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Abstract: Time is valuable, particularly in stressed markets. Because central counterparties (CCPs) have become 
systemically important, we need to understand the dynamics of their exposure toward clearing members at high frequencies. 
We track such exposure and decompose it, yielding the following insights. The composition of CCP exposure is 
fundamentally different in the tails. At extreme levels or during rapid increases, there is elevated crowding. This is the result 
of clearing members all concentrating their positions on a single security or a particular portfolio, which is desirable if 
motivated by hedging but worrying if due to speculation.  
Keywords: Central counterparties (CCPs), crowding risk, market stress 

 

1. Introduction 

Regulators are worried about central counterparty (CCP) 
risk management in fast markets. Sudden extreme price 
dislocations (“flash crashes”)1 coupled with superhuman 
trading speeds could have systemic consequences. If 
traders are unable to deliver on their trades, then CCPs 
become liable for their losses because a CCP effectively 
insures the counter parties in these trades. The margins 
posted by these de-faulting traders might not be sufficient 
to cover these losses. A recent example is the 2018 failure 
of a Nasdaq clearing member, when losses swallowed up 
two-thirds of the default fund.2 A mutualized loss of this 
kind might itself trigger further defaults, in which case 
the event could become potentially systemic. State-of-
the-art risk management of CCPs is, therefore, of first-
order importance. CPMI-IOSCO (2017) emphasizes the 
need for monitoring intraday CCP exposure:  

Adverse price movements, as well as 
participants building larger positions through 
new trading (and settlement of maturing trades), 
can rapidly increase a CCP’s exposures to its 
participants. This exposure can relate to 
intraday changes in both prices and positions. 
For the purposes of addressing these and other 
forms of risk that may arise intraday, a CCP 
should address and monitor onan ongoing basis. 
. . (CPMI-IOSCO 2017, p. 32)  

In this paper, we propose a way for CCPs to monitor their 
exposure on an intraday basis, with a focus on stressed 
markets. In such markets, trading is likely to be fast-
paced, and data therefore stream at extreme speeds. The 
approach should be able to cope with such “big data” 

challenges. More importantly, the monitoring should 
yield valuable economic insights that generate an 
understanding of “what just happened” and potentially 
guide interventions. We turn to the academic literature to 
formulate hypotheses to guide our high-frequency 
analysis of CCP exposure. Several studies have identified 
a fire-sale channel as the root cause of price dislocations. 
The narrative is as follows. During normal times, 
arbitrageurs smooth prices by trading against pricing 
errors (thereby essentially engaging in market making). 
Suppose that, at some point, a critical mass of traders 
crowds into a single risk factor. That is, their portfolio 
positions are very similar, say, having long positions of a 
book-to-market or size-based portfolio. 3If these 
positions suddenly experience a significant loss, then 
arbitrageurs face high variation margin calls (to mark-to-
market their positions). If these arbitrageurs are capital-
constrained, then they might be forced to free up capital 
by selling some of their positions. This selling pressure 
might trigger trades at fire-sale prices, thus leading to 
more losses, triggering further selling, etc. (Shleifer and 
Vishny 1997, Gromb and Vayanos 2002, Brunnermeier 
and Pedersen 2009). Perhaps the most prominent 
example of such dynamic is the “quant meltdown,” 
where the arbitrageurs are hedge funds and the portfolios 
are indeed factor-based portfolios (Khandani and Lo 
2007, 2011). This type of fire-sale channel implies that 
extreme exposures coincide with elevated crowding, 
price crashes, and volatility spikes. With these 
motivations in mind, let us now discuss in more detail 
how we proceed in the rest of this paper. We develop an 
approach for tracking and decomposing CCP exposure 
intradaily. The exposure
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measure is based on the tail risk of losses in an oncom-
ing period, aggregated across all clearing members
(Duffie and Zhu 2011, Menkveld 2017).4 The measure
relies on analytical results that are all straightfor-
ward to compute. It further allows for decomposition
across clearing members or securities.

We implement the approach on a sample of high-
frequency CCP data to test three hypotheses on CCP
exposure in stressedmarkets.We define suchmarkets
for a CCP as thosewhere either the CCP exposures are
at the highest levels or the CCP exposure changes are
extremely high.5 The three hypotheses pertain to the
following questions:

1. Are extreme increases in CCP exposure driven
by the same factors as regular exposure changes, or
does one see, for example, elevated crowding?

2. Is the same true for extreme levels as opposed to
extreme changes?Again, is crowding a larger part of it?

3. Finally, when comparing CCP exposure for these
extreme levels relative to normal levels, is the relative
contribution of clearing-member house accounts higher
relative to client accounts? If so, then this is worrisome,
as clearing members are typically highly leveraged fi-
nancial intermediaries and therefore less able to ab-
sorb large shocks.

Our empirical analysis of these questions is basedona
high-frequency 2009–2010 sample of a European CCP:
the European Multilateral Clearing Facility (EMCF).
The EMCF was the largest equity CCP in Europe and
later merged with the Depository Trust & Clearing
Corporation (DTCC) in the United States to become
the world’s largest equity CCP. Counterparty risk
arises in equity trading because the settlement of a
trade typically occurs three days after it is concluded.
Therefore, a trade is like a three-day forward contract
between a buyer and a seller. Counterparty risk then
pertains to the possibility that one side might default
in this period. Admittedly, analysis of a CCP that
insures credit default swaps or interest rate swaps
would have been more relevant in terms of systemic
risk, but disaggregated CCP data are extremely hard
to come by (see literature review here). Therefore, the
application to actual CCP data could in and of itself
be considered a contribution.6

There are several key findings. First, CCP exposure
changes, on average, are almost entirely driven by
changes in the positions of clearing members due to
their trading. However, when zooming in on extreme
exposure increases, security volatility and position
crowding start to contribute substantially. For the top
100 increases, they collectively contribute 30%, where
volatility contributes 13% and crowding 17%.

Second, we find a similar result when comparing
the full sample with the subsample of high exposure
levels—more crowding in the latter. More specifi-
cally, CCP exposure concentrates on a few clearing

members and a smaller set of risk factors. For ex-
ample, comparing the full sample with the top 1%
subsample, the contribution of the largest five mem-
bers increases from 28% to 47%. The contribution of
the largest principal component across all risk factors
increases from 7% to 42%.
Third, it is not true that, at high exposure levels, the

CCP is relatively more exposed to house accounts.
There is only amodest increase from67% to 70%when
comparing the full sample to the top 1%.However,we
do find stronger concentration within the set of house
accounts. A large share of the total house-account
exposure originates from just a few clearingmembers.
In sum, the findings collectively suggest that stron-

ger crowding/concentration characterizes CCP expo-
sure both for large exposure increases and at extremely
high exposure levels. There is, however, only a minor
increase in the contribution of house accounts at these
high levels.
One additional finding worth emphasizing is that

idiosyncratic events can severely impact CCP exposure.
For example, a disappointing earnings announcement
by Nokia at noon on April 22, 2010 caused its share
price to fall by about 15% in the minutes afterward,
leading to an exposure increase of almost 16 times
its average size. The decomposition of the exposure
change shows that volatility is the largest component
causing the jump. The exposure jump, however, was
only a relatively small part of the extremely large CCP
exposure increase that day. Most of this appears to be
caused by clearing members increasing their Nokia
position, either long or short, during heavy trading in
the afternoon. (Note that this is a nontrivial finding,
as the large volumes could have been due to traders
reducing their positions after observing elevated vol-
atility.7) The decomposition of exposure changes further
reveals a substantial contribution of the crowding com-
ponent that day. Members tilted their portfolio toward
Nokia. Altogether, the Nokia example neatly illustrates
the paper’s main finding that volatility and crowding
become important components of CCP exposure in
the tails.
Our paper contributes to a rapidly expanding em-

pirical literature on central clearing. CCP trade data
disaggregated across members are scarce. Proprietary
daily data have been used to compare CCP exposure to
themargins collected (Jones and Perignon 2013, Lopez
et al. 2017, Menkveld 2017). Duffie et al. (2015) ana-
lyze a snapshot of bilateral exposures on uncleared
credit default swaps to assess the netting efficiency
potential of central clearing. Event studies on CCP
introductions yield insights into how trading is af-
fected (Loon and Zhong 2014, 2016; Menkveld et al.
2015; Benos et al. 2020). We contribute to this litera-
ture by proposing an approach to monitoring CCP
exposure intradaily along with an economically



motivated decomposition. The methodological contri-
bution relative to Menkveld (2017) is that we de-
compose that author’s exposure measure to diagnose
the nature of exposure changes. Although Menkveld
(2017) discusses how to decompose across clearing
members, the author does not decompose exposure
changes into changes in the various variables that
enter the exposure computation (e.g., changes in
volatility, changes in return correlations, or changes
in positions). Such a decomposition is needed to test
the first hypothesis.8

The paper contributes to a nascent literature on
CCP systemic risk. Capponi et al. (2019) analyze the
endogenous buildup of asset concentration due to
central clearing. Amini et al. (2020) study the effects of
central clearing on a network of inter-bank liabilities
and show that systemic risk can be reduced under
certain equity and guaranty fund policy of the CCP. In
a similar setting, Amini et al. (2015) investigate partial
netting that accounts for knock-on effects and asset
liquidation effects. Glasserman et al. (2016) compare
margining in dealer markets and a centrally cleared
market. Menkveld (2016) endogenizes the fire-sale
premium that a CCP will have to pay in the cata-
strophic state inwhich a criticalmass ofmembers default
and liquidity supply is thus impaired.9

The rest of the paper is organized as follows.
Section 2 formalizes and motivates the three over-
riding hypotheses. Section 3 presents the approach to
monitoring and decomposing CCP exposure. Sec-
tion 4 describes the data and discusses implementa-
tion issues. Section 5 presents the empirical results
of testing the three hypotheses. Section 6 concludes.

2. Hypotheses
This section develops three hypotheses that will be
taken to the data. Each hypothesis is stated formally
and then followed by a motivation.

Hypothesis 1. The drivers of CCP exposure changes are
different in the (right) tail.

CCP exposure changes can be driven by a variety of
factors that are either price-related (e.g., volatility or
correlation) or trade-related (i.e., trade causes mem-
ber positions to change). We expect the latter to
dominate CCP exposure changes in normal times.
However, we conjecture that turbulent periods are
characterized by elevated volatility and lots of trad-
ing. The strong positive correlation of volatility and
trading volume is a well-known stylized fact in the
microstructure literature (Jones et al. 1994).

