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Enhancing Security Patch Identification by
Capturing Structures in Commits

Bozhi Wu, Shangqing Liu, Ruitao Feng, Xiaofei Xie, Jingkai Siow, and Shang-Wei Lin

Abstract—With the rapid increasing number of open source software (OSS), the majority of the software vulnerabilities in the open
source components are fixed silently, which leads to the deployed software that integrated them being unable to get a timely update.
Hence, it is critical to design a security patch identification system to ensure the security of the utilized software. However, most of the
existing works for security patch identification just consider the changed code and the commit message of a commit as a flat sequence
of tokens with simple neural networks to learn its semantics, while the structure information is ignored. To address these limitations, in
this paper, we propose our well-designed approach E-SPI, which extracts the structure information hidden in a commit for effective
identification. Specifically, it consists of the code change encoder to extract the syntactic of the changed code with the BiLSTM to learn
the code representation and the message encoder to construct the dependency graph for the commit message with the graph neural
network (GNN) to learn the message representation. We further enhance the code change encoder by embedding contextual
information related to the changed code. To demonstrate the effectiveness of our approach, we conduct the extensive experiments
against six state-of-the-art approaches on the existing dataset and from the real deployment environment. The experimental results
confirm that our approach can significantly outperform current state-of-the-art baselines.

Index Terms—Security Patch Identification, Graph Neural Networks, Abstract Syntax Tree

F

1 INTRODUCTION

R Ecently, a critical zero-day vulnerability named
Log4Shell [1] has attracted widespread attention in the

security community. It exists in the widely used Java logging
library Log4j [2], which has been deployed by millions
of Java applications. Specifically, due to this vulnerability
can be exploited by attackers and leads to a remote code
execution (RCE) when Log4j is used for logging, it was rated
as “very critical” and received a CVSS [3] score of 10 (the
highest level) . Although Log4Shell threats the security of
many applications severely, however, due to the widespread
attention, it has been resolved in a timely manner. On the
contrary, most vulnerabilities are fixed silently, especially in
the “big code” era, where open source software (OSS) has
reached an unprecedented amount. According to the data
from SourceClear [4], 53% of vulnerabilities in open source
libraries are not publicly disclosed with CVEs. Hence, if the
widely used open source components have unknown secu-
rity risks, even if these risks are fixed in a timely manner by
the developers of these components, the software that has
already integrated them may not be updated in time, which
causes substantial financial and social damages. Therefore,
it is essential to identify these silent security patches.

Security patch identification is a crucial yet far from the
settled problem, manual verification is a straightforward
but unrealistic solution. According to the official report [5]
released by the largest global open source software (OSS)
platform GitHub, 100 million projects have hosted on their
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platform in 2018. A huge amount of security related patches
are committed daily for fixing, which makes the manual
verification time-consuming and labor-intensive. Hence, au-
tomated security patch identification is an inevitable choice.

Conventional software analysis techniques that have
been widely used in software vulnerability detection, such
as static analysis [6] and dynamic analysis [7] are not
appropriate for security patch identification, because these
techniques cannot be applied to the partial code (i.e., the
changed code) in a commit. Furthermore, they also cannot
support analysing the description of a commit (i.e., commit
message), which is a form of natural text.

Inspired by the great success of machine learning and
deep learning techniques in various fields [8], [9], [10],
[11], many learning-based approaches are proposed for au-
tomated security patch identification. For example, Zhou et
al. [12] proposed to extract the features from the commit
message and bug reports and further utilized a stacking
of six machine learning classifiers such as random for-
est [13] and SVM [14] to identify security issues. Another
advanced deep learning based technique SPI [15] encoded
both commit message and code changes with the BiLSTM
encoder followed by the CNN layer to learn better repre-
sentations. However, most existing works for patch identifi-
cation only consider the changed code and commit message
as a flat sequence of tokens, while ignoring the structure
information hidden in the text. The structure information
of the program has been widely demonstrated to improve
various code-related tasks, such as software vulnerability
identification [16], source code summarization [17], and
function name prediction [18], [19]. Inspired by these works,
Commit2vec [20] further extracted AST paths related to the
changed code and fed them to the fully connected layer
to learn the representation of the changed code to iden-
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tify security-relevant commits. Commit2vec has achieved
promising results, however, it only utilized the simple fully
connected layer for learning, which has a limited learning
capacity. Furthermore, the commit message is also ignored
in utilization for the detection.

To address the aforementioned challenges, in this paper,
we propose our well-designed tool for security patch iden-
tification named E-SPI. Specifically, to capture the structure
information of the commit, we design two separate en-
coders, AST-based code change encoder, which extracts the
contextual AST paths related to the changed code with the
BiLSTM encoder to learn the semantics of the changed code;
graph-based commit message encoder, which constructs the
commit message by the dependency graph with gated graph
neural network (GGNN) to capture the token relations in
the commit message. We further ensemble both encoders for
the security patch identification. In addition, to capture the
contextual information that related to the changed code, we
propose to extract the AST paths that are not limited within
the changed code (i.e., Within-Changes), but also include
the paths related to the changed code (i.e., Within-Context)
to enhance the code change representation produced by
the code change encoder. Extensive experiments on the
existing dataset and the real deployment environment have
demonstrated the effectiveness of our approach. Specifically,
E-SPI outperforms current state-of-the-art approaches sig-
nificantly with 4.01% higher accuracy and 4.22% F1 score on
the existing dataset, increases 6.03% accuracy and 7.38% F1
in the real deployment environment. To sum up, our main
contributions are as follows:
• We propose a novel approach (i.e., E-SPI) to capture the

structure information of the commit to accurately learn
the semantics for security patch identification.

• We design the contextual AST-based encoder to take the
AST paths, which are not limited within the changed code,
but further include the paths related to the changed code
to capture the contextual information of the changed code.

• We conduct an extensive evaluation to demonstrate the
effectiveness of E-SPI on the existing dataset and from the
real deployment environment. The experimental results
demonstrate that E-SPI significantly outperforms current
state-of-the-art approaches. We have deployed our tool in
industry for production.

2 BACKGROUND

In this section, we briefly introduce the background of com-
mit, abstract syntax tree (AST), and graph neural networks
(GNNs) that we will use in this paper.

2.1 Commit
A commit, which usually consists of a commit message and
a diff, records the modification between different software
versions. Due to the various phases of the software devel-
opment life cycle, a commit can serve for various purposes
such as implementation logic, building configurations, and
bug fixing. The commit message is used to illustrate the
reasons for the modification in natural language, while the
diff show the difference between different software versions
(i.e., current vs previous), which may involve the modifica-
tion of multiple files and functions.

Fig. 1: A non-security commit from FFmpeg with its commit
id ee9345e.

Fig. 2: A security commit from FFmpeg with its commit id
f42b319.

