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Market for Manipulable Information®

Hui Chen' Jian Sun?

January 31, 2024

Abstract

We study how investors, firms, and information sellers interact in a market with
manipulable information. To better predict the firm characteristics they care about,
investors can buy a score from a monopolistic information seller, which aggregates signals
that are subject to firm manipulation. The average degree of signal manipulability has
no effect on the equilibrium, while the uncertainty about manipulability becomes a new
source of noise. Its contribution depends on firms’ incentive to manipulate the signals,
which in turn depends on the equilibrium price sensitivity to the score. The optimal
design of the score weighs signal precision against the endogenous uncertainty due to
manipulation. The introduction of mandate investors, who care about the scores on
the characteristics and not the characteristics themselves, generates an incentive for
information sellers to inflate the scores. When applied to green investing, our model
implies that the effectiveness of impact investing on the cost of capital could actually
decline as the fraction of green investors or the strength of the mandate keeps rising,

because they generate stronger incentives for manipulation.
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Conference for comments.
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1 Introduction

Financial markets are in an age of information explosion. An area that has witnessed
particularly striking growth is the so-called “alternative data” (examples include social media
data, satellite or aerial imagery, and geolocation data), which are widely used to forecast
company performances and stock returns, as well as for certification, such as credit ratings
or ESG ratings. Compared to “standard data” (such as financial and accounting data, or
government statistics), which are typically subject to well-established reporting and auditing
requirements, alternative data could be more timely, but also more prone to manipulation.
The goal of this paper is to study how investors, firms, and information sellers interact in a

market with manipulable information, and their impact on asset prices.

Our model builds on the framework of Admati and Pfleiderer (1986) and introduces two
new features: information manipulability and investor heterogeneity. In our baseline model,
the financial market consists of a risk-free bond and a stock issued by a firm. The firm is
characterized by two private independent attributes that investors value: z and ¢, which
could represent the firm’s cash dividend and carbon footprint, for example. Two types of
investors trade in the market: type-N and type-G. Type-N investors only care about the
attribute Z, while type-G investors care about both Z and §. A monopolistic information
intermediary collects signals about g, designs a score, and sells it to investors. The firm can
privately and costly manipulate the signals that are used to produce the score, with the
goal of maximizing its equilibrium stock price in the short run.! Investors only know the

distribution of signal manipulability (i.e., the cost of manipulation) across firms.

In equilibrium, the decisions of investors, the firm, and the information seller interact in
rich ways. Investors must factor in the firm’s potential for signal manipulation as well as the
information seller’s incentive for profit maximization when assessing the informativeness of
the score sold by the information seller. How responsive investors (and the stock price) are
to the score is a major factor in the firm’s incentive to manipulate the signal. Finally, the
firm’s tendency for signal manipulation and investors’ willingness to pay will influence how

the information seller designs and prices the score.

We fully characterize the market equilibrium, the firm’s signal manipulation strategy, and
the information seller’s optimal design and pricing of the score. Several interesting results
emerge. First, while the average degree of signal manipulability can change the level of the

score (e.g., stronger manipulability could lead to more score inflation), it does not alter the

'For example, social media reactions towards new products are being used to predict company performances.
A company could influence such sentiment in various ways, from paying “influencers” to promote their products
to using “bots” to post fake reviews.



informativeness of the score or the equilibrium stock price. This is because investors who care
about the true value of the attribute g already anticipate the average degree of manipulation
and the bias it induces in the score, and thus can undo its effect in equilibrium. Instead,
the key variable of concern about information manipulation is the uncertainty about signal

manipulability across firms, which is a new source of noise in the market.

The effect of this uncertainty on the equilibrium endogenously depends on investor
composition and the incentives of the information seller. As Admati and Pfleiderer (1986)
show, a monopolistic information seller may want to add extra noise to a score to prevent
it from becoming too revealing, since a more informative stock price will reduce investor
demand for the score. In our model, uncertainty about manipulability can substitute for the
need of the information seller to add noise to the score, which leads to two possibilities. First,
when the uncertainty about manipulation is low, we could obtain a “manipulation irrelevance”
equilibrium, in which an increase in the uncertainty about manipulability is exactly offset
by a reduction in noise added by the information seller, leaving all equilibrium outcomes

unaffected by the possibility of signal manipulation.

Second, when the uncertainty about manipulability is sufficiently high, the information
seller does not add any extra noise and instead adjusts the price of the score to maximize
profit. In this case, the informativeness of the score and the stock price will both decline when
the uncertainty about manipulability increases. Furthermore, the informativeness of the score
and the stock price could also decline as the share of type-G investors in the market increases,
because it raises firms’ incentive to manipulate information. Since price informativeness
about the attribute g could also be interpreted as how much a firm’s cost of capital aligns
with g, this result has an important implication for impact investing, wherein the objective
often involves influencing firms’ cost of capital in concordance with non-cash-flow attributes.
It shows that a continued rise in impact investing (as represented by the share of type-G

investors) could actually reduce its effectiveness in the presence of information manipulation.

We then examine the optimal design of the score in a setting with multi-dimensional
signals. Consider first the score that is the most accurate predictor of § (in the MSE sense).
The most informative score is a weighted average of the individual signals that minimizes the
total variance of the score. With the possibility of manipulation, the best predictor needs to
balance the intrinsic noise of individual signals (and their covariance structure) against their
uncertainty about manipulability (the average level of manipulability is again irrelevant).
Importantly, the relative contribution of the uncertainty about manipulability is endogenous.
It depends on the firm’s incentive to manipulate individual signals, which in turn depends on

the sensitivity of the stock price to the score. As a result, not only do the signals’ statistical



properties matter, but also the uncertainties about their manipulability and the investor

composition.

Next, recall that the goal of the information seller is not to design the most informative
score, but to maximize profit. This makes the optimal weights deviate from the ones that
are the most informative, again to avoid making the stock price too informative. In fact,
the optimal weights are generally not unique. This result suggests that different information
sellers could produce different scores even with the same set of signal inputs. It offers new
perspectives on the empirically documented disagreements in credit ratings (Cantor and
Packer, 1997) or ESG ratings (Chatterji et al., 2016; Berg et al., 2022) across agencies.

We also examine whether the information market helps allocate stocks with higher expected
values for characteristic g to investors who value it more. In the baseline model where type-G
investors care about the true characteristic g, despite the presence of manipulation, we show
that the stronger these investors’ preferences for g, the higher the ex-ante expected value for
g in their portfolio holdings. In other words, the information market does help tilt type-G

investors’ portfolios towards stocks with higher g.

In the second part of the paper, we replace the type-G investors with investors who care
about the score for g, not g itself. This assumption is meant to capture investors who face
mandates that are tied to the scores for certain characteristics. We refer to this type of
investors “mandate investors.” For example, insurance companies face regulatory restrictions
(from the NAIC) when investing in corporate bonds, whereby buying bonds with lower
credit ratings (which might be different from credit quality) would subject them to higher
capital requirements. Similarly, an ESG-themed mutual fund could be required to maintain
a minimum ESG score (which might be different from the actual ESG attributes) for its
portfolio holding. Moreover, we assume that the mandate investors can invest in the stock

only if they purchase the score from the information seller.

A key distinction exists between type-G investors and mandate investors; the former
assumes a disciplinary role in mitigating firm manipulation, a responsibility not shared by
the latter. In the baseline model, intense manipulation by the firm leads to a decrease in
the score’s informativeness. As a result, the type-G investors pay less attention to the score,
making the price less sensitive to the score, which ultimately reduces the firm’s incentive to
manipulate. This discipline effect does not exist in the mandate model. There, even if the
score and the equilibrium price become less informative due to the firm’s manipulation, the
price may still remain highly responsive to the score, due to the fact that mandate investors
care about the score itself, and not how much information it conveys about the true attribute.

Therefore, the firm’s manipulation incentive can be stronger in the investment mandate



model.

When the information seller’s score design is fixed, a stronger investment mandate, i.e.,
when mandate investors put a bigger weight on the score in their preferences, has a non-
monotonic effect on both price informativeness and the alignment of mandate investors’
portfolio with true characteristics §. Both the price informativeness and the ex-ante expected
level of g in the portfolios of mandate investors initially rise but ultimately decrease. These
results again demonstrate the downside of pushing too hard for mandates on certain stock
attribute in the presence of information manipulation: not only could the alignment between
the attribute and the cost of capital deteriorate, but the mandate investors may end up

holding less of the desired stocks.

The information seller’s optimal design of the score also differs significantly in the
mandate model. In the baseline model, type-G investors prefer more informative scores, but
the information seller tends to avoid selling the most informative score. The average degrees
of manipulability for individual signals are irrelevant and do not affect the optimal weights.
In the mandate model, however, mandate investors care about the level of the score but
not how informative it is. This generates an incentive for score inflation on the part of the
information seller, as they put higher weights on signals with higher degrees of manipulability.
At the same time, the information seller tries to keep the noise in the score low because the
mandate investors’ willingness to pay for the score is generally decreasing in its uncertainty.
These two considerations lead to distinct trade-offs for the information seller in the mandate
model. For example, a signal that is both noisy and has high uncertainty of manipulability
would be considered inferior in the baseline model, but it would receive higher weights in the

mandate model if it has high degree of manipulability on average.

Finally, we also consider an extension of our baseline model with sufficiently many
homogeneous information sellers. We show that the firm’s manipulation remains relevant
and important in the equilibrium outcome, and does not disappear due to competition.
Specifically, in the symmetric equilibrium, all information sellers choose to add no noise to
their scores, and the price of their scores are so low, such that all type-G investors choose to
buy all scores. In this case, the equilibrium price is a linear function of the average score
from all information sellers. Notably, the firm’s manipulation incentive does not disappear in
this equilibrium, and in fact, the firm’s manipulation becomes the sole source of additional

noise in the market that will affect the price informativeness.



Related literature

First, our paper is closely related to the literature on information sales. Building upon the
seminal work of Admati and Pfleiderer (1986), which examines a monopolist information seller
designing and selling payoff-relevant information to traders, we extend this framework by
considering the firm’s information manipulation behavior. As a result, the information seller’s
input in our baseline model is endogenous to its pricing and design of information, in contrast
to the exogenous input in Admati and Pfleiderer (1986). Following their work, a growing
body of recent literature investigates various settings involving monopolistic information
intermediaries. For example, Bergemann and Bonatti (2015) explore the pricing problem of
a data broker who provides data to facilitate marketing efforts. Segura-Rodriguez (2021)
examines a profit-maximizing data broker who sells data to firms seeking to forecast different
consumer characteristics. Meanwhile, Yang (2022) investigates a profit-maximizing data
broker who sells data to firms with private production costs. The unique aspect of our model,
in which the information intermediary’s actions (pricing and design) may endogenously
influence the input of the information that the seller can collect, does not show up in these

prior studies.

