1 (2)

𝑿𝑙 = 𝑓𝑚𝑙𝑝 (˜𝑿𝑙−1) + ˜𝑿𝑙−1 (3)

𝑿𝑙/𝑙−1, ˜𝑿𝑙/𝑙−1 ∈ R𝑇×𝑁×𝐷

𝐷 =𝑚 × 𝑧, 𝑙 ∈ [1, 2, · · · , 𝐿]

Hereby, 𝐷,𝑚, 𝑧 represent the total dimensions of MSHA, number
of heads, and dimensions per head.

The LAPS module 𝑓𝑙𝑎𝑝𝑠 (·) contains two sub-modules: Leap At-
tention (LA) and Periodic Shift (P-Shift). The prior serves to model

long-term temporal relations between paired frames at a distance;
the latter servers to capture short-term variation between adjacent
frames. We leave the detailed presentation of LA and P-Shift in
Section 3.2 & 3.3.

The MLP shares a similar process as it in the vanilla ViT. It con-
tains two layers of linear projection with a GELU activation in be-
tween. For simplicity, we implement linear projection in (Conv-1×1)
form.

𝑓𝑚𝑙𝑝 (˜𝑿𝑙 ) = 𝐶𝑜𝑛𝑣

(
𝐺𝐸𝐿𝑈

(
𝐶𝑜𝑛𝑣

(
˜𝑿𝑙

)))
(4)

The Prediciton Layer works on the output ˜𝑿𝐿 ∈ R𝑇×𝑁×𝐷

from the last encoder. We firstly apply spatial average pooling for
per-frame prediction, then average scores across timeline for clip-
level prediction, hereby, 𝐹𝐶 (·) denotes linear projection of shape
“𝐷× Categories”.

𝒄 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (˜𝑿𝐿) (5)

𝒚 =
1
𝑇

𝑇∑︁
𝑖=1

𝐹𝐶 (𝒄) (6)

𝒚 ∈ R𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 , 𝒄 ∈ R𝑇×𝐷

3.2 Leap Attention
The Leap Attentionmodule is inspired by the success ofDilated Con-
volution [60] in the CNN era. Common 2/3D transformers impose
attention on continuous receptive field; we propose to compute
self-attention on discrete temporal frame pairs. With the dilated
strategy, we could enlarge the temporal receptive field of the atten-
tion with a neglectable computational overhead.

The LA contains two phases: Grouping frames into pairs and
Imposing attention on each pair. We firstly illustrate the strategy
of skipped pariwising as below.

Pick the 𝑖-th sub-tensor 𝑴𝑖 ∈ R𝑇×𝑁×𝑧 , which would be fed
into the 𝑖-th attention head, out of input tensor 𝑿 ∈ R𝑇×𝑁×(𝑚×𝑧 ) .
Hereby,𝑚 denotes the total number of attention heads. The 𝑸, 𝑲, 𝑽
tensors are linear projected from 𝑴𝑖 as below:

𝑸,𝑲 , 𝑽 = 𝑴𝑖 × [𝑾𝒒,𝑾𝒌 ,𝑾𝒗] (7)

𝑸, 𝑲, 𝑽 ∈ R𝑇×𝑁×𝑧 , 𝑾𝒒,𝒌,𝒗 ∈ R𝑧×𝑧

We need two temporal index lists 𝐴 and 𝐵 to align frames into
pairs. Specifically, we separate the temporal indexes [0, 1, 2, · · · ,𝑇 − 1]
into two sorted lists 𝐴 and 𝐵, under a condition:

𝐵 −𝐴 =

[
𝑆, 𝑆, · · · , 𝑆︸      ︷︷      ︸

]
𝑇
2

(8)

Frames with temporal index (𝐴[ 𝑗], 𝐵 [ 𝑗]) are paired, where 𝑗 =

[0, 1, · · · , 𝑇2 ]. Hereby, 𝑆 denotes the temporal skipped step. For ex-
ample in Figure 3a, when𝑇=8 and 𝑆=4, then,𝐴=[0, 1, 2, 3],𝐵=[4, 5, 6, 7],
the alignment of pairs will be: (0,4), (1,5), (2,6), (3,7).