The intense trading at times of extremely high
volatility does not necessarily imply that CCP expo-
sure increases rapidly. A sudden volatility increase
might actually trigger traders to reduce their existing

positions to contain risk. Such trading benefits a CCP
because it reduces its exposure.
On the other hand, a volatility shock might lead to

(more) speculation, in which case traders increase
their positions. Heterogeneity in beliefs or in signals
might generate such stronger position taking (Kim
and Verrecchia 1994). Or, in a more recent paper,
Crego (2019) proposes a channel bywhich risk-averse
informed traders strategically wait to trade on their
(idiosyncratic) signal until the arrival of a public
signal which removes significant uncertainty. Either
way,member positionswould increase inmagnitude,
and CCP exposure rises as a result.
An even more worrisome channel that could cause

high volatility and fast trading is a so-called self-
reinforcing fire-sale channel. For example, financially
constrained arbitrageurs (hedge funds, sell-side banks,
high-frequency traders, etc.) hit by adverse price shocks
might have to quickly liquidate their large positions
and thereby cause transitory price shocks (Shleifer and
Vishny1997, Gromb andVayanos 2002, Brunnermeier
and Pedersen 2009).
Such liquidations would not be a concern if these

arbitrageurs had diverse positions (Wagner 2011).
This is not the case, however, if these traders followed
similar trading strategies and their portfolios thus
crowd on a small set of risk factors/portfolios (Stein
2009). In such a scenario, there might not be enough
cash-in-the-market to liquidate these positions, and
markets have to clear at fire-sale prices. A prominent
example is the “Quant Meltdown” of 2007, when
quantitative equity market-neutral hedge funds crow-
dedon similar trading strategies andmade record losses
(Khandani and Lo 2007, 2011). The risk of a CCP
finding itself in such a scenario is particularly high when
there is substantial crowding in its members’ portfolios.
To test for such crowding in stressed markets, one

needs to be able to decompose changes in CCP ex-
posure into price- and trade-related components.
One of the trade-related components should then be
crowding across clearing members.

Hypothesis 2. The structure of CCP exposure levels is
different in the (right) tail.

Hypothesis 2 restates Hypothesis 1 but this time in
terms of levels instead of changes. The reason to also
study whether there is, for example, elevated crowding
for extreme exposure levels is derived from studies on
historical CCP failures. Bignon and Vuillemey (2020)
study the 1974 failure of the Paris Commodity Clear-
ing House. They show that in a year starting from
November 1973, the position of the largest clearing
member rose from 9%of the total open position in sugar
futures to 56% of it. Another example is the 1987 fail-
ure of the Hong Kong Futures Guarantee Corporation,



where at the point of failure the largest four members
had accumulated 80% of the short position in all con-
tracts (Cox 2015).

If crowding is prominent, understandingwhat causes
the crowding requires one to be able to decompose the
exposure level across clearing members and across risk
factors. The reason is that strong crowding could occur
when outstanding positions are held by only a few
clearing members. The CCP failures in Paris and Hong
Kong are examples of such crowding. There is, how-
ever, a more opaque way for there to be elevated
crowding. In the extreme case, all clearing members
contribute equally to CCP exposure, but they crowd on
a single risk factor, such as a particular security or
portfolio. The 2007 Quant Crisis is an example of such
“risk-factor crowding.” Let us turn to a simple ex-
ample to make this distinction between the two types
of crowding as clear as possible.

Suppose there are four clearing members and two
assets with independently distributed payoffs. First
consider the baseline case of member 1 and member 2
having traded one unit of asset A and therefore
having open and opposite positions in this asset.
Suppose the same holds for members 3 and 4 in
asset B. In this baseline case, there is no crowding. Let
us now consider the two polar cases of crowding. An
example of perfect member crowding is when mem-
bers 1 and 2 trade as in the baseline case, and mem-
bers 3 and 4 refrain from trading. The reason is that
there is concentration in CCP exposure, as only two
members contribute. For an example of perfect risk-
factor crowding, consider again the baseline case but
now with members 3 and 4 also trading one unit of
asset A. Note that in this case, all clearing members
contribute equally to CCP exposure, yet there is perfect
crowding. In both cases, there is a strong correlation in
portfolio returns across clearing members, which in-
creases the expected aggregate loss and therefore CCP
exposure (Menkveld 2017, section 1.5).

When testing the second hypothesis, it is desirable
to measure how much crowding contributes to CCP
exposure and whether such crowding is member or
risk-factor crowding. In Section 3.3, we discuss in
detail how to measure crowding with the proposed
CCP exposure measure.

Hypothesis 3. The relative contribution of house accounts
to CCP exposure increases in the (right) tail.

The third hypothesis focuses on the two types of
clearing-member accounts: house accounts and client
accounts. House accounts capture the trades that
clearing members do for their own books, whereas
client accounts register their cleared trades on behalf
of clients. It is worth decomposing CCP exposure
across these two types of accounts, as one could argue
that CCP exposure to house accounts carries more

risk. Clearing members are often highly leveraged
financial intermediaries whose trading is unlikely to
be pure hedging. For example, they often engage in
market making to absorb temporary order imbal-
ances. Therefore, more exposure to house accounts at
times of high CCP exposure is worrisome. Testing the
third hypothesis will show whether this is the case.

3. Approach
This section presents an approach to monitoring CCP
exposure intradaily. It is based on the framework
proposed by Duffie and Zhu (2011) and extended by
Menkveld (2017) to include tail risk and crowding.
CCP exposure is essentially a measure that is based
on the distribution of losses in clearing-member ac-
counts for the oncoming period. We study the value
at risk (VaR) for these losses following Menkveld
(2017).10 We first present the exposure measure in
detail, then show how one could decompose expo-
sure change needed for testing the first hypothe-
sis, and finally present the decomposition of expo-
sure level which is needed for testing the second and
third hypotheses.

3.1. The CCP Exposure Measure: A VaR of
Aggregate Loss

Consider the case of a single CCP, I securities, and J
clearing members (or traders; the two terms will be
used interchangeably). Pt is an I × 1 vector consisting
of current security prices. Rt is an I × 1 vector that
contains next period’s security returns. Rt is assumed
to be normally distributed:11 Rt ∼ N(0,Ωt), where Ωt
is the I × I covariance matrix of security returns. Let
nj,t be the I × 1 vector of member j’s current positions
expressed in euro. The portfolio return in euro for the
member in the next period is then a scalar Xj,t, where
Xj,t � n′j,tRt.
Collect all nj,t into an I × J matrix Nt, which thus

becomes the (euro) position matrix of all members.
Collect all Xj,t into the J × 1 vector Xt, which thus
becomes the future return vector for all members,
where Xt � N′

tRt. Because Xt is linear in Rt, Xt is nor-
mally distributed: Xt ∼ N(0,Σt), where Σt � N′

tΩtNt is
the J × J covariance matrix of (euro) portfolio returns.
As a CCP is exposed to losses, define

Lj,t � −min 0,Xj,t
( ) (1)

as the loss in member j’s portfolio. Then, aggregate
loss At is as follows:

At �
∑
j
Lj,t. (2)

Duffie and Zhu (2011) propose to base CCP exposure
on the mean aggregate loss,

E At( ), (3)



and derive an analytical expression for it which suffices
for their analysis of netting efficiency. Menkveld (2017)
considers the VaR of aggregate loss a more appro-
priate measure for CCP exposure and refers to it as
ExpCCP. Following standard practice and maintain-
ing tractability, Menkveld (2017) uses the delta-normal
method to compute the VaR:

ExpCCPt ≡ VaR At( ) � E At( ) + αvar At( )12, (4)
where α is a parameter that needs to be calibrated.We
follow Menkveld (2017) and use ExpCCP as our ex-
posure measure. In Appendix A, we list all the results
needed to compute ExpCCP.

3.2. Decomposition of CCP Exposure Change
The first hypothesis states that the drivers of CCP
exposure change are different in the tail. As discussed
in the hypothesis section, sudden extreme CCP ex-
posure increases might be driven by volatility shocks
and crowding in addition to position changes. To test
such a hypothesis, one needs to decompose exposure
changes and verify to what extent volatility and
crowding contribute a larger part in the tail.

We propose to decompose exposure changes based
on a relatively straightforward one-factor-at-a-time
(OFAT) approach (Daniel 1973). The underlying fac-
tors will consist of price-related factors and trade-
related factors. Price-related factors include security
return volatility, correlation, and price level. Trade-
related factors are member positions and crowding
across members. The remainder of this subsection
describes the approach in detail.

Let us start bywriting ExpCCPt as defined in (4) as a
function of the underlying variables:

ExpCCPt � f Σt( ). (5)
To arrive at a meaningful decomposition across fac-
tors, we use the following two insights:

1. Following the financial econometrics literature,
we decompose covariance matrices into their diago-
nal and off-diagonal components (Bollerslev 1990,
Engle 2002):

Ψt � DΨtRΨtDΨt , (6)
where DΨt is a diagonal matrix with ψii,t as the ith
diagonal element, and RΨt is the correlation matrix
associated with the covariance matrix Ψt. This de-
composition will turn out to be useful for identifying
correlation effects in security returns and crowding
across members.