We present a non-security and security sample commit
from the open source project “FFmpeg” in Fig. 1 and Fig. 2
respectively to visually demonstrate their difference. To
illustrate each component in a commit with more details,
we choose the security commit in Fig. 2 as an example. The
content in the upper rectangle is the commit message, which
describes the purpose of the current modification in natural
language. For this example, the modification serves to fix
the bug that an array may be out of the boundary. The lower
rectangle is the diffs. We can see that it consists of file name
(i.e., “libavcodec/shorten.c”) and the modified chunk from
line 155 to 161 in file “shorten.c”. The first line starting with
“@@” in a chunk is to show some specific information, such
as the start modified line number and the method name
in the original file. The code change consists of the content
marked with “+” in the updated file and its previous version
marked with “-” in the original file to record the changed
code. For example, there is a code change on line 158 in
“libavcodec/shorten.c”, from “buffer[s-> nwrap + i] <<=
s -> bitshift;” to “buffer[i] <<= s -> bitshift;”in Fig. 2. The
remaining contents in a chunk are the context about the code
changes to reveal the contextual information for the changed
code, such as the content from line 156 to line 157. Here,
we use a simple commit with only one chunk as a sample
for illustration. For other cases, a commit may consist of
multiple chunks in one file or multiple changed files.

2.2 Abstract Syntax Tree
Abstract Syntax Tree (AST) is a tree representation of the
abstract syntactic structure of source code, while removing
unnecessary information such as punctuation and delim-
iters (e.g., braces, semicolons, parentheses). Hence, AST can

https://github.com/FFmpeg/FFmpeg/commit/ee9345e9054c78ada2e3eda95750c2b4457fc462
https://github.com/FFmpeg/FFmpeg/commit/f42b3195d3f2692a4dfc0a8668bb4ac35301f2ed
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Fig. 3: The overview of our framework for security patch identification.

be regarded as a high-level abstraction of the source code,
which allows program analysis to ignore the grammatical
details and focus on the program semantics. A simple AST
example is shown in Fig. 5, we can see that it has two
types of nodes: terminal nodes and non-terminal nodes,
where terminal nodes usually refer to user-defined tokens
and represent the names of identifiers from the code such
as “buffer”, “i”; non-terminal nodes represent a limited set
of syntactic structures in a programming language such as
“if stmt”, “func declarator”. Since AST is an abstraction
of the source code without redundant information, many
works [18], [21], [22], [23], [19] utilize it as the program
representation for various code-learning tasks.

2.3 Graph Neural Networks
Graph Neural Networks (GNNs) [24], [25], [26], [27] can
model graph-structured data, which contain nodes and the
relations among them, making them popular in different
domains such as the social network [28], molecules [25] and
the program [29]. GNNs utilize the message passing mech-
anism to communicate neighborhood information among
different type of edges. Based on the different design of mes-
sage passing, there are a variety of GNN variants such as
gated graph recurrent network (GGNN) [24], graph convo-
lutional network (GCN) [26] and graph attention networks
(GAT) [30]. Since a program can be parsed into a structural
graph with comprehensive semantics [31], [29], GNNs has
achieved promising results on many code-learning tasks
such as code summarization [21], [17], code search [32] and
vulnerability detection [16].

3 APPROACH

In this section, we first formulate the security patch iden-
tification problem and then introduce an overview of our
approach. We detail each component of our well-designed
network for further illustration.

3.1 Problem Formulation
In this paper, similar to Zhou et al. [15], E-SPI aims at
identifying a commit is a security patch or not. Formally,

given a dataset D = {(c, y)|c ∈ C, y ∈ Y}, where C is a set
of commits, Y ∈ {0, 1} is the set of labels with 1 to indicate
that the commit is the security patch and 0 for the non-
security patch. E-SPI formulates it as a binary classification
problem and aims to learn a mapping function f : C → Y
for automated identification. The prediction function f can
be learned by minimizing the loss function as follows:

min
n∑
i

L(f(yi|ci)) (1)

where L(·) is the loss function and we choose the cross
entropy to optimize the learned weights, n is the total
number of commits in the training set.

3.2 Overview

The overview of E-SPI is shown in Fig. 3, we can see that
it jointly utilizes diffs and commit message for the security
patch identification. Specifically, to capture the context of
the code changes, we first retrieve the corresponding mod-
ified functions about the code changes, which are defined
as pre-functions and post-functions accordingly. Then, we
extract the corresponding contextual AST paths related to
the changed code on ASTs, which are parsed from these
retrieved functions, to capture the structure information. We
feed these extracted AST paths to a code change encoder
to learn the representation for the changed code. For the
commit message, E-SPI constructs the dependency graph
to capture the token relations in the sequence and uses a
commit message encoder to capture the structure informa-
tion behind the text. Then, E-SPI concatenates the vector
representations produced by the code change encoder and
the commit message encoder with a fully connected layer to
predict whether the commit is a security patch or not.

3.3 AST-based Code Change Encoder

Most of the existing works [15], [33] for security patch
identification ignore the structure information hidden in
the changed code, which limited to achieve the promising
results. In addition, they mostly relied on the changed code
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1 static void fix_bitshift(ShortenContext *s, int32_t *buffer)

2 {

3 int i;

4

5 if (s->bitshift != 0)

6 for (i = 0; i < s->blocksize; i++)

7 buffer[s->nwrap + i] <<= s->bitshift;

8 }

(a) Pre-function fs.

1 static void fix_bitshift(ShortenContext *s, int32_t *buffer)

2 {

3 int i;

4

5 if (s->bitshift != 0)

6 for (i = 0; i < s->blocksize; i++)

7 buffer[i] <<= s->bitshift;

8 }

(b) Post-function fa.

Fig. 4: The complete function fs and fa extracted from the commit in Fig. 2.

(e.g., the statement of the line marked with “+” or “-” in
Fig. 2) for embedding, while the contextual information
related to the changed code is missed.

To overcome these limitations, we propose a well-
designed AST-based code change encoder which consists
of two sequential parts (i.e., contextual AST path extraction
and path embedding).

3.3.1 Contextual AST Path Extraction
To capture the contextual information for the changed code,
we first retrieve the complete functions changed by the com-
mit. Specifically, we extract the corresponding subtractive
statements marked with “-” and define them as ds. Similarly,
we also extract the additive statements marked with “+’
and define them as da. Based on ds and da, by line num-
ber and file name, we can retrieve their original functions
defined as the pre-function fs and the post-function fa. For
example, considering the commit in Fig. 2, ds and da are
“buffer[s-> nwrap + i] <<= s -> bitshift;” and “buffer[i]
<<= s -> bitshift;”, respectively, with the given line number
(e.g., 158) and file name (e.g., “bavcodec/shorten.c”), we
can successfully retrieve their original functions fs and fa,
which are shown in Fig. 4.