We further split 𝑸, 𝑲, 𝑽 into two sub-tensors according to tem-
poral indexes 𝐴 and 𝐵:

𝑸{𝑨 or𝑩} , 𝑲{𝑨 or𝑩} , 𝑽{𝑨 or𝑩} ∈ R
𝑇
2 ×𝑁×𝑧
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Figure 2: An overview of LAPS Encoder. Compared with vanilla Multi-Head Self-Attention, the LAPS contains a Leap Attention
and Periodic Shift module, separately for modeling long-term interaction between frames at a distance and short-term variation
within adjacent frames.

The 𝑸𝑨, 𝑲𝑨, 𝑽𝑨 and 𝑸𝑩, 𝑲𝑩, 𝑽𝑩 are concatenated along the 2-nd
axis to align frame 𝑡 and 𝑡 + 𝑆 into pairs.

̂𝑸 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑸𝑨,𝑸𝑩) (9)
̂𝑲 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑲𝑨,𝑲𝑩) (10)
̂𝑽 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑽𝑨, 𝑽𝑩) (11)

̂𝑸, ̂𝑲 ,̂𝑽 ∈ R
𝑇
2 ×(2𝑁 )×𝑧

We then perform attention on each frame pair (along the 2-nd
red axis), which contains 2𝑁 tokens:

̂𝑴𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
̂𝑸, ̂𝑲
√
𝑧

)
̂𝑽 (12)

We reverse the skip pairwsing procedure and restore the ̂𝑴𝑖 to
original chronological temporal order ˜𝑴𝑖 based on index lists 𝐴
and 𝐵:

̂𝑴𝑖 ∈ R
𝑇
2 ×(2𝑁 )×𝑧 → ˜𝑴𝑖 ∈ R𝑇×𝑁×𝑧 (13)

The outputs from𝑚 heads are concatenated as ˜𝑿 :

˜𝑿 = 𝐶𝑜𝑛𝑐𝑎𝑡 ( ˜𝑴1, ˜𝑴2, · · · , ˜𝑴𝑚) (14)
˜𝑿 ∈ R𝑇×𝑁×𝐷 , 𝐷 =𝑚 × 𝑧

The Pyramid Skipping aims to connect frames with various
distances into pairs, therefore facilitating the LA to have multi-scale
temporal receptive fields. Specifically, we define the skip step 𝑆 by
Equation (15) concerning pyramid level 𝑅.

𝑆 =
𝑇

2𝑅
(15)

Alignment of temporal pairs with respect to pyramid level𝑅 = 1, 2, 3
is shown in Figure 3a-3c. Since a transformer contains 𝐿 amounts of
LAs (residing in each encoder), we loop pyramid level 𝑅 by values

Algorithm 1: Leap Attention

Input: video tensor 𝑿 ∈ R𝑇×𝑁×(𝑚×𝑧 ) , pyramid-level 𝑅
Output: video tensor ˜𝑿 ∈ R𝑇×𝑁×(𝑚×𝑧 ) refactor from

skipped neighbors
1 Let temporal skip step 𝑆 = 𝑇

2𝑅
2 for i = 1 to m do
3 Select the 𝑖-th head 𝑴𝑖 ∈ R𝑇×𝑁×𝑧 from 𝑿 .
4 Generate 𝑸,𝑲 , 𝑽 ∈ R𝑇×𝑁×𝑧 from 𝑴𝑖

5 Init index list 𝐴 and 𝐵 = [∅]
6 for t=1 to T do
7 if 𝑡 ∉ {𝐴 ∪ 𝐵} then
8 Add 𝑡 to set 𝐴: 𝐴 = 𝐴 ∪ {𝑡}
9 Add 𝑡 + 𝑆 to set 𝐵: 𝐵 = 𝐵 ∪ {𝑡 + 𝑆}

10 end
11 end
12 Sort A and B in ascending order
13 Select sub-tensor by 𝐴: 𝑸/𝑲/𝑽𝑨 ∈ R

𝑇
2 ×𝑁×𝑧 .

