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Abstract—Program semantics learning is the core and fun-
damental for various code intelligent tasks e.g., vulnerability
detection, clone detection. A considerable amount of existing
works propose diverse approaches to learn the program seman-
tics for different tasks and these works have achieved state-of-
the-art performance. However, currently, a comprehensive and
systematic study on evaluating different program representation
techniques across diverse tasks is still missed.

From this starting point, in this paper, we conduct an empirical
study to evaluate different program representation techniques.
Specifically, we categorize current mainstream code representa-
tion techniques into four categories i.e., Feature-based, Sequence-
based, Tree-based, and Graph-based program representation
technique and evaluate its performance on three diverse and pop-
ular code intelligent tasks i.e., Code Classification, Vulnerability
Detection, and Clone Detection on the public released benchmark.
We further design three research questions (RQs) and conduct
a comprehensive analysis to investigate the performance. By the
extensive experimental results, we conclude that (1) The graph-
based representation is superior to the other selected techniques
across these tasks. (2) Compared with the node type information
used in tree-based and graph-based representations, the node
textual information is more critical to learning the program
semantics. (3) Different tasks require the task-specific semantics
to achieve their highest performance, however combining various
program semantics from different dimensions such as control
dependency, data dependency can still produce promising results.

I. INTRODUCTION

With the booming development of open-source software,
the amount of available code-related data has reached an
unprecedented scale, which inspires researchers from both
academia and the industry to explore employing data-driven
approaches for diverse code-related problems such as type
inference [1]—[3]], clone detection [4]—[6], source code summa-
rization [7]-[10]], code search [11]]-[13]] and software vulnera-
bility detection [[14]-[|16]]. Most of the existing works attempt
to understand the behavior of the program i.e., understand
the program semantics by the well-designed approaches for
different tasks and have achieved promising results. Typi-
cally, we can broadly categorize these data-driven code-related
works into four major categories: Feature-based, Sequence-
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based, Tree-based, and Graph-based representation to learn the
program semantics for different tasks.

Feature-based approach requires the domain knowledge
extracted from the program by the experts to represent the pro-
gram semantics for different tasks. For instance, FLUCSS [|17]]
is designed for fault localization. It incorporated Spectrum
Based Fault Localisation [18]] metric and source code related
metrics to identify the fault in the software. It further per-
formed learning-to-rank with Support Vector Machine [19]]
and Genetic Programming [20]]. Their approach achieved
a performance of 50% Mean Average Precision (MAP) in
ranking software defects. Bhel et al. [21] proposed mining
security bugs from bug reports using TF-IDF [22]] and Naive
Bayes [23] algorithm. They achieved high precision e.g.,
92.56% for detecting the bug report.

Sequence-based representation treats code as a flat sequence
of tokens [24], [25] and converts them into numerical vec-
tors with the distributed representation [26] and further em-
ploys these vectors for diverse tasks. For example, VulDeep-
ecker [27] predicted if a program is vulnerable by learning on
code gadgets. Code gadgets are generated by slicing programs
through the function calls. These code gadgets are then input
into a bi-directional LSTM [28|] for learning whether the
program is vulnerable. They achieved a score of 85.4% in
Fl-score across multiple vulnerability types. Source code
summarization is another popular application of the sequence-
based approach. Hu et al. [29]] aimed to translate source code
into their respective summary. They employed API sequences
and code tokens as the input for an encoder-decoder model
to generate the summary. They achieved 41.98 in BLEU-
4 130] and 18.81 in METEOR |[31]. Since programs are highly
structured data, which can be converted into different structural
representations such as the abstract syntax tree (AST). Many
works attempt to explore this information hidden in the text
for different tasks [32]-[35]]. For instance, code2vec [33]
predicted method name through the path contexts extracted
from the AST of the program and achieved an Fl-score of
58.4%. CDLH [35]] employed tree-based representation to
detect code clones. It employed LSTM in learning an AST-
based representation and hashed them to achieve a unique
vector on each program. CDLH achieved promising results
for Type-3 and Type-4 clone detection.
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Fig. 1: Overview of our empirical study.

The graph-based approaches attempt to embed more struc-
tural information such as data-flow, control-flow rather than
the pure AST into a graph [[7], [8]], [36], [37] to represent the
program semantics. For instance, Allamanis et al. [36]] targeted
at detecting variables that are incorrectly used in a project
and predicting the correct variable. They enhanced AST with
different data flow information by constructing diverse types
of edges among the nodes, such as connecting variable nodes
where the variable was last written to, to achieve a graph-
based representation on the program. Their approach achieved
a high accuracy of 85.5% and 78.2% in finding wrong variable
names on the seen and unseen projects respectively.

Despite different program representation techniques being
widely utilized in learning program semantics for code-related
tasks, currently, there is still a lack of a comprehensive
study on evaluating and discussing the impact of different
code representations across diverse tasks. Many challenges
around code representation are still unsolved: (1) What type
of the above code representation is optimal in the program
scenario or in other words, whether there is an optimal code
representation technique for different tasks? (2) The widely
employed tree-based or graph-based approaches have shown
superiority, however, these data usually contain complicated
structures. For example, each node in AST usually contains
node type and node textual information, whether they are
both beneficial in learning program semantics? (3) The graph-
based representation incorporates diverse program semantics
such as data flow, control flow, data dependency, whether each
component contributes equally to the final performance? Based
on the questions, we aim to answer the following research
questions (RQs) as follows:

o RQ1: Comparison of Feature-based, Sequence-based,
Tree-based and Graph-based Representation.
¢ RQ2: Comparison of Node Embedding Information.
« RQ3: Efficacy of Different Graph Representations.
To answer these questions, we design our study on three pop-
ular and diverse code intelligent tasks: Code Classification,
Vulnerability Detection and Clone Detection with typical

