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ABSTRACT
Face de-identification (De-ID) removes face identity information in
face images to avoid personal privacy leakage. Existing face De-ID
breaks the raw identity by cutting out the face regions and recov-
ering the corrupted regions via deep generators, which inevitably
affect the generation quality and cannot control generation results
according to subsequent intelligent tasks (e.g., facial expression
recognition). In this work, for the first attempt, we think the face
De-ID from the perspective of attribute editing and propose an
attribute-aware anonymization network (A3GAN) by formulating
face De-ID as a joint task of semantic suppression and controllable
attribute injection. Intuitively, the semantic suppression removes the
identity-sensitive information in embeddings while the controllable
attribute injection automatically edits the raw face along the at-
tributes that benefit De-ID. To this end, we first design a multi-scale
semantic suppression network with a novel suppressive convolution
unit (SCU), which can remove the face identity along multi-level
deep features progressively. Then, we propose an attribute-aware
injective network (AINet) that can generate De-ID-sensitive at-
tributes in a controllable way (i.e., specifying which attributes can
be changed and which cannot) and inject them into the latent code
of the raw face. Moreover, to enable effective training, we design a
new anonymization loss to let the injected attributes shift far away
from the original ones. We perform comprehensive experiments
on four datasets covering four different intelligent tasks including
face verification, face detection, facial expression recognition, and
fatigue detection, all of which demonstrate the superiority of our
face De-ID over state-of-the-art methods.
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1 INTRODUCTION
Privacy leakage has become a major concern with the explosive
growth of social media usage in today’s digital era [29]. Many no-
table privacy protection laws such as General Data Protection Reg-
ulation (GDPR), California Consumer Privacy Act (CCPA), Personal
Data Protection Act (PDPA) and Personal Information Protection
Act (PIPA), have been enacted by governments in the last few years
[35]. The face information is of paramount importance to personal
privacy [5], and is typically protected by face de-identification
(De-ID) [23], which aims to remove identifying characteristics from
original face images, evading both human and machine recognizers.

Although advances have been achieved, the existing face De-IDs
are still far from satisfactory. Early face De-ID methods only focus
on the anonymity (the anonymized face is unidentifable), and are
usually accomplished by some naïve image processing operations,
such as pixelation [27], blurring [28] and black-out [32], which are
visually unpleasant and also hinder downstream vision tasks (e.g.
face detection and facial attribute analysis).

Recent face De-ID methods first cut out the face regions and then
replace the original faces with new generated faces [7, 12, 22, 37, 38],
focusing more on the realism (the anonymized face should be photo-
realistic). However, generating new and natural faces to seamlessly
fit the original image scenes is challenging, and visual artifacts or
distortions are often introduced to the anonymized faces (see the
result of CIAGAN [22] in Fig. 1). Besides, these face De-ID methods
also neglect the fact that the anonymized faces may be used to
the downstream applications and their inherent flaw (i.e., they can-
not flexibly control the semantic information of anonymized faces)
makes the generated faces impossible to support such applications.
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Figure 1: Comparison of conventional face De-ID ( CIAGAN [22]), facial at-
tribute editing (STGAN [20]) tasks and our face De-ID A3GAN.

For example, these face De-ID methods likely fail to anonymize the
attendees while keeping their facial expressions unchanged in an
online meeting. Or they unsatisfactorily remove the face identity
while preserving the gaze direction and the mouth state, which
are essential for fatigue detection in a driving scenario. These real-
world applications require stricter control over the anonymized
faces, indicating the importance of controllability for face De-ID. Al-
though some works [7, 22] introduce the control information to the
face De-ID process, their purpose is just to improve the diversity of
anonymized faces, which still cannot satisfy the requirements of the
above downstream tasks. As shown in Fig. 1, the facial expression
and facial attributes in the anonymized face of the state-of-the-art
CIAGAN [22] is changed unpredictably.

To address the above problems, we propose to use facial attribute
manipulation to anonymize the faces. The motivation is that the
face identity is a high-level semantic representation determined by
the combination of specific facial attributes, and thus the change
of face identity can be fulfilled through manipulating the facial
attributes, which is conducive to maintaining the image quality
and also allows more granular control for anonymization. However,
existing facial attribute editing methods [47] aim to modify the
facial attributes while preserving the original face identity, which
is utterly different from the objective of face De-ID (see the result
of STGAN [20] in Fig. 1). Besides, one might seemingly rightfully
argue that the face De-ID is easy to reach by simply accumulating
multiple changed facial attributes. Nevertheless, as evidenced by
our experiment (see Fig. 2 in Sec. 3.2), the changes of multiple
facial attributes may be a conflict with each other and easily cause
unreasonable face semantics or degraded image quality. As a result,
there is an urgent need for new techniques to leverage the facial
attributes for face De-ID.

To this end, we devise an attribute-aware anonymization genera-
tive adversarial network (A3GAN) for face De-ID. We divide the face
De-ID into two tasks: original identity suppression and controllable
attribute injection, and design a novel encoder-decoder network
with two new modules, i.e., suppressive convolutional unit (SCU) and
attribute-aware injective network (AINet), to handle the two tasks. In
particular, the SCU is able to reduce the identity information within
the deep embeddings of the encoder and the AINet is to inject alter-
native controllable face attributes into the latent code at bottleneck.
The encoder embeddings and updated latent code are fed into the
decoder to produce realistic and high-quality faces. Moreover, to

allow effective training, we design a new anonymization loss us-
ing an attribute mask vector to let the injected attributes shift far
away from the original ones selectively. As a result, the proposed
method simultaneously satisfies the three face De-ID requirements,
i.e., anonymity, realism, and controllability (see Fig. 1). We conduct
a large-scale evaluation of A3GAN. Apart from the face verification
and face detection that emphasizes anonymity and realism, we also
use facial expression recognition and fatigue detection to heavily
test the controllability of our proposed method. All experiments
demonstrate its advantages over existing face De-ID methods.