14 Select sub-tensor by 𝐵: 𝑸/𝑲/𝑽𝑩 ∈ R
𝑇
2 ×𝑁×𝑧 .

15 Concate over 2-nd axis: ̂𝑸/̂𝑲/̂𝑽 ∈ R
𝑇
2 ×(2𝑁 )×𝑧

16 Perform attention over 2-nd axis (2𝑁 tokens):

̂𝑴𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
̂𝑸̂𝑲√
𝑧

)
̂𝑽

17 Restore chronological order based on list 𝐴, 𝐵:
̂𝑴𝑖 ∈ R

𝑇
2 ×(2𝑁 )×𝑧 → ˜𝑴𝑖 ∈ R𝑇×𝑁×𝑧

18 end
19 Concate𝑚 heads outputs ˜𝑴𝑖 into ˜𝑿 .
20 return ˜𝑿 ∈ R𝑇×𝑁×(𝑚×𝑧 )

[1, 2, 3]. We also present the complete pipeline of “leap attention”
in Algorithm 1.
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(a) 𝑅 = 1 (b) 𝑅 = 2 (c) 𝑅 = 3

Figure 3: Given a video tensor of 𝑇 frames, the skip steps of
pyramid 𝑅 = 1/2/3 range from: [𝑇2 ,

𝑇
4 ,

𝑇
8 ]. (The figure is best

viewed in color)

Complexity Analysis. We theoretically compare complexities
between the LA, 2D, and 3D attentions. Supposing that a clip con-
tains 𝑇 frames, with 𝑁 tokens per frame, we then separate frames
into 𝑔 groups and apply attention to each group. The total complex-

ity will be 𝑔 ×
(
𝑇
𝑔 × 𝑁

)2
=𝑇

2𝑁 2

𝑔 . This complexity will be: (1). 𝑇𝑁 2

with 2D attention, when 𝑔=𝑇 ; (2). 2𝑇𝑁 2 with the LA, when 𝑔=𝑇2 ; (3).
𝑇 2𝑁 2 with 3D attention, when 𝑔=1. Overall, the LA introduces a
small overhead to 2D attention while being obviously more efficient
than 3D attention.

3.3 Periodic Shift
The P-Shift is inspired by the Temporal Shift Module (TSM) [30],
originally designed for capturing short-term temporal dynamics in
CNNs, but specially adjusted according to the multi-head mecha-
nism of the transformer.

Recalling the output of multi-head attention is ˜𝑿 ∈ R𝑇×𝑁×𝐷

(Equation (14)), where 𝐷-dimentional feature is concatenated from
𝑚 amount of 𝑧-dimentional sub-feature, namely 𝐷 =𝑚 × 𝑧.

Periodic Shift (P-Shift) uniformly processes the sub-feature
from each head. Specifically,𝐷 channels are firstly decomposed into
𝑚 × 𝑧 shape; then each 𝑧-channels are split into three 𝒑𝑎

′
,𝒑𝑏

′
,𝒑𝑐

′

parts:

˜𝑿 =

[
𝒑𝑎

′
,𝒑𝑏

′
,𝒑𝑐

′ ]
𝒑{𝑎′,𝑏′,𝑐′ } ∈ R𝑇×𝑁×𝑚×{𝑎′,𝑏′,𝑐′ }

𝑎′ + 𝑏′ + 𝑐′ = 𝑧

The shift operation is conducted on of 𝒑𝑎
′
,𝒑𝑏

′
part, while keep-

ing 𝒑𝑐
′
unchanged (Figure 1d). The 𝑡, 𝑖, 𝑢, 𝑗 denotes indices for tem-

poral, spatial, attention head, and dim (per head) axis. The “⇐”
denotes assignment operation.