With the development of alternative data, there has been growing interest in understanding
how a firm’s data can influence the learning dynamics of its quality. Begenau et al. (2018) and
Farboodi and Veldkamp (2022) emphasize the role of data (information) in a firm’s production
and lifecycle. They examine how information can affect a firm’s lifecycle, highlighting the
“data feedback role,” where increased data availability can encourage firm growth. Our focus
on how data availability changes a firm’s incentives is different from their perspective. In
our model, the equilibrium price is (partially) determined by the firm’s information available
to the information seller, which incentivizes the firm to manipulate its data, consequently

reducing the informativeness of the data and price.

Another related stream of literature focuses on information manipulation by agents
(firms) with strategic concerns. Numerous studies investigate the manipulation of earnings
announcements (eg., Dutta and Fan (2014); Crocker and Slemrod (2007); Laux and Laux
(2009)) and the incentives of managers. Among these papers, our work is most closely related
to Fischer and Verrecchia (2000), which is also based on a Gaussian setting. However, our
paper differs from these studies because the information in our context is neither public
nor free, making the role of the information seller crucial. Another difference is that we
examine how the pricing and design of information by the information seller can alter the
firm’s incentive to manipulate, while these earnings manipulation studies mostly focus on

incentive contracts. Our framework is also related to the signaling model of Frankel and



Kartik (2019), which also discusses the firm’s ability to manipulate its signals and thereby
distort payoff-relevant information. However, our discussion on the role of the information
seller does not have a counterpart in their paper. Both Ball (2019) and Goldman et al. (2022)
consider an information intermediary’s problem where information can be endogenously
manipulated. However, the information intermediary’s objectives in their papers significantly

differ from ours, distinguishing our study from existing literature.

Our model predictions are also related to the growing literature on ESG rating divergence
and greenwashing. Previous studies confirm substantial disagreements in ESG ratings (e.g.,
Berg et al. (2022); Chatterji et al. (2016)) due to differences in measurement and methodology.
Besides, firms can strategically change their behavior to attract fund flows (e.g., Cooper et al.
(2005)), while these behaviors have no real impact on firm performance, as evidenced by
the greenwashing behavior documented in the ESG literature (eg., Kaustia and Yu (2021);
Liang et al. (2022)). Our paper can rationalize the empirical observations of these studies. In
particular, our model can explain why ESG rating agencies may choose different methodologies
and why they sometimes include features that are easy to manipulate. Our model highlights
the importance of the interactions between ESG rating divergence and greenwashing activities.
Both Péstor et al. (2021) and Goldstein et al. (2022) consider the financial market with ESG
investors. Apart from the key difference of manipulable information in our baseline model,
our Section 3 on mandate investment also addresses the possibility that ESG investment
operates as a mandate in an investor’s problem rather than reflecting investor preferences.
Our discussion on this part highlights different predictions of this angle of ESG investment
on the ESG rating market.

2 Baseline Model

2.1 The Setup

The model has a single period, from time 0 to time 1. There are two assets traded in the
financial market, a riskless bond with unlimited supply and a risky asset (the stocks of a
firm) with random supply § ~ N(5,02). We assume that the average supply of the stock is
positive, i.e., s > 0. The riskless bond is the numeraire, with the risk-free rate normalized to

Zero.

The stock generates two types of “payoffs” ¥ and g at time 1, where Z and g are independent

2
T

and normally distributed, with Z ~ N (z,07) and g ~ N (g, 02) respectively. We consider

two different interpretations for & and §. In the first case, ¥ and § are the two parts of the



cash-flow payoff at ¢ = 1, with g representing the cash-flow component that is predictable by
public signals (and Z the orthogonal component). Examples of such signals include accounting
and market information, as well as alternative data such as app downloads, social media
sentiment, or retail traffic. Under the second interpretation, & represents cash-flow payoff at
t = 1, while g represents the monetary equivalent of other firm characteristics that investors
might care about, such as the firm’s credit rating or ESG attributes.? The realizations of &

and ¢ are unknown to all market participants at time 0.

Information seller. As in Admati and Pfleiderer (1986), we assume that there is a
monopolistic information seller who collects data produced by the firm that are potentially
informative about g. The information seller aggregates the data to construct a score, g,, and
sells it to investors at price ®. The score is endogenously designed by the information seller.
We assume full transparency in the seller’s scoring algorithm, which, in general, includes the
signals used and weights given to individual signals (linear scores are optimal in our setting),

as well as the potential of additional independent noise added.

For simplicity, we first consider the case of a one-dimensional signal. In the absence of any
manipulation by the firm, the signal about g takes the form g+ ¢, where ¢ ~ N (0,0?). Admati
and Pfleiderer (1986) show that a profit-maximizing information seller might sometimes add
additional noise (that is independent of €) to the score, and thus the optimal score can be
viewed as § + u, where u ~ N (0,02) with 02 € [¢?, ). The information seller will choose
both the noise in the score o2 and the price of the score @ (which is equivalent to choosing
the fraction of investors who will buy the score) to maximize their profit. In the case of
multiple signals, the information seller also decides on the optimal weights given to the

different signals. We study that problem in Section 2.3.

Investors. Besides the noise traders responsible for the random supply of the stock §, there
are two types of active investors in the financial market, which we label as G and N, whose
investor bases are # and 1 — 6, respectively, with 6 € [0, 1]. Both types of investors start with
an initial wealth Wy and have CARA utility. If a type-i (i € {G, N}) investor holds ¢ units
of the stock and [ units of the bond, their expected utility at time 0 is represented by

Us=E [_G*A(¢(i+6§)+l)|]:G] ’ (1)
UN =K [—G_A(¢5:+l) |.FN] s (2)

2Consider for example, an investor who cares about not only the cash-flow payoff but also the firm’s
carbon footprint. Then we can view § as the investor’s willingness to pay to reduce the firm’s carbon emission.
For simplicity, we assume & and ¢ are independent. The model can be extended to allow for correlation
between the two, which could be more natural for certain firm characteristics.



where A is the coefficient of absolute risk aversion, and F; is type-i investor’s information set
at time 0. The key difference between the two types of investors is that type-G investors care
about both Z and g, with the coefficient 5 > 0 capturing the importance of § relative to z,
whereas type-N investors only care about . Our reason to introduce type-N investors is to
allow for heterogeneity in investor preferences towards non-cash-flow characteristics, such as
carbon footprint. In that case, type-G investors correspond to “green investors.”> Among the
type-G investors, a fraction A will endogenously decide to buy the score from the information

seller, and the remainders (fraction 1 — \) will not.

Firm. The main difference of our baseline model from Admati and Pfleiderer (1986) is the
possibility for firms to manipulate the signals. The firm manager would like to maximize
its market value p at ¢ = 0. Intuitively, in the absence of any signal manipulation, when
the score g, is higher, type-G investors will expect a higher § at t = 1, and they will bid
up the stock price at ¢ = 0. This effect creates an incentive for the firm to engage in signal
manipulation to increase the stock price and reduce the cost of capital. For example, one
could run sentiment analysis on product reviews posted on social media to predict revenue

growth. This could provide companies with the incentive to fabricate positive reviews.*

Specifically, the firm manager can change the level of the signal by d at a private cost of
1 ¢2 . . .. . .
27;5 , where ¢ represents signal manipulability and is privately observed by the firm — the
higher ¢ is, the easier it is for a firm to alter the signal. Only the firm manager knows ¢; the

public (including all investors and the information seller) belief about ¢ follows ¢ ~ N ((j, 02),
2
p
where § ~ N (cj, 03), which ensures that ¢ stays positive.The cost of manipulation can include

where ¢ » o2. This assumption should be viewed as an approximation of ¢ = max(0, §)
direct costs of manipulation activities as well as indirect costs, such as the expected costs of
punishment if getting caught of cheating. After signal manipulation, the score generated by
the information seller becomes

Gr =G+ u+o0. (3)

While active investors and the information seller are aware of the firm’s incentives to
manipulate the signals, they cannot precisely forecast the amount of manipulation by the

firm and remove its effect from the score entirely due to the lack of precise knowledge of q.

The firm manager’s objective is to maximize the stock price net of the cost of information

3Indeed, we will eliminate type-N investors by setting # = 1 when interpreting § as the predictable
component of firm cash flow.

4As another example, see Elon Musk’s dispute with Twitter regarding its number of legitimate users before
acquisition.



(2) (b) (c) (d) t=1

Information seller Firm manipulates Information seller Investors submit Asset payoff is
announces signals generates a score demand for realized
scoring algorithm based on the stock;
Investors decide reported signals market clears
whether to buy
the score

Figure 1: Model timeline

manipulation,

1 .
max E (p) — %5 : (4)

Figure 1 shows the timeline of the model: At time 0, the information seller chooses both
the noise 02 and the price of the score ®. Then the firm decides on the level of manipulation
0, and investors decide whether to buy the score from the information seller. After that,
all investors submit their demand functions and the price p is endogenously determined in

equilibrium. At time 1, all random variables are realized, and all players collect their payoftfs.

Next, we define the market equilibrium in the presence of information manipulation.

Definition 1 (Noisy Rational Expectations Equilibrium). We define an equilibrium as
{®* o \* p* 6*}, where ®* is the price of the score chosen by the information seller, o, is
the standard deviation of the noise in the score chosen by the information seller, \* is the
fraction of type-G investors who opt to purchase the score, and 0* is the manipulation level
that the firm selects, such that the following conditions hold:

e a fraction \* of the type-G investors purchase the score, while the remaining fraction

(1 — A*) choose not to purchase the score, to mazimize their utility (2);
e the firm selects 6* to maximize the objective (4);

o the information seller sets the price of the score ®* and the standard deviation of the

noise in the score o to maximize its profil,

o the equilibrium price p* clears the market, i.e., the total demand for the stock by all

active investors equals supply §.



2.2 Model Solution

We solve the market equilibrium with manipulation in two steps. First, we solve the partial
equilibrium while taking the information seller’s strategy (noise level o, and fraction of
score buyers among type-G investors \) as given. The price of the score ® is determined

endogenously in this partial equilibrium. Second, we solve the information seller’s problem.

Given the fraction of score buyers among type-G investors A and the noise of the score
0w, We conjecture that the equilibrium price of the stock has a linear structure, i.e., there

exist endogenous coefficients ag, a,, and a, such that
p = ag+ a.g, + ass. (5)

Since only g, is observable (not §), the equilibrium price is linear in the score g,, and a,

represents the sensitivity of stock price to the score.