2 RELATEDWORK
Face de-identification. In recent years, the generative adversar-
ial network (GAN) has dominated the study of face De-ID. Many
GAN-based methods regard the face De-ID as an image inpainting
problem [6], in which the face region is firstly blacked out, and
then the face-missing image is seamlessly filled with a new face
generated by GAN with the help of face landmarks. The blacking
out face is to reduce the original identity, and the face landmarks are
used for pose preservation. Under this paradigm, Sun et al. [37, 38]
propose the two-stage face De-ID frameworks, which first generate
a new face identity based on landmarks or a parametric face model,
and then blend the rendered head into the background image using
a GAN. Hukkelas et al. [12] use a conditional GAN for face De-ID,
and considers the pose information to ensure high-quality faces.
Maximov et al. [22] also adopt a conditional GAN, where a different
identity label is used as a condition to control the face identity,
and additionally explore an identity guidance discriminator to fur-
ther increase the anonymity. These methods cannot control the
semantic details in anonymized faces, thus limiting their adaptation
to downstream tasks. In this paper, we go beyond this paradigm,
and anonymize the faces more granularly by manipulating facial
attributes instead of total face generation.

There are also some face De-ID methods related to facial at-
tributes. The methods in [14, 19] anonymize the faces while retain-
ing all facial attributes, but they lack controllability and flexibility.
In contrast, we perform the face anonymization optionally either by
preserving all facial attributes or changing desired facial attributes.

Facial attribute editing. Facial attribute editing aims at altering
the semantic attributes in a face image according to target attributes.
Most facial attribute editing methods focus on the attribute inde-
pendence problem, in which the modified facial attributes should
not affect non-target attributes or attribute-irrelevant information.
Typical solutions include attribute-independent latent representa-
tion [31], spatial attention mechanism [17, 45], auxiliary classifier
for facial attributes [9], selective transfer unit and difference at-
tribute vector [20], style skip connections [3], disentanglement of
latent semantics [36], and latent space factorization model [42], etc.
All these methods preserve the face identity when modifying the
attributes, while our purpose is to change the face identity via facial
attribute manipulation.

Another type of facial attribute manipulation is used for privacy
protection [2, 24], which adds imperceptible adversarial noises to
attribute regions to fool facial attribute classifiers. However, these
methods can only mislead machines and do not change the visually
visible face identity which is still recognizable to human eyes.
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Figure 2: Using the SOTA attribute editing method (i.e. STGAN [20]), the SOTA face De-ID method (i.e., CIAGAN [22]), and our method A3GAN to perform face
anonymization on the CelebA dataset [21]. STGAN-𝑀 is to use STGAN to change 𝑀 attributes of the input faces and 𝑀 ranges from 1 to 13. We visualize two
examples in (a), and also present the image quality metric (i.e., FID [10]) and the De-ID metric (i.e., face verification accuracy [11]) on the CelebA dataset in (b).

3 MOTIVATION
3.1 Face De-ID as Attribute Editing
Facial attribute editing. Following existing face attribute editing
works [3, 20], we can describe an original (source) human face via a
series of attributes (e.g., hair color, gender, age) and indicate whether
a face contains these attributes through a vector, e.g., as ∈ {0, 1}𝑁
where the 𝑖-th element is denoted as a𝑖s and 𝑁 is the number of
attributes. If we have a𝑖s = 1 for a face, it means that the face
contains the 𝑖-th attribute and vice versa. Given a target attribute
vector at ∈ {0, 1}𝑁 , face attribute editing aims to transfer an input
face image to a new but realistic face that follows the attributes
indicated by the vector at. Existing methods achieve this goal via
GANs with specific generators and loss functions. In general, we
can formulate the face attribute editing via an encoder-decoder
network (e.g., U-Net [33]). Given an input face image I, we first
conduct the encoder via

{F𝑙en}𝐿𝑙=1 = 𝜙 (I) = 𝜙𝐿 (· · ·𝜙2 (𝜙1 (I))), (1)

where 𝜙 (·) is the encoder with 𝐿 layers {𝜙𝑙 (·)}𝐿𝑙=1 and F𝑙en is the
feature extracted from the 𝑙-th layer, i.e., F𝑙en = 𝜙𝑙 (F𝑙−1en ). The F𝐿en is
also known as the latent code, which is the output of the last layer
of 𝜙 (·) (i.e., 𝜙𝐿 (·)). The decoder takes the target attribute vector at
and {F𝑙en}𝐿𝑙=1 as inputs and generate a new face Î via

Î=𝜙−1 ({F𝑙en}𝐿𝑙=1, at)=𝜙
−1
𝐿 ( [· · ·𝜙−12 ( [𝜙−11 ( [F𝐿en, at]), F𝐿−1en ])]), (2)

where 𝜙−1 (·) denotes the decoder with 𝐿 layers (i.e., {𝜙−1
𝑙

(·)}𝐿
𝑙=1),

and ‘[·, ·]’ denotes a concatenation operation. To generate natural
faces meeting the target attributes, some works add newmodules in
the encoder or loss functions to train a powerful generator [17, 20].

Face De-ID via attribute editing. Intuitively, we can imple-
ment face De-ID via the above attribute editing straightforwardly.
We take the state-of-the-art (SOTA) attribute editing method (i.e.,
STGAN [20]) as an example: ❶ Given a face image we want to
anonymize, we obtain its source attribute vector as by using a pre-
trained attribute classifier [21]. ❷ We specify a target attribute
vector at by inverting some elements of as. Specifically, we set an
index set T = {𝑖 |𝑖 ∈ [1, 𝑁 ]}𝑀 containing𝑀 indexes and represent-
ing 𝑀 attributes should be inverted, that is, a𝑗t = 1 − a𝑗s ,∀ 𝑗 ∈ T .
Other elements of at are the same as those of as. ❸ We use the
STGAN and the specified a𝑡 to map the input face to a new one

that is regarded as the anonymized face. With the above process,
each set T corresponds to a face De-ID method. When we ran-
domly select𝑀 indexes from [1, . . . , 𝑁 ] for T , the STGAN-based
De-ID method is to change𝑀 attributes of the input face and we de-
note it as STGAN-𝑀 . Then, we can test the attribute editing-based
De-ID methods with different 𝑀 as well as the SOTA face De-ID
method [22] on the public dataset and discuss their advantages and
limitations, as presented in the following subsection.