approaches for these representations i.e., SVM, Naive Bayes,
XGBoost for the feature-based representation; LSTM, BiL-
STM, and Transformer for the sequence-based representation;
Code2Vec, Tree-LSTM for the tree-based representation and
Graph Convolution Neural Network (GCN), Graph Attention
Network (GAT) and Gated Graph Neural Network (GGNN) for
the graph-based representation. We further utilize the public
released dataset for the evaluation and employ Joern [38|] for
the unification on code property graph (CPG) construction
for the graph-based representation. Specifically, CPG contains
abstract syntax tree (AST), control flow graph (CFG), control
dependency graph (CDG), and data dependency graph (DDG)
to facilitate investigating each component. By the extensive
experiments (around 1000 GPU hours), we conclude that: (1)
Since graph-based representation incorporates diverse program
semantics, it outperforms other compared representation tech-
niques by a significant margin among the selected tasks. (2)
Both node type and node textual information are beneficial in
capturing program semantics, however, the textual information
is more critical. (3) Different task relies on the task-specific
semantics to achieve the best performance, however, generally,
a composite graph representation with the comprehensive
program semantics can still produce promising results.
In summary, we make the following contributions:

o To the best of our knowledge, this is the first large-scale
empirical study that evaluates different code representa-
tion techniques on diverse popular evaluation tasks.

e We conduct comprehensive experiments and analysis to
investigate the effect of each component in the tree and
graph representation in capturing the program semantics
on different tasks.

« We provide extensive discussions from different aspects
i.e., the learnt space by the different model, the semantic-
preserving operation on the code snippet, and the sta-
tistical analysis of the program features on the pre-
dicted samples to illustrate the capacity and limitation
of different representation techniques. We release our
source code and data at https://github.com/jingkai92/


https://github.com/jingkai92/learning-program-representation

Source code Feature-based Models

TABLE I: Statistics of Dataset.

Handcrafted l___“““""_._""""““““““““
int foo(int a) ( " Feaures | SVM |[NaiveBayes| xGBoost] Dataset | # of Samples # of Classes
int ¢ = 1; Sequence-based Models —
int b = a + c; Token = Training 28622
if (b > 0) { Sequence  [sT™]BiLsT™|[Transformer| | Online Judge (OT) | Validation 3581 104
veturn bi . TeebasedModel Tesing 3628
} —Wi ] Tree-LSTM \ ] Code2Vec \ Training 38526
return -1; " Graph-based Models Devign Validation 4815 2
} T/ r— Testin 4817
COdeGProEerty: | GAT | [ GeN | [ GGNN ! £
rap Training 40000
Fig. 2: Techniques on Code Representation. OJClone Vfl‘,lés&t]l;n 2888 2

learning-program-representation| for the reproduction.

II. OVERVIEW

An overview of our study is shown in Fig. [I] In this
study, we aim to answer the effectiveness of different code
representations (Section for different tasks (Section[[I-A)
on the public released benchmark. We categorize current state-
of-the-art code representation techniques into feature-based,
sequence-based, tree-based, and graph-based code representa-
tion and design RQ1-RQ3 (Section for the investigation.

A. Evaluation Tasks

We select three diverse tasks i.e., code classification [5]],
clone detection [5] and vulnerability detection [14] for our
study. We selected these tasks based on two reasons: (1)
These tasks can effectively evaluate the semantic, lexical,
syntactic information that is on the comparing evaluations. For
instance, control dependency and data dependency are crucial
in detecting vulnerabilities as the data flow of variables can
indicate wrongful usage of variables [27]. Lexical information
is important for clone detection as programs that uses the
same tokens might be more likely to be cloned. A code
representation that performs well in all three evaluating tasks
infers that the representation can learn better semantic, lexical,
and syntactic information. (2) The three evaluating tasks are
popular in the software engineering domains. We collected
the number of publications, in recent years in top leading
conferences, e.g., ASE, ICSE, NeurIPS. We discovered that
there are at least two, five, and four publications that are
relevant to source code classification, vulnerability detection,
and clone detection. This shows that our evaluating tasks are
popular and important.

Code Classification. Code classification aims to classify the
code fragments by their functionalities. which is vital for
program understanding. Given a program, code classification
aims to identify which category it belongs to from a category
set. We employ OJ dataset [39]], a C Programming Language
dataset, for code classification. The dataset contains 52,000
programs that are classified into 104 classes and each class
performs a high-level operation, such as reversing an integer
or finding minimum/maximum words from an array of words.
Clone Detection. Clone detection detects whether two code
fragments achieve the same functionality with different imple-
mentations. We follow the same approach as Zhang et al. [3]]

and Wei et al. [35] to generate the code clone dataset based
on OJ dataset [39]. Two programs in the same class can be
considered as at least a functionality clone as they fulfill the
same functionality [35]]. Therefore, we gather the clones by
pairing the programs that are in the same class and non-
clones by pairing the programs that are in different classes.
We randomly selected 25,000 programs and pair each of them
with a clone and non-clones. We specifically ensure that a
program that appears in the training set will not appear in the
testing to ensure a fair evaluation. To differentiate from the
dataset that we used in code classification, we refer to this
dataset as OJClone.

Vulnerability Detection. The goal of vulnerability detection
is to detect the vulnerable code fragments that may be at-
tacked for cyber security. We utilize the completed Devign
dataset [[14], which contains 66,067 labeled functions that are
collected from four open-sourced C programming language
projects, FFmpeg, Wireshark, Linux, and Qemu for the evalua-
tion. These functions are classified as either vulnerable or non-
vulnerable. Zhou. et al. verify security patches manually and
extract the functions from these verified patches [14], hence,
their reliability is ensured.