𝒑𝑎
′

(𝑡,𝑖,𝑢,𝑗 ) ⇐ 𝒑𝑎
′

(𝑡−1,𝑖,𝑢,𝑗 ) , 0 ≤ 𝑗 ≤ 𝑎′ (16)

𝒑𝑏
′

(𝑡,𝑖,𝑢,𝑗 ) ⇐ 𝒑𝑏
′

(𝑡+1,𝑖,𝑢,𝑗 ) , 0 ≤ 𝑗 ≤ 𝑏′ (17)

𝒑𝑐
′

(𝑡,𝑖,𝑢,𝑗 ) ⇐ 𝒑𝑐
′

(𝑡,𝑖,𝑢,𝑗 ) , 0 ≤ 𝑗 ≤ 𝑐′ (18)

0 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑢 ≤ 𝑚

Plain Temporal Shift directly inherits the original TSM by
splitting 𝐷 channels into three parts:

˜𝑿 =

[
𝒑𝑎,𝒑𝑏 ,𝒑𝑐

]
𝒑{𝑎,𝑏,𝑐 } ∈ R𝑇×𝑁×{𝑎,𝑏,𝑐 }

𝑎 + 𝑏 + 𝑐 = 𝐷

where the split 𝒑𝑎/𝒑𝑏 are shift with prior/post time-stamps along
the temporal axis. The split 𝒑𝑐 remains unchanged as in Figure 1c.

Figure 1 shows that the P-Shift is less biased than the plain shift
in manipulating features from different heads, thus resulting in
better performances.

4 EXPERIMENTS
We evaluate the LAPS-Former on the below standard benchmarks
in terms of Top-1/5 accuracy, GFLOPs, Params.

Kinetics-400 [3] is a large-scale benchmark for video classifi-
cation. It defines 400 categories on ∼246k/20k training/validating
clips, with 10 seconds per clip.

UCF-101 [43] serves as a small-scale datasets for classifying
“human-object” interactions and sports. It contains three splits on
101 categories. Follow prior works, we report performance on the
split 1, with 9,537/3,783 train/validation clips. The average clip-
length is 5.8 seconds.

EGTEA Gaze+ [28] is a First-Person-View video dataset cap-
tured by wearable-device in daily life. It covers 106 action categories
defined on 3.1 seconds long video clips. We adopt the split 1, which
contains 8,299/2,022 training/validation clips, for evaluation and
comparison.

4.1 Settings
We implant the LAPS module into Visformer [5] which is pre-
trained on ImageNet data with 10k categories. All experiments
follow the same recipe unless particularly specified. For experi-
ments with variable resolutions and clip-lengths, we linearly scale
the lr according to batch-size as in [15].

Training. Each clip contains 8 frames of 224 × 224 (320 for high
resolutions) shape, with a sampling rate of 8. Augmentations, such
as random resizing, horizontal flipping, and color perturbation (e.g.,
brightness, saturation, and hue), are adopted to reduce overfitting.
The training schedule is set to 18 epochs, decaying lr decayed by
0.1 at the 10/15-th epoch. The shift ratio is fixed to 𝑎

𝐷
, 𝑏
𝐷
, 𝑎

′
𝑧 ,

𝑏′
𝑧 =

1
8

as in TSM.
Inference. We uniformly sample 5 clips from a video, resizing

their short-sides to 224. We then crop three squared sub-clips from
each clip’s “left, center, right” parts. The prediction of a video is
averaged over those of 15 sub-clips.

4.2 Ablation Study
We experimentally study impacts of various temporal operations
(e.g, Plain Shift, 𝑃-Shift and Leap Attention), pyramid combinations,
backbones, clip lengths, and resolutions on the LAPS module.