Inspired by Code2Vec [19] and Code2Seq [18], which
parsed the function into AST and constructed the paths
between the start node and end node (both of them are the
terminal nodes on AST) to capture the structure informa-
tion behind the function text, we also convert the original
functions (i.e., fs and fa) into ASTs by adopting tree-sitter
to construct the AST paths. However, unlike their work,
which focused on the function-level data, our approach is
customized to construct the paths for commits. Specifically,
the start node is located at the changed code, while the end
node comes from different places based on specific consid-
erations. Furthermore, the end node can be categorized into
two groups:
• Within-Changes: We include the end node in the changed

code to capture the structure information of the changed
code. For example, as shown in Fig. 4a, the subtractive
statement contains two variables “s” and “bitshift”, hence,
there is an AST path1 starts from the “s” and ends at the
“bitshift”, which is marked with green arrows in Fig. 5.

• Within-Context: To capture the contextual information for
the changed code, we randomly select the end nodes,
which are from the context for the enhancement. Here,
we define the contextual information as AST paths where
the start node belongs to the changed code and the end
node is from other code in a function. For example, there

1. The shortest path between the start node and the end node.

func_def

func_declarator comp_stmtstatic

param_list …fix_bitshift

…

if_stmt

void

0

for_stmt

assign

i

bin_exp

field_exp<i

->s blocksize

update_exp

++i

…

exp_stmt

sub_exp

assign

<<=

buffer

field_exp

->s bitshiftbin_exp

ifield_exp +

->s nwrap

Within-context paths

Within-changes paths

Fig. 5: The extracted AST paths from within-changes and
within-context, where the function is plot in Fig. 4a.

is a variable “blocksize” and it is not in ds, however, it is
included in the context of ds, which is shown in Fig. 4a,
we also construct a path between the “s” and “blocksize”,
which is marked with blue arrows in Fig. 5.

For any commit c, we first extract AST paths of subtrac-
tive statements and additive statements, respectively. Then
we randomly sample a set of AST paths {x1, · · · , xk} from
within-changes paths and within-context paths at a ratio of
1:1, where k is their total number. We will discuss the value
of k and the ratio in the discussion part of Section 6.

3.3.2 Path Embedding

Given a set of AST paths {x1, · · · , xk}, each path can be
defined as xi = vi1v

i
2 · · · vil , where l indicates the total

number of nodes, vi1 and vil are the start node and end node
of the i-th path in the AST path set. The start node and the
end node are the terminal nodes of AST, which consists of
node type and node value, while the non-terminal nodes in
the AST path just have the node type. We separately encode
the AST path and the terminal nodes as shown in Fig. 6.
• Path Representation: There are a total number of 220

different symbols produced by tree-sitter to represent the
node type in AST. However, some of the types may
be composed of more than one token, such as “func-
tion definition”. To handle this type of cases, we simplify
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them to abbreviations. For example, the node type “func-
tion declaration” is simplified to “FuncDef”. After that,
we use a learnable embedding matrix Etype ∈ Rv1×d to
encode each node type, where v1 is the length of the vo-
cabulary set for the node type, d is the dimensional length,
and feed them into the bidirectional LSTM (BiLSTM) to
obtain the final hidden states, which can be formulated as
follows:

hvi
1
, · · · ,hvi

l
= BiLSTM(Etype

vi
1

, · · · ,Etype
vi
l

) (2)

rpath = [h→vi
l
;h←vi

1
] (3)

where l is the total number of nodes in an AST path.
• Token Representation: The node vi1 and vil in xi are termi-

nal nodes and their values are tokens from the diffs. We
split the values into a set of subtokens Ssubtoken to reduce
the vocabulary set. We further represent each subtoken
with another learnable embedding matrix Esubtokens ∈
Rv2×d, where v2 is the length of the vocabulary set for the
subtokens, and then sum them up to represent the termi-
nal nodes. For example, for the node vi1, the calculation
can be represented as follows:

rvi
1
=

∑
s∈Ssubtoken

Esubtokens
s (4)

Finally, we concatenate the vector representation of start
node (i.e., rvi

1
) and end node (i.e., rvi

l
) with the AST path

(i.e., rpath), and apply a fully-connected layer followed by
a layer normalization to obtain the embedding of the entire
AST path.

vi = Norm(FC([rvi
1
; rpath; rvi

l
])) (5)

Since the code changes are represented by a set of k AST
paths, we apply the max-pooling operation over the embed-
ding vector of the AST paths i.e., vc = maxpool({vi}ki=1) to
get the final representation.

3.4 Graph-based Commit Message Encoder

Apart from the changed code, a commit also contains a
commit message, which illustrates the purpose of the cur-
rent changes. Compared with existing approaches [15], [33],
which feed the message into a BiLSTM module to capture
the sequential dependency in the sequence, E-SPI innovates
it by constructing the dependency graph with the graph
neural network to capture the relations between tokens in
the sequence.

3.4.1 Dependency Graph Construction

The dependency parse tree [34] describes the dependency
relations among words in a sentence by directed linked
edges, which has been widely used in word relation ex-
traction [35], [36] in NLP. To better learn the semantics in
the commit message, we construct the dependency graph
with two steps: data sanitization and graph construction.
For data sanitization, since software developers may record
some information not related to the code changes, such as
website links, signatures, or emails. To sanitize the commit
message, we remove these irrelevant information in commit
message by the regular expression. Then, we construct the
dependency graph according to the cleaned commit mes-
sage.

Specifically, given the cleaned commit message m con-
sists of multiple sentences, for each sentence in m, we utilize
Spacy to construct its dependency tree. We further connect
the neighboring dependency parse trees by connecting those
nodes that are at the end and the beginning of two ad-
jacent sentences with the edge “neigh” and construct the
dependency graph G = (V, E), where V is a set of nodes
in the graph and E denotes the relations (i.e., edges) within
the nodes. Furthermore, each node in the graph is also the
original token in m and there are 49 different edge types to
describe these token relations. We take the commit message
in Fig. 2 as an example and the constructed dependency
graph is shown in Fig. 7. We can see that a token may
have different semantic relations linked to other tokens. For
example, there is an edge “prep” points from “fix” to “out”
and “of” to describe the prepositional modifier of the verb
“fix”. Furthermore, to connect two different sentences, we
further add an edge “neigh”. For example, as shown in
Fig. 2, the edge “neigh” connects the nodes that are the last
token “.” in the first sentence and the first token “the” in the
second sentence.