From (3) and (5), it is easy to show that the firm’s optimization problem (4) also has a

linear solution:
0" = a,q, (6)
and thus the equilibrium score is
gr =g+ u+anq. (7)

Intuitively, controlling for the cost of manipulation ¢, the more sensitive the equilibrium
price is to changes in the score g,, the stronger the firm’s incentive to manipulate the score.
Manipulation in turn has two effects on the score: it inflates the score by a,q on average, and

makes it less informative by adding additional noise with variance afag.
The score in (7) is uninformative about Z. Since type-N investors only care about Z in

their utilities, they will never buy the score. With CARA utility, their optimal demand for

the stock is

E (Z[Fn) —p

AVar (2|.Zy)

¢n = (8)

Type-G investors face different inference problems about g depending on their decision
to purchase the score. Those who buy the score observe both the equilibrium price p and

the score g,, while those who do not buy the score only observe the equilibrium price. Their

10



optimal demand for the stock is

gbfk _ ]E(j"i_ﬁg‘yz) —D
' AVar (7 + B3|.%;)’

(9)

where i € {I,U} represents type-G investors who buy and do not buy the score, respectively.
Both (8) and (9) show that investors will trade more aggressively in response to news about

stock payoff when the uncertainty about the payoff is lower.

The market-clearing condition is
(1=0) oy +0[(1 = Ao + Ao7] = 5. (10)

Before presenting the solution, we define a few variables of interest, which also help
simplify the exposition. First, we measure the informativeness of the score g, about the

payoff component § with the correlation corr(g, g,), and define

0.2

_ 2/~ g
= ,0r) = S O, ]_ 1]_
m = corr™(g, gy) 03 + 02 + agag (0,1) (11)

which is also the R? of the regression that uses g, to predict §.> Notice that the additional noise
in the score comes from three sources: the intrinsic noise in the signals and potential noise

added by the information seller, which together has total variance o2, and the uncertainty
about signal manipulability, a’o?.

We measure the informativeness of the stock price p about g with corr(g, p), and define

0.2

9 = corr®(§,p) = g € (0,1) (12)

2
2 2 252 as 2
04+ 0, tazo;+ (ar> o;

which is also the R? of the regression that uses p to predict §. Compared to the score, the
price contains additional noise due to noise trader supply. Finally, we use
Var(69) pa,

"= Var(z + (9) - o2 + 6203 (13)

to denote how much the predictable component § contributes to the total variance of stock

payoff for type-G investors.

The following proposition summarizes the solution in the partial equilibrium when the

®Notice that the correlation corr(g, g,) is always non-negative in our setting. More generally, one would
use r1 to measure the informativeness of the score g, when corr(g, g,) could potentially be negative.

11



information seller’s strategy is taken as given.

Proposition 1. Suppose that the information seller chooses noise level 02 and sets the price
for the score such that a fraction \ of type-G investors choose to buy the score. Then there

exists an equilibrium such that:

1. the firm’s manipulation strateqy is 6* = a,q,
2. the equilibrium score is g, = § + u + a,q,

3. the equilibrium price is p = ag + a.g, + a8,

where ag, a, > 0 and as < 0 are uniquely solved by a system of equations:

A a o? 1 o2
n —né “=1+—2+ 5 -, (14a)
pdogar % |n_21 (1;9 L ) (g) EREE) | o
B A\ o2 o2+B%2 ) \ ar 1_%@%)
1
a, = (14b)

|3

)
)

Bg Bg S
_ )\U%+B2U§(1—r1) + (1 - )\) Ug+ﬂza§(1—r2) — As

Qo =T+ = ) n 1-X
02 o2+3%02(1-r1) o2+3%02(1-r2)

BAc2
n_1(10 0\ (a) (2Tm(E)
B A\ o2 o2+p%02 ar 1 BAag(
Y

sk e

— (ar (g + a,q) + asS) .

(14c)

The key variable that affects the firm’s manipulation incentive is a,. First, an increase
in a, tends to increase the correlation between the price p and the score g,, assuming that
as is unchanged. This makes the price more informative. Second, an increase in a, also
intensifies the firm’s manipulation, as ¢* is an increasing function of a,. This tends to reduce
the informativeness of the score, consequently reducing the informativeness of the price. The

trade-off between these two opposing effects is the key to our main analysis.

Notice that ¢, which represents the average manipulability of the signal, has no effect on
either the equilibrium price or the informativeness of the score and the price. Higher ¢ does
lead to more score inflation on average, but this effect on the equilibrium price is exactly
offset by ag. Intuitively, type-G investors care about §; when they update beliefs about §
through the score, they will take the perceived manipulation activities into account. Since the
average degree of signal manipulation is fully anticipated, it does not change these investors’

learning or decision making. Instead, what matters for the informativeness of score and
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price is the uncertainty about manipulability across firms, as measured by ag. The following

corollaries show how signal manipulability affects the informativeness of scores and prices.

Corollary 1. Suppose that the information seller chooses noise level o2 and sets the price

for the score such that a fraction of A type-G investors choose to buy the score. When ¢

2

2 increases, a, decreases and

increases, both a, and Var(0*) = a,%ag are unchanged. When o

Var (6*) = alo? increases.

2

= and sets the price

Corollary 2. Suppose that the information seller chooses noise level o

for the score such that a fraction of \ type-G investors choose to buy the score. Then

e corr(g.,g), corr(p,g), and corr(p, g,) are independent of average manipulability q;

e corr(g.,g), corr(p,g), and corr(p,g,) are all decreasing in the uncertainty about ma-

nipulability 02.

2
q

sensitivity of the price to the score, while Corollary 2 shows that higher 03 makes both the

Corollary 1 shows that higher uncertainty about signal manipulability o- reduces the
score g, and price p less informative about g, and that the correlation between p and g, also
declines. To understand these results, let us consider how a rise in the uncertainty about
signal manipulability changes the noise in the score. A direct effect of higher 02 is to make
the score more noisy, due to the fact that the amount of signal manipulation in the score is
proportional to ¢ (holding a, constant; see (6) and (7)). An indirect effect of higher o7 is
that it makes the price less responsive to the score (a, decreases) and lowers the correlation
between the two, because investors’ beliefs about g will become less responsive to the score as
it becomes more noisy. This in turn reduces the firm’s incentive for signal manipulation, i.e.,
0* decreases when holding ¢ constant. However, since the direct effect is stronger, the overall
uncertainty in the amount of manipulation, as captured by Var(§*) = afag, still increases.
This is why the score becomes a noisier predictor for payoff component §. Finally, since the
information in price about g ultimately stems from the score, it follows that the correlation
between price and § also decreases with 03.

Next, we turn to the information seller’s optimization problem, which involves determining
the optimal price of the score ®* and the noise level o2,

A key difference between our setting and Admati and Pfleiderer (1986) is the possibility
of signal manipulation, which influences the information seller’s incentive to sell the score.
Selling the score to more investors can increase the informativeness of the price regarding

payoff component §g. However, the firm’s manipulation incentive may also increase, which
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makes the equilibrium score nosier and weaken the information spillover effect. The following
lemma shows that the information spillover effect still dominates the manipulation incentive.
Therefore, selling the score to more investors always leads to a more informative price

regarding the true fundamental information.

Lemma 1. Suppose in equilibrium, a fraction X of type-G investors choose to buy the score
and the information seller chooses noise level 02. Then when X increases, the informativeness

of the price regarding the fundamental information g, represented by corr(p, §), increases.

Those type-G investors who buy the score must pay a cost ® in exchange for more
information about g. In equilibrium, a type-G investor should be indifferent between
purchasing the score or not, which leads to the following classic result in the literature

regarding the price of the score.

Lemma 2. In equilibrium, let Fyand F; be the information sets of type-G investors who
buy and do not buy the score, respectively. Then the equilibrium price of the score for any

given X\ is

B L <Var(iz+5§!%))_

“oA " Var(z + Bg|-Z1) (15)

Notice that the dependence of the price of the score ® on A in (15) is implicit. As the
fraction of investors who choose to purchase the score changes, so does the informativeness of

the price relative to that of the score, which determines the right-hand-side of (15).

Lemma 3. Suppose the information seller chooses a noise level o2 and price ®(\) such that
a fraction X of type-G investors buy the score. There exists a threshold o2, such that:

o when o> < o2

Zu’

®(N) first increases and then decreases in o ;

« when o), > a;,, ®(\) monotonically decreases in o,.

The intuition for the non-monotonicity result in Lemma 3 is as follows. Holding o2 fixed,
as o, decreases, the score becomes less noisy, and one would expect investors’ willingness to
pay for the score to increase, pushing the price for the score higher. However, a competing
source of information for investors is the stock price. When the score is very precise, investors
who buy the score will trade aggressively and impound large amount of information into
the stock price. This will tend to reduce the investors’ willingness to pay for the score. As

Lemma 3 shows, this latter effect dominates when o, and 2 are both low.
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The total profit for the information seller is AP (\). With the equilibrium price of the

score in (15), we can state the information seller’s problem as follows:

1
max A—In (

16
Ae[0,1],02202 2A ( )

Var (7 + 5§|?U)>
Var (z + B9|-Z1) )

Before presenting the full solution to the equilibrium, we first discuss a quantity of interest,

—2=. Notice that the equilibrium stock price can be rewritten as

Qs .
ay
s . ~ . 6 s
where the term —2= measures the effect of the noisy supply § on stock price.® A larger -

makes the price a more noisy predictor of g.

According to Proposition 1, when the information seller chooses A and o2, the equilibrium
quantity —% is solved by (14a). It is obvious that —* is an increasing function of o2. For

any given A, there is a minimum level for —o M (A), which is the solution to the following

equation,
2
o’ 1 o2
nAnf o M) =1+ 5 + Py —. (17)
pog Ty NN N C N D VA0V ) EaaiiCl] %9
B A\ o2 o2+p%02 1+ﬂAg§ MO

This is essentially the same equation as (14a) but with 2 replaced by its lower bound ¢?.
Thus, the noise in the equilibrium price contributed by the noisy supply is minimized when
—4% = M ()), and the information seller can effectively achieve any level —2: > M(XA) by
raising o2 from o?.

We now characterize the information seller’s optimal choice of score price ®* and noise

level 02 in the following theorem.