Leap Attention vs 2/3D Attention. We implement different at-
tentions, such as generic 2/3D and LeapAttentions, in theMSHA. As
in Table 1, the LA easily surpasses 2D attention (75.84% vs 74.00%),
with only 2.6% computational overhead. Though the 3D attention
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Model MSHA GFLOPs Params Top-1
(M) (%)

Base2D 2D Atten 39.1 39.8 74.00
Base3D 3D Atten 46.5 (18.9% ↑) 39.8 76.31

Plain Shift 39.1 39.8 74.86
LAPS P-Shift 39.1 39.8 75.19

LA 40.1 (2.6% ↑) 39.8 75.84
P-Shift + LA 40.1 (2.6% ↑) 39.8 76.04

Table 1: Impacts of temporal modules on LAPS-Former and
Comparisons with 2/3D Attention baselines.

Model Pyramids Skipped Steps Top-1

LAPS R=[3, 3, 3] S=[1/8, 1/8, 1/8] ·𝑇 75.55
R=[2, 2, 2] S=[1/4, 1/4, 1/4] ·𝑇 75.82
R=[1, 1, 1] S=[1/2, 1/2, 1/2] ·𝑇 75.86
R=[1, 2, 3] S=[1/2, 1/4, 1/8] ·𝑇 76.04

Table 2: Comparisons of LAPS-Former under different com-
binatons of skipped steps (pyramids). (Top-1 Accuracy).

(76.31%) performs slightly better than LA, it suffers from a increa-
ment of 18.9% computations. Moreover, combining the LA with
P-Shift (76.04%) approaches the performance of 3D attention, with
much less costs.

Periodic Shift vs plain Shift. To eliminate the influence of
attention, both models adopt simple 2D attention. As is shown
in Table 1, both Shifts (74.86%, 75.19%) outperform 2D Baseline,
verifying the efficacy of implanting the Shift into the attention.
Besides, the P-Shift performs better than the plain counterpart
(75.19% vs 74.86%), showing that output from each head requires to
be equally shiftted.

Notably, our LAPS-Former shares the same amount of parame-
ters as the 2D Baseline, verifying that the LAPS module alone is a
zero-parameter operator.

Pyramid combinations. We test LAPS with various combi-
nations of skipped steps. Since our LAPS transformer contains
eight LAs, we can set an identical or different 𝑆 for them. For
multi-pyramid settings, we loop 𝑅 by values [1, 2, 3] with respect to
the depth of LA. Additionally, a smaller 𝑅 value indicates a larger
skipped step 𝑆 between paired frames (Equation (15)).

Table 2 compares different combinations. We observe that: (1).
The LAs with multiple pyramids (76.04%) outperform single-level
ones. A potential reason is that multi-scale temporal information is
complementary; (2). Among all single levels, precision is positively
correlated with 𝑆 , (when 𝑇

8 → 𝑇
4 → 𝑇

2 , then 75.55% → 75.82% →
75.86%), showing that LA prefers intaking distinct features than
similar ones.

Length of tokens. We study the impact of tokens’ length on
LAPS-Former. Factors like clip length and spatial resolution deter-
mine this length.

Table 3 shows that LAPS benefits from both large temporal/spatial
resolution. Specifically, we observe that: (1) LAPS (B) intakes a
larger spatial resolution (224→320) over origin LAPS, resulting in
a boost of 1.52% top-1 accuracy (76.04%→77.56%); (2) From LAPS

Model Base #F×Res GFLOPs Paras Top-1
T×HW (M) (%)

Base2D Visf 8×2242 39.1 39.8 74.00
LAPS Visf 8×2242 40.1 39.8 76.04
LAPS (B) Visf 8×3202 86.4 40.0 77.56
LAPS (L) Visf 16×3202 173.0 40.0 78.71
LAPS (H) Visf 32×3202 346.0 40.0 79.72
LAPS (E) Visf 32×3602 434.0 40.2 80.03

Base2D RstS 8×2242 16.9 13.4 68.13
LAPS (RS) RstS 8×2242 17.6 13.4 69.72
LAPS (RB) RstB 8×2242 39.3 29.9 71.89
LAPS (RL) RstL 32×3202 595.0 51.2 76.71

Base2D ViT 8×2242 141.0 86.1 76.41
LAPS (VT) ViT 8×2242 146.0 86.1 78.15

Table 3: Impacts of backbone, clip-length and spatial resolu-
tion on LAPS-Former (Top-1 Accuracy).