3.4.2 Graph Embedding

Given the dependency graph G = (V, E) to describe the
relations in the tokens, we need to learn its representation.
A variety of graph neural networks (GNNs) [24], [30], [26]
can be chose, inspired by the recently advanced Gated
Graph Neural Network on modelling the program [29],
[37], [17], [32], [38], we also select GGNN to learn the
vector representation, as shown in Fig. 8. Specifically, each
node v ∈ V is initialized by a learnable embedding matrix
E ∈ Rv3×d, where v3 is the length of the vocabulary set
for the commit message and d is the dimensional length,
and gets its initial vector h0

v ∈ Rd. We apply a fix number
of hops (i.e., T ) to propagate the node information along
the edges. At each computation hop t, where 1 ≤ t ≤ T , we
select the summation function as the aggregation function to
aggregate the neighboring node features from the previous
hop, which can be expressed as follows:

ht
N(v) = SUM({ht−1

u |∀u ∈ N(v)}) (6)

where N(v) is a set of neighborhood nodes that are con-
nected with v. Then, we use a Gated Recurrent Unit
(GRU) [39] to update the node representation as follows:

ht
v = GRU(ht−1

v ,ht
N(v)

) (7)
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After a fixed number of hops (i.e., T ), we obtain the final
node representation hT

v and apply the max-pooling over all
nodes {hT

v |∀v ∈ V } to obtain the graph representation vm,
defined as follows:

vm = maxpool(FC({hT
v |∀v ∈ V })) (8)

where FC is a fully connected layer. The graph representa-
tion vm can be considered as the vector representation for
the cleaned commit message m.

3.5 Ensembling

By the code change encoder and commit message encoder,
we can get the vector representation for the changed code
(i.e., vc) and commit message (i.e., vm) respectively. We fur-
ther ensemble both to represent the commit c. Specifically,
we concatenate the graph embedding vm with the code
change embedding vc, and apply a fully connected layer
to the classifier:

prob = Sigmoid(FC([vm;vc])) (9)

prediction =

{
1 if prob ≥ 0.5
0 if prob < 0.5

(10)

where prob denotes the probability obtained by the acti-
vation function Sigmoid, prediction is the predicted result
where 0 for prob less than 0.5 and 1 for the others.

4 EVALUATION SETUP

In this section, we first introduce the dataset used, followed
by the selected baselines for the comparison, then present
the evaluation metrics with the model settings of E-SPI.

TABLE 1: The statistics of dataset

Project Security Non-security Total
Linux 7,358 3,144 10,502
FFmpeg 5,393 6,210 11,603
QEMU 4,256 5,516 9,772
Wireshark 2,889 3,827 6,716
Total 19,896 18,697 38,593

4.1 Dataset

Currently, to the best of our knowledge, in addition to
SPI [15] making their data partially public (i.e., FFmpeg
and QEMU) are available, the other works for security patch
identification have not released the data so far.

Hence, to facilitate the evaluation, we borrow the SPI
dataset, which is collected from 4 high-profile open source
projects (i.e., Linux, FFmpeg, Wireshark, QEMU) on Github
with the help of manual analysis and labeling by security
analysts. After filtering out those samples that cannot be
parsed into ASTs or graphs, we finally get the dataset for
evaluation. As shown in Table 1, the dataset consists of
38,593 labeled commits, where 19,896 of them are security
related patches and 18,697 are non-security. Furthermore,
the commits of Linux are collected from 2016 to 2017, while
the other three projects are up to January 2018. Different
from SPI, we split the data of each project with the ratio of
80:10:10 and then fuse the divided data of each project as
train/validation/test sets for evaluation.

4.2 Baselines

To evaluate our approach, we compare E-SPI with six
state-of-the-art security patch identification approaches. The
details of these six approaches are shown as follows:
Stacking [12]. Zhou et al. proposed to identify security
issues from commit messages and bug reports by learning
a stack of six basic classifiers such as SVM, random forest
for automated identification. In E-SPI, since the bug reports
are not available, we ignore them and just use the commit
messages for the experiments.
SPI [15]. SPI considered both commit messages and code
changes as the input. It proposed two separate encoders
to learn the representation of commit message and code
change respectively and each of them consists of a BiLSTM
layer and a CNN layer. Then, two encoders are combined
together to get the final probability of predicting whether a
commit is vulnerable or not.
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PatchRNN [33]. Similar to SPI, PatchRNN also considered
two separate BiLSTM encoders to detect security patches.
In addition to commit message, it takes the entire function
code before and after the patch into consideration, rather
than the code changes used in SPI.
Commit2vec [20]. It ignored the commit message and just
used the code changes to identify the security-relevant
commit, Furthermore, it extracted AST paths, which are
related to the code changes as the input to represent the
code changes, and fed the paths into the fully connected
layers to learn the vector representation for identification.
Transformer [40]. Transformer has achieved great success in
different fields. We also include it as a baseline. Specifically,
we utilize two separate transformer encoders to encode
the commit message and code changes respectively. Each
encoder has 6 identical layers, each of them has 8 heads to
learn different subspace features.
VulFixMiner [41]. VulFixMiner applied CodeBert to extract
semantic meaning from code changes to identify silent vul-
nerability fixes. Similar to commit2vec, VulFixMiner did not
consider commit message.

Except for SPI, which we reproduce the experiments
with the official code, none of the other baselines are open
source, and we re-implement these baselines following to
the original papers strictly and carefully.

4.3 Evaluation Metrics
Following SPI [15], we use precision (Pre), recall (Rec) and
F1 as our evaluation metrics, and further add accuracy
(Acc), since it is a common metric to evaluate classification
systems. Before introducing the used metrics, we first illus-
trate four important terms that will be used in computing
the metric values:
• true positives: the cases in which predicted as security

patches actually are security patches.
• true negatives: the cases in which predicted as non-

security patches actually are non-security patches.
• false positives: the cases in which predicted as security

patches actually are non-security patches.
• false negatives: the cases in which predicted as non-

security patches actually are security patches.
Precision represents the proportion of true positives to

the predicted total positives, which infers how precise the
model is in identifying security patches. The formula of
precision is shown below.

precision =
true positives

true positives + false positives
(11)

Recall is the ratio of true positives to all positives in
ground truth, which can be seen as a measure of how
robust the model is in identifying security patches. It can
be calculated as follows.

recall =
true positives

true positives + false negatives
(12)

F1 is the harmonic mean between precision and recall.
A high F1 implies low false positive as well as low false
negative. In other words, a high F1 means that the model is
highly precise and robust. F1 can be computed as follows.

F1 = 2 ∗ precision ∗ recall
precision + recall

(13)

Accuracy is the ratio of the number of correct predictions
to the total number of input samples. Therefore, a high
accuracy implies that the model performs well in identifying
both security patches and non-security patches. Accuracy
can be formulated as follows.

accuracy =
true positives + true negatives

total sample
(14)

where total sample is the sum of true positives, true nega-
tives, false positives and false negatives.