Theorem 1. Define

-~ )\()AO‘S
A g [o2 + 3o, (18)

where \g is a constant number solved in the appendiz. Then the information seller’s optimal

*2

choice ®* and o}

are characterized as follows:

_Aas
a,”

®Naturally, a, > 0 and a; < 0 and thus [2:] =
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1. IfX<1and M (X) < Z—Z\/ﬁ, then the information seller chooses o*? satisfying

oA
Var(g,) = o, + 03> + a’o; = n <02 + Ugﬁ) , (19)
o
where a¥ is the equilibrium a, in the price equation and is defined by (A.93) in the

appendiz. The price ®* is set such that a fraction \* = X of type-G investors choose to

buy the score.

2. If\>1and M (1) < Z—Z\/ﬁ, then the information seller chooses o** satisfying
2 #2 #x2 2 2 0 g,
Var(gy) = o, + o5° + a0, =n (0, + ——=—/n |, (20)
o

where aX* is the equilibrium a, in the price equation, and is defined by (A.102) in the
appendiz. The price ®* is the highest price under which all type-G investors choose to
buy the score (A* =1).

3. Otherwise, in equilibrium, the information seller always chooses o = . The price ®*
is the highest price under which a fraction \* = . of type-G investors choose to buy

the score, where \. satisfies

A 2 2 1
M — arg max Aln [ 14 220 : (21)
Ae[0,1] n\@ <L + Gﬁ + B 6r (A))

M) no?

Theorem 1 shows that, depending on the model parameters, there are three possible
equilibria (see Figure 2 for an illustration). In the first unconstrained equilibrium, type-G
investors who buy and do not buy the score coexist, and the information seller chooses an
interior noise level to add to the score. The other two equilibria are constrained. In the
second possible equilibrium, the information seller sells the score to all type-G investors,
resulting in no ex-post heterogeneity among them. Nevertheless, the information seller still
opts to add additional noise to the score. In the third possible equilibrium, the information
seller does not add any noise to the score (02 is constrained to ¢?), such that the total noise
level is determined by the intrinsic noise in the signal, and a fraction A. < 1 of the investors

buy the score.

An interesting property of the unconstrained equilibrium (Case 1 of Theorem 1) is that
the equilibrium mass of score buyers #A* and the price of the score are both independent of

the fraction of type-G investors §. The first part of this result immediately follows from (18).
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A. Three possible equilibria B. Two possible equilibria

0.8 - 0.25
— M(3) = 3tVn — M) =Zyn
— M (1) = Zya
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0.15 |~
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0.1} Case 2
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6 6

Figure 2: Possible senarios of Theorem 1. We consider how (6, 0,) affect the equilibrium
structure. Parameters values are 0, = 0.3, 0, = 1, 0, = 0.2, A = 1.5, and ¢ = 0.1. We
set 8 = 1.5 for the left panel and S = 6 for the right panel. There is no unconstrained
equilibrium in the right panel because A > 1.

The score price, as (15) shows, depends on the ratio of posterior beliefs Var(z + 5g|Fy) and
Var (& + 5g|Fr), both of which depend only on the mass of score buyers A\f and the impact
of noisy supply on the price —&%, which in turn depends on o2. Thus, in the unconstrained

equilibrium, when 6 changes, the information seller will adjust o2 such that the same G\*
and ®* maximize their profit, OA*P*.

In fact, the intuition that the information seller can adjust o2 to offset the effect from
signal manipulation leads to a more general irrelevance result in the unconstrained equilibrium,

which we summarize in Proposition 2 below.

Proposition 2. (Manipulation Irrevalance) In the unconstrained equilibrium, the optimal
price ®*, the variance of the score Var(g,), and the informativeness of both the score g, and

price p are identical to those in the model where the firm cannot manipulate.

The next proposition shows how the uncertainty about signal manipulability 02 affects

the information seller’s strategy.

Proposition 3. Starting from the unconstrained equilibrium, as the uncertainty about signal
manipulability 02 increases, the information seller first responds by decreasing the noise level
o2 while keeping the score price ®* unchanged. Once the noise level reaches the lowest possible

level o2, the information seller then responds by adjusting the score price.
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Unlike in Lemma 3, where we hold the noise level o2 and the fraction \ of type-G investors
who buy the score fixed, in Proposition 3 we examine the relationship between score price
and signal manipulability under optimal choices of o2 and \. When the signal is sufficiently
precise to begin with and the noise resulting from the firm’s signal manipulation is not too
high, the information seller will want to add extra noise to the score to avoid making the
score and the price too informative about g. This result is qualitatively similar to Admati
and Pfleiderer (1986), and it has an important implication. It means that, as the uncertainty
due to signal manipulation rises, initially it simply reduces the need for the information
seller to add more noise. In fact, the information seller is indifferent about the fact that the
signal is prone to manipulation under this scenario. Only when 02 becomes so high that the
information seller is no longer adding any noise to the score will they begin to care about
the noise added due to signal manipulation, which will reduce their profits. Such preferences
become important in the score design problem when there are multiple signals, which we

investigate next.

In the following proposition, we examine how investors’ risk aversion A affects the

equilibrium.

Proposition 4. In the unconstrained equilibrium characterized by Theorem 1, when the risk

aversion A increases locally,

o the fraction of type-G investors who buy the score, \*, increases;

o the value of a¥, which represents the sensitivity of the equilibrium price to the score
(0p/0g, ), increases. Consequently, the firm’s incentive to manipulate the signal increases,

as does the noise that signal manipulation adds to the score, Var(6*);

o the information seller’s choice o¥* decreases. The total variance of the score Var(g,)

and the informativeness of the score about g, as measured by corr(g,, g), are unchanged;

o the variance of the equilibrium price Var(p) increases, and the informativeness of the

equilibrium price about g, measured by corr(p, g), is unchanged.

Proposition 4 shows that, in the unconstrained case, the informativeness of the score and
the price are unchanged when investors become more risk-averse. Intuitively, with higher risk
aversion, investors are trading less aggressively, which leads to less information spillover, and
thus the information seller is willing to sell the score to more investors (larger A*), which
leads to more information spillover. These two effects cancel out, and thus the information
seller chooses to keep the informativeness of the score unchanged to maximize the profit. The

informativeness of the price is also unchanged since the two opposite effects cancel out.
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More investors purchasing the score tends to make the price more sensitive to the score.
At the same time, the portfolio rules (8)-(9) show that higher A reduces investors’ demand
for the stock, all else equal, which could make the price less responsive to changes in the
score. It turns out that the first effect dominates, resulting in higher price sensitivity to the
score a¥. And the higher price sensitivity to the score strengthens the firm’s incentive to

manipulate the signal.

We finish this section by examining how type-G investors’ preferences for the payoff
component g affects their equilibrium portfolio holdings. In particular, does the market for
information help allocate stocks with higher expected value for § towards investors who value
such characteristics more? Proposition 5 below shows that the answer is yes, even in the

presence of signal manipulation (at least when 3 is sufficiently high).

Before stating the results, we first define an ex-ante measure for the expected value of §
in type-G investors’ stock holding,
E[(6((1—A)op + A7) g

Bl = R @ N o 2] (22)

This is the dollar-weighted expected payoff § across type-G investors’ holdings, which shows
how much type-G investors’ investment tilts towards stocks with higher expected value for
g. For reference, in the absence of the market for information about g, the holdings of all

investors will have g randomly drawn, and thus E[§|G] = g.

With the market for information about g, type-G investors will buy more of the stock
when its expected value for g is higher. This is especially true for those investors who buy the
score, which will further reduce the uncertainty about §. As type-G investors start to care
more about ¢, as captured by a higher 3, it should result in more type-G investors buying
the score, as well as stronger demand for stocks with higher expected §. An offsetting force
in our model is that firms’ incentive to manipulate the signal also strengthens, which will
tend to make the score more noisy. However, as Proposition 5 shows, the overall effect is
that higher § still makes the portfolio of type-G investors tilting more towards stocks with

higher g in expectation.

Proposition 5. Suppose ¢ = 0. In the case when [ is sufficiently high, when [ increases
locally, the expected g of the risky asset held by all type-G investors, represented by E[g|G],
increases. Besides, in this case, the information seller will always choose o, = o = 0 and set

the price optimally such that A = 1.

Figure 3 plots how the price of the equilibrium score ®, the number of buyers of the

score OA* and the price informativeness corr(p, g) change with the uncertainty of the score
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Figure 3: Equilibrium outcomes under different o,. Parameters values are o, = 0.3,
0s=03,0,=02 A=15,0=02,=2,0=05,g=1and s=1.

manipulability o,. At low leves of o, the additional noise from score manipulation is limited.
Due to the manipulation irrelevance result Proposition 2, equilibrium outcomes such as score
price @, total mass of score buyers §A* and price informativeness corr(p, §) are independent
of 0,. When o, continues to increase, the equilibrium will enter the third case in Theorem 1.
An increase in o, makes the score more noisy, which makes the score less valuable to the score
buyers, and also reduces the information spillover externality. The numerical results suggest
that, to maximize profit, the information seller chooses a lower score price and sells the score
to more investors. It is also intuitive that the price informativeness is lower due to higher

uncertainty in the manipulability. The following proposition formalizes some of the results.

Proposition 6. There exists ki > ko, such that

1. when o, < ko, all of corr(g.,§), corr(p,g), and E(g|G) are locally independent of o,;

2. when o4 = ki, all of corr(g,, §), corr(p,g), and E(g|G) are locally decreasing in o.

Figure 4 plots how the price of the equilibrium score ®, the number of buyers of the
score @A* and the price informativeness corr(p, §) change with the mass of type-G investors
6. The blue dotted line represents the benchmark case in which manipulation is impossible.
These numerical results suggest that, for lower values of 6, due to the limited information
spillover externality, the information seller optimally chooses to sell the most informative
score to all type-G investors. When 6 increases in this region, the price informativeness will
increase because more investors are trading on information about g. When 6 lies within an

intermediate range, the equilibrium corresponds to the unconstrained equilibrium described
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Figure 4: Equilibrium outcomes under different . Parameters values are o, = 0.3,
0,=03,0,=02 A=15,0=02,=2,0,=034,g=1and 5 = 1.

in Theorem 1. In this case, the information seller maintains a constant target level for both
the price and the number of score buyers. However, an overly high # makes the price too
sensitive to the score, which leads to too much score manipulation by the firm. In this case,
the information seller will choose to sell the most informative score again. When 6 increases
in this region, the score is sold to more investors, but the price informativeness actually
decreases due to excessive manipulation by the firm. The following proposition formalizes
this result.

2
U.’IJ
5707

Proposition 7. For any 0 satisfying 6 > é (1 + ), there exists ky > 0, such that when

aq > ky, dcorr(p,g) /00 < 0.