(B)-(H), precision increases (77.56%→78.71%→79.72%) with the
temporal resolution (8f→16f→32f).

On various backbones. Our LAPS could be flexibly and directly
plugged into backbones with a standard multi-head self-attention
mechanism. We verify this by implanting it into 2D transformers,
such as Visformer [5], ResT [65] and ViT[10]. The ResT and ViT
backbone is separately pre-trained on ImageNet-1k and 22k.

Table 3 also lists performance of LAPS on 2D backbones. Our
LAPS consistently boosts Baseline-2D (68.13% → 69.72% for ResT,
76.41% → 78.15% for ViT) while introducing small/zero extra
GFLOPs or parameters. Besides, the performance is further im-
proved with more encoders, longer clip-length, and larger resolu-
tion.

4.3 Comparison with the State-of-the-Art
In Table 4, we compare LAPS-Former with the current 3D-CNN
and video transformer SOTAs in terms of training/inference effi-
ciency (#Epochs, GFLOPs), model size (Params), precision (Top-1/5
accuracy).

LAPS vs 3D-CNNs. Firstly, like pilot transformers, the LAPS-
Former shows a higher training efficiency (10 times fewer epochs)
than all 3D-CNNs. An extra factor is that LAPS is built from tempo-
ral operators of zero-parameter. Thus, we could directly load model
and resume training from pre-trained weights of 2D tasks. Secondly,
the LAPS achieves better performance than 3D-CNNs, such as Non-
Local (79.72% vs 77.7%, 346G vs 359G) and TSM (76.04% vs 74.7%,
40.1G vs 65G), with less computations. Finally, our LAPS-Former
achieves better performance (80.03%) compared with strong SOTAs
in the CNN era, such as SlowFast (79.8%), X3D (79.1%), with slightly
more computations. The reason is that optimizations for 3D convo-
lutions have been intensively studied and applied in designing. For
instance, the SlowFast adopts 3D convolution decomposition, and
the X3D is automatically searched from a base net.

LAPS vs SOTAs transformer. Our LAPS-Former (78.71%, 173G,
40M) surpasses pilot video transformers, such as TokShift (78.2%,
269.5G, 85.9M), VTN (78.6%, 4.2×103G, 114M) and TimeSformer
(78.0%, 590G, 121.4M) under all metrics. Besides, our model (80.03%)
is slightly lower than strong transformers like Video Swin (80.6%)
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Model Base Pretrain #F×Res GFLOPs×Views Params Training Top-1 Top-5
(𝑇 × 𝐻𝑊 ) (M) Epochs (%) (%)