3.2 Observations and Challenges
We use the above STGAN-based methods with different 𝑀 (i.e.,
{STGAN-𝑀 |𝑀 = [1, . . . , 13]}) and the SOTA De-ID method (i.e.,
CIACAN [22]) to conduct the face De-ID experiment on the CelebA
dataset [21]. Here, we consider total 𝑁 = 13 attributes for as and at,
as did in [20]. We use face verification accuracy [11] and Fréchet
inception distance (FID) [10] to evaluate the effectiveness of ID
removal and image quality, respectively. We show the results in
Fig. 2 and observe that: ❶ Editing a few attributes (e.g., STGAN-
{1, 2, 3, 4}) can generate high-quality faces (i.e., low FID values)
but fails to remove the identity information effectively (i.e., high
face verification accuracy). ❷ Editing more attributes (e.g., STGAN-
{5, . . . , 13}) can lead to effective identity changing (i.e., low face
verification accuracy) while decreasing the face quality significantly
(i.e., high FID values). ❸ Although the De-ID method CIAGAN [22]
achieves effective face DeID results, it generates much lower quality
faces than STGAN-{1, 2}.

According to the above observations, we find that existing facial
attribute editing methods cannot be used for face De-ID trivially.
Only the editing method with elaborated target attribute vectors
can generate natural and realistic faces but fails to remove the
identity information effectively. In addition, the SOTA face De-ID
method can anonymize the face identity effectively but usually
introduces undesired artifacts and distortions. These findings and
observations motivate us to design a new face De-ID framework
based on attribute editing to take advantage of its natural and
realistic generation capability. To this end, we need to address two
key challenges: how to design the editing generator be able to
remove face identity effectively? and how to generate elaborated
target attribute information that helps to generate natural and
realistic faces automatically?
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Figure 3: Architecture of the proposed A3GAN. Our main contributions are suppressive convolution units (SCUs) for filtering out original identity information and
the attribute-aware injective network (AINet) for injecting new identity information. The architecture details are also shown in Appendix A.

4 METHODOLOGY
4.1 Overview
We propose a suppresive convolutional unit (SCU) and an attribute-
aware injective network (AINet) to handle the two challenges, re-
spectively, which lead to our method A3GAN containing three
steps: multi-level feature extraction and original identity suppres-
sion, automatic target attribute generation and injection, and sup-
pressed & attribute-injected feature decoding. Specifically, given an
input face we want to anonymize, the A3GAN first extracts multi-
layer deep features via Eq. (1) and get {F𝑙en}𝐿𝑙=1. Instead of feeding
these features to the decoder directly, we propose to suppress the
identity information in {F𝑙en}𝐿𝑙=1 explicitly via a novel module (i.e.,
SCU). For the 𝑙-th feature F𝑙en, we can transfer it through the SCU

F̂𝑙en = SCU(F𝑙en, F̂𝑙+1en ), (3)

where SCU takes the 𝑙-th feature and the (𝑙 + 1)-th transferred fea-
ture as inputs and maps F𝑙en to a new counterpart (i.e., F̂𝑙en) in which
the identity information is suppressed. Note that, the deeper feature
from (𝑙 + 1)-th layer (i.e., F̂𝑙+1en ) captures more semantic information
than F̂𝑙en and can guide the identity suppression at the 𝑙-th layer.
For the last layer, we have F̂𝐿en = F𝐿en. We present the connection
between SCUs in Fig. 3 and it is a coarse-fine suppression process.
We will detail the principle and structure of SCU in Sec. 4.2.

With the SCU, we can obtain identity-suppressed features (i.e.,
{F̂𝑙en}𝐿𝑙=1). Then, following the pipeline of attribute editing, we
should feed the features {F̂𝑙en}𝐿𝑙=1 and a manually specified attribute
vector (e.g., at in Sec. 3.2) to the decoder and generate a new face.
However, the manually specified discrete vector cannot balance
the generation quality and face De-ID as discussed in Sec. 3.2. To
address this issue, we propose the attribute-aware injective network
(AINet) to automatically generate the target attribute information
in the latent space instead of using a discrete vector. Specifically,
the AINet takes an attribute latent feature f𝑧 and an attribute mask
vector m as inputs and output another attribute latent feature fa.
The latent f𝑧 is randomly sampled from the latent space of attributes.
We can represent the above process as

fa = AINet( [f𝑧 ,m]), (4)

wherem = {0, 1}𝑁×1 determines which attributes could be injected
into the latent feature of the input face, that is, the mask vector
provides a way to control which attributes could be used for De-ID.
For example, if m𝑖 = 1, the decoder can change the face along
the 𝑖-th attribute. Note that, the changing is optional and our AINet

allows to change or preserve the specified attributes. In contrast, if
m𝑖 = 0, the modifications on the 𝑖-th attribute are not allowed. As a
result, fa contains the accessible attribute information. Intuitively,
the vector m specifies which attributes could be changed to the
original face. Its functionality is totally different from the target
attribute vector at indicating which attributes should be included
in the generated face. We detail the AINet in Sec. 4.3.

After obtaining fa, we fuse it with the latent feature F̂𝐿en and then
feed them to the decoder to generate the anonymized face

Î=𝜙−1 ({F̂𝑙en}𝐿𝑙=1, fa)=𝜙
−1
𝐿 ( [· · ·𝜙−12 ( [𝜙−11 ( [F̂𝐿en, fa]), F̂𝐿−1en ])]) . (5)

With the SCU and AINet, the A3GAN can generate anonymized
and realistic faces following the mask vectorm. The whole pipeline
is displayed in Fig. 3. During the testing process, given an input
face and m, the anonymized face is automatically generated by
changing the modifiable attributes specified by m. Intuitively, the
whole architecture is similar with the U-Net shape where the skip
connections are replaced with SCUs for identity removal along
different feature levels and the latent code is injected with the
required attribute information.

4.2 Suppressive Convolutional Unit (SCU)
As the designing in Sec. 4.1, the SCUs are desired to remove the orig-
inal identity information progressively while keeping the identity-
irrelevant facial information along the encoder to ensure both
anonymity and realism.