4.4 Model Settings

For the code change encoder, we set the embedding size
for the node type and node value to 128. The dimension of
hidden states in the BiLSTM is set to 128. The maximum
number of AST paths k is set to 500 to represent the code
changes. For the commit message encoder, the embedding
size of tokens is also set to 128, following the code change
encoder. Furthermore, the dimension size of the hidden
states in GRU is 128. We use the Adam optimizer with a
learning rate of 0.001 to train the model. The early stop is set
to 10 which means that the training process is stopped when
no improvements on Acc for 10 epochs. All experiments
are conducted on Intel(R) Xeon(R) Gold server with three
Nvidia Graphics Tesla V100. To avoid the effect of fluctua-
tions on the random seed, we repeat the experiments three
times with different random seeds and report the average
values for all experiments.

5 EVALUATION RESULTS

To evaluate the effectiveness of E-SPI, we first compare
the performance of E-SPI against the state-of-the-art ap-
proaches and then conduct a deep analysis on the effect
of contextual AST paths and graph-based commit message
encoder. To confirm the validity of E-SPI, we further in-
vestigate its performance in a real deployment environment
and provide a qualitative analysis of the prediction results..
Our experiments mainly focus on the following five research
questions:
• RQ1: Can E-SPI outperform the baselines in the evalua-

tion metrics?
• RQ2: Does the contextual AST paths improve the perfor-

mance in code change encoder?
• RQ3: Is the graph-based commit message encoder power-

ful in learning the commit message?
• RQ4: What is the performance of E-SPI in a real deploy-

ment environment?
• RQ5: The qualitative analysis of the results provided by

E-SPI.

5.1 RQ1:Comparison with the State-of-the-art Ap-
proaches

We compare E-SPI with six state-of-the-art approaches and
the evaluation results are shown in Table 2.

An interesting finding is that the machine learning-
based approach Stacking significantly outperforms the deep
learning-based approach Commit2vec and VulFixMiner,
which demonstrates that commit messages play a more
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TABLE 2: Evaluation results in percentage compared with
the baselines.

Approach Acc Pre Rec F1
Stacking 69.35 71.50 67.44 69.41

Commit2vec 62.29 62.75 66.26 64.46
PatchRNN 81.68 83.05 81.01 82.01

SPI 84.95 85.82 84.82 85.32
Transformer 74.27 78.37 69.20 73.50
VulFixMiner 63.61 63.25 65.23 64.22

E-SPI 88.96 87.88 91.26 89.54

critical role than code changes for the security patch iden-
tification and performance by just using a stack of multiple
machine learning classifiers on the messages can outper-
form the performance of deep neural networks on the code
changes. After analysis, we find that when developers fix
a bug and submit the corresponding patch, they would
describe their purpose in detail in commit message. For
security patches, their commit message often contains some
security-related words, such as ”fix buffer overflow” and
”fix memory leak”, which contain explicit security-related
information and are easily recognized by the model. In
contrast to commit messages, security information in code
changes is implicit and cannot be easily extracted from the
source code. Therefore, having commit messages as input
can bring more benefits than code changes.

Furthermore, we find that the performance of Trans-
former is lower than that of BiLSTM-based models (i.e.,
PatchRNN and SPI), which is in conflict with the current
consensus that transformer has more expression capacity
than BiLSTM. We conjecture that it is caused by the limited
amount of data used for training. Specifically, the total num-
ber of samples in the dataset is only 40,523, which makes
transformer overfit to the training data. The smaller size of
the dataset impacts the transformer to obtain the promising
results compared with the BiLSTM-based models.

The last row in Table 2 shows the results of E-SPI.
We can observe that E-SPI outperforms the baselines sig-
nificantly, achieving 88.61% in accuracy and 89.25% in F1,
exceeding the best baseline PatchRNN by 5.99% in accuracy
and by 5.81% in F1. The experimental results demonstrate
the effectiveness of our designed AST-based code change
encoder and graph-based commit message encoder for se-
curity patch identification.

Answer to RQ1: E-SPI outperforms six state-of-the-art
baselines significantly in accuracy and F1, we attribute the
improvements to the well-designed code change encoder
and the commit message encoder.

5.2 RQ2:Comparison with Different Code Change En-
coders

We further conduct experiments to compare the perfor-
mance of different code change encoders to confirm the ef-
fectiveness of our designed AST-based code change encoder.
Specifically, we compare with PatchRNN, SPI, Transformer,
VulFixMiner and Commit2vec, where PatchRNN took the
entire function code as input with BiLSTM for learning,
SPI fed the code changes with a BiLSTM followed by the

CNN layer to learn the representation, transformer fed the
changed code into the transformer encoder for learning,
VulFixMiner fed the code changes into a CodeBert to get the
representation, and Commit2vec extracted the AST paths
related to the code changes and fed these paths into fully-
connected layers for learning. For these approaches, if they
involve the commit message encoder, we turn it off and
just use the code change encoder to compare the results. In
addition, we also ablate the effect of the AST paths that only
extracted from the code changes (i.e., E-SPI w/o Context)
and the paths where the end node is from the context (i.e., E-
SPI w/o Changes). The experimental results are presented
in Table 3.

We can observe that our AST-based code changes en-
coder outperforms the baseline code changes encoders by
a significant margin in terms of Acc and F1. Specifically,
PatchRNN performs the worst among these approaches, we
infer that it is caused by PatchRNN takes the entire function
rather than the changed code as the input, which introduces
too many noises for patch identification. Considering purely
using the changed code for learning, transformer has a bet-
ter performance than SPI. However, when the commit mes-
sage encoder is turned on, the performance is lower than SPI
in Table 2. We believe it is reasonable because the difficulty
of learning the natural language commit message is much
lower than the code, which makes the equipped powerful
transformer overfit to the commit message encoder. Thus,
when combining both encoders, it performs worse than
BiLSTM. However, when purely using the transformer for
code learning, it has a higher performance than BiLSTM due
to the more powerful expression ability of the transformer.
VulFixMiner performs close to Transformer, as it also lever-
ages a powerful model for patch identification. However,
the performance of the transformer and VulFixMiner is still
lower than E-SPI, we attribute to the structure information
used in the changed code of E-SPI. Furthermore, although
Commit2vec has higher accuracy and F1 than SPI, due to
that it also encodes AST as input, its performance is lower
than E-SPI. We believe that it is caused by the simple
fully connected layer used in Commit2vec that has limited
learning capacity compared to BiLSTM used in E-SPI.

Lastly, we ablate the effect of the contextual information
used in AST paths and the experimental results are shown
at the last row of Table 3. We can see that the paths extracted
from the changed code and the context are both beneficial in
improving the performance, and when incorporating both,
E-SPI could achieve the best performance.

Answer to RQ2: AST-based code change encoder achieves
higher performance as compared to the baseline encoders,
we attribute to the structure information used in the
changed code. Furthermore, we also confirm that the
contextual AST paths are also beneficial in improving the
performance.

5.3 RQ3:Comparison with Different Commit Message
Encoders

Similar to Section 5.2, we also make a comparison with
four state-of-the-art commit message encoders, including
Stacking, PatchRNN, SPI, and Transforme, where Stacking
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TABLE 3: Evaluation results on different code change en-
coders.