2. Σt is itself a function of “deeper” variables:

ExpCCPt � f Σt( ) � f NtΩtN′
t

( ) � f Ωt,Pt, Ñt
( )

, (7)

where the variables are the covariance matrix of se-
curity returns Ωt, the price level Pt, and the member
portfolio matrix Ñt expressed in terms of the number
of securities (as opposed to Nt, which is expressed in
euro). The reason for using Ñt instead of Nt is to be
able to pull out a price-level effect when considering
the change from Nt−1 to Nt.
Combining (6) and (7) yields

ExpCCPt � f Σt( ) � f DΣtRΣtDΣt

( )
� f DΣt DΩt ,RΩt ,Pt, Ñt

( )
,

(
RΣt DΩt ,RΩt ,Pt, Ñt

( )), (8)
which expresses ExpCCPt in terms of price-related
variables (DΩt ,RΩt , Pt) and trade-related variables (Ñt).
The OFAT decomposition changes these variables
sequentially from their value at t − 1 to their value at t.
The sequencing matters (as will be discussed in depth
at the end of this subsection), andwe pick the baseline
sequencing motivated by the following principles:
• We first change price variables and then change

trade variables. The reason for this sequencing is that
it identifies a pure price effect. In other words, the
price components communicate what the CCP expo-
sure change would have been hadmembers’ portfolios
not changed.
• Changes in idiosyncratic volatility precede changes

in correlations. In other words, we first consider changes
in the diagonal and then changes in the off-diagonal of a
covariance matrix. This approach makes interpretation
of the components straightforward: changes in variances
become pure in the sense that they are evaluated while
keeping correlations constant.
These principles therefore suggest the following

baseline OFAT decomposition:

ΔExpCCPt

� f DΣ D
11

Ωt
,R

22

Ωt ,P
33

t, Ñ
44

t

( )
,RΣ D

11

Ωt ,R
22

Ωt ,P
33

t, Ñ
55

t

( )( )

− f DΣ DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1
( )

,
(

RΣ DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1
( ))

, (9)
where the sequencing is illustrated by the (red) num-
bers on top of the various variables. The decomposi-
tion yields five components. For example, the first
component, RetVolat, is computed as follows:12

RetVolat � f DΣ DΩt ,RΩt−1 ,Pt−1, Ñt−1
( )

,
(

RΣ DΩt ,RΩt−1 ,Pt−1, Ñt−1
( ))

− f DΣ DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1
( )

,
(

RΣ DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1
( ))

, (10)
which captures the contribution of volatility change.



We list the five components here and discuss each
of them in detail. Note that the numbering corresponds
to the red numbers in (9).

3.2.1. Price Components.
1. RetVola: The impact of a change in return volatility

on CCP exposure change. This effect captures the well-
known empirical fact that volatility is time-varying
(commonly referred to as generalized autoregressive
conditional heteroskedasticity (GARCH) or stochas-
tic volatility in the financial econometrics literature).

2. RetCorr: The additional impact of a change in the
correlations of security returns on CCP exposure
change. The time-varying nature of such correlations
is another well-known empirical fact and can be
identified, for instance, through a dynamic condi-
tional correlation (DCC) model (Engle 2002).

3. PrLevel: The additional impact of a change in the
price level of securities. This effect is entirely due to
covariance matrices being defined in relative terms
(i.e., they are based on relative returns as opposed to
euro returns). For example, a covariancematrixmight
not have changed in the interval, but if price levels
dropped, then CCP exposure dropped because the
latter is defined in terms of the euro. Such effect is
picked up by PrLevel.

3.2.2. Trade Components.
4. TrPosition: The additional impact of trades. These

trades might expand or reduce members’ existing po-
sitions. CCP exposure therefore does not necessarily
increase after new trades. It declines if their overriding
effect was to reduce members’ outstanding positions.

5. TrCrowding: The additional impact due to changes
in the correlations of member portfolio returns, beyond
what is caused by changes in the correlations of secu-
rity returns (as that change is captured by RetCorr).
TrCrowding is therefore solely the result of position
changes due to trading. If these portfolio correlations
increase (in magnitude), then CCP exposure increases.13

In Appendix C, we illustrate the decomposition of
exposure changes by presenting a simple example. We
discuss how the various components change when
changing either price- or trade-related variables.

3.2.3. In-Depth Discussion of Component Identification.
The identification of the components that drive ex-
posure change in the tail (ΔExpCCP) deserves a more
thorough discussion. Such identification is nontrivial
for essentially two reasons. First, exposure is a non-
linear function of the various variables (e.g., security-
return correlations, member positions). Therefore, a
decomposition cannot assign changes uniquely to the
various components. To illustrate this point, consider
the following two simple functions: the linear func-
tion, f (x, y) � x + y, and the nonlinear one, g(x, y) � xy.

For f , any change can be uniquely decomposed as
Δf � Δx + Δy.
For g, however, any change is nontrivial to write in

terms of Δx andΔy. The approachwe picked is OFAT,
which can decompose Δg in two ways. One can first
change x and then y, yielding [g(x+Δx,y)−g(x,y)] +
[g(x+Δx,y+Δy)−g(x+Δx,y)] � [(Δx)y] + [(x+Δx)Δy)],
whereby the terms in square brackets correspond to
the contribution of x and y, respectively. Alterna-
tively, one can first change y and then x, yielding
[g(x,y+Δy) −g(x,y)] − [g(x+Δx,y+Δy) −g(x,y+Δy)] �
[xΔy]+ [Δx(y+Δy)], where the first term gets assigned
to y and the second to x. In summary, the OFAT
decomposition in this case is given in Table 1.
Note that the interaction term (Δx)(Δy) gets as-

signed to the component that is updated later. In
economic applications, there might be reasonable
arguments to pick a reasonable baseline sequencing
(as in our case), but it is always useful to consider all
possible sequences and report lower and upper bounds
to the size of each component. The wedge between the
two bounds tells the researcher to what extent the
decomposition critically depends on the sequencing
that the researcher picked.
Second, if the objective is to study how time series

Δf and Δg are driven by Δx and Δy, the identification
of components for both Δf and Δg suffers from
nonzero correlations between the underlying vari-
ables. Consider the case of a perfect correlation be-
tweenΔx andΔy in the time series. Then any function-
value changes are driven by changes in both x and y
simultaneously. The individual contribution of each
variable therefore cannot be (statistically) determined.
This is a genuine feature, not a flaw, of our method. The
comovement in x and y is itself an important prop-
erty of the system. We will return to this issue in
Section 5.1, where we study covariation across ex-
posure components.

3.3. Decomposition of CCP Exposure Level
Testing the second and third hypotheses requires a
decomposition of CCP exposure levels (as opposed to
exposure changes). To test whether there is more
crowding at higher exposure levels, it is desirable to
decompose CCP exposure acrossmembers and across
securities. If one finds more concentration either
across members (member crowding) or across secu-
rities (risk-factor crowding), then there is elevated
crowding as discussed in Section 2.

Table 1. A Conceptual OFAT Decomposition

Sequencing x component y component

First x, then y (Δx)y xΔy + (Δx)(Δy)
First y, then x (Δx)y + (Δx)(Δy) xΔy



ExpCCP being homogeneous of degree one in mem-
ber portfolio volatility and in security volatility suggests
a natural decomposition. Let us focus on the decom-
position across members to clarify (Menkveld 2017,
section 1.5). As ExpCCP is homogeneous of degree one
in member portfolio risk σj,14 applying Euler’s ho-
mogeneous function theorem yields the following:15

ExpCCP � ∑
j
σj

∂

∂σj
ExpCCP

( )
. (11)

Therefore, the contribution of member j is as follows:16
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1
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α

σA

π − 1
2π

( )
σiσjM ρij

( )
, (12)

where σA is the standard deviation of aggregate loss,
and M is defined in (15) in Appendix A. This result
shows that member j’s contribution to ExpCCP is
equal to the portfolio risk σj times the (marginal) price
of such risk in terms of CCP exposure, ∂ExpCCP/∂σj.
This type of decomposition is used when testing for
elevated member crowding on high exposure levels
(Hypothesis 2) and for verifying whether house ac-
counts contributemore to ExpCCP in these conditions
(Hypothesis 3).

A decomposition across securities is derived analo-
gously, where the risk units are ωk

17 instead of σj.
A detailed derivation is included as Appendix D. This
decomposition is used to test for elevated risk-factor
crowding at high exposure levels (Hypothesis 2).

4. Application
This intermezzo section presents the data and dis-
cusses various implementation issues. These issues
include normality of returns (needed for ExpCCP),
estimation of the return covariance matrix, and set-
ting the parameter α in the delta-normal VaR.

The data sample used for testing the hypotheses
was made available by EMCF. EMCF, now merged
with DTCC in the United States to become EuroCCP,
is an equity CCP for Nordic equitymarkets, including
Denmark, Finland, and Sweden. The sample consists
of trade records with time stamp, transaction size,
transaction price, an (anonymized) counterparty ID,
and information on whether it was a house- or client-
account trade. A trade done on a house account is for
a clearing member’s own book, whereas a client-
account trade is done on behalf of its customers.18

The sample runs from October 19, 2009, through
September 10, 2010, and includes trades on almost all
exchanges: NASDAQ-OMX, Chi-X, Bats, Burgundy,
and Quote MTF. The only exchange with Nordic

trades that it did not clear was Turquoise. Turquoise,
however, had a market share of less than 1% at
the time.
An equity CCP insures counterparty credit risk for

equity trades in the period that starts when a trade is
concluded and ends when it settles. When an ex-
change concludes a trade, the money and the secu-
rities are not immediately transferred. Such transfer
happens three days later in our sample. Should one
side to the trade default in this period, the CCP in-
herits its position, and the trade will follow through
all the way to settlement.
A three-day deferred settlement is conceptually

similar to a three-day forward contract between the
two sides of the trade. To fix language, we therefore
refer to yet-to-settle positions as “positions.” Note
that these positions change overnight in the absence
of any trade. This change is simply due to settlement
of legacy trades, and these trades are therefore re-
moved from member positions. In other words, if a
member does not trade for three consecutive days, his
or her position in all equities becomes zero, as all of his
or her earlier trades settled. Finally, we refer to a
member’s set of open positions at any point in time as
his or her portfolio.We emphasize that this should not
be confused with a member’s portfolio in terms of its
equity holdings. It simply refers to the yet-to-settle
trades, as these are relevant for CCP exposure because
it is for these open positions that the CCP insures
counterparty risk.

4.1. Data
4.1.1. Summary Statistics. Table 2 introduces the sam-
ple by presenting various summary statistics. The sam-
ple captures trading in 242 stocks on 228 days. It con-
tains 226 trading accounts, 87 of which are house
accounts and the remaining 139 are client accounts.
The table shows that Nordic stocks are reasonably

actively traded, leading to substantial variation in
account positions. On average, stocks are traded 1,180
times per day, generating an average volume of V9
million. The standard deviation in account positions
is V1.5 million. The corresponding within-account
standard deviation is relatively modest: V0.6 mil-
lion. In other words, most variation in positions is
across accounts. Separating between house and client
accounts shows that house-account positions tend to
be larger in magnitude. Their standard deviation is
V1.9 million, whereas it is V1.1 million for client
accounts. In addition, the average of end-of-day posi-
tions is zero because, for every buyer, there is a seller.