We remove the duplicate functions to ensure a fair com-
parison. Furthermore, we employ Joern [38] to extract the
tree and the graph from the programs. However, due to some
compilation errors, finally, there is a set of 35,831 programs
in our OJ dataset and 48,158 programs in the Devign dataset
and the statistics of the datasets are shown in Table [ We
split all our datasets into 80% for the training set, 10% for the
validation set, and 10% for the testing set.

B. Code Representation

As shown in Fig. [2] to evaluate the efficacy of different code
representation, we categorise the code representation into four
major categories: Feature-based, Sequence-based, Tree-based
and Graph-based Representation.

Feature-based Representation. In our study, we used Term
Frequency-Inverse Document Frequency (TF-IDF) to vectorize
the code snippet. TF-IDF computes a vector for each program
based on the term frequency and inverse document frequency,
which reduces the importance for stopwords and increases the
weightage for more relevant words. To evaluate feature-based
representation, we selected three machine learning algorithms:
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Fig. 3: The Illustration of Tree and Graph Constructed by Joern where the original function is from Fig.

Support-Vector Machine (SVM) [[19], Naive-Bayes [23] and
XGBoost [40]. We use TF-IDF as our feature vector and input
these vectors to the models. SVM performs the classification
by finding a hyperplane in the dimensional space that can
distinctly identify samples in different classes, while Naive-
Bayes computes the probability of a sample within a class
with an assumption of independent features. XGBoost is an
implementation of a gradient boosting machine that is known
for scalability and performance. These models are commonly
used in many SE tasks as the comparison baselines [3]], [14].

Sequence-based Representation. Since code snippets can be
treated as a flat sequence of tokens, many works utilize this
sequential information directly to learn program semantics.
Following the previous works [14], [36], [41], we also em-
ploy token sequence directly in evaluating the sequence-based
representation of the programs. We further employ sub-word
splitting for efficient learning, where words are split by their
camelcase and underscore. For instance, a function name,
“get_int”, is split into two subword tokens, “get” and ”int”.
The result of this sub-word splitting is a sequence of subwords
tokens. Their purpose is to reduce the vocabulary size of the
datasets. For evaluating sequence representation, we opt to
use Long-Short Term Memory (LSTM) [42] and Bi-directional
LSTM (BiLSTM) [28] network as they are suitable in training
sequential data, i.e., sequence of tokens. For our experiment,
we trained a LSTM and Bi-directional LSTM (BiLSTM)
model to evaluate the performance on learning source code
sequentially. We take the last hidden state of LSTM/BiLSTM
as the learnt representation of the sequence representation.
Furthermore, we added in transformer encoder [43|] as part
of our baseline to investigate the impact of the attention-based
sequence approach. Transformer employs multi-head attention
to learn a representation for a sequence and we utilize the
contextual representation produced by the transformer encoder
as the learnt program representation.

Tree-based Representation. The program is a highly struc-
tured data compared to the sequential data, hence many code-
related works attempt to extract the structure information e.g.,
abstract syntax tree (AST) [5], [33], [35]], [36] behind the
text to capture the semantics. AST contains the syntactic
information for a compiler to generate machine code, while
removing unnecessary information, such as comments and

whitespaces [44]. An example of AST produced by Joern
can be seen in Fig. [(a). We selected two approaches for
evaluating tree-based representations, Tree-LSTM [45]] and
Code2Vec [33]]. Tree-LSTM employs LSTM in learning the
network topology of the input tree structure, or in our
case, the AST. It computes the hidden states based on its
successors. As opposed to the single forget gate used in
LSTM, it uses one forget gate for each child to focus on
important information and outperforms several sequence-based
approaches. Furthermore, several works [32]], [46] extend or
employ Tree-LSTM as its baselines in software engineering.
In our study, we employ the Child-Sum Tree-LSTM where
the network learns the hidden states based on the summation
of the children states. We employed max-pooling over all
node representations to achieve the tree-based representation
vector. Code2Vec [33]] is a state-of-the-art technique in code
representation. It represents programs in a bag of path context,
where path context represents a path between terminal nodes
across the AST. Code representation is learnt through focusing
on these path contexts. We extracted the path contexts from
the tool ASTMiner [47] and adapted the source code given by
Alon et al. [33] for the evaluating tasks.

Graph-based Representation. Many types of graphs are
associated with programs, such as control flow graph (CFG),
control dependency graph (CDG), data dependency graph
(DDG).Control flow graph depicts the execution flow of the
statements in a program. Data dependency occurs when the
value of a variable in a statement depends on the execution of
the previous statement, whereas control dependency happens
when the branching result of a predicate determines the execu-
tion of the immediate statements. Existing works utilized these
information for various tasks [7]-[9], [14]. To investigate the
impact of different types of graphs, we employ Code Property
Graph (CPG) which is proposed by Yamaguchi et al. [48]]
by combining several graph representations, e.g., AST, CFG,
CDG, and DDG, of source code into a graph structure. We
did not consider other graph structures such as Allamanis et
al [9], [36] to represent program semantics as we follow the
previous works [7]], [14]. We selected three popular and widely
used GNN variants i.e., Graph Convolutional Network (GCN),
Graph Attention Network (GAT), and Gated Graph Neural
Network (GGNN) to be our evaluating GNNs. These networks



differ in their node message propagation, i.e., they aggre-
gate and propagate information across the graph differently.
GCN [49] uses first-order approximation of ChebNet [50].
The neighboring information of a node is aggregated using
convolutional operation and layers of networks can be stacked
to enhance the learning of node features. Velickovic et al. [51]]
propose GAT to use an attention mechanism in GNNs to attend
over the neighborhood of a node to capture the local neighbor-
hood information. GGNN [52]] aggregates node information by
Gated Recurrent Unit [53] at every iteration to learn the node
representations. For above GNN variants, to obtain the graph-
level representation, which can be considered as the program
representation for different tasks, we employ the max-pooling
operation over the learnt node representations.