Figure 5 plots how the price of the equilibrium score ®, the number of buyers of the
score OA* and the price informativeness corr(p, §) change with the risk aversion of investors
A. Again, the blue dotted line represents the results when manipulation is not feasible. First,
under the chosen parameters, we are always in the unconstrained equilibrium in the absence
of manipulation but always in the constrained equilibrium (the third case) when manipulation
is possible. As a result, the price informativeness is independent of the risk aversion A in
the absence of manipulation, while it is decreasing with A when manipulation is possible.
This confirms the importance of manipulation in determining the equilibrium structures.
Second, when the risk aversion A increases in this case, the information seller will choose to
sell the most informative score, and sell the score to more investors. However, the low trading
motives make the price less informative. When A is too high, the information seller will sell
the score to all type-G investors, and the price informativeness will continue to decrease due

to lower trading motives.
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Figure 5: Equilibrium outcomes under different A. Parameters values are o, = 0.3,
0,=03,0,=02,0,=034,0=02,=2,0=05,g=1and 5= 1.

Figure 6 plots how the price of the equilibrium score ®, the number of buyers of the score
OX* and the price informativeness corr(p, §) change with 5. When 3 is low, type-G investors
in general have low incentive to trade on information about g, so the information seller will
choose to sell the most informative score, which leads to the third case in Theorem 1. In
this region, when (3 increases from a low level, type-G investors care more about the signal
and thus the information seller can charge a higher price. Since the price is still relatively
low when f is low, to avoid the excessive information spillover effect, the information seller
will reduce the mass of score buyers to maximize the total profit. When £ is relatively high
in this third case region, the price of the score is relatively high, so the profit of selling the
score to more investors is significant. As the best response, when  continues to increase in
this region, the information seller will choose to sell the score to more investors, leading to
a U-shaped strategy shown in the plot. In this third case region, the price informativeness
monotonically increases, because when [ is higher, investors are more willing to trade on the
score, which tends to make the price more informative. However, when [ is overly high, the
equilibrium becomes the first case in Theorem 1. In this case, the information seller will start
to add noise to the score to avoid too much information spillover. When f increases, the
information seller chooses to add more noise to the score, keeping the score price unchanged,
and selling the score to more investors. Due to increasing noise added by the information

seller, the price informativeness decreases in this region when [ increases.
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Figure 6: Equilibrium outcomes under different 3. Parameters values are o, = 0.3,
0;=03,0,=02,0,=034,andc =02, A=15,0=05,g=1and 5 =1.

2.3 Score Design

In this section, we delve into the problem of endogenous score design. In practice, information
sellers often design the scores they sell to the market by modifying the methodology used for
score calculation. For instance, a firm may have multiple relevant signals, each associated
with a specific intrinsic noise level and different degrees of manipulability. Certain signals,
such as accounting information, may be more difficult to manipulate (due to regulated
reporting standards and auditing requirements) but contain a higher level of intrinsic noise
(for example, accounting reports tend to be infrequent and backward-looking). In contrast,
signals constructed using alternative data have been shown to be more accurate predictors of
firm performance in the absence of manipulation. The challenge is that these signals could

also be more vulnerable to manipulation.

We consider an information seller designing a score by assigning weights to a variety of
signals. These weights influence both the score’s overall intrinsic noise level and manipulability.
As in the case of a one-dimensional signal, we can allow the seller to add additional noise to

the score by including an extra “signal” that is pure noise.

We assume that a firm has NV signals (or attributes), all of which are potentially informative
about the true value of g. In the absence of manipulation, the N attributes can be represented

as g + u;, where i € {1,2,..., N}. We assume that u = (uy,us,...,uy)’ ~ N(0,X,). Next,

for each attribute 4, the firm can increase its level by d; at a cost of 2%},63, where ¢; ~ N (i, 02)

represents the manipulability of attribute i. We assume that the ¢; across attributes are
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mutually independent and independent of all other random variables in the model.”

Given the normality structure, it is optimal for the information seller to use a linear
combination of the N attributes to predict §. They choose a vector w = (wy, ws, . .., wy)T"

such that w'l1 = 1 and thus the score is
N N N
grzzwi(§+ui+§i)=§+Zwiui+2wi<§i. (23)
i1 im1 im1

We still conjecture that there is a linear equilibrium price of the risky asset, i.e., there exists

ag, a, and ag such that

p=ag+ag,+ CL5§. (24)
The firm’s problem is
M
max E(p)— Y —62, 95
=%, E ) ; 20" (25)

and the optimal manipulation level for the ith attribute is
0F = w;a,q;, (26)

and thus the equilibrium score is
N N
gr =G+ > wu + a, Y wig (27)
i1 i1

Thus, we can decompose the noise in the score into two parts, the first due to intrinsic

noise, the second due to uncertainty about signal manipulability.

o2 (w) = w! X, w, (28)
N

02 (w) = Z wfagi. (29)
i=1

Before presenting the equilibrium solution, let us first consider a related problem where

the information seller tries to maximize the informativeness of the score conditional on a

"Again, the normality assumption for ¢; should be viewed as an approximation of ¢; = max(0, §); where
G ~ N (cji, ‘72,-)7 which ensures that g stays positive. Instead of independence, we can also allow for general
covariance structure between u and q.

24



fraction A of type-G investors buying the score. Let Wy,.x (A) be the optimal weights to this

most-informative score,

Winax (A) = arg max corr (g, j)

1
- arg m“i,n 02 + 0, (W) + 5402 02 (W),
@+l<1}9+%>Mb()\) M g M)
B A\ o2 02+p32%02 1+52;;S MO\
(30)

where M, (\) is the analog of M () from the baseline model (which is defined as the solution
to (17))

2

b\ 1
na§ + "9A73M” (\) = m“i/n 02 + 02 (w) + e 02 (W) .
Bt (Lt ) Mo (V) (i
B A\ o2 oz+pB%0g 1+/3£Zs My(N\)
(31)

To maximize the informativeness of the score, one needs to minimize the total variance

of all noises in the score. The optimal weights are not the ones that minimize the intrinsic

2

2 (w), the standard objective of a forecasting problem in the absence of manipulation

noise o
(minimizing the mean squared error). Nor do they minimize the amount of noise generated
by signal manipulation. Instead, it strikes a balance between the two considerations. Thus,
a signal that is highly informative in the absence of manipulation but shows significant
uncertainty in manipulability across firms may not receive a high weight in the score.
Importantly, the degree to which uncertainty about manipulability contributes to the total
noise, and thus its impact on wy,.y, is endogenous in this model. It depends on the price
sensitivity to the score, a,, which in turn depends on the investor composition, as well as
the distribution of signal precision and manipulability. For example, the share of type-G
investors in the market 6 and investors’ risk aversion coefficient A, which are neither related
to the statistical properties of the signals nor their manipulability, will both have important

effects on Wpax.

The score design problem is further complicated by the fact that the information seller’s
objective is not to maximize the informativeness of the score, but to maximize the profit. We

characterize the equilibrium as follows.

Theorem 2. In the model of score design, the information seller’s optimal choice of ®; and
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w* are characterized as follows:

1. If X <1 and M, (X) < ?\/ﬁ, then the information seller chooses W* satisfying

Var(g,) = 0. + oo (W*) + af’02 (W*) = no. + né’— f (32)

where ay is the equilibrium a, in the price equation and takes the same value as a) in
Theorem 1 (as defined by (A.93) in the appendiz), and the price ®j is set such that a

fraction of \* = X investors choose to buy the score.

2. If x> 1 and M, (1) < 22y/n, then the information seller chooses w* satisfying

Var(g,) = o, + oo (W*) + ai*?07 (W*) = no; + nHA—B asf (33)
where aX* is the equilibrium a, in the price equation, and is defined by (A.102) in the

appendiz, and the price @y is the highest price that all investors choose to buy the score
(A\*=1).

3. Otherwise, in equilibrium, the price @ is the highest price that a fraction of min(Ay, 1)

investors choose to buy the signal where A, satisfies

AB%o? 1 (34)
nA\f ( B +0ﬁ+5USMb(A))

Ay = argm}ex)\ln 1+

My(\) no?
The information seller chooses w* = wy (\p).

In the first unconstrained equilibrium in Theorem 2, the information seller attains the
highest possible payoff. Notice also that in both case 1 and 2, the optimal choice of scoring
weights w* differ from wy, (A\*), the weights that maximize the informativeness of the score.
Moreover, the optimal weight is not unique. This result is demonstrated in the following
corollary. Intuitively, the non-uniqueness of optimal weights is due to the fact that the
information seller is indifferent about the various ways to add additional noise to the score

that is the most informative about g.

Corollary 3. In the unconstrained equilibrium characterized by Theorem 2, the solution w*

satisfying (32) is generically not unique.

The information seller only chooses the weights to maximize the informativeness of the

score in the third equilibrium. This occurs when the level of intrinsic noise embedded in the
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signals is not too low. Again, the average degree of signal manipulability does not matter for

the design of the score.

3 A Model of Investment Mandate

In the previous section, we study the market for manipulable information when the information
is used by investors to forecast asset payoffs. The score provided by the information seller is
valuable only because it helps improve investors’ forecasts. In some cases, an investor may
care about the score itself, even if the score is noisy or biased (Baghai et al. (2023)). This
is often because the investor faces an investment mandate that specifically depends on the
score. For example, certain institutional investors are only allowed to invest in corporate
bonds that have an investment grade rating, while an ESG fund may be required to hold
a portfolio that exceeds a minimum ESG score. We refer to these investors as “mandate
investors.” In this section, we use a variation of the baseline model to demonstrate how the
presence of mandate investors can significantly change the incentives of the investors and the

information seller in a market with manipulable information.

We still consider two types of investors in the financial market, a fraction (1 — ) of
type-NN investors who have the same preference as those in our baseline model, and a fraction
0 of type-M investors, which stand for “mandate investors.” To comply with the investment

mandate, type-M investors must first acquire the score before constructing their portfolios.

As in the baseline model, both types of investors have initial wealth of W, and CARA
utility. The preferences of the type-N investors are identical to those in (2); in particular, they
only care about the payoff component . Mandate investors, on the other hand, care about
both Z and the level of the score g,.. For example, fund managers may face pressure from their
investors to incorporate ESG considerations into their investment processes. This pressure
can come from individual investors, pension funds, endowments, and other institutional
investors who are interested in aligning their investments with their values and ethical beliefs.
To fulfill the investment mandate, we assume that if mandate investors do not buy the score
from the information seller, they can only invest in the risk-free bond. If they buy the score,

they can invest in both the stock and the risk-free bond, with time-0 utility
Uy =E [_G—A(¢(i+5gr)+l)|fM] , (35)

where ¢ is his holding of the stock, [ is the holding of the risk-free bond and Fj; is the

information set of mandate investors at time 0. We assume > 0 to highlight that mandate
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investors prefer to hold high-rated assets. It is worth emphasizing that the key distinction
between the preferences of the mandate investors in (35) and those of the type-G investors in
the baseline model (1) is that the former replaces the actual characteristic § with the score

g, in their utility. This distinction has significant implications for the model.