Approach Acc Pre Rec F1
PatchRNN 59.07 61.43 55.38 58.25

SPI 61.37 61.86 65.34 63.56
Transformer 62.71 60.84 77.65 68.23
Commit2vec 62.29 62.75 66.26 64.46
VulFixMiner 63.61 63.25 65.23 64.22

E-SPI w/o Changes 64.94 65.14 69.61 67.30
E-SPI w/o Context 63.49 64.02 66.81 65.39

E-SPI 65.56 63.59 78.27 70.17

TABLE 4: Evaluation results on different commit message
encoders.

Approach Acc Pre Rec F1
Stacking 69.35 71.50 67.44 69.41

PatchRNN 81.84 84.41 79.45 81.85
SPI 83.92 84.98 83.58 84.27

Transformer 79.43 82.86 75.78 79.16
E-SPI 87.66 85.53 91.66 88.49

used a stack of 6 basic machine learning classifiers on the
extracted features of commit messages, PatchRNN encoded
the commit message with a BiLSTM to learn the represen-
tation, SPI further added a CNN layer followed by BiLSTM
for classification, and Transformer fed the message to the
transformer encoder for learning. The experimental results
are shown in Table 4.

We can see that Stacking has the worst performance.
We attribute to the limitation by the used techniques (i.e.,
the adopted machine learning techniques) are less advanced
than deep neural networks for the same input. Furthermore,
transformer has a lower performance than PatchRNN and
SPI, which confirms that transformer is easier to overfit to
the commit message and thus has a lower performance. Due
to the lower performance of the transformer compared to
PatchRNN and SPI in the commit message, it further affects
its performance when combined with the code change en-
coder (see Table 2). Finally, we can find that E-SPI achieves
the highest accuracy, precision, recall and F1 at 87.26%,
85.04%, 91.66% and 88.23%, which outperforms other ap-
proaches significantly. It indicates that by constructing the
dependency graph to capture the structure information
behind the commit message and further utilizing GNNs
to learn the token relations, our designed commit message
encoder could learn the semantics well, and thus produces
promising results.

Answer to RQ3: Graph-based commit message encoder is
powerful to produce the promising results, we attribute
to the constructed dependency graph with GNNs to learn
the structure information behind the text to capture the
commit message semantics.

5.4 RQ4:Evaluation in a Real Deployment Environment

We discuss the efficiency and practicality of E-SPI in a real
production setting. We deploy E-SPI with the baselines on
an industrial platform from our industry collaborator and
investigate the real performance in terms of detection accu-
racy and efficiency. Specifically, we deployed the pipeline of

TABLE 5: Evaluation results on unseen commits from the
deployment.

Approach Acc Pre Rec F1
Stacking 58.45 65.81 51.35 57.69

Commit2vec 55.65 59.42 54.53 56.87
PatchRNN 81.57 90.53 74.36 79.05

SPI 81.87 91.51 73.99 81.82
Transformer 67.27 63.61 95.01 76.20
VulFixMiner 56.13 58.65 56.03 57.31

E-SPI 86.81 84.49 91.52 87.86

each approach to the real-time platform, and each pipeline
consists of the scripts of data pre-processing for commits,
the pre-trained model with scripts for prediction.

We first evaluate the accuracy among different ap-
proaches on the unseen commits labeled by professional
security experts from industry. As shown in Section 4.1,
the dataset used consists just of commits before January
2018. Hence, we further collect the commits from February
2018 to March 2021 from the four open source projects (that
is, Linux, FFmpeg, QEMU, and Wireshark) with the help
of four security experts. Following SPI [15], the keyword
filtering process and cross-validation by experts are carried
out to filter irrelevant commits. After the strict validation,
there are 6,297 samples in total, of which 3,517 are the secu-
rity related patches and 2,780 are non-security for the four
projects. We test the performance of different approaches
on these data and show the experimental results in Table 5.
We can observe that all approaches suffer from a decline
over the evaluation metrics, compared with the results
in Section 5.1. It is reasonable, since the diversity of the
newly collected samples is increased in the real deployment
environment. In contrast, for a specific dataset, where the
data distribution over this dataset is fixed, the model tends
to perform better compared to deploying it to the unseen
data. However, although performance is decreased on these
approaches, E-SPI could still achieve better performance
in terms of accuracy and F1 compared to other baselines,
which confirms the effectiveness of our approach.

To evaluate detection efficiency, we average the predic-
tion time, which includes the data pre-processing time and
inference time, for the collected commits, and the time spent
for predicting one commit by each approach is presented
in Table 6, where the “Extraction” column defines the time
for the commit-related function extraction, “Processing”
column defines the processing time to convert the data into
an appropriate format for the model, “Inference” column
defines the time for model inference and “Total” column is
the sum time for the previous three columns. Because the
approach Stacking, SPI, Transformer and VulFixMiner only
utilize changed code as the input, the time for the function
extraction is zero. From Table 6, we can see that E-SPI
requires longer time to make a prediction, which indicates
the higher complexity of our approach. Furthermore, we can
find that the pre-processing occupies most of the time in
our approach, since it is relatively complicated and involves
many operations such as AST path extraction and message
dependency graph construction. However, generally, we
can still conclude that the time for a prediction by our
approach is acceptable since it only takes around 0.2 second
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TABLE 6: Time spent in millisecond (ms) by each approach.

Approach Extraction Processing Inference Total
Stacking 0.00 0.30 7.43 7.73

Commit2vec 10.75 195.33 2.53 208.61
PatchRNN 10.75 0.73 1.18 12.66

SPI 0.00 0.57 1.52 2.09
Transformer 0.00 0.57 1.71 2.28
VulFixMiner 0.00 0.57 1.66 2.23

E-SPI 10.75 199.41 4.07 214.23

to produce a result.

Answer to RQ4: Although the accuracy of E-SPI de-
creases in a real deployment environment where the data
distribution is different from the used dataset, the perfor-
mance of E-SPI is still higher than the baselines. Further-
more, the efficiency of our approach (i.e., the prediction
time) is also acceptable compared to the baselines.