Motivated by the selective transfer unit (STU) in [20], we design
the suppressive convolutional unit (SCU) to filter the extracted
features that contain identity information. The STU adopts a GRU-
based structure to select attribute-irrelevant encoder features and
transfer them to match the requirements of attribute editing. How-
ever, the STU is not suitable for face De-ID: First, the STU incorpo-
rates a target attribute vector to ensure the target attributes occur
in new faces. This hard constraint strengthens the editing capability
but easily degrades the image quality for multiple attribute changes
(see the results of STGAN-5/9/13 in Fig. 2). Second, the GRU is orig-
inally used to solve the long dependency issues in sequential data,
and the state transition and gate mechanisms in GRU implicitly
conduct the information selection, complicating the process and
also increasing the computational cost.

Beyond STU, we propose the SCU that comprises a transposed
convolution and a gated convolution to transfer each encoder fea-
ture (see Fig. 3). Specifically, for the 𝑙-th layer, a SCU receives two
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inputs: one is the 𝑙-th encoder feature F𝑙en and another is the sup-
pressed feature F̂𝑙+1en from a higher layer. For the initial suppressed
feature, F̂𝐿en = F𝐿en. The SCU is formulated as

F̂𝑙+1enT = W𝑙
T ⊗T F̂𝑙+1en , (6)

F̂𝑙en = 𝜎

(
W𝑙

f ⊗
[
F𝑙en, F̂

𝑙+1
enT

] )
⊙ F𝑙en, (7)

where W𝑙
T⊗T denotes the transposed convolution with weights

W𝑙
T, and W𝑙

f⊗ denotes the gated convolution with weights W𝑙
f .

The function 𝜎 (·) is the Sigmoid function, and ⊙ represents the
entry-wise product operation.

The gated convolution in Eq. (7) can be regarded as learning
a point-wise intensity map that indicates the relevance score of
the face identity in encoder features, thus suppressing the original
identity information and passing the identity-irrelevant information
to the decoder and the SCU at the shallow layer.

Compared with STU, the SCU has the following two advantages:
First, the SCU is to suppress the identity information in the original
image instead of incorporating specified attributes like STU. With-
out hard constraints on attribute synthesizing, the SCU is conducive
to generating more realistic faces (see the examples of A3GAN in
Fig. 2). Second, we use gated convolutions [44] to remove origi-
nal identity information in an explicit manner, which provides a
learnable dynamic selection mechanism for identity information
removal and is more computationally efficient than GRU adopted
by the STU. The parameters of SCU are 57.8% of those of STU for
the same network architecture settings. The importance of SCU on
anonymity and realism is validated in the ablation study section.

4.3 Attribute-aware Injective Network (AINet)
Instead of manually setting target attribute vectors [9, 20], we
propose an attribute-aware injective network (AINet) to automat-
ically generate the targeted attribute information in the latent
space. Specifically, the AINet consists of three components, a fully-
connected neural network (FCNet) with six FC layers and ReLU
activations, a learnable affine transform (AffNet), and an adaptive
instance normalization (AdaIN). With f𝑧 and m, the FCNet predicts
the target attribute feature denoted as fm in the attribute latent
space, which is suitable for face De-ID and meets the requirement
of m. The AffNet is to align the predicted feature fm to match the
channels of the feature F𝐿en and predict the transformed latent fea-
ture fa. Finally, the AdaIN fuses the fa and the latent feature F𝐿en of
the input face for subsequent decoding, and the implementation of
AdaIN is the same as that in [15]:

AdaIN(fa, F𝐿en) = fa,s
F𝐿en − 𝜇 (F𝐿en)

𝜎 (F𝐿en)
+ fa,b (8)

where fa,s and fa,b are the scale and bias of fa obtained by the AffNet,
and 𝜇 (F𝐿en) and 𝜎 (F𝐿en) are the channel-wise mean and variance of
F𝐿en for normalization.

We now explain the above components of AINet. The FCNet
aims to map the initial latent feature f𝑧 to the attribute-oriented
feature fm that contains new identity information for face De-ID.
Compared to the manually determined target attribute vector at
used in facial attribute editing, the learned fm can be treated as a cal-
ibrated version, which provides more reasonable target attributes

and avoids the image quality degradation due to multiple attribute
changes. The facial attribute mask vector m is to guide the genera-
tion of fm. If the m is not provided, the FCNet with only f𝑧 as input
will result in unpredictable facial attributes. Our ablation study
shows that adding the mask vector can provide a more accurate
control over the facial attributes and identity.

For the AdaIN, it realizes the attribute injection from a style
transfer view. The prior works [9, 20] simply concatenate the target
attribute vectors to the encoder features, which cannot guarantee
the anonymity of generated faces. The AdaIN directly transfers the
faces with the learned attribute information, helping to increase
the anonymity of faces. The effectiveness of AdaIN on face De-ID
is validated in our ablation study.

4.4 Loss Functions
To train our De-ID generator effectively, we construct a discrimina-
tor to cover two tasks (see Fig. 3): to determine whether the input
face image is real or fake and to estimate whether the attributes are
included in the input face image or not. The first task is a binary
classification task and represented as Dcls (·), and the second one
is formulated as multiple binary classification tasks and named as
Datt (·). We consider five loss functions to make the generated face
image Î anonymous, realistic and controllable, meet the attributes
specified by m, and conduct De-ID effectively.

Attribute loss function for the original image (i.e., Latt1).
We set an attribute loss function for the original image to empower
the discriminator to predict the attributes of the input image cor-
rectly. Specifically, given an input image I, we combine 𝑁 binary
cross-entropy loss functions

Latt1 (I, as) = −
𝑁∑︁
𝑖=1

[a𝑖s logD𝑖
att (I) +

(1 − a𝑖s) log(1 − D𝑖
att (I))] (9)

where as is a vector indicating the original source attributes a𝑖s
contained in I, and D𝑖

att (I) is the prediction of the 𝑖-th attribute.
Attribute-aware anonymization loss function for the gen-

erated image (i.e., Latt2). Straightforwardly, when the input is
a generated image, we can also force its attributes to be the same
with the target attributes like Eq. (9). However, in this work, the
target attribute information is not specified and unknown. We only
provide a constraint on the target attributes via AINet, i.e., the
attribute mask vector m in Eq. (4), which indicates whether an
attribute is changeable or not. To make the generated image follow
the m constraint and achieve effective face anonymization, we first
drive a regularization attribute vector am according to m and the
original attribute vector as

am = xnor(as,m), (10)
where ‘xnor(·)’ represents the element-wise exclusive-NOR op-
eration. Intuitively, the am is the inverse of as at the attributes
{𝑖 |m𝑖 = 0} but keeps the same with as at {𝑖 |m𝑖 = 1}. As a result,
am indicates which attributes the generated image cannot contain
and which attributes should be preserved. For example, if a𝑖m = 1, it
means the generated image Î should not contain the 𝑖-th attribute;
if a𝑖m = 0, we desire the 𝑖-th attribute to occur in the generated
image Î. The above design encourages the generated attributes to
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be greatly different from the original ones and leads to effective
face DeID.