3.1 Model Solution

In this investment mandate model, we first consider the market equilibrium when o2 (the
variance of the intrinsic noise u) and the price of the score ® are given, and then we
consider the information seller’s optimal choice. This partial equilibrium consists of investors’
optimal portfolio holdings and the firm’s optimal manipulation strategy. Specifically, mandate
investors first decide whether to buy the score, and if they do, they choose the optimal
portfolio holding that maximizes their expected utility given by (35). Type-N investors will
not buy the score in equilibrium, and they choose the optimal portfolio holding to maximize
their utility given by (2). Anticipating the market equilibrium price p, the firm manager

selects its manipulation level § to maximize the same objective as (4).

Suppose in this partial equilibrium, a fraction A of mandate investors choose to buy the
score, and the time-0 price of the stock, p, is a linear combination of the equilibrium score g,
and the noisy supply §. Given the equilibrium stock price p, the optimal stock demand of
type-IN investors are the same as (8). The optimal stock demand of mandate investors who
buy the score is

E(Z + B9r|Fm) — D

M T AVar (350) (36)

which differs from the demand of type-G investors in (9) due to the fact that mandate
investors care only about the score g, (which is known at the time of the investment), not

the actual payoff component g or the uncertainty associated with it.

The market clear condition implies that

~

E(2|FNn) —D /\HE@ + B9:|-Fm) — D
AVar (Zﬂﬁ]\r AVar (Zi’|yM)

(1-190) = 3. (37)
As in the baseline model, the equilibrium stock price p still have a linear structure, as do
the firm manipulation level 5 and the equilibrium score g,. These results are summarized in

the proposition below.

Proposition 8. In the model of investment mandate, when the variance of intrinsic noise

2

o. and the price of the score ® are given, and a fraction A mandate investors choose to buy
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the score, then there exists an equilibrium, such that the firm’s manipulation level is

0 =aq, (38)
where
A0
AT = 3 4  \a 39
1—0+ )\95 (39)
the equilibrium stock price is
Ao?s
p=21 ATAT - = ) 40
R Y (40)
and the equilibrium score is
Gr=0+u+0. (41)

The firm’s manipulation incentive significantly differs between the baseline model and the
investment mandate model, with the key parameters being a, and @, in each respective model.
In the mandate model, @, is independent of various parameters describing the information
environment, such as o, 04, and in particular, o,. In the baseline model, an increase in o,
leads to a decrease in a,. The rationale here is that a higher o, tends to make the score
noisier in the baseline model, and thus investors rely less on the score for trading decisions.
Then the price becomes less sensitive to the score. In contrast, in the mandate model, even
though a higher o, would reduce the informativeness of the score, mandate investors only
care about the level of the score and not its informativeness. As a result, changes in o, do
not affect investors’ incentive to purchase the score or trade the stocks based on the score,

nor do they affect the firm’s manipulation incentive.

Next, we show the comparative statics results about the informativeness of the price and

the score.

Proposition 9. In the partial equilibrium characterized by Proposition 8, suppose A is fized,
when the strength of investment mandate 5 increases, or when the fraction of mandate

investors 0 increases,
1. the informativeness of the score g,., measured by corr(g.,g), decreases;
2. the correlation between equilibrium price and the score g, corr(p, g,), increases;

3. the correlation between equilibrium price and true g, corr(p,§), first increases and then
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decreases.

As [ increases, mandate investors have a stronger incentive to hold high-rated assets,
driving up the price of those assets, and at the same time making the price more correlated
with the score g,. However, the higher price for these high-rated assets can also incentivize
firms to manipulate their score to boost their prices even further. Then the net impact
of an increase in the strength of the investment mandate, measured by 3, on the price

informativeness can be positive or negative.

Using a similar argument, the overall impact of an increase in the fraction of mandate
investors, denoted by 6, on the price informativeness is also uncertain. On the one hand, the
direct effect of greater mandate investor participation makes asset prices and the score more
correlated. On the other hand, the indirect effect of higher 6 is that it encourages firms to
manipulate their signal more, which reduces the score’s accuracy. As a result, the impact
of 6 on the informativeness of the price is similar to that of the strength of the investment

mandate 3.

An interesting result here is that, when a stricter market-wide investment mandate is

implemented, i.e., when 3 is higher, the expected ¢ of the risky asset that mandate investors

hold, denoted by E[g|M] = ]?E((d;fjg)), does not necessarily increase.
M
Proposition 10. We have
E (¢%,§ o
E[g|M] = E(fo? = AoZs _g 2B - t9 (42)
M B—e) T 91 =644

Then E[g|M] increases in [ when [ < 4/%, and decreases in [ when [ >

Ac25(1—0+\0)
N(1-0)7 -

3.2 Information Seller’s Optimal Choice

Now we consider the information seller’s score design and pricing. Similar to the baseline
model, in this section, we assume that the manipulability features (g, 03) are given, and solve

for the information seller’s optimal choice, 62, and the price of the signal .

In equilibrium, the score does not provide any information about the monetary payoft z,

so type-NN investors will never purchase the score. Then the information seller’s problem is

max \® (No2), (43)

o2
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where ® (X;02) is the highest price the information seller can charge to have a fraction of \

mandate investors buy the score.

The score price must satisfy an indifferent condition, which means that mandate investors

are indifferent between purchasing the score and not. This implies

_e—A(Wo—<T>)E [e—A[¢*M (E—p+Bgr| Far)— 3 Api7 Var(z |971v1)]] — AW (44)

The following lemma provides a closed-form expression for the price .

Lemma 4. The price of the score is

~ 1 qu
AN z 2
& (\:0?) —Ml1+gg+log(1+02)1, (45)
where - B -
_ (1—-0)Bg+ Ao2s+ (1 —-0) =55 9+/\052 (46)
He (1—0+ \0)o, ’
and

\/(1—9)252 (0§+03+(1 9+/\9) B0 )+A20§0§

(1—0+ 0o, (47)

o, =

For the following analysis in this section, we make two additional assumptions. First, we
assume that the information seller can only choose noise level within some range, o, € [, 7],
where o < oo. This is because in the above maximization problem (43), the information
seller can always choose o2 which is infinitely high, to obtain an infinite payoff. This result is
mechanical because we didn’t impose any restrictions on mandate investors’ short position.
In practice, the information seller will not design an infinitely noisy score due to other
independent concerns. Second, we focus on the case when ¢ is large enough. This is consistent
with our assumption ¢ » 02 which guarantees that ¢ is mostly positive. Under these two

assumptions, we obtain the following result.

Proposition 11. If the information seller can choose any o, € |a, 7], there exists a threshold

Gm, such that if ¢ > G, the solution to the information seller’s problem (43), 6, is 0, = 0.

Although the information seller has limited incentive to add noise in this case, the
informativeness of the equilibrium can still be affected by the firm’s manipulation behavior,

as shown in Proposition 9 and Proposition 10.
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3.3 Score Design

In this part, we consider the information seller’s score design problem in the investment
mandate model. Similarly to our formulation in Section 2.3, we consider an information seller

who designs a score by adjusting the weights to a variety of signals.

For simplicity in exposition, we borrow the notation used in Section 2.3, and present only

the final optimization problem of the information seller here.

In this model, the information seller’s problem is

2

ALK
max -_—
Awl=T,w;=0 24 | 1 + o2

z

+ log (1 + 03) , (48)

such that
L = (1—-0)Bg+ Ao2s+ (1—0) %5221{11%@ (19)
: (1— 0+ \0)o,
and
¢Q_W%%ﬁ+nym+@ggg%%ﬂm)+mﬁﬁ

(1—0+ \)o,

The definitions of o}, (w) and o] (w) are also the same as in Section 2.3. Let (Xv?z)
denote the solution to the above problem. To establish a benchmark, let’s introduce the

weight Wy« that maximizes the informativeness of the score, i.e.,
Wax = arg max corr (9r,0), (51)

which is equivalent to minimizing the o, in the above problem:

A0
Wiax = arg min o, = arg min 02 + 02 (w) + (1_9%> 5202 (W) . (52)

Since W and W, solve two different problems, it’s clear that they are generically different.

Besides, we also find a score inflation result in the mandate investment model.

Proposition 12. (Score Inflation) If 6 < %, there exists Gy, such that if q@; > G, for all i,
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A. Average manipulability B. Investor risk aversion
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Figure 7: Optimal score design in the mandate model. This figure plots the optimal
weight @ and most-informative weight ,,q, for the first signal in a two-signal example.
the solution to the information seller’s problem, \ and w, satisfy A=1 and

ow;
0gi

>0

for all 1.

Proposition 12 implies that, in the mandate model, the information seller indeed has an
incentive to overweight signals that are on average easier to manipulate. This is in contrast to
the baseline model, where the average manipulability does not play a role in the information

seller’s optimization problem.

To illustrate the effect of mandate investors on the score design, we consider a numerical
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example with two signals. In this case, it is sufficient to study the weight for the first signal,
wy. The parameter values for the attributes Z and g are 0, = 0.2, § = 2 and 0, = 0.3 (&
is irrelevant for the score design); for the security supply, we have § = 1 and o4 = 1; the
fraction of mandate investors is 8 = 0.5, all investors have risk aversion coefficient A = 1, and
mandate investors’ preference for the score is § = 2. For the two signals, we assume ¢, = 3,
ou, = 0.1, 04 =02, and ¢ = 7, 0y, = 0.3, 04, = 0.3. It implies that the second signal is
intrinsically more noisy (o,, < 0,,), on average easier to manipulate (¢; < g2), but also has

higher uncertainty about its manipulability (o, < g,).

In Figure 7, we compare @y, which is profit-maximizing, against W,y 1, which is the most
informative weight, while changing signal manipulability (Panel A), investor risk aversion
(Panels B), investor composition (Panel C), and mandate strictness (Panel D). For the whole
parameter space in this figure, we always have A =1 Inall cases, the profit-maximizing weight
wy is lower than W,y 1, meaning that the weight has been shifted towards the second signal,
which is on average more manipulable. It is easy to see from (52) that the most informative
weights (blue dotted lines) are unaffected by changes in the average signal manipulability ¢;
or risk aversion coefficient A. Not surprisingly, @, increases as the manipulability of the first

signal improves.