4.2. Implementation Issues
4.2.1. Volume Clock to Recover Normally Distributed
Returns. It is well known that financial returns are
not normally distributed when sampled using the



wall clock. Returns exhibit negative skewness and
excess kurtosis, especially at high frequencies. How-
ever, the financial econometrics/microstructure lit-
erature has shown that normality of security returns
can be recovered when time is measured on a volume
clock as opposed to the wall clock (Clark 1973, Ané
and Geman 2000, Easley et al. 2012). When using a
volume clock, security prices are sampled each time a
prespecified amount of volume has been traded. It
turns out returns based on such prices aremuch closer
to being normally distributed with less negative skew-
ness and less excess kurtosis.

As normally distributed portfolio returns are needed
for computingExpCCP,19 we use a volume clock in our
empirical analysis inspired by Easley et al. (2012). We
set the average number of volume bins per day to 34,
which corresponds to a 15-minute frequency on the
wall clock, as the market is open from 09:00 to 17:30.
The bin size, therefore, is picked to be the average
daily euro volume divided by 34, yielding 6,770
ExpCCP observations. The choice for a 15-minute
frequency is common in the microstructure literature,
as it strikes a balance between sample size and mi-
crostructure noise (Hansen and Lunde 2006). As a
robustness check, we consider other frequencies as
well (see Section 5.1 and Appendix E.2).

Our implementation follows the volume-clock lit-
erature except for two notable differences. First, in-
stead of creating the clock security-by-security based
on security-specific volume, we group all securities
together and create the clock based on market volume.

Suppose the clock starts now, then the latest prices are
stacked into a vector. If the volume bin is one million
euros, wewait until one million euros have been traded
across all securities, and at that moment we again stack
the latest prices of all securities into a vector. Returns are
then computed based on the standard log difference.
The benefit of this approach is that we have a mar-
ketwide volume clock that allows ExpCCP to be cal-
culated in volume time. Moreover, the wall clock is
not completely ignored, as we reset the volume clock
at market open. This way, the analysis avoids mixing
in overnight effects and thus focuses on intraday
exposures only.20

To assess whether volume-clock returns are indeed
closer to normal than wall-clock returns, we compare
various statistics for member portfolio returns. Wall-
clock returns are based on a 15-minute sampling
frequency. Table 3 presents skewness, excess kurto-
sis, and the Jarque-Bera statistic, which includes both
skewness and kurtosis. Under the null of normality,
these statistics are zero in expectation. These statistics
are reported for the five largest clearing members, for
allfive pooled, and for all members pooled, respectively.
The results show strong evidence in favor of the

volume clock when returns are required to be normal.
All three statistics are substantially closer to zero for
each of the five largest members. When pooled,
skewness drops from 1.01 to 0.03, kurtosis drops
from 46.79 to 3.20, and the Jarque-Bera statistic drops
from 91.38 to 0.43. Similar patterns hold when con-
sidering all members instead of the five largest only.

Table 2. Summary Statistics

Panel A: General information

Number of trading days 228
Number of stocks 242
Number of accounts
House accounts 87
Client accounts 139
Total 226

Panel B: Trade information across stocks

Mean Standard deviation Median

Mean of daily number of trades 1,180 2.112 204
Mean of daily volume (shares) 797,844 2,148,216 66,286
Mean of daily volume (euro) 9,042,586 19,535,974 743,348

Panel C: Trade information across clearing members (by account type)

All accounts House accounts Client accounts

Mean of end-of-day position (euro) 0 −11,237 11,567
Standard deviation of end-of-day position (euro) 1,535,067 1,880,137 1,069,244
Within-member standard deviation end-of-day position (euro) 619,105 988,685 387,785

Notes. This table presents summary statistics for the CCP data sample. Trades on house accounts are done for a clearing member’s own book.
Trades on client accounts are done for clients.



These statistics suggest that, consistent with the lit-
erature, nonnormality is indeed much less of an issue
for volume-clock returns.21

4.2.2. Estimation of Time-Varying Return Covariance.
To account for time-varying volatility in returns, we
estimate Ωt as the exponentially weighted moving
average (EWMA) of the outer product of returns. This
approach is in line with standard practice (e.g., Risk-
Metrics and EMCF) and corresponds to estimating an
IGARCH(1,1).

What remains is to pick the EWMA decay pa-
rameter. RiskMetrics uses 0.94 for its highest fre-
quency: daily returns. Because round-the-clock var-
iance is 38 times larger than the intraday 15-minute
variance, we pick the decay parameter to be 0.9984
(because 0.998438 � 0.94). Ωt is therefore calculated
recursively as follows:22

Ωt � 1 − 0.9984( )Rt−1R′
t−1 + 0.9984Ωt−1. (13)

The sample used for our analysis starts on December
7, 2009, but we use data as of October 19, 2009, to have
a burn-in period forΩt. We start off the recursionwith
the zero matrix, but given that 0.94 corresponds to a
half-life of 11 days, the effect of this choice is negli-
gible by the time we arrive at December 7, 2009.

4.2.3. Pick α to Make ExpCCP a 1% VaR. CPMI-IOSCO
(2012) recommends that a CCP use a 1% VaR to set
margins. We follow this lead and calibrate the alpha
parameter in our delta-normal VaR to 2.5 to achieve
an exceedance rate of 1%.23

5. Results
In this section, we first present the time series of CCP
exposure. Several salient spikes will be discussed.

In the three subsequent subsections, we test the three
hypotheses in Section 2.
Figure 1 plots the time series of CCP exposure:

ExpCCPt. Panel (a) of Figure 1 plots exposure levels
and shows one particularly large spike in May 2010.
This turns out to be the peak month of the Greek
sovereign debt crisis.24 ExpCCP reached V5 million
that month, which means that the 1% VaR of losses
across all members in the oncoming volume bin is V5
million. Although this is about triple the average
level, it is still a relatively moderate amount and
would not cause a systemic crisis in and of itself. As
stated in the introduction, equity CCPs are unlikely to
be systemic, but as CCP data are extremely scarce, we
are privileged to have access to such data. We be-
lieve that it is interesting to study ExpCCP dynamics
(which is what we do in the remainder of the section)
to test several hypotheses.
This result provides new evidence, from the angle

of CCP exposure, on the spillover effects of the Greek
sovereign debt crisis that have been extensively dis-
cussed in the literature. For example, Mink and De
Haan (2013) find that news about the Greek bailout
generally led to abnormal stock returns for European
(including Nordic) banks: positive returns for regu-
latory initiatives that favor banks, negative returns
otherwise. Bhanot et al. (2014) find that Greek yield
spread increases are associated with negative abnor-
mal returns on financial stocks throughout Europe.
Beetsma et al. (2013) document spillover effects from
the Greek yield spread to those of other European
countries, and Candelon et al. (2011) find similar
evidence when studying credit default swaps on
sovereign debt. We will revisit the Greek crisis when
decomposing ExpCCP in Section 5.2.
Panel (b) of Figure 1 plots exposure changes instead

of levels. It shows that periods with high levels do not

Table 3. Statistics on Member Portfolio Returns: Wall vs. Volume Clock

Member

Skewness Kurtosis Jarque-Bera

Wall clock Volume clock Wall clock Volume clock Wall clock Volume clock

First largest −0.47 −0.05 15.51 1.97 10.06 0.16
Second largest 1.96 0.19 46.60 3.15 91.12 0.42
Third largest 1.50 0.01 30.66 3.16 39.54 0.42
Fourth largest 1.96 0.27 109.55 3.96 500.69 0.66
Fifth largest −0.29 −0.24 8.69 3.42 3.16 0.50
Largest five pooled 1.01 0.03 46.79 3.20 91.38 0.43
All pooled −0.62 −0.19 205.47 18.46 1,759.19 14.20

Notes. This table presents various statistics based on realized euro returns for member portfolios. These
statistics are presented for wall-clock and volume-clock returns to assess to what extent the returns are
normally distributed. The statistics include skewness, excess kurtosis, and the Jarque-Bera statistic. The
latter combines the former two and is computed as (S2 + K2/4)/6, where S is skewness and K is excess
kurtosis. The clock runs in 15-minute intervals for the wall clock and for a bin size that, on average,
makes a volume bin last 15 minutes. Statistics are presented for the largest five members in terms of
volume, for all five pooled, and for all members pooled.



necessarily correspond to periods with extreme in-
traday increases. It is the latter that CPMI-IOSCO
(2017) is particularly worried about when present-
ing its latest guidance on CCP risk management. The
largest peak corresponds to the idiosyncratic event
when Nokia announced earnings that were far below
analyst expectations at noon on April 22, 2010. Its
share price dropped by about 15% in subsequent
minutes. Volume jumped and remained high through-
out the afternoon, 400% above what volume was in the
morning of that day. We revisit the Nokia event when
decomposing ΔExpCCP in Section 5.1.

5.1. Hypothesis 1: The Drivers of CCP Exposure
Changes Are Different in the (Right) Tail

Hypothesis 1 essentially states that extremely large
increases of CCP exposure are different in nature
compared with regular changes. As discussed in the
hypothesis development section (Section 2), they are
likely to reflect a jump in volatility and elevated
trading. There might also be crowding if all members
tilt their portfolios to the single risk factor at the heart

of the turbulence (in the later part of the section, we
explore the Nokia event to illustrate). These stand in
contrast to “average” changes in CCP exposure that
weconjecture tomostly reflectmemberposition changes
due to trade.
To test the first hypothesis, we decompose CCP

exposure changes into various components for three
samples: the full sample and subsamples with the 100
largest and 10 largest increases. Table 4 presents the
decomposition results and yields the following in-
sights. First, for the full sample, exposure changes
seem to be driven only by member position changes:
TrPosition dominates all other components.
Second, when zooming in on the top 100 and top

10 ΔExpCCP, a different picture emerges. Whereas
TrPosition drops to 59.5% and 33.2%, respectively,
two other components, volatility and crowding, be-
come much more important. Although the volatility
component makes up only 1.8% of exposure changes
for the full sample, it jumps to 17.1% and 58.3% for
the top 100 and top 10 increases, respectively. The
crowding component is only 3.0% of exposure changes

Figure 1. (Color online) CCP Exposures, Both Levels and Changes

Notes. This figure plots CCP exposure ExpCCPt. Panel (a) plots exposure levels and panel (b) plots exposure changes. Each shaded area
corresponds to one month. A wider area indicates a higher monthly volume as the clock runs in volume time.



for the full sample but jumps to 12.8% and to 13.1% for
the top 100 and top 10 increases, respectively.