To this end, we propose to minimize the inverse of the cross-
entropy loss functions based on am, i.e.,

Latt2 (Î, am) =(−
𝑁∑︁
𝑖=1

[a𝑖m logD𝑖
att (Î) +

(1 − a𝑖m) log(1 − D𝑖
att (Î))] + 𝜖)−1, (11)

where 𝜖 is a minimal constant to avoid dividing by zero.
Anonymization loss function for face De-ID (i.e., Ldeid).

We set an anonymization loss to make sure the face De-ID objective
achieved. Specifically, we adopt the ArcFace loss [4] and formulate
the de-identification loss as

Ldeid (I, Î) = Sim(𝜑 (I), 𝜑 (Î)) (12)

where 𝜑 (·) is a pretrained ArcFace model to extract face features,
and Sim(·, ·) denotes the Cosine similarity loss.

Binary cross-entropy loss function for the discriminator
(i.e., Lcls). We also add a binary-entropy loss function for the
discriminator, i.e., Lcls (I, Î), which enables the discriminator to
determine whether the input is the original image or the generated
one and encourage the generator to produce realistic face images.

Adversarial loss function for the generator (i.e., Ladv). We
further adopt the adversarial loss function used in Wasserstein
GAN [8] denoted asLadv (Î) to enhance the capability of generating
realistic face images (see the definition of Ladv in Appendix B).

Overall, our final loss function is formulated as

L=𝜆1L𝑎𝑡𝑡1 + 𝜆2L𝑎𝑡𝑡2 + 𝜆3L𝑑𝑒𝑖𝑑 + 𝜆4L𝑎𝑑𝑣 + L𝑐𝑙𝑠 (13)

where 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are hyper parameters for training.

5 EXPERIMENTS
5.1 Experimental Setup
Tasks and Datasets. We use four tasks on four datasets to thor-
oughly evaluate our A3GAN. For the anonymity, the anonymized
faces should not be identified by human and machine recognizers,
so we perform face verification on CelebA [21] to assess the De-ID
performance. For the realism, the anonymized faces should look
natural, so we perform face detection onWIDER FACE [43] to verify
whether the anonymized faces can be easily detected like real faces.
For the controllability, we conduct facial expression recognition and
fatigue detection on ExpW [46] and NTHU-DDD [41], respectively,
to examine whether the facial details can be controlled flexibly. Our
A3GAN is trained on CelebA and tested on all the above datasets to
verify its adaptability to different datasets.
Baselines. We adopt three types of baselines for comparisons.
Since our A3GAN is based on facial attribute manipulation, we use
two typical facial attribute editing methods, STGAN [20] and L2M-
GAN [42] (each has three variants), as the first type of baseline.
The second type is early face De-ID methods, i.e., 8 × 8 pixelation
[27], 9 × 9 Gaussian blur [28] and black-out [32]. The third type is
the state-of-the-art deep generative face De-ID methods, including
DeepPrivacy [12] and CIAGAN [22].
Implementation Details. The A3GAN is implemented using Py-
Torch [30] and trained on a single NVIDIA RTX 3090 GPU. During

the training, the batch size is set to 32, and the Adam [16] with
𝛽1 = 0.5, 𝛽2 = 0.999 is used as the optimizer. The learning rate
starts from 0.0002 and is divided by 10 after 80 epochs. The model
training is finished at 120 epochs. For the hyper-parameters, the
constant in Eq. (11) is set as 𝜖 = 1, and the balance parameters in
Eq. (13) are set as 𝜆1 = 1, 𝜆2 = 30, 𝜆3 = 10, and 𝜆4 = 1.

5.2 Comparison with State-of-the-art methods
Face Verification vs. Image Quality. We use FaceNet [34] and
CurricularFace [11] to evaluate the anonymity of face De-ID meth-
ods with the evaluation metric of verification accuracy, and a lower
verification accuracy represents a higher anonymity. We adopt
BRISQUE [25] and FID [10] to evaluate the realism of anonymized
faces, and lower values of BRISQUE and FID denote higher im-
age quality. The performance comparison of SOTA facial attribute
editing methods, face De-ID methods and our A3GAN in terms
of face verification and image quality is shown in Fig. 4, and the
corresponding numerical results are also reported in Appendix E.

In Fig. 4, the STGAN-1/3/5 and L2M-GAN-1/3/5 denote the
STGAN and L2M-GANwith one/three/five changed facial attributes.
The detail of changed facial attributes is provided in Appendix D.
The verification accuracy values of STGAN-1 and L2M-GAN-1 are
very high (nearly 1), but decrease with increasing the number of fa-
cial attributes, since changing more facial attributes will deteriorate
the image quality (see also Fig. 2). This again verifies the contradic-
tion of anonymity and realism for traditional facial attribute editing
methods, indicating their unsuitability for face De-ID.

The naïve face De-ID methods especially the pixelation and
black-out have a high anonymity, but at a cost of a significant drop
in image quality, since the face regions are all seriously distorted
or removed (see the examples in Fig. 7). DeepPrivacy and CIAGAN
both achieve considerable anonymization performance with all
verification accuracy values less than 5%, and their image quality is
also greatly improved compared to naïve face De-ID methods.