Node Representation in Tree/Graph. To obtain the tree
structure or the graph structure for a program, we use Jo-
ern [38]], a tool that is widely used academically [48|] and
commercially [38]], to transform a function. A simple example
of the source code in Fig. 2] is presented in Fig. [3] where
Fig. 3 (a) is the tree representation and Fig. [3] (b) is the graph
representation. We can find that each node has its node type,
which distinguishes the node from the others (the second line
in each node), and code textual information, which is a small
fragment code snippet from the original program (the first
line in each node). To get the initial node representation of
the graph and tree, which is a vector uniquely to represent
each node for the model learning, we employ three different
embedding methods: type embedding, textual embedding and
hybrid embedding. In type embedding, we embed each node
solely by its node type, i.e., embed the node by the unique
vectors that represent each type of node. Each node type
is input into a linear layer to learn a unique representation.
Textual embedding learns an intermediate representation of
the node by inputting the textual information of the node into
a BiLSTM. We use the last hidden state of the BiLSTM as
our initial node representation for the embedding. For the node
without textual information such as the compound statement
node, we use the empty string for the replacement and feed the
empty string into BiLSTM to get the representation. Hybrid
embedding employs a linear layer to learn the concatenated
representation of textual embedding and type embedding. Then
these embedded node representations are utilized with Tree-
LSTM or GNNs respectively to learn the representations.

III. EMPIRICAL STUDY

In this section, we detail our experimental settings to ensure
transparency in our experiments. We then answer the proposed
RQI1-RQ3 with a comprehensive analysis.

A. Experiment Settings

Experimental Setup. We embed each function into TF-IDF
feature vector and input these vectors into the SVM, Naive
Bayes, and XGBoost, resulting in a list of class probabilities.
The class with the highest probability will be our prediction for
the model. We employ Multinomial Naive Bayes [23]] and Ra-
dial Basis Function Kernel for SVM [19]]. For XGBoost [40]],

we trained our model with 40 rounds with a tree-depth of 32.
We used the following hyper-parameters for LSTM, BiLSTM,
and Transformer network: 128 for word embedding dimension
and LSTM hidden size, 4 layers of LSTM/BiLSTM and
transformer encoder, 4 heads for transformer attention layer.
We used DGL [54] as our implementation for Tree-based
and Graph-based approaches. Similarly, we used a hidden
dimension of 128. For GCN, GAT, and GGNN, the following
hyperparameters are used: 128 for word embedding and initial
node representation, 4 layers for GAT/GCN/GGNN, and 4
attention heads for GAT. We train all our baselines with
training data and tune the models based on the validation data.
We then report the performance of the models using the testing
data. To ensure fairness in the evaluation, we fixed all the
dimensions to be 128 and uses a learning rate between 0.01
to 0.0001 for different tasks, batch size of 128, and a dropout
rate of 0.2. All models are trained until 50 epoch and early
stopping of 10 epoch. We limit the number of tokens in the
function to be 150 and restrict the size of the graph to be within
250 nodes. For all deep learning experiments, we employ an
additional linear classifier to learn on classifying the learnt
representation into their respective classes. All experiments
are conducted on an Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20GHz Linux 16.04 server with 128GB RAM and equipped
with three Tesla V100-SXM2-32GB graphic cards.
Evaluation Metrics. We adopt accuracy and F1 as the eval-
uating metrics. Accuracy computes the correct prediction of
each class and averages it with the total number of samples.
F1 is commonly used in binary classification [5], [14], [35].
It is computed using a weighted combination of precision and
recall. A high F1 implies the model has a low number of
false positives and false negatives. The higher values of these
metrics, the better performance the approach achieves.

B. RQI: Comparison of Different Code Representations

Table [[I] shows the comparison results of our experiments.
For this RQ, we employed hybrid embedding for tree repre-
sentation and graph representation to learn the programs. We
observed that among all the feature-based models, XGBoost
performs the best across all three tasks, in contrast, Naive
Bayes has the worst performance since the dependencies
among the tokens in the program cannot be captured.

From the third row of Table we can find that the
sequence-based models have a better performance as compared
to the feature-based approaches and BiLSTM performs the
best across all three tasks, having accuracy in 83.82% in
Code Classification, and F1-Score of 71.62% in Vulnerability
Detection and accuracy of 85.44% in Clone Detection. This
indicates that learning dependency among the tokens in the
program is important for learning program semantics and these
tokens have the rich semantic information to represent the
programs, which yields better performance compared with the
feature-based approaches.

The tree-based approaches such as Tree-LSTM has the bet-
ter performance over these tasks compared with the sequence-
based approaches. Specifically, Tree-LSTM has an improve-



TABLE II: Results of Code Classification, Vulnerability Detection and Clone Detection.