Third, the price and correlation components remain
small in the two subsamples and sometimes turn
negative. Note that the components can be either
positive or negative as they can either increase or
reduce CCP exposure; and when scaled by the total
positive exposure change (ΔExpCCP), the negative
components lead to negative percentages. Importantly,
the relative contributions of the various components
add up to 100%.

Interestingly, the price component contributes
−4.5% in the top 10 ΔExpCCP. We speculate that this
result must be driven by price crash events that are
typically accompanied by high volume and volatility
spikes. A lower price level per se reduces CCP ex-
posure simply because CCP exposure is denominated
in euro. Suppose the 1% VaR is to lose 20 cents on one
euro. Ceteris paribus, the 1% VaR would be to lose 10
cents on 50 euro cents (i.e., with price level halved).
The “exposure” dropped from 20 cents to 10 cents in
this example due to a lower price level.

However, one should not conclude that price crashes
serve to reduce exposure. This goes back to our discus-
sion of the identification of components. Price crashes
might be coupled with volatility and positions in the
sense that conditioning on extreme price drops, tail
events for volatility, or position changes becomemore
likely. We further scrutinize the identification of the
components at the end of this section with the help of
CoVaR (Tobias and Brunnermeier 2016).

Overall, all of these findings support the hypothesis
that extreme increases in CCP exposure are different
in nature than overall changes. Specifically, although
CCP exposure changes on average are almost entirely
driven by member position changes, extreme ones ex-
hibit substantial contributions from volatility changes
and changes in crowding.
In Appendix E, we show that our findings are ro-

bust to changing the estimate of the time-varying
return covariance and changing the sampling fre-
quencies. One notable result worthmentioning here is
that, for lower frequencies, the differences between
the full sample and the top 10 subsample are atten-
uated. This highlights the importance of monitoring
changes in CCP exposure at high frequencies.25

5.1.1. Identification of the Components. As discussed
in Section 3.1, the identification of the various com-
ponents could depend on the sequencing of the com-
ponents and, in the time series, on the comovements
between components. In terms of the sequencing, in
Appendix E we show that our findings are robust to
changing the sequencing of the components. The anal-
ysis of covariation in the component series, however,
not only is a robustness check but also yields some
economic insights and is therefore presented in the re-
mainder of this section.
To study to what extent the components covary, we

pick the baseline sequencing and simply compute
correlations across components in the time series.
Table 5 presents the results. The three strongest cor-
relations appear in boldface: 0.57 between crowding
andpositions,−0.25 between price level and volatility,
and −0.12 between price level and positions. The high
correlation between crowding and positions is simply
due to the fact that both are trade-related components
and thus are driven bymember position changes. The
negative correlation between price level and volatility
is consistentwith thewell-documented leverage effect in
the financial economics literature: negative price shocks
coincide with disproportional volatility increases.
These correlations could be driven by left-tail reali-

zations, by right-tail realizations, or by both. The most

Table 4. Decomposition of Changes in CCP Exposure

Full sample Top 100 ΔExpCCP Top 10 ΔExpCCP

Panel A: CCP exposure change decomposition in euro

RetVola 272 10,949 69,311
RetCorr 113 3,555 −89
PrLevel −133 3,195 −5,324
TrPosition 14,255 38,002 39,445
TrCrowding 443 8,186 15,571
ΔExpCCP 14,949 63,887 118,914

Panel B: CCP exposure change decomposition in percentage

RetVola 1.8 17.1 58.3
RetCorr 0.8 5.6 −0.1
PrLevel −0.9 5.0 −4.5
TrPosition 95.4 59.5 33.2
TrCrowding 3.0 12.8 13.1
ΔExpCCP 100.0 100.0 100.0

Notes. This table presents the decomposition of CCP exposure
change for the full sample, the top 100, and the top 10 increases.
Panel A presents the decomposition in euro. Panel B presents the
same decomposition but in percentage. The five components capture
changes in security-return volatility (RetVola), security-return cor-
relations (RetCorr), the pricing level (PrLevel), members’ outstanding
positions (TrPosition), and the crowding measure of member posi-
tions (TrCrowding).

Table 5. Correlation Across ΔExpCCP Components

RetVola RetCorr PrLevel TrPosition

RetCorr 0.04∗∗∗
PrLevel −0.25∗∗∗ 0.01
TrPosition 0.00 0.05∗∗∗ −0.12∗∗∗
TrCrowding 0.08∗∗∗ 0.06∗∗∗ −0.06∗∗∗ 0.57∗∗∗

Notes. This table reports correlations between the decomposition
components (using the baseline sequencing). Correlations that are
larger in magnitude than 0.10 are in bold.

*10% significance level; **5% significance level; ***1% signifi-
cance level.



worrying pattern to a CCP is if correlations are driven
by tail realizations that increase CCP exposure, such as
left-tail realizations of the price component (price
crashes) and right-tail realizations of the volatility
component (volatility spikes). To zoom in on ad-
versarial tail events, we turn to CoVaR, which has
been developed by Tobias and Brunnermeier (2016) to
analyze systemic risk in a similar vein.

The extent towhich adversarial shocks coincide can
be measured by CoVaR, which is defined as follows:

Pr Xj ≥ CoVaRj|i
q |Xi � VaRi

q

( )
� q

with Pr Xi ≥ VaRi
q

( )
� q,

with q � 0.01 for a 1%VaR, and CoVaRj|i
q is the 1%VaR

of variable j conditional on variable i being at its 1%
VaR level. We compare the CoVaR derived directly
from our sample (i.e., sample CoVaR) to the CoVaR
that is implied by the two variables being Gaussian
(i.e., Gaussian CoVaR). The difference in magnitude
between the two serves to measure the tail depen-
dence between the variables, benchmarked against
the normal distribution.

Note that, contrary to the definition of standard
VaR, we use ≥ (instead of ≤) because exposures are
defined in terms of losses, which are positive numbers.

Thus, we focus on the right-tail realizations of the
components. The only exception is PrLevel, for which
we use ≤ as an adversarial event, as price crashes are
left-tail realizations of the price component. Thus, the
tail events are large increases of volatility, return
correlations, positions, and crowding, and large de-
creases of the price level.
Table 6 presents the sampleCoVaR,GaussianCoVaR,

and the difference in magnitude between the two.
Note that for the price component, the CoVaRs are
negative because its left-tail realizations are adversa-
rial to the CCP. Highlighted in bold are the sample
CoVaRs with largest absolute value in each column.
This focuses attention on the strongest tail dependence
between the variables. The highlighting shows that, in
five of six cases, it is the large price drop that, when
conditioned on, leads to the strongest tail dependence
in the other components. Nonetheless, for price level
itself, it is large volatility increases that lead to its
strongest tail dependence.
For each column, the largest difference in magni-

tude between sample CoVaR and Gaussian CoVaR is
italicized. Again, inmost cases (four of six), thewedge
is largest when a price drop is conditioned on. Price
crashes seem to “trigger” the strongest adversarial
covariation with the other components. This finding
itself is consistent with the fire-sales dynamics, which

Table 6. CoVaR Across ExpCCP Components

RetVola RetCorr PrLevel TrPosition TrCrowding

RetVola
Gaussian CoVaR 4,101 −12,744 22,471 9,323
Sample CoVaR 12,409 −24,062 52,143 12,159
Difference in magnitude 8,308 11,318 29,672 2,835

RetCorr
Gaussian CoVaR 12,856 −12,419 23,463 9,201
Sample CoVaR 9,767 −17,925 48,447 10,390
Difference in magnitude −3,089 5,506 24,984 1,190

PrLevel
Gaussian CoVaR 17,446 5,423 26,254 9,967
Sample CoVaR 47,799 12,806 63,408 22,320
Difference in magnitude 30,353 7,383 37,154 12,353

TrPosition
Gaussian CoVaR 12,454 4,148 −10,629 12,042
Sample CoVaR 11,114 9,003 −21,671 17,128
Difference in magnitude −1,341 4,855 11,042 5,086

TrCrowding
Gaussian CoVaR 13,372 4,210 −10,442 31,161
Sample CoVaR 13,621 10,448 −21,829 52,301
Difference in magnitude 250 6,238 11,387 21,140

Notes. This table reports the CoVaR between the components. CoVaRj|i
q is reported in row i and column j

(i.e., the row variables are conditioned on). It measures the extent to which components exhibit coupling
effects in the sense that tail events co-occur.We report the sample CoVaR alongwith a Gaussian CoVaR,
which is what CoVaR would have been had the distribution been normal (calibrated to the mean and
covariance of the pair). We also report the difference in magnitude between the two, defined as
Sign(Sample CoVaR)(Sample CoVaR −Gaussian CoVaR). Highlighted in bold are the largest sample
CoVaRs in absolute value within a column. The largest differences in magnitudes when comparing the
sample CoVaR with the Gaussian CoVaR (within a column) appear in italics.



was one of the channels that motivate the first hy-
pothesis. Although the findings are suggestive of
causality, we caution that one cannot make any
causal statements.

To illustrate these general findings, Figure 2 zooms
in on the Nokia event. Panel (a) decomposes the ex-
posure jump of V0.24 million immediately following
Nokia’s disappointing announcement. A couple of
features stand out. First, return volatility is by far the
largest component: V0.30 million. Its effect is mod-
erated by the negative price-level component:V−0.06
million. In other words, Nokia volatility spikes due to
a large negative return of about −15%, but relative
volatility applies at a lower price level because of the
negative return. Finally, the trade components are

both positive, implying that, on average, traders
expand their positions in a way that leads to more
crowding. These trade components are, however,
dwarfed by the volatility component.
Panel (b) zooms out and shows how exposure built

up throughout the day. Its most salient feature is that,
although the volatility spike dominates exposure
change in the volume bin right after the event, it is
only about afifth of the exposure increase for that day.
The reason is that volatility is only amajor component
in the bin just after the event; trade components
dominate subsequent bins. Therefore, the high vol-
ume in the afternoon turns out to be due to traders
expanding their positions, not reducing them. There
is also elevated crowding, but its contribution is only

Figure 2. (Color online) Decomposition of the Largest CCP Exposure Increase: The Nokia Event

Notes. At noon on April 22, Nokia announced disappointing earnings, which caused a large price drop of 15% in a few minutes and a sharp
increase in trading volume. CCP exposure rose steeply in the volume bin subsequent to the announcement. Panel (a) decomposes this exposure
increase into five components: security-return volatility (RetVola), security-return correlation (RetCorr), price level (PrLevel), position changes
(TrPosition), and the extent of crowding inmember positions (TrCrowding). Panel (b) zooms out and cumulates these components for the full day.



about 20% of the total contribution of trade compo-
nents. Finally, traders do not seem to take substantial
positions ahead of the Nokia announcement, as all
components only start to contribute substantially in
the afternoon.