Similar to the variants of STGAN and L2M-GAN,A3GAN-1/3/5/10
represents changing one, three, five and all ten attributes, but
A3GAN-0 denotes no changing of attributes. All the five versions of
A3GAN achieve remarkable anonymization performance, prevailing
over all the competitors by a sizeable margin. The verification ac-
curacy values of A3GAN-5/10 are even zeros, which mean a perfect
face De-ID when more attributes are changed. We can also see that
the A3GAN with little attribute changes has better image quality
than previous face De-ID methods. Although A3GAN-10 has lower
image quality scores, this is just a stress testing, and in practice, we
do not need to modify all facial attributes for anonymization.
Face Verification vs. Face Detection.We employ SSH [26] and
DSFD [18] to evaluate the effect of face De-ID on face detection
with average precision (AP), for which larger values mean better
face detection and thus more natural anonymized faces. The perfor-
mance comparison of SOTA facial attribute editing methods, face
De-ID methods and our A3GAN in terms of face verification and
face detection is shown in Fig. 5.

We observe that the STGAN-1 and L2M-GAN-1 have high AP
values, and gradually decrease with more changed facial attributes,
which is consistent with that in Fig. 4. For the three naïve face
De-ID methods, the coarse anonymized faces can still be detected
to a certain extent. This is because they only obfuscate the face
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Figure 4: Face De-ID comparison via Face Verification vs. Image Quality. Top-right corner is the best.
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Figure 5: Face De-ID comparison via Face Verification vs. Face Detection. Top-right corner is the best.
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Figure 6: Face De-ID comparison via Face Verification vs. Facial Expression Recognition and Face Verification vs. Fatigue Detection. Top-right corner is the best.

region, but the head region is remaining detectable to face detectors.
For the DeepPrivacy and CIAGAN, their AP values are all increased
compared to the naïve face De-ID methods, but still inferior to
A3GAN due to the visual distortions caused by total face generation.

Our A3GAN obtains higher AP than all face De-ID methods. Note
that, the AP of A3GANdoes not decrease quickly with the increasing
of changed attribute numbers (the A3GAN-10 even modifies all the
facial attributes), and this can be attributed to the special design of
anonymization loss (see the explanation of Eq. (11)).
Face Verification vs. Facial Expression Recognition and Face
Verification vs. Fatigue Detection. To evaluate the controllability
of face De-ID methods, we investigate whether or not the face De-
ID can precisely control the facial expression, and we utilize an
expression recognition network SCN [40] considering seven basic
facial expressions for this experiment, in which a larger recognition
accuracy denotes a better preservation of facial expressions. The
performance comparison of SOTA facial attribute editing methods,
face De-ID methods and our A3GAN in terms of face verification
and facial expression recognition is shown in Fig. 6 (a) and (b).

Fatigue detection is another task to evaluate the controllability of
face De-ID, which should not affect some constraint facial regions,
such as eyes and mouth. We build a fatigue detection model based
on a VGG network in [1], and adopt the detection accuracy as a
metric. The performance comparison in terms of face verification
and fatigue detection is shown in Fig. 6 (c) and (d). Since pixelation,

blurring and black-out heavily disturb the facial details and also
should be correctly detected by face detection first, we do not report
their results for these two tasks.

The STGAN and L2M-GAN with little changed attributes have
higher accuracy for facial expression recognition and fatigue detec-
tion than face De-ID methods, since we avoid changing eyes/mouth-
related attributes. (see Appendix D for changed attributes).

DeepPrivacy and CIAGAN do not consider the facial details
during the anonymization process, so they obtain low accuracy
values, implying that they cannot be applied to facial expression
recognition and fatigue detection tasks.

Our A3GAN achieves better trade-off between anonymity and
controllability, since it can control the facial attributes flexibly and
circumvent the problem of DeepPrivacy and CIAGAN. The recogni-
tion accuracy and detection accuracy of A3GAN-0 are comparable
to those of STGAN and L2M-GAN, but drop apparently for A3GAN-
10, because all facial attributes including eyes and mouth-related
attributes are modified.

5.3 Qualitative Evaluation
We display various types of anonymized faces in Fig. 7 for visual-
ization comparison. We can observe that our A3GAN provides a
higher visual quality for face De-ID than state-of-the-art methods.
In contrast, there are noticeable artifacts on the anonymized faces
of DeepPrivacy and CIAGAN (see the yellow arrows in Fig. 7). For
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Original A3GAN-0 A3GAN-5 A3GAN-10 DeepPrivacy CIAGAN STGAN-3 STGAN-5STGAN-1Ours Blurring Pixelation Black-outSOTA De-IDs SOTA Attr . Edit. Early De-IDs
Figure 7: Visual comparisons of A3GAN with different changing attributes, SOTA face De-IDs (i.e., DeepPrivacy [12], CIAGAN [22]), SOTA attribute editting method
(i.e., STGAN [20]), Blurring, Pixelation and Black-out. Yellow and red arrows highlight the visual artifacts in anonymized faces.

the faces generated by STGAN, the anonymity and realism still
cannot be satisfied simultaneously (see the red arrows in Fig. 7),
as discussed in Sec. 3.2. Besides, our A3GAN also has a powerful
generative capability. For example, it can transfer a blurry face
into a clear face (see row 2 in Fig. 7). When transferring a female
to a male, or conversely, the long hair will be replaced by gener-
ated background or the image background will be rendered with
long hair. Furthermore, our A3GAN also exhibits high diversity of
anonymized faces by tuning facial attribute mask vectors (see the
gender or face style changes).

5.4 Ablation Study
Our A3GANhas two important modules, namely a SCU for suppress-
ing original identity information and an AINet for controlling in-
jected identity information. The AINet also has some sub-modules,
such as facial attribute mask vector and AdaIN. To verify their
importance to face De-ID, we perform an ablation study, in which
we compare the performance of A3GAN with and without these
modules on face verification, fatigue detection, and image quality.
The configuration here is the same as that of A3GAN-5. The ablation
results are reported in Table 1, in which A3GAN w/ STU denotes
replacing the SCU with STU, A3GAN w/o SCU/mask denote remov-
ing the corresponding modules in original A3GAN, and A3GAN w/o
AdaIN denotes replacing the AdaIN with concatenation operation.