Code Vulnerability Clone
Models Classification Detection Detection
Accuracy Accuracy F1 Accuracy F1
SVM 0.5413 0.5223 0.5144 0.6631 0.6780
Naive Bayes 0.2762 0.6934 0.6762 0.5493 0.6330
XGBoost 0.5929 0.7056 0.6951 0.7773 0.7979
LSTM 0.8094 0.7098 0.7135 0.8298 0.8414
BiLSTM 0.8382 0.7131 0.7162 0.8502 0.8544
Transformer Encoder 0.8193 0.4796 0.6482 0.5000 0.6660
Code2Vec 0.8973 0.7180 0.7192 0.6180 0.6719
Tree-LSTM 0.8600 0.7100 0.7209 0.9024 0.9055
GCN 0.8936 0.7015 0.7289 0.9166 0.9188
GAT 0.9042 0.7278 0.7306 0.8982 0.8997
GGNN 0.9204 0.7158 0.7344 0.9350 0.9367

ment of 2.18%, 0.47%, and 5.11% in accuracy and F1-Score
over BiLSTM, which shows that the semantic and syntactic
information on AST can be useful in learning the representa-
tion for the program, An interesting finding is that Code2Vec
performs better than BiLSTM in both code classification and
vulnerability detection, with an increase of 5.91% in code
classification accuracy and 0.3% in F1-Score of vulnerability
detection. However, the performance in clone detection is
lacking. We attribute the low performance to the different
purposes of the code representation. The original purpose of
code2vec is to predict method names in Java programs [33]].
Hence, path contexts might be better for predicting function
names but lacks in detecting clones.

Finally, we can observe that the graph-based approaches
perform the best on the evaluating tasks compared with other
representations. GGNN outperforms all other non-graph rep-
resentations by 2.31-64.42% in code classification accuracy,
1.35%-22.0% in F1-Score of vulnerability detection, and 3.12-
30.37% in the accuracy of clone detection. Furthermore, the
difference between the GNN variants such as GCN, GAT, and
GGNN is not very obvious for example, GGNN and GAT have
only a difference of 1.62% in code classification accuracy,
0.38% in vulnerability detection F1-Score, and 3.7% in clone
detection F1-Score. We infer that since graph representation
embeds more semantics of the programs compared with other
baselines, hence it outperforms other baselines by a significant
margin. However, the impact between different variants of
GNNs is minor.

Answer to RQ1: Graph-based representations are best in
representing program semantic among all our comparing
representations. We achieve improvements up to 64.42%
accuracy in code classification, 8.62% F1-Score in clone
detection, and 30.37% F1-Score in vulnerability detection
when graph-based representations are used.

Insights: Graph-based representation is superior to the
sequence-based or tree-based representation for many tasks.
However, the construction of the graph for the program is
non-trivial which requires extra efforts and this limits the
usage of graph-based representation. It is crucial to have

better tools to facilitate the code property graph construction
for other programming languages such as Java and Python.

C. RQ2: Comparison of Different Node Embedding Informa-
tion

In this RQ, we want to investigate the impact of different
information that is embedded into the node representation
for tree-based or graph-based representation. Specifically, we
ablate the performance that is embedded with type, textual,
and hybrid embedding. Table |[lII| shows the results.

We observe that compared with the type embedding, textual
embedding has a significant improvement. Specifically, the im-
provement in code classification accuracy ranges from 0.07%
(GAT) to 7.23% (Tree-LSTM), in vulnerability detection F1-
Score in a range of 5.85% (Tree-LSTM) to 8.84% (GCN),
and in clone detection F1-Score in a range of 5.58% (GGNN)
to 8.78% (GAT). We claim it is reasonable since the tokens
tend to carry more semantic information of the program, e.g.,
a program of the function name reverse_array, which we can
infer that it is to finish a reversal operation on the input array,
and ignore this textual information will increase the difficulty
of the model to capture the functionality. Furthermore, we also
perform a simple statistic analysis on the OJ dataset for the
code classification, we find that the average Jaccard Index (a
metric to measure the text-similarity) for programs is 0.51,
which indicates there are many overlap tokens between the
programs. Hence, ignoring the token information in the node
will harm the performance significantly.

Furthermore, we can see that combining textual and type
embedding i.e., hybrid embedding, will further improve the
performance over code classification and clone detection tasks.
For instance, the performance of GGNN and Tree-LSTM
increases by 3.65%, 2.20% when hybrid embedding is used
on the code classification. We infer that incorporating both
node type and node textual information can improve the model
capacity and brings better performance. However, on the
vulnerability detection, using type embedding has a negative
impact. We conjecture that it is due to the way of combining
embeddings. In the hybrid embedding, we just employ a linear



TABLE III: Results of Embedding Information.

Code Vulnerability Clone
Embedding Classification Detection Detection
Accuracy Accuracy F1 Accuracy F1
Tree-LSTM (Type) 0.7657 0.6207 0.6507 0.7862 0.8085
GCN (Type) 0.8198 0.6101 0.6300 0.8410 0.8470
GAT (Type) 0.8860 0.5277 0.6567 0.7972 0.8067
GGNN (Type) 0.8787 0.5128 0.6602 0.8508 0.8558
Tree-LSTM (Textual) 0.8380 0.7162 0.7092 0.8606 0.8726
GCN (Textual) 0.8503 0.7183 0.7184 0.9036 0.9055
GAT (Textual) 0.8930 0.7289 0.7153 0.8906 0.8945
GGNN (Textual) 0.8839 0.7233 0.7362 0.9094 09116
Tree-LSTM (Hybrid) 0.8600 0.7100 0.7209 0.9024 0.9055
GCN (Hybrid) 0.8936 0.7015 0.7289 0.9166 0.9188
GAT (Hybrid) 0.9042 0.7278 0.7306 0.8982 0.8997
GGNN (Hybrid) 0.9204 0.7158 0.7344 0.9350 0.9367

TABLE IV: Results of Graph Representation Analysis with
GGNN.