Perhaps themost importantmessage of theseNokia
results is that firm-specific shocks can have a systemic
impact through heightened CCP exposure. News that
strikes like lightning causes volatility to spike and,
more importantly, makes traders expand their posi-
tions in ways that lead to more concentration in their
portfolios (i.e., crowding).

5.2. Hypothesis 2: The Structure of CCP Exposure
Levels Is Different in the (Right) Tail

The second hypothesis focuses on the highest expo-
sure levels as opposed to the largest changes. Does
one see evidence of elevated exposure concentration
(i.e., crowding) across members, across (a combina-
tion of) stocks, or across both? Such a finding would
raise concerns about market conditions that are po-
tentially prone to fire-sale dynamics.

To verify whether the structure of CCP exposure is
different in the tail, we decompose exposure for the
full sample and for the subsamples of the top 10% and
the top 1% CCP exposure levels. The reason for
picking the top 10% here instead of the top 100 used in
the previous subsection is that CCP exposure levels
are very persistent as comparedwith exposure changes.
The top 100 subsample is smaller than the top 10%
sample, and therefore,whenused in the level analysis, it
would essentially point to the same period of time. The
same argument applies to picking the top 1% instead of
the top 10. The decomposition is conducted both across
members and across stocks. We then compute the
Herfindahl-Hirschman Index (HHI) along with shares

of the largest 1, 5, and 10 contributors to measure the
concentration level.
Table 7 reveals that concentration is elevated in the

tail for members, but not for individual stocks. The
shares of the top 1, 5, and 10 members increase
substantially from the full sample to the top 1%
subsample. For example, the share of the top five
members increases from 27.8% in the full sample to
34.9% in the top 10% subsample and to 46.8% in the
top 1%. The HHI shows a similar trend and increases
from 0.030 to 0.046 and 0.085, respectively. There is no
such trend for the decomposition across stocks. The
share of the top five stocks, for example, stays rather
flat. It changes from 43.3% in the full sample to 48.9%
and 41.1% in the top 10% and top 1%, respectively.
The unchanged concentration for the decomposi-

tion across stocks does not preclude crowding in a
particular portfolio of stocks. To study whether this
is the case, we apply principal component analysis
(PCA) onmember portfolio returns for the full sample
and for both subsamples. Table 8 shows that there
does appear to be elevated crowding in the sub-
samples. It is strongest for the first principal com-
ponent (PC1), for which the share in total variance
increases from 7.8% in the full sample to 20.8% in the
top 10% subsample and to 37.6% in the top 1% sub-
sample. As the largest CCP exposures occur mostly in
the Greek crisis period, it is likely that this component
captures a market effect. To verify, we compute the
correlation of PC1 with the local market index and
indeed find the expected pattern: 0.43 for the full
sample, 0.86 for the top 10% subsample, and 0.98 for
the top 1% subsample.
Finally, to illustrate these results graphically, Fig-

ure 3 plots the HHI for both the across-member and
across-stock decompositions (see Table 7). Panel (a)

Table 7. Decomposition of CCP Exposure Across Members and Across Stocks

Full sample Top 10% ExpCCP Top 1% ExpCCP

Panel A: Decomposition of CCP exposure across traders

Top 1 member (%) 9.3 14.4 25.5
Top 5 members (%) 27.8 34.9 46.8
Top 10 members (%) 41.7 48.2 57.3
HHI 0.030 0.046 0.085

Panel B: Decomposition of CCP exposure across stocks

Top 1 stock (%) 18.7 28.0 16.1
Top 5 stocks (%) 43.3 48.9 41.1
Top 10 stocks (%) 59.3 62.6 57.3
HHI 0.080 0.176 0.053

Notes. This table presents the results of decomposing CCP exposure levels across members and across
stocks for the full sample and for the top 10% and top 1% subsamples. Various concentration measures
are reported: the share of the member/stock with the largest contribution, the five largest contributors,
and the 10 largest contributors. The table further reports the HHI.



plots the across-member HHI in solid red and over-
lays the CCP exposure level in dashed blue (using the
second y axis). It illustrates that high concentration
occurs mostly in the Greek crisis period. Panel (b)
plots the across-stock HHI and, as expected, shows
that it stays rather flat at times when CCP exposure
peaks. This does not mean that concentration remains
at the same level throughout. It does show a large
peak around the Nokia event when exposure increase
is the largest as analyzed in the previous subsection.

Upon further inspection, we unsurprisingly find that
the concentration occurs in the stock of Nokia.

5.3. Hypothesis 3: The Relative Contribution of
House Accounts Increases in the (Right) Tail

The third hypothesis states that the relative contri-
bution of house accounts is higher for extreme CCP
exposure levels. This is potentially worrisome, as
clearing members are highly leveraged financial
institutions.

Table 8. Principal Component Analysis of Member Portfolio Returns

Full sample (%) Top 10% ExpCCP (%) Top 1% ExpCCP (%)

PC1 7.8 20.8 37.6
PC2 5.2 8.9 10.8
PC3 2.7 6.4 6.2
PC1+PC2+PC3 15.7 36.0 54.7

Notes. This table uses principal component analysis to characterize the commonality in member portfolio
returns for the full sample and for subsampleswhereCCP exposure levels are large. It reports the explained
variation of the first, second, and third principal component along with the sum of these three.

Figure 3. (Color online) CCP Exposure Concentration Across Members and Across Stocks

Notes. This figure plots the HHI of CCP exposure decomposed across members in panel (a) and across stocks in panel (b) in solid lines (left y
axis). The plots also show the level of CCP exposure in dashed lines (right y axis).



Table 9 presents evidence largely rejecting the third
hypothesis. The decomposition across house and
client accounts in Panel A shows that house accounts
contribute 66.8% to CCP exposure in the full sample.
This contribution, however, hardly changes when
measured for the top 10% subsample (66.0%) and in-
creases only mildly to 69.7% in the top 1% subsample.

Panel B shows that in spite of the relative contri-
bution of all house accounts combined being rather
flat across subsamples, there is concentration within
house accounts. The HHI computed based on each
member’s contribution to the total of house-account
contributions increases from 0.051 for the full sample
to 0.083 for the top 10% and to 0.160 for the top 1%.
The results suggest that, in stressed markets, the
positions in the books of some clearing members
expand, whereas the positions of others shrink. This
causes their total contribution to CCP exposure to
remain unchanged, yet there is more concentration
within house accounts.

There appears to be no such pattern for client ac-
counts with a collective contribution that remains flat
across the three samples and a within-client con-
centration that remains largely unchanged. The HHI
is 0.068 for the full sample, 0.071 for the top 10%
subsample, and 0.081 for the top 1% subsample.

In sum, the significantly higher concentration within
house accounts is potentially worrisome. Most clearing
members are highly leveraged sell-side banks, which, if
trading for speculative reasons, might default on their
position if they turn out to be on the wrong side of the
bet. Given that they seem to crowd into the same (set of)
risk factors, there might be multiple members who are
heavily under water on their bets at the same time.
Admittedly, it is unlikely that they would default on
their equity trades, but if the patternwere to carry over to
CCPs that clear interest rate derivatives or credit default
swaps, thensuchapatternwouldbecomeasystemicworry.

6. Conclusion
In summary, we test three hypotheses about the ex-
posure a CCP has vis-à-vis with its clearing members.
All three hypotheses focus on tail events and whether

the nature of CCP exposure changes in such cases. The
academic literature has emphasized elevated con-
centration (i.e., crowding) in such stressed markets
with a risk of fire-sale price dynamics.
We develop an approach for monitoring CCP ex-

posure whereby both exposure levels and exposure
changes can be decomposed to identify the relative
contribution of various factors. The empirical results
support the hypothesis that the nature of exposure
levels or exposure changes is different in the tail: there
is indeed more crowding in stressed markets. The
hypothesized larger contribution of house accounts to
total exposure in such conditions is not supported by
the data. However, within house accounts, there is
more concentration with a small number of clearing
members contributing a disproportionate amount to
total house-account exposure.
Our findings suggest that CCP executives and

regulators should monitor at high frequencies with a
particular focus on tail events. Whether contingency
planning is needed and, if so, what form it should take
is a topic for future research. We do, however, believe
that the approach we have developed could be useful
formonitoringCCP exposure at high frequencies. The
proposed decomposition of exposure changes could
help CCPs and regulators diagnose sudden large
jumps in exposure. As all results are analytical (thus
avoiding heavy-duty simulations), the approach can
be implemented in real time. We believe this is an
asset in today’s extremely fast markets.
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Appendix A. Results Needed to Compute ExpCCP
Let Lt be the J × 1 vector that stacks all Lj,t. Because
At � ∑

j Lj,t, one needs to compute E(Lt) and var(Lt) to
evaluate (4). Following Menkveld (2017, proposition 1)
yields the following two results:

E Lt( ) � μt, μj,t �
̅̅̅̅
1
2π

√
σj,t,

var Lt( ) � Ψt, ψij,t � π − 1
2π

σi,tσj,tM ρij,t
( )

, (A.1)

where σij,t is the (i, j)th element of the covariance matrix
of member portfolio returns Σt, σi,t is short for σ

1
2
ii,t, and

ρij,t � σij,t/σi,tσj,t. The function

M ρ
( ) � 1

2
π + arcsin ρ

( )( )
ρ +

̅̅̅̅̅̅̅̅
1 − ρ2

√
− 1

[ ]
/ π − 1( ) (A.2)

maps portfolio return correlations into portfolio loss cor-
relations. Menkveld (2017) presents detailed proofs. ExpCCP
can now be written explicitly as

ExpCCPt

� ∑
j

̅̅̅̅
1
2π

√
σj,t + α

∑
i

∑
j

π − 1
2π

σi,tσj,tM ρij,t
( )( )1

2

. (A.3)

Appendix B. Decomposition of CCP
Exposure Change
This section presents the various components that add up to
CCP exposure change:

ΔExpCCPt � RetVolat + RetCorrt + PrLevelt⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Price components