Comparing the results in the first row and those in the last row,
We observe that the SCU indeed contributes more to the anonymity
and realism than the STU.We also observe from the second row that
removing the SCU increases the verification accuracy of A3GAN
from 0.05 to 2.92, demonstrating the effectiveness of SCU in sup-
pressing original identity information. The A3GAN without SCU
also increases the accuracy of the fatigue detection task, since the
preservation of original identity contains more facial expression
information that is needed for fatigue detection.

The A3GAN without mask vector (A3GAN w/o mask) has little
effect on the face verification, but it loses the ability to control the
facial attributes, so its detection accuracy on fatigue detection task
decreases drastically.

Table 1: Ablation study of A3GAN on different vision tasks. The top three
results are highlighted in red, purple, and green, respectively.

Different
A3GAN Models

Face Ver. Fatigue Det. Image Quality

CurrFace [11] ↓ VGG [1] ↑ FID [10] ↓

A3GAN w/ STU 2.39 73.32 32.01
A3GAN w/o SCU 2.92 76.10 31.24
A3GAN w/o mask 1.06 53.06 32.29
A3GAN w/o AdaIN 3.95 74.39 31.90
A3GAN 0.05 75.92 31.55

The results in the fourth row indicate that the learned attribute
information should be fused with the encoder features by using
AdaIN other than concatenation operation.

6 CONCLUSION
In this paper, we studied the problems of face De-ID from a micro
perspective. We proposed an attribute-aware anonymization net-
work (A3GAN) by using facial attribute manipulations instead of
total face generation. In particular, we designed a novel generative
network consisting of a suppressive convolutional unit (SCU) and
an attribute-aware injective network (AINet) to filter out original
identity information and introduce new identity information, re-
spectively. This moderate De-ID fashion increases the anonymity
while maintaining the realism of anonymized faces. Furthermore,
we design a new loss function with an attribute mask to control the
changes or preservation of facial attributes, enabling more gran-
ularly anonymization and more diverse anonymized faces. The
comprehensive experiments on four types of vision tasks have
demonstrated the state-of-the-art performance of our A3GAN.
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A NETWORK ARCHITECTURE
Our A3GAN has three sub-networks, i.e., a generator, a discrimina-
tor and an attribute-aware injective network (AINet). Their network
architectures are shown in Table 2-4. In the following tables, the
Conv(in_dim, out_dim, k, s) and DeConv(in_dim, out_dim, k, s)
denote the convolutional layer and transposed convolutional layer
with input channels in_dim, output channels out_dim, kernel size
k, and stride s. FC(in_dim, out_dim) represents a fully-connected
layer with input channels in_dim, output channels out_dim. BN
and IN denote batch normalization [13] and instance normalization
[39], respectively. 𝑁 is the number of facial attributes.

B DEFINITION OF ADVERSARIAL LOSS
The loss functions ofWasserstein GANwith gradient penalty (WGAN-
GP) [8] is widely used in literature. To save space of the paper, we
do not provide the detailed definitions of Lcls and Ladv in Sec. 4.4.
We give their definitions as follows

Lcls (I, Î) = − EI [Dcls (I)] + EÎ [Dcls (Î)] +

𝜆EĨ [
(∇ĨDcls (Ĩ)


2 − 1

)2
] (14)

Ladv = −EÎ [Dcls (Î)] (15)

where Dcls (·) denotes the binary classifier branch of the discrim-
inator for outputting real or fake predictions, I and Î are original
real face image and anonymized face image, Ĩ is any point sampled
between I and Î, and 𝜆 is a gradient penalty coefficient with default
value 10.

C ATTRIBUTE-AWARE ANONYMIZATION
LOSS FUNCTION

In Sec. 4.4, we explain why the anonymization loss function for the
generated image (i.e., Latt2) is given in a reciprocal form, namely
the inverse of the cross-entropy loss function. Here, we provide a
further explanation and also use experiment to validate our design.

The facial attribute editing methods [9, 20] encourage the dis-
criminator to correctly recognize the target facial attributes, so they
design the loss function for the generated image by minimizing the
cross entropy with target attribute labels:

Latt2 (Î, at) = −
𝑁∑︁
𝑖=1

[a𝑖t logD𝑖
att (Î) +

(1 − a𝑖t) log(1 − D𝑖
att (Î))] (16)

where Î is the generated image, at is the target attribute with 𝑁

attributes, and Datt is the multiple binary classifier branch of the
discriminator.

However, this design of loss function has two drawbacks. First, it
will cause unreasonable face semantics. For example, if we choose
a “moustache” attribute in the target attribute label vector, there
will be moustaches on the generated faces regardless of the gender.
Second, it will force the target attributes with multiple attribute
changes occur in the generated images, which easily lead to deteri-
orated image quality, as discussed in Sec. 3.2.

Table 2: Generator architecture.

Layer Generator
E1 Conv(3,64,4,2), BN, Leaky ReLU
E2 Conv(64,128,4,2), BN, Leaky ReLU
E3 Conv(128,256,4,2), BN, Leaky ReLU
E4 Conv(256,512,4,2), BN, Leaky ReLU
E5 Conv(512,1024,4,2), BN, Leaky ReLU
D1 DeConv(1024,1024,4,2), BN, ReLU
D2 DeConv(1536,512,4,2), BN, ReLU
D3 DeConv(768,256,4,2), BN, ReLU
D4 DeConv(384,128,4,2), BN, ReLU
D5 DeConv(192,3,4,2), BN, ReLU

Table 3: Discriminator architecture.

Layer
Discriminator

Adv. Classifier Attr. Classifier
1 Conv(3,64,4,2), IN, Leaky ReLU
2 Conv(64,128,4,2), IN, Leaky ReLU
3 Conv(128,256,4,2), IN, Leaky ReLU
4 Conv(256,512,4,2), IN, Leaky ReLU
5 Conv(512,1024,4,2), IN, Leaky ReLU

6
FC(16384,1024), FC(16384,1024),
Leaky ReLU Leaky ReLU

7 FC(1024,1) FC(1024,𝑁 ), Sigmoid

Table 4: AINet architecture.