Code Vulnerability Clone
Models | Classification Detection Detection
Accuracy Accuracy F1 Accuracy F1

AST 0.8734 0.7033 0.7125 0.9172 0.9204
CFG 0.8890 0.7042 0.7085 0.9276 0.9300
CDG 0.8856 0.7160 0.7120 0.9144 0.9176
DDG 0.8339 0.7235 0.7133 0.9222 0.9251
CPG \ 0.9204 \ 0.7158 0.7344 \ 0.9350 0.9367

layer to concatenate the representation of the textual embed-
ding and type embedding, which is simple and straightforward.
Vulnerability detection is a much-complicated task, especially
for the real vulnerabilities. Although hybrid embedding ob-
tains sub-optimal performance on the vulnerability detection,
however, on the other tasks, it still gets the best performance.
We will explore a more effective combining way and leave it
as our future work.

Answer to RQ2: Textual information is more critical to
learning the program semantics for the tasks as compared
to the node type for the tree-based and graph-based repre-
sentation. Furthermore, combining both with a simple linear
layer, we can obtain the optimal performance on code clas-
sification and clone detection and sub-optimal performance
on vulnerability detection.

Insights: The combination way i.e., a single linear layer is
simple and straightforward. Although it generates a promis-
ing performance on code classification and clone detection,
more tasks need to evaluate its generalization. Furthermore,
it is also valuable to explore some other combination ways.

D. RQ3: Efficacy of Different Graph Representations

In this RQ, we study the impact of different graph represen-
tations on the performance of the evaluating tasks. Specifically,
we evaluate the performance of AST, CFG, CDG, and DDG
across the three evaluating tasks. Among all comparing graph
neural networks, GGNN has the highest performance as shown

Fig. 4: Vulnerable function that required data dependency
for the detection.

1 static void fix_bitshift (ShortenContext
«— *s, int32_t +buffer)
2 {
3 int i;
4 if (s—>bitshift != 0)
5 for (i = 0; 1 < s—>blocksize;
s i++)
6 buffer([s->nwrap + i] <<=
— s->bitshift;
7 }

in RQ1 and RQ2. Hence, we employed GGNN for this
evaluation.

The results are shown in Table We observe that CFG
performs better than other graph representations in code clas-
sification and clone detection, however on the vulnerability
detection, DDG can achieve higher performance. We believe
it is reasonable, as data dependency is easy to trigger the
vulnerabilities since vulnerable functions tend to have com-
plex dependencies among the statements, e.g., memory de-
referencing, and buffer overflows. Furthermore, according to
Fabian et al. [55], it is inherent that DDG has a bigger in-
fluence on finding vulnerable functions. We show an example
for the illustration. Fig |4 shows an example of a function
from FFmpeg, which corresponds to a out-of-bound (OOB)
bug. GGNN predicted the correct label for this function with
the DDG representation, which is shown in Fig[5] Specifically,
we can see that the “buffer” array keeps increasing by adding
the variable “i” without OOB guard. This results in the
indexing of the array possibly growing out of the array size.
In DDG, the relationship between the increment of “i” and
the “buffer” indexing can be directly observed and there is a
dependency between the nodes with the types “Arraylndexing”
and “IncDecOp”. However, this relationship is missed in other
representations such as AST and CFG.

Furthermore, when all graph representations are combined

YA commit with its commit id (f42b31).


https://github.com/FFmpeg/FFmpeg/commit/f42b3195d3f2692a4dfc0a8668bb4ac35301f2ed

inti=0
Identifier

for(i=0;i<s-
>blocksize; i++)
ForLoop

i++
IncDecOp

s
Parameter

[ buffer[s->nwrap + i] <<= s->bitshift ]

AssignmentExpr

buffer[s->nwrap + i]
Arrayindexing

Fig. 5: Data Dependency Graph of the function in Fig @

i.e., CPG, it achieves better performance on code classification
and clone detection and yields the sub-optimal results on
vulnerability detection i.e., the accuracy of CPG (0.7158) is
lower than DDG (0.7235), but F1-Score is still the highest
(0.7344). 1t indicates that due to the different characteristics
of the task, there might be some specific semantics that are
particularly suitable for this task e.g., the data dependency
for vulnerability detection and produce the best performance.
However, a composite graph with immense semantic and
syntactic information can still achieve promising results.

Answer to RQ3: Different task relies on the task-specific
semantics to achieve the best performance, however, gen-
erally speaking, a composite graph with the comprehensive
program semantics can yield the promising results.
Insights: Combining diverse dimensional code semantics,
e.g., AST, CFG, CDG, DDG are beneficial for the neural
networks to capture the program semantics, However, from
one perspective, how to capture the task-specific semantics
for a task to achieve the best results is still an open-question,
from another perspective, CPG only contains syntactic infor-
mation (AST), data flow information (CDG, DDG), control
flow information (CFG), hence, is it sufficient to represent
program semantics?

IV. DISCUSSION

In this section, we first investigate the learnt space by the
selected models, then perform an experiment on the semantic-
preserving transformation to explore the capacity of different
models and conduct a statistic analysis on the predicted results.
Finally, we present the threats to the validity of this work.

A. Learnt Representation Space by Neural Network

To demonstrate the learning capability of GGNN over BiL-
STM and Tree-LSTM, we employ t-SNE [56] to visualize the
learnt representation space of code classification. Specifically,
we randomly picked 7 classes in the testing dataset. The learnt
space is shown in Figure [6] where the class is labeled along
with the color in the plot. We can observe that the graph
representation performs the best. As shown in Fig. [(a) and
Figure [6(b), the representations learnt by BiLSTM are more
scattered across the plot than the learnt space by Tree-LSTM,

which means that the distances of any samples from the same
class are greater in BILSTM. Hence, compared with BiLST,
Tree-LSTM produces a better learning space. The learnt space
of GGNN is shown in Figure [6(c), we can easily find that
the boundary for each class is more clear and the aggregated
cluster is more condensed compared with Tree-LSTM. This
indicates that GGNN has a more powerful learning capacity
compared with BILSTM and Tree-LSTM.