+ TrPositiont + TrCrowdingt⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Trade components

. (B.1)

B.1. Price Components
The three price components are as follows:

RetVolat � f D DΩt ,RΩt−1 ,Pt−1, Ñt−1
( )

,
(

R DΩt ,RΩt−1 ,Pt−1, Ñt−1
( ))

− f D DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1
( )

,
(

R DΩt−1 ,RΩt−1 ,Pt−1, Ñt−1
( ))

, (B.2)

RetCorrt � f D DΩt ,RΩt ,Pt−1, Ñt−1
( )

,
(
R DΩt ,RΩt ,Pt−1, Ñt−1
( ))
− f D DΩt ,RΩt−1 ,Pt−1, Ñt−1

( )
,

(
R DΩt ,RΩt−1 ,Pt−1, Ñt−1
( ))

, and (B.3)
PrLevelt � f D DΩt ,RΩt ,Pt, Ñt−1

( )
,

(
R DΩt ,RΩt ,Pt, Ñt−1
( ))
− f D DΩt ,RΩt ,Pt−1, Ñt−1

( )
,

(
R DΩt ,RΩt ,Pt−1, Ñt−1
( ))

. (B.4)

B.2. Trade Components
The two trade components are as follows:

TrPositiont � f D DΩt ,RΩt ,Pt, Ñt
( )

,
(

R DΩt ,RΩt ,Pt, Ñt−1
( ))
− f D DΩt ,RΩt ,Pt, Ñt−1

( )
,

(
R DΩt ,RΩt ,Pt, Ñt−1
( ))

and (B.5)
TrCrowdingt � f D DΩt ,RΩt ,Pt, Ñt

( )
,

(
R DΩt ,RΩt ,Pt, Ñt
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− f D DΩt ,RΩt ,Pt, Ñt

( )
,

(
R DΩt ,RΩt ,Pt, Ñt−1
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Appendix C. Example of CCP Exposure
Change Analysis
Table C.1 presents a simple example to illustrate the in-
sights that one can get from a decomposition of CCP ex-
posure changes. Suppose there are four agents (A1,A2,A3,A4)
and two securities (S1 and S2) that costV1 and have returns
that are standard normal andmutually independent at least
at the beginning of time. All agents start with a zero po-
sition in the securities. To illustrate real-time CCP exposure
monitoring, we consider a particular sequence of events.
We compute CCP exposure change after each event and
present its decomposition. This controlled setting serves to
familiarize with the approach before implementing it on
real-world data.

The first two columns of Table C.1 describe the sequence
of events. CCP exposure is computed after each event based
on the loss distribution for the oncoming period. In some
cases, events are illustrated by horizontal arrows that
correspond to positions in the first security. Arrows that
point right denote long positions. Left arrows denote short
positions. Vertical arrows correspond to positions in the
second security. Up arrows denote long positions. Down
arrows denote short positions. The remaining columns
show CCP exposure, its change, and the decomposition of
this change into the five factors. These changes and de-
compositions are discussed here.

• t � 0. CCP exposure is 0 for the simple reason that none
of the agents have a position.

• t � 1. A1 entered a long position of one unit on S1 and
A2 is on the opposite side of that trade. CCP expo-
sure becomes V2.3. The decomposition shows that V2.9 is
due to expanded positions (TrPosition), and the crowding



component isV−0.6 (TrCrowding). The reason for this negative
crowding term is simply that, in this case, the members have
taken the opposite side of the same trade and their portfolio
returns are therefore perfectly negatively correlated.

• t � 2. A3 entered a long position of one unit in S2 with
A4 taking the short side. CCP exposure increases by V1.4 to
V3.7. The decomposition shows a positive TrPosition of V1.8
and a negative TrCrowding of V−0.4. The positive position
risk is due to the new trade leading to larger positions.
Furthermore, the new trade betweenA3 andA4 is in S2 and is
therefore orthogonal to the positions between A1 and A2. In
other words, the new trade between A3 and A4 lowers the
correlations between member portfolio returns. Hence, there
is less crowding now than before.

• t � 3. The return volatility of S1 increases from 1 to 2.
CCP exposure increases by V2.0 to V5.7. The decomposition
indeed attributes it to the volatility component (RetVola).

• t � 4. The correlation between the returns of S1 and S2
increases from 0 to 0.5. CCP exposure increases by V0.3 to
V6.0. The decomposition assigns it to the correlations com-
ponent (RetCorr).

• t � 5. The price of S1 drops from V1 to V0.5. CCP ex-
posure drops by V2.1, which is completely assigned to the
price level (PrLevel). This is simply the result of volatility being
defined in relative terms. If it does not change but the price
level drops, then the VaR, which is expressed in euro, drops.

• t � 6. A3 trades again with A4 but this time enters a one-
unit-long position in S1, where A4 takes the short side. CCP
exposure increases by V2.8 to V6.7. Positions now crowd on

the risk factor S1. The decomposition assigns V1.3 of the
increase to TrCrowding and the remaining V1.5 to TrPosition.

• t � 7. A3 and A4 effectively undo their first trade by
entering a reverse trade. In this reverse trade, A3 is long one
unit of S2 and A4 is short one unit. CCP exposure declines by
V2.1 to V4.6. The decomposition shows that most of the
decrease is due to a reduction in outstanding (net) positions
(i.e., the drop is largely assigned to TrPosition). This event
shows that trade does not necessarily imply more exposure;
it could reduce exposure when, after the trade, positions
shrink. Note that, combining t � 6 and t � 7, the size of trade
positions have not changed—members are long or short
the same amount of risk—but CCP exposure has increased
due to crowding.
In summary, the decompositions of CCP exposure changes
generate insight into the drivers of these changes. TrPosition
picks up whether new trades extend or reverse legacy
positions. TrCrowding captures the correlation of member
portfolio returns. RetVola, RetCorr, and PrLevel identify
exposure changes due to changes in the volatility of returns,
their correlations, and price levels, respectively.

Appendix D. Decomposition of CCP Exposure
Across Securities
ExpCCP being homogeneous of degree one in ωk yields the
following:26

ExpCCP � ∑
i
ωk

∂

∂ωk
ExpCCP

( )
. (D.1)

Table C.1. Simple Example to Illustrate the Decomposition of CCP Exposure Changes

t Trades/changes ExpCCPt ΔExpCCPt� RetVolat + RetCorrt + PrLevelt + TrPositiont + TrCrowdingt

0 σ1 � σ2 � 1, ρ � 0, p1 � p2 � 1. 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 2.3 2.3 0.0 0.0 0.0 2.9 −0.6

2 3.7 1.4 0.0 0.0 0.0 1.8 −0.4

3 Volatility changes from σ1 � σ2 � 1 to σ1 � 2, σ2 � 1. 5.7 2.0 2.0 0.0 0.0 0.0 0.0
4 Return correlation changes from ρ � 0 to ρ � 0.5. 6.0 0.3 0.0 0.3 0.0 0.0 0.0
5 Price level changes from p1 � p2 � 1 to p1 � 0.5, p2 � 1. 3.9 −2.1 0.0 0.0 −2.1 0.0 0.0

6 6.7 2.8 0.0 0.0 0.0 1.5 1.3

7 4.6 −2.1 0.0 0.0 0.0 −2.0 −0.1

Notes. This example illustrates how the one-factor-at-a-time decomposition approach identifies the different components in CCP exposure
changes. There are four agents (A1, A2, A3, A4) and two securities (S1, S2). Arrows denote positions in these securities. Right and left arrows
illustrate long and short positions in S1, respectively; up and down arrows illustrate long and short positions in S2, respectively. Red dashed
arrows correspond to new trades. CCP exposures are computed with α � 2.5, which is the calibrated value based on our real-world sample (see
Section 4.2).



Therefore, the contribution of security k is as follows:
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Appendix E. Robustness Checks
E.1. Moving-Window Return Covariance Estimate
The exposure change decomposition analysis presented in
Table 4 relies on an EWMA estimate of the covariance
matrix of returns. To verify whether the results are robust,
we redo the analysis with a rolling-window estimate of
return covariance. For the length of the window, we picked
the burn-in period used for EWMA (i.e., 50 days). We have
considered other alternatives, such as parametric estima-
tion of the time-varying covariance matrix. One natural
approach is to estimate a multivariate GARCH, but im-
plementation is infeasible given the large dimensions of the
covariance matrix that needs to be estimated: 242 × 242. We
therefore stick to a parameter-free estimate, but this timewe
base it on a rolling window.

Table E.1 shows that when using a rolling-window es-
timate, decomposition results are similar to those using an
EWMA estimate. Importantly, the key observations in the
main text all hold up: the position component dominates all
other components for the full sample, but volatility and
crowding become much more important when considering
only the top 100 and top 10 exposure changes.

E.2. Alternative Sampling Frequencies
Is high-frequency analysis important for the decomposition
results presented in Table 4?Note that the volume binswere
chosen such that, on average, they span 15 minutes.
A higher frequency is computationally feasible but eco-
nomically impossible, as “microstructure noise” starts to
bias return covariance estimates (Andersen et al. 2003).
Lower frequency, however, is possible, and in this section,
we redo the decomposition based on volume bins that, on
average, span 30 minutes or a full hour.

Table E.2 presents the results but only reports full sample
and top 10 decompositions to save space. The table shows
that the main results are unaffected: the position compo-
nent dominates in the full sample, but volatility and
crowding become important in the top 10 subsample. These
results, however, become attenuated when the analysis is
conducted at the lower frequency. That is, the contribution
of volatility and crowding drops in the top 10 subsample.
This result testifies to the importance of high-frequency
analysis of CCP exposure changes to diagnose the nature
of trading during brief spells of volatility spikes and ex-
treme volume.