I3D [3] from [13] InceptionV1 IN-1K 250 × 2242 108× NA 12.0 - 71.10 90.30
Two-Stream I3D [3] from [13] InceptionV1 IN-1K 500 × 2242 216× NA 25.0 - 75.70 92.00
TSM [30] ResNet50 IN-1K 16 × 2562 65.0 × 10 24.3 100 74.70 -
S3D-G [59] InceptionV1 IN-1K 250 × 2242 71.3×NA 11.5 112 74.70 93.40
TEA [27] ResNet50 IN-1K 16 × 2562 70.0 × 30 35.3 50 76.10 92.50
TEINet [33] ResNet50 IN-1K 16 × 2562 66.0 × 30 30.8 100 76.20 92.50
TANNet [35] ResNet50 IN-1K 16 × 2562 86.0 × 12 25.6 100 76.90 92.90
Non-Local R50 [51] from [13] ResNet50 IN-1K 128 × 2562 282.0 × 30 35.3 118 76.50 92.60
Non-Local R101 [51] from [13] ResNet101 IN-1K 128 × 2562 359.0 × 30 54.3 196 77.70 93.30
Small-Big [25] ResNet101 IN-1K 32 × 2242 418.0 × 12 - 110 77.40 93.30
TDN-R50 [50] ResNet50 IN-1K 24 × 2562 108.0 × 30 26.6 100 78.40 93.60
TDN-R101 [50] ResNet101 IN-1K 24 × 2562 198.0 × 30 43.9 100 79.40 94.40
GC-TDN-R50 [22] ResNet50 IN-1K 24 × 2562 110.1 × 30 27.4 100 79.60 94.10
SlowFast 8 × 8 [14] ResNet50 None 32 × 2562 65.7 × 30 - 196 77.00 92.60
SlowFast 16 × 8 [14] ResNet101+NL None 32 × 2562 234.0 × 30 59.9 196 79.80 93.90
X3D-L [13] X2D None 16 × 3562 24.8 × 30 6.1 256 77.50 92.90
X3D-XL [13] X2D None 16 × 3562 48.4 × 30 11.0 256 79.10 93.90

ViT (Video) [63] ViT-B IN-22K 8 × 2242 134.7 × 30 85.9 18 76.00 92.50
TokShift [63] ViT-B IN-22K 16 × 2242 269.5 × 30 85.9 18 78.20 93.80
TokShift (MR) [63] ViT-B IN-22K 8 × 2562 175.8 × 30 85.9 18 77.68 93.55
VTN [38] ViT-B IN-22K 250 × 2242 4218.0 × 1 114.0 25 78.60 93.70
TimeSformer [1] ViT-B IN-22K 8 × 2242 590.0 × 3 121.4 15 78.00 93.70
Video Swin [34] Swin-B IN-1K 32 × 2242 281.6 × 12 88.0 30 80.60 94.60
MViT [11] MViT-B None 64 × 2242 455.0 × 9 36.64 200 81.20 95.10

LAPS Visformer IN-10K 8 × 2242 40.1 × 15 39.8 18 76.04 92.56
LAPS (L) Visformer IN-10K 16 × 3202 173.0 × 15 40.0 18 78.71 93.77
LAPS (H) Visformer IN-10K 32 × 3202 346.0 × 15 40.0 18 79.72 94.08
LAPS (E) Visformer IN-15K 32 × 3602 434.0 × 15 40.2 18 80.03 94.48

Table 4: Comparison to state-of-the-arts on Kinetics-400 Val.

and MViT (81.2%). A possible reason might be they directly learn
of cube’ embeddings in generating video sequences, whereas our
LAPS-Former relies on patch embeddings. Besides, our 2D backbone
(i.e., Visformer) is weaker than Swin and static MViT. However,
the LAPS module still has merits, such as fewer training epochs
and being more flexible than Video Swin and MViT. As our LAPS-
Former can adapt to various backbones, it could potentially take
advantage of newly emerging 2D transformers for 3D modeling.

4.4 Fine-tune on small-scale datasets
We further verify the effectiveness of LAPS on downstream small-
scale video datasets, such as UCF-101 and EGTEA Gaze+ datasets.
We initialize the training phase with pre-trained weight on the
Kinetics-400 datasets to save training time and avoid overfitting.
Their training/inference recipe is almost identical to the Kinetics-
400 datasets, except that the training schedule is separately opti-
mized for both datasets. Specifically, we train 18 epochs, decaying
LR by 0.1 at 10/15-th epoch for UCF-101; whereas for EGTEA-Gaze+,
the total epoch is set to 36, decaying LR by 0.1 at 20/30-th epoch.
Experimental results for UCF-101 and EGTEA-Gaze+ is separately
present in Table 5 and Table 6.