B. Semantic-Preserving Transformation on Code Representa-
tion

We further explore the capacity of these models on
semantic-preserving operations. Here the semantic-preserving
operation is defined to transform the code snippet with simple
operations such as renaming the identifiers or swapping two
independent statements while keeping the original program
semantics. Specifically, we randomly select two vulnerable
functions [7| that BiLSTM, Tree-LSTM and GGNN predict
correctly from the Devign test set and both examples are
shown in Fig. [7] and Fig. [§] respectively where the top section
shows the original function, while the bottom section are the
transformed version. The original function in Fig. |/| lacks
a buffer overwrite protection, hence is exposed to buffer
overflow vulnerability. For the function in Fig.[8] a deprecated
variable, “dc->no_user” is used. This might cause a regression
bug where a previously working version stops working. We
conduct two kinds of simple transformation operations: (1)
We randomly swap the location of two statements, that are
independent with others. For instance, in Fig. [/} we swap Line
4 and Line 6 in the original function. This does not affect any
dependency as they are independent assertion statements. (2)
We randomly select some variables and replace all occurrences
of the variable name into the meaningless placeholder. We
select both operations since they are simple and easy for
implementation.

We input the transformed functions with the trained BiL-
STM, Tree-LSTM, and GGNN respectively to investigate the
performance. Surprisingly, we find that TreeLSTM and GGNN
can produce the correct prediction, while BiLSTM fails. We
infer that since the sequence-based representations model the
permutation and sequential information of the statements to
capture the semantics, hence they are more susceptible to the
“swap” and “renaming” operations while these operators do
not destruct the original semantics. In contrast, due to Tree-
LSTM and GGNN both employ the structure information to
capture the semantics, they are more robust to these simple
transformations and hence produce the correct predictions.

C. Analysis of Prediction Results

By Table we have proved that the graph-based rep-
resentation has the best performance across three tasks, to
further analyze its capacity, we conduct the statistical analysis
on the specific complex features in the program that GGNN
cannot learn well for the code classification. Specifically,

2Both functions are from FFmpeg(1ba08c) and Qemu(efec3d) respectively.


https://github.com/FFmpeg/FFmpeg/commit/1ba08c94f5bb4d1c3c2d3651b5e01edb4ce172e2
https://github.com/qemu/qemu/commit/efec3dd631d94160288392721a5f9c39e50fb2bc

v Y
0.06 . " ’ .; . 0.06 .
,‘,\1 { :‘_“ “ LIS ry "‘}‘. 13
0.04 I Y 29O ’ 0.04 'tf‘4‘ ’”
o4 - . &°
WS L 2 " % W H
0.02 4, 4° o »rv, 0.02 o S &
ot 40 <1 ’ L
0.00 cq T 0.00 -l‘l- >
3. o2 2 MR 2
. LN L
-0.02 X ~0.02 * \¥s¥
1 N TR
. MO
-0.04 [} -0.04 ’5, 'y
. 3 ‘0.'% oc
~0.06 b _0.06 O
et 6 ' “m

—-0.08
—0.08 —-0.06 —0.04 -0.02 0.00 0.02

0.04 0.06 0.08

(a) t-SNE Plot of BiLSTM Learnt

Representation

-0.08
-0.06 —0.04 -0.02 0.00 0.02 0.04 0.06 0.08

(b) t-SNE Plot of Tree-LSTM
Learnt Representation

5% 5
Lo
0.04 ,('.,q;‘ —
= don \4~ p) d ",b"'-‘q_
002 yerg¥e v‘r.\ LS
e Soev. "
b I ~t
0.00 B .
Zrigre
>
-0.02 v'._"-; 2
3 o

-0.04
-0.06

-0.06 -0.04 -0.02

(c) t-SNE Plot of GGNN Learnt
Representation

0.00 0.02 0.04 0.06

Fig. 6: t-SNE plot of Learnt Representation Space.

Fig. 7: Example 1 of Vulnerable Function with its trans-
formed version.

1 /*
static inline void

*/

Original Function

— put_codeword (PutBitContext =pb, —

— vorbis_enc_codebook xcb, int entry) — xklass, void =xdata)
3 { 3 {
4 assert (entry >= 0); 4 DeviceClass *dc =
5 assert (entry < cb->nentries); < DEVICE_CLASS (klass);
6 assert (cb—>lens[entry]); 5 dc->vmsd = &vmstate_pic_common;
7 put_bits (pb, cb->lens[entry], 6 dc->no_user = 1;

— cb->codewords[entry]); 7 dc->props = pic_properties_common;

8 } 8 dc->realize = pic_common_realize;
9 9 }
10 /* Transformed Function #*/ 10
1 static inline void fl(v2 *pb, v2 =vl, 1

— int entry) 12 /#* Transformed Function #*/

{
assert (vl->lens[entry]);
assert (entry < vl->nentries);
assert (entry >= 0);
put_bits (pb, vl->lens[entry],

— vl->codewords[entry]);

we manually examine the correct and incorrect predicted
programs on the test set in code classification. We utilize the
correct predicted programs (total 149) from the top-three best
performing classes (Class 29, Class 66, Class 83) and incor-
rectly predicted programs (total 63) from the top-three worst-
performing classes (Class 25, Class 52, Class 61) for investi-
gation. We further summarize 5 complex features that may be
existed in the program: Nested Loops, Multiple Loops, Pointer
Operation, Do-While, and Others/Basic. Multiple loops refer
to the loops that are initialized in different scopes and nested
loops refer to the loops that are initialized within another loop
in a program. We group programs under Pointer Operation
whenever de-referencing of address occurs in the program. Do-
while is an alternative type of looping mechanism. Lastly, if a
program has no above-defined complex characteristics e.g., a
program that only has single loops and assignment statements,
we group it into the Others/Basic category.