Next, as we increase the share of mandate investors, both W,y 1 and w; decrease. The
reason that @,y 1 decreases is that an increase in 6 raises firm’s incentive to manipulate, which
makes the noise due to uncertainty about manipulability more important. To get the most
informative score, one need to shift more weight towards the second signal, which, although
intrinsically more noisy than the first signal, does not have as big a gap in the uncertainty
about manipulability. Increasing 3, which proxies for the strength of the investment mandate,
has a similar effect on @Wpax1. The fact that @, declines even faster with 6 is due to the

stronger incentive for the information seller to inflate the score.

In contrast, with higher 3, w; becomes higher. This is because higher uncertainty about
the score will reduce the mandate investors’ willingness to pay for it, and this effect is stronger
with larger 5. To offset this effect, the information seller shifts more weight to the first signal,

which is both less noisy and has lower uncertainty about manipulability.

Taken together, the set of comparative statics in the two-signal example highlights the
distinct effects that mandate investors have on the optimal score design. It is clear that the
presence of such investors can significantly distort the incentives of the information seller and

prevent them from producing the most informative scores.
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4 Competing Information Sellers

In this section, we consider an extension in which N information sellers design and sell

conditionally independent signals to investors. Suppose each seller sells a score
gy =g+ ui+96, (53)

where ¢ is the manipulation level chosen by the firm, which is the same for all scores, and w; is
the noise added by the info seller 7, and the noise is independent across all information sellers.
At the beginning, each information seller 7 chooses price ®; and the standard deviation of the
noise u;, 0; € [g,0), simultaneously. Then the firm chooses the manipulation level ¢, and
investors decide which scores to buy. The rest of the timeline is the same as in Figure 1. Let

A; be the fraction of type-G investors who buy the score from information seller 7.

We focus on symmetric equilibria, in which all information sellers choose the same level

of noise 0; = 0, and the same price ®; = .

Proposition 13. When N is sufficiently high, there exists an equilibrium, such that all

information sellers choose o; = o, and a strictly positive price ®; = ®* > 0.

To gain intuitions about the above results, note that in this equilibrium, since all investors

buy all scores, the sufficient statistics of the N scores is
1 &
GT =7+ — u; + 0.
i+ 2
Then the equilibrium price equation must have the following functional form:

p = ag + a,.G, + ass
1Y a
~ S ~
= Qg + A g+Ni_El'LLZ'+5+aTS s

where ag, a, and a, are constant. Then the optimal level of manipulation is

0" = a,q.
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For any investor, the total cost he would like to pay for m scores, P (m), is given by
1 - .
P(m)=—1n < \/:ar(x :F 59!17) 7 )
2A " \ Var (Z + Bglp, {g:};21)

~ 5 In (Var(@ + Agip) — 5 n (Va2 + 3alp. {01),))-

So we can consider the following objective function of an type-G' who buys m scores

1 i) m *
—5 o In (Var(# + 5glp. {41 }",)) —ma".

Let

V(m)= —iqln (Var(i: + B3lp, {972”}111» )

Then the marginal price that the investor would like to pay for the m-th score is
Vim)—Vm-1).
Lemma 5. There exists N, such that when N > N,

V(N)-V(N-1)= ie{IQ%l.I”lN} (V(@i)=V(@i-1)).
The price ®* is given by
®* =V (N)-V(N-1)

in equilibrium. This is the marginal price that any investor would like to pay for the N-th

score. * is a positive number, and converges to zero when N converges to infinity.

There are two effects of competition among information sellers. On the one hand, when
there are more information sellers, the aggregate score GG, becomes more precious if Var(d) is
unchanged, which tends to improve the informativeness of the price. On the other hand, the
presence of more information sellers also incentivizes the firm to manipulate the score more

intensively, as shown by the following lemma.

Lemma 6. When N is sufficiently high, if N increases, the firm’s manipulation intensity,

2.2

measured by the variance Var(6) = aZo;, increases.

However, the following proposition shows that the additional noise in the price from more
manipulation is dominated by the reduced noise in G,, so competition of information sellers

will improve the informativeness of the price.
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Proposition 14. When N is sufficiently high, if N increases, the informativeness of the

price, measured by the correlation corr(p, §), increases.

5 Conclusion

We study how investors, firms, and information sellers interact in a market with manipulable
information. Our model builds on the framework of Admati and Pfleiderer (1986) and
introduces two new features: information manipulability and investor heterogeneity. In
the baseline model where investors care about actual characteristics, the average degree of
signal manipulability has no effect on the equilibrium, whereas the uncertainty about signal
manipulability plays a key role. Its contribution depends on firms’ incentive to manipulate
the signals that are used to generate the score, which in turn depends on the equilibrium
price sensitivity to the score. The optimal design of the score in this setting weights the
precision of different signals against the endogenous uncertainty from manipulation. The
introduction of mandate investors, who care about the scores on the characteristics and not
the characteristics themselves, generates a new incentive for information sellers to inflate the
scores. Pushing too strongly on the mandate could lead to reduction in the informativeness
of the score and the equilibrium price, and could even result in mandate investors holding

less of the desired stocks.
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Appendix

A A microfoundation of mandate investors’ preference

In this section, we present a simple delegation framework that rationalizes the utility function of
mandate investors. Consider a delegated investment model with one principal and one agent. There
are one risk free asset and N risky assets with two attributes Z; and g;, where i € {1,2...N}. The
principal and the agent have different preferences over Z; and g;, both are unobservable to all players,
and all of x; and g; follow normal distributions and are mutually independent.

Specifically, if the agent purchases ¢; units of the risky asset 7, then the agent’s total utility is

N N4
EDNACHESAEDY §¢?Val" (@) , (A1)
i=1 i=1
and the principal’s utility is
N
up = Y i [E (& + kifi) — Z — ¢2Var (Z; + kigi) , (A.2)
i i=1

where p; is the equilibrium price of risky asset i and k; are constant numbers.® In the ESG investing
framework, the principal is the fund investor who cares about both the monetary return &; and
the greenness of the holding §;, while the agent, who is the fund manager, only cares about the
monetary return ;. There are N independent public scores g, ; = g; + €;, which are informative
about the true greenness g;. To make the agent’s holding aligned with the principal’s preference, the
principal imposes a “greenness requirement” on the portfolio, which requires the average greenness
of the portfolio to satisfy the following constraint,

N
Z ¢ig7“,i < g (A3)
=1

Let 5 be the Lagrange multiplier of the greenness constraint. Then the agent’s optimization
problem is

N g N
mzix Z ¢i [E ; 5 @7 Var (%;) + 3 <; Pigr,i — 9)
S A
= Z ¢ [E (& + Bgri) —pil = ). 5@2\/&1" (Z:) — BY- (A4)
i=1 i=1
The first-order condition on any ¢; is
E(Zi + Bgr,i) — pi — A¢;Var (2;) = 0, (A.5)

and the Lagrange multiplier 3 is a function of the greenness threshold g.

Let the solution of the above problem be ¢; (5). Then the principal effectively chooses the

8The mean-variance utility can be rationalized in the CARA framework.
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“mandate level” 8 to solve the following problem,

|

N N
max D1 (B)[E (& + kigi) — pi] — Y, 567 (8) Var (& + kigis) - (A.6)
i—1 i=1

As long as the greenness constraint (A.3) is binding, the principal’s choice 5 will be nonzero. In
this case, the agent’s utility is equivalent to

N N A
(e ; ¢i [E(Zi + Bgra) — pi] — ; §¢§Var (%), (A7)

which is also equivalent to the CARA preference in our mandate investment model with only one
risky asset.

B Proofs

B.1 Proof of Proposition 1

A fraction of (1 — @) investors are type-NN investors who only care about #, and a fraction of
investors are type-G investors who care about  + 8§. Among the type-G investors, a fraction
of X investors choose to buy the score, and the rest (1 — \) investors do not buy the score. The
information seller chooses an intrinsic noise level o2 € [02, ). Let’s assume that in equilibrium, the
stock price has the following linear structure

p=ag+ argr + ass (A.8)

where ag,a, and as are constant numbers. We know that in equilibrium, we have

gr =g +u-+9d. (A.9)
Firm’s optimization problem is
max F (p) — i(;? =ap+ar(g+9)+ass— i(52. (A.10)
5 2q 2q
Then the optimal manipulation level is
& = apq. (A.11)
So the equilibrium score is
gr =g+ u+arq, (A.12)
and the equilibrium price is
p=ag+ar(§+u+arq)+ ass. (A.13)
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It’s easy to show that

E (% + Bg|71) =z + BE (3l9r)
Bo?
02+ 02 +alo?
Var (Z + 83|71) = o7 + 5*Var (glgr)
— 02 + f20? (1 ‘i§> (A.15)
T g ) .

T2 2 2.2
04+ 0y +azog

=I+fPg+ (9r — Gr) (A.14)

E(z + Bg|Fy) =z + BE (g|p)

2 _
g —_
—Z+ PG+ b7 ; (p p), (A.16)
02 + 02 + a202 + (g—) g2 \ O

Var (Z + 8§|.-%u) = o2 + *Var (j|p)

2
o
=02+ 5203 1-— g 5 . (A.17)
o2+ 02 +ao2 + (g—j) o2
The market clear condition is
_ _ ,6’(73 _ T+ ﬂ— + ﬂgg p—pP\ _
F—p T+ B9+ Grroritarer (9r —9r) =P I ioitazori (=)o \ar ) 7P
- 2 252 _ a o2
A (Ux + 5 Ug (1 0§+Uﬁia$ag)) A <O’% + 5205 <]. — UngaﬁJraiang(zs)ZUE))
(A.18)
Together with
D = ag + argr + a8, (Alg)
we can obtain the equilibrium ag, a, and as;. To see how this works, note that
a5 0,1) (A.20)
T = € (0, .
! o2+ 02 +alo?
and
o2
ry = g € (0,1) (A.21)

2
2 2 252 Qs 2
0g+0u+araq+<ar) o

represent the explanatory power of g, and p, respectively. I't clear that we must have r; > ro. Then
the market clear condition becomes

o+ g+ (B2) -p|
= AS.