5.5 RQ5: A Qualitative Analysis of Results by E-SPI.

From the previous experimental results, we can conclude
that E-SPI performs well in accuracy and F1. Furthermore,
we supplement a qualitative analysis of the results obtained
by E-SPI to understand the reason for the correct predic-
tions and misclassifications. Since the prediction results by
E-SPI include 1,761 true positive, 1,688 true negative, 242
false positive and 169 false negative samples, we randomly
select 100 samples from each class for manual analysis. After
the analysis, we discover the following phenomena:

• Compared to those true negative samples (i.e., correctly
identified as non-security patches), most of the true posi-
tive samples (i.e., correctly identified as security patches)
contain security-related words (i.e., vulnerability noun,
such as “buffer overflow”) in the commit message or have
security patterns in the change code. Specifically, 75 out of
100 true positive samples contain obvious security-related
words in commit message, such as “fix memory leak”,
“avoid integer overflow” and “fix division by zero”. For
example, the commit ff76335 with commit message “av-
filter/zscale: fix memory leak.” and the commit 51c1ebb
with commit message “Fix SCSI off-by-one device size.”.
In addition, 20 true positive samples do not contain
obvious security-related words in the commit message,
but have security patterns in the change code, such as
adding condition check and modifying condition check.
For example, the commit 066dc04 adds condition check to
avoid null pointers, as shown in Fig. 9.

• For those misclassified samples, we find that they may
also be related to security-related words in the commit
message. Specifically, some of the false positive samples
(i.e., misclassified as security patches) contains security-
related words in commit message, just like the true pos-
itive samples. For example, as shown in Fig. 10, the
non-security patch 9560915 contains “overflow check” in
commit message, but is not a security patch. Similarly,
some of the false negative samples (i.e., misclassified
as non-security patches) do not contain security-related
words in commit message. For example, the security patch
01e5e97 with commit message “ mjpegbdec: Fix incorrect

Fig. 9: Commit 066dc04.

Fig. 10: Commit 9560915.

bitstream buffer size.” does not contain any security-
related words, but provides obvious security information
in the commit message.

• In addition, among the misclassified samples, we find that
there are two mislabelled samples (i.e., commit 695be0e
and commit 3614364). Both are security patches, but la-
beled as non-security patches and E-SPI make the correct
predictions for them.

From the phenomena, E-SPI seems to identify most
security and non-security patches based on security-related
words and security patterns, while also causing some sam-
ples to be misclassified. Therefore, we can infer that E-SPI
pays close attention to security-related words in commit
messages and security patterns in change code when identi-
fying security patches. Furthermore, we also find that E-SPI
can identify silent security patches which are mislabeled as
non-security patches.

Answer to RQ5: When identifying security patches, E-SPI
pays close attention to security-related words in commit
messages and security patterns in change code.

6 DISCUSSION

In this section, we first discuss the impact of different
numbers of paths (i.e., k) and the ratio of within-changes
paths and within-context paths to the performance, and then
we conduct an online survey to investigate how developers

https://github.com/FFmpeg/FFmpeg/commit/ff763351e74550df3b9a0465634d1ec48b15b043
https://github.com/qemu/qemu/commit/51c1ebb1bc2642296379a8db1ba9dfb4f78a2f80
https://github.com/FFmpeg/FFmpeg/commit/066dc0437368acd21546ee327a0a94c60c3808b2
https://github.com/torvalds/linux/commit/95609155d7fa08cc2e71d494acad39f72f0b4495
https://github.com/FFmpeg/FFmpeg/commit/01e5e97026cf0b344abafca22b0336a2c58b2a33
https://github.com/FFmpeg/FFmpeg/commit/066dc0437368acd21546ee327a0a94c60c3808b2
https://github.com/torvalds/linux/commit/95609155d7fa08cc2e71d494acad39f72f0b4495
https://github.com/torvalds/linux/commit/695be0e7a24a8875c347437566f2c44ba673580b
https://github.com/torvalds/linux/commit/3614364527daa870264f6dde77f02853cdecd02c
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Fig. 11: The impact of k on accuracy and F1.

evaluate the results generated by E-SPI. Finally, we discuss
several potential limitations of E-SPI.

6.1 Choice of k

In Section 4.4, we set the maximum number of AST paths
k to 500. We also tune k within a range of 100 to 900 for
AST-based code change encoder. Specifically, we turn off
the commit message encoder and just use the code change
encoder for the experiment to evaluate the effect of the
number of paths on the code change encoder, and the other
settings are the same as in Section 4.4 for a fair comparison.
The experimental results are shown in Fig. 11.

From Fig. 11, we can observe that with increasing num-
ber of paths, accuracy and F1 are improved simultaneously,
which intuitively reveals that the encoder can learn more
effective information with increasing number of paths. After
500 paths, the accuracy and F1 do not improve significantly
by further increasing the number of the paths. To balance
performance and efficiency (i.e., more paths tend to raise
the computation time), we set the AST number to 500 while
representing the changed code in our experiments.

6.2 The ratio of within-changes paths and within-
context paths.

Since the AST paths we extracted from source code include
two parts: within-changes and within-context, the ratio of
them may effect the final performance. Here, we define
the ratio of within-changes paths to within-context paths
as r. To study the effect of r on the performance, we keep
the maximum number of AST paths k to 500, and conduct
experiments with different r ranging from 0.25 to 10. The
experiment settings are the same with Section 6.1, and the
results can be seen in Fig. 12.

We can see that when r is equal to 1, the accuracy
and F1 reach the peak. This means that the number of
within-changes paths and within-context paths is the same,
resulting in both types of information being fed into the
model fairly. However, we can not guarantee that the model
achieves the best performance when r is equal to 1, since
the relationship between r and performance is not obvious.
When using this model, r needs to be tuned based on the
dataset.
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Fig. 12: The impact of r on accuracy and F1.

6.3 Online survey
We conduct an online survey to investigate how well devel-
opers trust the results generated by E-SPI.
Dataset. We randomly select 10 samples from the test set
and use the model prediction results to conduct the survey
analysis.
Participant Recruitment. We recruit 30 people from indus-
trial companies and our universities to participate in the
online survey. Among the participants, 16 of them come
from industry and the rest are from academia. They are
all software developers, from PhD students, post-doctoral
researchers to software engineers. All of them are not coau-
thors of our work and use Github for software development
with more than 3 years of development experience.
Experiment Procedures. We start the online survey with a
brief introduction. We explain to the participants that our
task is to assess their level of trust in the results produced
by E-SPI. Then the participants are required to provide their
personal information relevant to the survey. To quantita-
tively measure how much they trust the results, we define
the rating scale as 1 to 5 where a higher score means that the
more confidence the participants have in the results. Com-
mit messages and change code are presented to participants
so that they can make their own predictions for each com-
mit. After that, they are required to rate the confidence they
have in the results of E-SPI by comparing them with their
own prediction for the 10 test samples. They are required
to complete the survey online, where Fig. 13 demonstrates
part of the questions and the completed survey is available
on https://forms.gle/m7SSxgqBYDk3mp9u9.
Survey Results. The average score of each sample is shown
in Fig. 14. We can see that the average scores of sample 1,
2, 3, 6 and 10 are above 4, which means that the results
of E-SPI are in good agreement with the participants’ own
predictions. Except for sample 5 and 9, all other sample
scores are greater than 3, which means that the results are
acceptable for participants. Generally, the average score for
all 10 samples is 3.78 which is better than Acceptable and
close to Good.