Fig. 8: Example 2 of Vulnerable Function with its trans-
formed version.

1 /* Original Function x/
static void

pic_common_class_init (ObjectClass

static void pl (ObjectClass xkl, wvoid =*dl)

{

*d1 DEVICE_CLASS (k1) ;
dl->realize pic_common_realize;
dl->no_user 1;

dl->vmsd = &vmstate_pic_common;
dl->props = pic_properties_common;

DeviceClass

TABLE V: Complex Features in Classified Programs.

Incorrect Predicted Correct Predicted

Complex Features

‘ Num Ratio ‘ Num Ratio

Do-While 0% 1.84%

Multiple Loops 29 34.11% 58 35.58%

Nested Loops 25 29.41% 18 11.04%

Pointer Operation 17 20.00% 4 2.45%

Others/Basic | 14 1647% | 80 49.07%
Total Features | 85 - | 163 -

The statistical results are shown in Table [Vl Note that a
program can have multiple defined categories, for example,
a program can have both multiple loops and nested loops
associated with it. We can find that the values for Nested Loops
and Pointer Operation in the incorrect samples are higher
than these values in the correct samples, which proves that
these program features are not learnt well. Furthermore, the



number of samples with the simple structure i.e., Others/Basic
category in the incorrect samples are far less than the samples
in the correct samples, which illustrates that complex program
structure is still a challenge for the neural network to learn
semantics. Lastly, we cannot claim the learning capacity of
the neural network on Do-While and Multiple Loops, since
the values of the correct and incorrect samples are near.

D. Threats to Validity

Evaluation Tasks. There are many other code-related tasks
such as code translation [57]], code summarization [7|], code
search [[11]], [58]]. We only consider the classification tasks on
C programming language since classification tasks are more
suitable for quantitative analysis as compared to the generation
tasks such as code summarization. Our study provide ideas on
how to evaluate program semantics on complicated tasks.
State-of-the-art Results. We did not compare with the state-
of-the-art results for each task, since these high-performing
approaches tend to design more complicated architecture than
these basic networks. For example, to achieve the best perfor-
mance, Devign [[14]] utilized a convolution module to further
improve the learnt representations by GGNN. To reduce the
complexity of the analysis, we target basic models and conduct
a systematic study to explore different categories of code rep-
resentations, which we believe is fundamental and meaningful.
Hyper-parameter Tuning. Hyper-parameters affect the per-
formance of each model. For fairness in our study, we tune
the hyper-parameters such as embedding dimension, batch size
to obtain the best result for each evaluating task. We tune
code classification based on the best accuracy, vulnerability
detection, and clone detection based on the best f1. We set
the same seed for all experiments for the reproduction and
eliminating the potential bias of randomness.

V. RELATED WORKS

Source Code Representations. Feature-based representa-
tions [21]], [59] are commonly used in software engineer-
ing tasks as word frequency are important in identifying
source code. Other feature-based representations, such as
FLUCCS [17] require domain experts into identifying key
features of source code. Sequence-based representation em-
ploys distributed representation in learning each token. Many
works employ sequence-based representation in clone detec-
tion [6], vulnerability detection [60], auto-patch identifica-
tion [61f], code review [62]. These works have proven that
sequence-based representations are capable of representing
semantic and syntactic information of programs. Researchers
investigate deeper representation by traversing the tree-based
representation of the source code, such as AST [5], [32],
[33], [63]. Code2vec [|33]] and Code2seq [32] find an efficient
representation of source code by traversing AST and learning
on the relevant paths. Many works [35] also employ AST
in learning code clones as clones inherently have similar
program constructs. While these representations contains the
syntactic information of the source code, semantic information
is lacking in them as control flow and data flow are not

well-model into them. More works start to look into graph-
based representation for programs and their application [7],
9], [36]], 58], [64]] on GNNs. Miltiadis et al. [36] combines
the AST node with control flows and data dependency to learn
source code graph representations. Wang et al. [37] added
data-flow information to AST to improve the performance
of clone detection. These works focus on embedding source
code into a vector space without losing semantic and syntactic
knowledge. Kang et al. [65] conduct an code2vec assessment
on downstream tasks. It is similar to our work in nature,
however, we employ a complicated graph representation of
source code and extensively evaluate them.

Relevant Works to Selected Tasks. Classifying source code
by functionality enables developers to locate functions. Many
works [5]l, [39] focus on classifying source code. Clone
detection is a popular topic in software engineering. Several
works [5]], [[65]—-[67] relate to clone detection. Vulnerable func-
tions often are not straightforward and contain hidden seman-
tics across multiple functions. Different ways are employed
in finding vulnerabilities, such as fuzzing [68]]-[72], malware
detection [73]], program metrics [74] and deep learning [14].

VI. CONCLUSION

We conduct a systematic study to investigate program rep-
resentations i.e., Feature-based, Sequence-based, Tree-based,
and Graph-based representation across three diverse and popu-
lar code-related tasks i.e., code classification, clone detection,
and vulnerability detection on public benchmarks. We con-
clude our findings as follows: (1) Graph-based representation
outperforms other techniques by a significant margin. (2) The
node type and node textual information are both beneficial
in the tree-based and graph-based representation to learn the
program semantics, however, node textual information is more
critical. (3) Different task relies on task-specific semantics to
achieve the best performance, however, a composite graph with
the comprehensive program semantics can still yield promising
results. By our study, we hope to provide several insights and
follow-up directions in the program representation field.
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