Model Pretrain Res # Frames UCF101
(𝐻 ×𝑊 ) 𝑇 Acc1 (%)

I3D [3] K-400 224 × 224 250 84.50
P3D [40] K-400 224 × 224 16 84.20
Two-Stream I3D [3] K-400 224 × 224 500 93.40
TSM [31] K-400 256 × 256 8 95.90

ViT (Video) [63] IN-22K 256 × 256 8 91.46
TokShift [63] K-400 256 × 256 8 95.35
TokShift-L (HR) [63] K-400 384 × 384 8 96.80
LAPS K-400 224 × 224 8 95.43
LAPS (H) K-400 320 × 320 32 96.85

Table 5: Fine-tune on UCF-101 Split 1 set.

For the UCF-101 dataset, we observe that under a condition of
similar spatial-temporal resolution (𝑇 ×𝐻𝑊 =8 × 2242), our LAPS
achieves competitive accuracy (95.43%) among 3D-CNN and Trans-
former pilots. With more frames and larger spatial resolutions (i.e.,
32 × 3202, LAPS (H) further boosts accuracy to (96.85%), reaching
SOTA performance.

We test the optimal settings for the EGTEA Gaze++ dataset,
where spatial-temporal resolution is 32×3202. We observe the LAPS
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Figure 4: Visualization of Video Exemplars. We test Base2D and LAPS models on the validation set of the Kinetics-400 dataset
and pick video examples with significant improvement. To highlight the impact of temporal relations, we present per-frame
prediction scores and their trend along with clip frames. The solid and dashed line separately denotes predictions from Base2D
and LAPS models. (The figure is best viewed in color)

Model Pretrain Res # Frames EGAZ+
(𝐻 ×𝑊 ) 𝑇 Acc1 (%)

TSM [31] K-400 224 × 224 8 63.45
SAP [52] K-400 256 × 256 64 64.10
ViT (Video) [10] IN-22K 224 × 224 8 62.59

TokShift [63] K-400 224 × 224 8 64.82
TokShift-En* [63] K-400 224 × 224 8 65.08
TokShift (HR) [63] K-400 384 × 384 8 65.77
LAPS (H) K-400 320 × 320 32 66.07

Table 6: Fine-tune on EGTEA-GAZE++ Split-1 dataset. (* indi-
cates using RGB+Optical Flow modalities)

(H) could achieve SOTA performance (66.07%) among transformers
and 3D-CNNs, verifying the robustness and generalization capacity
of the LAPS model.

4.5 Visualization of Exemplars with Significant
Improvement

To verify the impact of the LAPS temporal process, we compare the
Base2D and LAPS model predictions on the validation set of the
Kinetics-400 dataset. As video prediction is averaged over frame-
level predictions (e.g, Eq. 6), we present per-frame prediction of
corresponding category to highlight the impact of the temporal
process. We pick and compare video clips that are poorly predicted
when frames are individually predicted (Base2D), but are corrected
when connecting temporal relations (LAPS). Clip exemplars are
shown in Figure 4.

We observe that: (1) By connecting long, short-term temporal
relations, frame-level predictions are smoother than treating each
frame individually (e.g., clips with “Filling Eyebrows” and “Skipping
Rope”), which is consistent with what we envisioned; (2) The LAPS
module is more robust to failure on particular frames (e.g, 1st/5th
frame of clip “Slackling”), and yield correct video-level prediction.

5 CONCLUSION
We propose a zero-parameter LAPS module for video transformers.
Specifically, the LAPS module is constructed from the Leap Atten-
tion and Periodic Shift sub-modules. It can flexibly replace an image
transformer’s generic 2D attention part with neglectable compu-
tational overhead and convert it into a video transformer. Like
existing video transformers, our LAPS could not intake a very long
video sequence (> 200 frames) in an end-to-end training manner,
even though it is pretty efficient. But the dilated manner in tempo-
ral attention could be extended to the spatial domain to compress
computations further, which will step toward long-video processing
in the future.
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