Layer AINet
1 FC(512+𝑁 ,512), Leaky ReLU
2 FC(512,512), Leaky ReLU
3 FC(512,512), Leaky ReLU
4 FC(512,1024), Leaky ReLU
5 FC(1024,1024), Leaky ReLU
6 FC(1024,1024), Leaky ReLU

Aiming at the above problems, we encourage the generator to
synthesis new facial attributes that deviate from the source facial
attributes with the condition of a mask vector. We achieve this by
minimizing the inverse of the cross-entropy loss functions with the
regularization attribute vector am, in which the preserved attributes
are flipped in advance (see Eq. (10)). The final anonymization loss
function for the generated image is defined as Eq. (11)

Fig. 8 compares our loss design (Eq. (11)) and that in STGAN [20]
(Eq. (16)). We observe that the female faces generated by STGAN
have a moustache or a beard, but our A3GAN can avoid these unrea-
sonable attribute changes. Besides, our loss design can alsomaintain
a higher image quality than than the STGAN when changing mul-
tiple facial attributes, and their visualization comparison is shown
in Fig. 7.

D FACIAL ATTRIBUTES USED IN
EXPERIMENTS

Our A3GAN is based on facial attribute manipulations for face
anonymization, and the controllability of A3GAN can be realized
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Table 5: Quantitative results of different face De-ID methods in terms of face verification, face detection, facial expression recognition, fatigue detection and image
quality assessment. The top three results are highlighted in red, purple, and green, respectively.

De-identification
Methods

Face Ver. Face Det. Exp. Recog. Fatigue Det. Image Quality

FaceNet [34] ↓ CurrFace [11] ↓ SSH [26] ↑ DSFD [18] ↑ SCN [40] ↑ VGG [1] ↑ BRISQUE [25] ↓ FID [10] ↓
Original 98.54 99.21 91.98 95.33 73.23 87.62 30.05 −
STGAN-1 [20] 98.12 99.06 91.26 94.57 69.95 82.02 30.41 20.14
STGAN-3 [20] 78.44 79.56 89.35 92.16 54.70 74.43 35.80 39.29
STGAN-5 [20] 32.18 34.02 82.30 83.25 43.10 55.54 38.52 56.51

L2M-GAN-1 [42] 98.36 99.15 92.05 94.86 71.12 83.58 30.13 18.83
L2M-GAN-3 [42] 80.33 81.42 90.11 92.74 55.63 75.67 35.46 38.98
L2M-GAN-5 [42] 37.59 39.71 82.65 83.43 44.56 56.20 37.89 56.05

Pixelation 0.36 0.44 52.32 55.46 − − 41.28 88.16
Blurring 59.23 59.82 79.59 81.23 − − 39.81 49.31
Black-out 0.00 0.00 25.59 27.18 − − 49.92 102.18

DeepPrivacy [12] 2.81 3.95 87.48 92.55 41.72 56.72 36.58 30.12
CIAGAN [22] 3.26 4.87 86.15 90.37 38.85 54.34 38.77 34.95

A3GAN-1 0.52 0.81 89.66 93.83 62.57 80.22 30.72 25.69
A3GAN-3 0.20 0.33 89.37 93.62 55.71 79.15 30.98 27.83
A3GAN-5 0.00 0.05 88.82 92.79 55.09 75.92 31.75 31.55

A3GAN-0 0.86 1.07 89.73 94.08 64.49 81.36 30.59 24.53
A3GAN-10 0.00 0.00 87.63 91.42 27.18 53.01 33.56 39.74

Original

A
3
GAN

STGAN

 Mustache  Beard Mustache  Beard

Figure 8: Face de-identification using our A3GAN and SOTA facial attribute
editing method STGAN [20]. For each column, we only change one facial
attribute, i.e., “Mustache” or “Beard”.

by the facial attribute mask vector. We use different facial attribute
mask vectors for different model configurations. A total of ten facial
attributes are used in our experiments, including “Bangs”, “Blond
Hair”, “Brown Hair”, “Bushy Eyebrow”, “Male”, “Mouth Slightly
Open”, “Mustache”, “Narrow Eyes”, “Pale Skin”, “Young”. The mask
vector is a ten-length binary vector, in which 0 and 1 denote pre-
serving and changing the corresponding facial attribute, respec-
tively. For example, if we set all the bits in the mask vector as
zeros, the A3GAN will try to preserve all the facial attributes while

changing the face identity. If we set all the bits in the mask vec-
tor as ones, the A3GAN will alter all the facial attributes during
the anonymization process. These two examples correspond to
the A3GAN-0 and A3GAN-10 in Fig. 4 - 7. For the A3GAN-1/3/5 in
Fig. 4 - 6, the A3GAN-1 denotes changing the “Male” attribute, the
A3GAN-3 denotes changing the “Male”, “Mustache” and “Pale Skin”
attributes, and the A3GAN-5 denotes changing the “Blond Hair”,
“Male”, “Mustache”, “Pale Skin” and “Young” attributes. The eyes
and mouth related attributes are preserved for fatigue detection. For
the A3GAN-5 in Fig. 7, we modify five conspicuous facial attributes
for visualization, including “Male”, “Mouth”, “Mustache”, “Narrow
Eyes” and “Pale Skin”.

For the baseline STGAN [20] in Fig. 4 - 6, it has three variants
based on the number of changed facial attributes. The STGAN-
1 denotes changing the “Male” attribute, the STGAN-3 denotes
changing the “Male”, “Mustache” and “Pale Skin” attributes, and the
STGAN-5 denotes changing the “Blond Hair”, “Male”, “Mustache”,
“Pale Skin” and “Young” attributes. The STGAN-1/3/5 do not change
the eyes and mouth related attributes. The changed attributes for
L2M-GAN [42] are also the same. For the STGAN in Fig. 7, the
STGAN-1 denotes changing the “Mouth” attribute, the STGAN-3
denotes changing “Mouth”, “Male” and “Pale Skin” attributes, and
the STGAN-5 denotes changing the “Male”, “Mouth”, “Mustache”,
“Pale Skin” and “Young” attributes.

E QUANTITATIVE EVALUATION RESULTS
In Sec. 5.2, we compare our A3GAN with previous face De-ID meth-
ods and facial attribute editing methods only using figures. We also
report the numerical results in Table 5 for Fig. 4 - 6.
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