6.4 Limitations
By comparing the results in Section 5.1 and Section 5.5, we
find that the decrease in the real deployment is obvious.
Although it is a common sense that deep learning-based

https://forms.gle/m7SSxgqBYDk3mp9u9
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Sample 1:

Commit ID:  63b6d5f33fa9724111c46504c6f07dc516379a75

Result output by ESPI:  None-security patch

Commit Message:
update_stream_timings: Remove redundant check.

Found-by:Nicolas

Signed-off-by: Michael Niedermayer <michaelni@gmx.at>

Diff Code:
st = ic->streams[i];

if (st->start_time != AV_NOPTS_VALUE && st->time_base.den) {

start_time1= av_rescale_q(st->start_time, st->time_base, AV_TIME_BASE_Q);

+         if (st->codec->codec_id == CODEC_ID_DVB_TELETEXT || st->codec->codec_type == 

AVMEDIA_TYPE_SUBTITLE) {

- if (st->codec->codec_type == AVMEDIA_TYPE_SUBTITLE) {

if (start_time1 < start_time_text)

start_time_text = start_time1;

} else

Your score on the result of sample 1:

score
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Fig. 13: Part of the questions in the survey.
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Fig. 14: The average score of all samples in the survey.

techniques tend to have the poorer performance on the out-
of-domain dataset, which is different from the training data,
it actually hinders the model deployed to the real produc-
tion environment and we also admit it is the limitation
of our work. To mitigate this limitation, we propose some
underlying solutions to improve the generalizability of the
model.

• Improving the diversity of the training data. It is a
straightforward idea to expend the dataset. Because the
used data in our experiment is quite limited, including
more commit data from more projects may improve the
performance on unknown data. However, it is difficult in
the real scenario since the cost of labeling a large scale of
dataset is substantial. Hence, an alternative option is to
perform data augmentation [42] on the existing dataset to
enrich the diversity. For example, we can perform some
semantic-equivalent operators on the commit and trans-
form it into different versions to improve the diversity of
data for security patch identification. We leave the design
for the semantic-equivalent augmentation on the commit
as our future work.

• Improving the generalization ability of the model. In
terms of the model design, although the generalization

ability of the model is a long-term problem in deep
learning community, recent advanced researches on the
ensemble learning [43], [44], [45] have proved that the
problem of the generalization capability can be mitigated.
Hence, we could utilize ensemble learning, which com-
bines multiple learners, to improve the generalization
ability for security patch identification.

7 RELATED WORK

In this section, we briefly introduce related works about
security patch identification, graph neural networks, and
code representation techniques.

7.1 Security Patch Identification

A large amounts of silent security patches in the real world
have not been noticed, causing them to be disclosed. Iden-
tifying these silent patches can help developers fix security
bugs in their software in time and avoid the N-day attack.
However, thousands of patches are submitted every day to
Github, Bugzilla or other platforms to fix the bugs in their
software. It is a great challenge to manually identify security
patches in such a large number of patches. Therefore, auto-
matic security patch identification becomes essential. Since
the traditional static analysis approaches suffer from high
false positive, people turn to learning-based approaches. In
the early stages, conventional machine learning algorithms
are applied to identify security patches. For example, Zhou
et al. [12] propose to utilize a stacking model that assembles
six individual classifiers for security patch identification. Af-
ter that, deep learning-based approaches gradually became
mainstream for this task due to their powerful capabilities.
Wang et al. [33] propose PatchRNN, which ensembles two
BiLSTM models to generate the feature vectors for each
patch. Zhou et al. [15] propose SPI, which leverages LSTM
and CNN together to learn the representation of each patch.
Lozoya et al. [20] propose Commit2vec, which also employs
BiLSTM to learn the representation from AST paths. We can
also find that, in addition to commit message, people are
trying to leverage the code information for security patches
identification. In contrast to the approach in the preliminary
stage [12] which only considers commit messages as input,
Commit2vec starts extracting AST paths from diff code as
input, while PatchRNN and SPI both use commit messages
along with code for security patch identification. Similar to
PatchRNN and SPI, we leverage both commit message and
code to identify security patches.

7.2 Graph Neural Networks

In our real world, there are many graph types of data,
which is composed of objects and their relationships, such
as social networks, molecules, and programs. Before the
advent of GNN, due to the great progress of conventional
neural networks such as CNN and LSTM, they have been
widely applied in various fields such as image classification
and natural language processing [8], [46], [47], [48], [49].
However, people gradually find that these conventional
neural networks can only operate on regular Euclidean
data such as images and texts [50]. Therefore, graph neural
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networks are proposed to extend neural networks to non-
Euclidean domains. In just a few years, many variants of
graph neural networks have been proposed, which can be
mainly categorized into four groups [51]: recurrent graph
neural networks [24], [52], convolutional graph neural net-
works [53], [26], graph autoencoders [54], [55] and spatial-
temporal graph neural networks [56], [57]. In this paper, we
apply GGNN, a type of recurrent graph neural network,
to the dependency graph of commit messages for graph
representation learning.

7.3 Code Representation
To represent code for machine learning, in a preliminary
stage, the code is simply treated as a sequence, such as a
sequence of tokens or a bag of words. RNN techniques such
as LSTM and GRU are used to generate code representa-
tions. However, it was discovered that treating code as a se-
quence lost its structure information, since code are highly-
structured data format. These program structures reveal
the syntax and semantics of the code [58], [59]. Therefore,
many works are trying to use program structures for code
representation such as ASTNN [60], ATOM [22], Program
Graph [29], Devign [16], VulSniper [61] and HGNN [17].
Specifically, Allamanis et al. [29] uses a graph gated neu-
ral network and a program graph to learn function name
and detect variable misuse. Devign [16] and Vulsniper [61]
employ the code property graph to learn vulnerable func-
tions. ASTNN [60] uses an AST representation to represent
source code and perform source-code related tasks, such as
clone detection and source code classification. Some other
works have also attempted to use low-level programming
representations such as LLVM. For example, Flow2Vec [62]
employs an interprocedural value-flow graph and LLVM
intermediate representation to learn a meaningful repre-
sentation of the program. Compared with these works, we
employ a Bi-LSTM to incorporate AST path information to
learn the semantics of patches.

8 CONCLUSION

In this paper, we propose a well-designed tool E-SPI for
automated security patch identification, which fully utilizes
the structure information in a commit for effective identi-
fication. By the AST-based code change encoder to extract
the contextual AST paths about the changed code with
BiLSTM to learn its representation and the graph-based
commit message encoder to construct the dependency graph
for the commit message with the graph neural network to
learn the token relations from the message, E-SPI outper-
forms current state-of-the-art baselines significantly with
4.01% higher accuracy and 4.42% F1 score on the current
dataset, increases 6.03% accuracy and 7.38% F1 in the real
deployment environment.
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