E.3. Alternative Sequencing in Exposure
Change Decomposition

The decomposition of CCP exposure change presented in
Table 4 and discussed in Section 5.1 critically depends on

Table E.1. Decomposition of Exposure Change for a Rolling-Window Estimate of
Return Covariance

EWMA estimate of Cov(R) Rolling-window estimate of Cov(R)

Full sample Top 100 Top 10 Full sample Top 100 Top 10

Panel A: CCP exposure change decomposition in euro

RetVola 272 10,949 69,311 −414 5,156 24,953
RetCorr 113 3,555 −89 −22 553 −1,225
PrLevel −133 3,195 −5,324 −168 4,964 −525
TrPosition 14,255 38,002 39,445 18,956 59,148 80,765
TrCrowding 443 8,186 15,571 624 11,388 20,255
ΔExpCCP 14,949 63,887 118,914 18,976 81,208 124,223

Panel B: CCP exposure change decomposition in percentage

RetVola 1.8 17.1 58.3 −2.2 6.3 20.1
RetCorr 0.8 5.6 −0.1 −0.1 0.7 −1.0
PrLevel −0.9 5.0 −4.5 −0.9 6.1 −0.4
TrPosition 95.4 59.5 33.2 99.9 72.8 65.0
TrCrowding 3.0 12.8 13.1 3.3 14.0 16.3
ΔExpCCP 100.0 100.0 100.0 100.0 100.0 100.0

Notes. This table repeats the exposure-change decompositions reported in Table 4 and adds decom-
positions based a 50-day rolling-window estimate of return covariance instead of the EWMA estimate
used in the baseline decompositions.



Table E.2. Decomposition of Exposure Change for Different Frequencies

Baseline: 34 bins per day
(15-minute intervals)

17 bins per day
(30-minute intervals)

8 bins per day
(1-hour intervals)

Full sample Top 10 Full sample Top 10 Full sample Top 10

Panel A: CCP exposure change decomposition in euro

RetVola 272 69,311 984 89,104 3,881 276,342
RetCorr 113 −89 316 14,133 683 26,155
PrLevel −133 −5,324 −351 −20,163 −1,603 −24,318
TrPosition 14,255 39,445 38,730 101,854 123,654 327,711
TrCrowding 443 15,571 1,279 22,431 5,052 77,654
ΔExpCCP 14,949 118,914 40,959 207,359 131,667 683,545

Panel B: CCP exposure change decomposition in percentage

RetVola 1.8 58.3 2.4 43.0 2.9 40.4
RetCorr 0.8 −0.1 0.8 6.8 0.5 3.8
PrLevel −0.9 −4.5 −0.9 −9.7 −1.2 −3.6
TrPosition 95.4 33.2 94.6 49.1 93.9 47.9
TrCrowding 3.0 13.1 3.1 10.8 3.8 11.4
ΔExpCCP 100.0 100.0 100.0 100.0 100.0 100.0

Notes. This table repeats the exposure-change decompositions of Table 4 and adds decompositions
based on lower frequencies. The baseline result is based on having, on average, 34 volume bins per day,
which corresponds to 15-minute intervals. The added frequencies are 17 and 8 and therefore correspond
to 30-minute and 1-hour intervals, respectively.

Table E.3. Decomposition of Exposure Change for Alternative Component Sequences

Full sample Top 100 ΔExpCCP Top 10 ΔExpCCP

Panel A: CCP exposure change decomposition in euro

RetVola 275 11,003 69,022
(263, 288) (10,581, 11,427) (65,622, 72,392)

RetCorr 115 3,612 215
(112, 118) (3,555, 3,669) (−93, 534)

PrLevel −132 3,363 −3,619
(−136, −128) (3,171, 3,555) (−5,390, −1,881)

TrPosition 14,598 38,656 39,875
(14,245, 14,951) (37,609, 39,723) (37,246, 42,661)

TrCrowding 93 7,253 13,421
(−253, 439) (6,347, 8,180) (11,435, 15,565)

ΔExpCCP 14,949 63,887 118,914

Panel B: CCP exposure change decomposition in percentage

RetVola 1.8 17.2 58.0
(1.8, 1.9) (16.6, 17.9) (55.2, 60.9)

RetCorr 0.8 5.7 0.2
(0.8, 0.8) (5.6, 5.7) (−0.1, 0.4)

PrLevel −0.9 5.3 −3.0
(−0.9, −0.9) (5, 5.6) (−4.5, −1.6)

TrPosition 97.7 60.5 33.5
(95.3, 100) (58.9, 62.2) (31.3, 35.9)

TrCrowding 0.6 11.4 11.3
(−1.7, 2.9) (9.9, 12.8) (9.6, 13.1)

ΔExpCCP 100.0 100.0 100.0

Notes. This table presents the mean and, in parentheses, the lower and upper bounds of the (relative)
share of components across alternative sequences of the various components. It serves as a robustness
check for Table 4, which is based on a particular economically motivated sequence. The price and trade
variables are kept together as a group so the number of sequences considered is 2 × 3! × 2! � 24.



the sequencing of the various components. To verify how
robust the decomposition results are to alternative se-
quences, we redo the analysis across all possible alterna-
tives inspired by Hasbrouck (1995). As the components
belong to two groups (that are preserved in the sequencing),
we end up with 2 × 3! × 2! � 24 possible sequences.

The results in Table E.3 show that the decomposition
results appear robust. The table reports the mean and the
lower and upper bounds of each component’s contribution
across all 24 sequences. The distance between the lower and
upper bounds seems small, as it is only a few percentage
points for the relative shares reported in panel B, never
exceeding 6%. The key observations in themain text all hold
up: the position component dominates all other compo-
nents for the full sample, but volatility and crowding be-
come much more important when considering only the top
100 and the top 10 exposure changes.

Endnotes
1On February 5, 2018, VIX futures jumped 20 points, which is the
largest daily increase since the 1987 stockmarket crash. OnOctober 7,
2016, the British pound dropped by almost 10% in just eight minutes.
On January 15, 2015, the Swiss franc rose by about 20% against the
euro within five minutes after the Swiss National Bank announced
that it abandoned its peg against the euro as per immediately.
2On September 10, 2018, the Nordic-German power spread increased
by more than 17 times the average daily change, which triggered the
trader’s default.
3Wagner (2011) clarifies that these arbitrageurs could hold diversified
portfolios, yet be exposed to the fire-sale channel. It is position di-
versity that is the driving force here, not the level of diversification.
4Menkveld (2017) extends Duffie and Zhu (2011) to focus on the tail
risk in losses as opposed to mean losses.
5One could argue that the tails are not riskier to a CCP because
higher exposures against clearing members are insured by the
latter posting higher margins with the CCP. Although this is true, it
is also true that if there are losses that exceed the margin, they
exceed it by a larger amount in the tail (i.e., loss given default is
likely to be larger). A deeper analysis of risk net of margin and other
forms of collateralization (e.g., the default fund) is beyond the
scope of this study, as intraday margin and default-fund data are
unavailable to us.
6We do not know how our findings compare with CCP exposures in
the market for credit default swaps or for interest rate swaps for lack
of evidence. We do, however, believe that our approach could be
implemented for trading in these markets in spite of their different
market structure (which features mostly over-the-counter trading as
opposed to trading via a central limit order book).
7Bignon and Vuillemey (2020, Figs. 3 and A1) conduct a forensic
analysis on the Paris commodity futures CCP that failed in 1974.
They, for example, find that there was elevated activity (in terms of
transactions) in the half year before failure, but open positions de-
clined (measured in 1,000 tons of sugar).
8More precisely, Menkveld (2017) shows that there is a positive time
series correlation between crowding and CCP exposure at a daily
level. This paper, however, studies exposures intradaily and decom-
poses changes into all variables that enter the calculation of ExpCCP.
9A related set of papers that do not focus on concentration and
systemic risk but rather on incentives and economic efficiency in-
cludes Koeppl et al. (2012), Acharya and Bisin (2014), Fontaine et al.
(2014), Biais et al. (2016), and Huang (2019).
10Duffie and Zhu (2011) study themean loss, which is invariant to the
level of crowding—the VaR loss is not.

11The normality assumption yields analytic results for CCP exposure
along with a natural decomposition. To stay close to normality in the
data, the sample clock will run in volume time (for details, see Sec-
tion 4.2).
12We include explicit formulas for all five components in Appen-
dix B for completeness.
13Note that this is a narrower definition of crowding than the one that
underlies the CrowdIx indicator in the Menkveld (2017) work. An
increase in the correlations of security returns would lead to a higher
level of CrowdIx because crowding in the Menkveld (2017) work is
more broadly defined in terms of risk factors. We use the narrower
definition here to distinguish between a change in security-return
correlations and crowding due to position changes.
14σj is the square root of the jth diagonal element of the portfolio
return covariance matrix Σ.
15Time subscripts are suppressed here for the sake of brevity.
16This equation corresponds to Menkveld (2017, Equation (27)). Note
that there is a typo in (27), as

̅̅̅̅̅̅̅̅̅
1/(2π)√

should have beenmultiplied by
σj instead of σ2j . This typo has been corrected in (12) here.
17ωk is the square root of the kth diagonal element of the security-
return covariance matrix Ω.
18The postcrisis European Market Infrastructure Regulation (EMIR)
regulation in Europe requires a CCP to segregate trades on house
accounts from those on client accounts as of 2013. Our data sample
precedes this date, but EMCF had already implemented such
segregation.
19More specifically, the conversion of portfolio-return correlations to
portfolio-loss correlations is done with the M function in (15), which
relies on assuming normality.
20 In case of any residual trades due to imperfect grouping at the end
of each day, they are included in the last bin.
21Easley et al. (2012) sample E-mini future returns based on volume
clock and find similar evidence of partial recovery of normality.
22Given that overnight return variance is about four times the vari-
ance of an intraday 15-minute period, we update the covariance
matrix after an overnight return Rt−1 by Ωt � (1 − 0.99844)R̃t−1R̃′

t−1+
0.99844Ωt−1, where R̃t−1 � Rt−1/

̅̅
4

√
.

23Note that aggregate loss is not normal because it is the sum of
truncated normals.
24A review of the main events in this month is as follows. On May 5,
mass protests erupted in Greece against the imposed austerity
measures, with three deaths reported. This social unrest led to
concerns that it could jeopardize the rescue package proposed by the
European Union and the International Monetary Fund on May 2. To
fund this intervention and future ones, the European Commission
created the European Financial Stabilisation Mechanism on May 9
(European Commission 2010). On May 10, the European Central
Bank announced the Securities Markets Program to address “dys-
functional” securities markets (European Central Bank 2010).
25For completeness, we also conducted these robustness analyses for
the empirical results on the second and third hypotheses. Again, the
results do not change qualitatively. To conserve space, we decided to
only provide those robustness results upon request.
26Note that each elementωij of the covariancematrixΩ can bewritten
as ρijωiωj, where ρij denotes the elements of the accompanying
correlation matrix. This should clarify what homogeneity or a partial
derivative with respect to ωk is.
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