T—p T+ Bg+ pri(gr —gr) —
1-6 +60 1A
( ) U%—i—ﬁqu (1—r9)

p
1—A
o2 o2+ (%02 (1—r) + )

(A.22)
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So

2 o2 +ﬁ20'3(1—’l“1) o2 +520§(1 — 7y

N o — Bra _1)d
PN,

o2+ 5203 (1—mry) o2+ ,8203 (1—r9)

ABry

Bra _1)d
(19)Uip+9[ ABridgr —dp) |y _y (5 1) dr )]Adg

= 243

A

002 o2+ %02 (1 —ry) 02+ [%02(1—11)

<:>(1H+(1A)<1[Z;2)+ A )dp

The pricing equation implies

dp = a,dg, + asds,

_ dgr — 2 d3
0923+,820§(17r1) g g

(A.23)
0
Br
1—9+(1—A)(1—af)+ A 1 ABry
002 o2+ 202 (1 —ry) o2+ P02(1—r1) apoZ+ f202(1—r1)
(:)1 — Ga N (1 —=X) (ar — Bra) Aa, _ ABr1
0o " 02+ pB%2(1—ry) o2+ B20i(1—r1) oi+B%02(1—r)
1—9+ (1—)\) n A a — (1—)057“2 )\57“1
002 02+ B%02(1—ry) o2+ B%2(1—r1)) " 02+p%02(1—r2) o2+ B202(1—r1)
and
2 32 2
as _ Aoy + 5oy (1—m) (A.24)
ar 0 ABry
AQ(%jLBz)%_W 0 A.25
Note that
B0
- A.26
02 + 3202’ ( )

then (?7) becomes

(1—9+ (1—)\) n A )CL _ (1—)057“2 )\57“1
0o 02+ p%02(1—ry) o2+ B2%02(1—r1)) " 02+pB%2(1—ry) 02+ B202(1—r1)
(A.27)
1-0 1—A A 1—A A
S Gk B g —p|U=Nre A (A.28)
Oof 0 L gy £ _popy E gy, £ —p2
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and

B2 2 1
as A o =B Ag an—n
ay 09 NBry 0" 9 A
We can write r; as a function of %:
82 B
n n

Then

The market clear condition implies that

1-0 , (1-)) A la=nr

(A.29)

(A.30)

(A.31)

1-0 , (1=X)g@—nrap+nry) Ag(l—nr+nrm) (1—X)ry Ay
= 002 o 1 — iy + 1= nr ar = f 32 9 32 5
z o Bt A
2 2
1-0 5, n (1_)\)%7"2 )\%7“1 (I =X ATy
+ o+ - = +
(:)<90 %" 2 1—nry 1—nr )" P %2_527«2 B2 g2
2 2
1—002+£+(1—A)%+ At DAL U P )
b2 TP T I Sl R} [ R S
1-0 2+n+n2 (1-— n 1—)\)+ A
— 0;+ = + = ar = —
go2 9 2 52 Ti—n - —n "B +—n %—n
|42+ 2 ]
—a, = 2
§J§a§+5@+g§( + )
n
= : 1 2
— n n
(90203+@) =, - T @
FgTM Fn
g
—=a, =
BAU as
2~ (o2 + %) neg ) (A e <”>>
g g (o} A(" ags
B z p*) BAsg \ EXEH (E)
1
—=a, =
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Here we used the following result

(1—=2Xx) A (1=2Xx) A
T_,t1_,~ N PR B S
T2 T1 _neﬁAag % + <%:> 0_7::2] 5140'3 ar

Then we have

1 o2+02+ao? 2 o2
— _ _9 u2 Tq:1+%+a72”g (A32)
r1 o5 o5 oy
2
A 2 1 02
iy e B — 4 (A.33)
A (g ) () () ]
A pol T T 9s [ as
B oz o5+p%0; a 17[329 (E)
The LHS is increasing in —Z—j while the RHS is decreasing in —Z—i, S0 Z—f is uniquely pinned down
by the above condition. We can also solve ag by:
- P p—p
P 74594 Bri (o, — 3) — w489+ pra (52) -p|
) it S DL Rt S U 0t SR\ e — A5 (A.34)
o2 o3+ B205 (1 —11) 02 + B2o5 (1 —12)
Note that
7 g p=p
T — T+ Bg + - — Gr) — $+59+57“2(7r>_]9

o2 o2+ 6203 (1—m) o2+ 6203 (1—79)

<=>(1—9)j_5+9[x THPIP Ly :E+6§—13T)]:A8
2

2 02 + 207 (1—11) o2+ 202 (1 -
1-6 T T+/g
<1—9 n A n 1—A )p: (T)o%+>\9'%+i3€a§(%—m)+
T\ 002 T2 B02(1 1) o2+ FPoZ(1— 1) (1= N) prpgoastiory — A5

45



or

Bg B3 S

___ Aamedn H N iy — 48

p=1T+ 5 X — . (A.35)
002 + O’%+,320'§(177‘1) + 0'9284‘1’520'3(177‘2)

Since p = ag + a,gr + ass§ = ag + a, (g + a,q) + asS, we have

i (= iy — AS
A N & — (ar (3 + ar) + as5). (A.36)
oz o2 +p%02(1-r1) 02+p202(1-72)

+(1-2X)

ag =

B.2 Proof of Corollary 1

First, from Proposition 1, it’s clear that ¢ has no impact on the informativeness of the equilibrium,
so when ¢ increases, both a, and Var (6*) will be unchanged. To consider the effect of 03, note that

the equilibrium (—Z—j) is solved by

2
A as o2 1 03
n — neﬁAOQ; =1+ ? + \ ,BAJE o ﬁ (A37)
9" I n_1(1-0, 0\ (as L@T) 9
prale Ve ) \ar) | TEeE (u)
Then when o, increases, it’s clear that <—Z—j) increases. And a, is solved by
1
ay = TETRE (A.38)
w1 (1m0 o\ (a) (2T ()
B A\ o2 U§+BQU§ ar - BAc2 (‘Ls)
no ar
So when <—Z—j> increases, a, decreases. Besides, the condition A.37 can be rewritten as
A a o2 alo?
n —no s— =1+ =+ 1. (A.39)
BAcg a, oy oy
Then when <—Z—j> increases, it’s clear that a?ﬁg increases.
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B.3 Proof of Corollary 2

First, it’s clear that ¢ has no impact on the correlations, as it has no impact on the informativeness
of the price and the score. Next let’s consider the effect of o4,. The equilibrium condition is

2

(A.40)

|
—_
+
<
+
bl

né ar

2 2 BAG2 [ 4
pdog ar % n_1(1-0 4 0 _)(as M
B A\ o2 J%-l—BQUZ ar l_BAog (‘L&)

r

When o, increases, since ( ' ) is an increasing function of (—Z—S), it’s clear that (—Z—S>
™

will increase. a, is solved by

1
Ay = N BAUE (%) 9 (A41)
n_ 1 (1;29 + %) <@) #
B A\ o2 02+p202 ar l_ﬁﬁgs (%)
then a, will decrease. The equilibrium score is
gr =g +u+arg, (A.42)

the correlation

_ Cov? (gr, §)
corr (gr, §) = \/Var (o) Var (7) (A.43)

% (A.44)
B (03 + 02+ a%ag) 03' ’

We have already shown in Corollary 1 that when o, increases, Var (6*) = a2o

implies that corr (g,, §) will decrease. The equilibrium price can be written as

f] increases, which

p=ag+ a, <§+u+arq+zs§>. (A.45)
T

When o, increases, since both Var (6*) = agag and (—%) > 0 increase, we can conclude that
T

corr (p, g) decreases. The equilibrium price can also be written as

p=ao+ar (gr + ZS§> . (A.46)
T

The correlation

Cov? (g, gr + fe3
corr (gr,p) = ( T> = Var (g,) = Var (9r) . (AA47)

Var (gr) Var (gr + %§> Var (gr + gfig) Var (gr) + (%)2 03
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Note that Var (g,) = 03 + 02 + a202, and the equilibrium condition (A.40) implies that

T q?
Aa
03 + o2+ a%a? = nag — neﬁ—Aa—j,
then
Var (g 1
corr (gr,p) = ( T) D) = (a )2
A (&) o2 3
\ Var (g:) + (&) o3 1+ s 03
B 1 B 1
<Z7> 2 1 (737) 2
\ b ”03*”95%%05 i nog +n9ﬁ%as

(-&)

as

When o, increases, we’ve already shown that <—a—) increases, then ————
T A
+nb -5

—~
|
D‘Q
S e
~—|

thus corr (g,, p) decreases.

B.4 Proof of Lemma 1

Since p = ag + a, (g +u+arq+ g—j§>, the correlation corr (p, ) is

Cov? <§ +u+aq+ =S, g)
\ Var (§) Var (g +u+aq+ Z—jé)
Var (7)

\ Var(§+u+arq+3—j§>

Var (§)

\ Var<g+u+aTq+Z—j§>

corr (p, g) =

Let

2
s
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(A.49)

increases and

(A.50)

(A51)



When X increases, it’s clear that <—Z—j> will decrease.

The above condition also implies that

2

BAa2 (as)
2 2 2 2 n— s 2
0 r o
202<a> 1y O - . %4 (A.53)
Tg \lr 9g (% ngg—l—l) (2 —n) +n — 2% (%ﬁ) 9y
The definition of z (A.51) implies that
z—mn>0. (A.54)

Then for the equation (A.53),the LHS is increasing in z, the RHS is decreasing in z and increasing

in (—%) Then we conclude that when \ increases, z decreases. So when \ increases, corr (p, §)
e

increases.

B.5 Proof of Lemma 2

This proof replicates Admati and Pfleiderer (1987). Suppose investor i’s information set is .%;, then

investor i’s expected utility at time 0 is

U =E [76—A[¢i(i+ﬂg>+lil| %]

— o AE[6i(&+59)+1i| Fi]+ 5 A*¢F Var (&+53|.F:)
The budget balance condition is
Wo = ¢ip + i,

where p is the equilibrium price of the stock. So

U; = —e~AWoo—A[6:iB(a+B5—p|Fi)— 5 A} Var(i+63.7:)]

It’s clear that the demand curve is characterized by

© " AVar (& + Bg|.%)

Then investor ¢’s time 0 utility is

 (B(3+831F:)-p)°
U, = _e—AVVoe 2Var(2+891 ;)

By our normality assumption, Var (Z + $§|.%;) is a constant, so

E [Var (z + 8g|.%;)]| = Var (& + Bg|-%) -
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To calculate the value of the score, let’s consider the investor ¢’s ex ante utility. Investor i’s ex ante

utility is
_ (B(z+8317:)-p)?
e~ MWo | o 2var(@+83lF;)

By our normality assumption, F (Z + $g|-%#;) — p follows normal distribution. Let
pe = E[E(Z + B9|7:) — pl
and
02 = Var [E (% + 33|7:) — p].
By the moment-generating function of noncentral chi-squared distribution, we have

_ (B(:+831F;)—p)>
—e_AWOE e 2var(a+83lF;)

_ o2 E(2+B3|F;)—p 2
e 2Var(i’+/3§|9i) oz

W2 o— 1
Z\ 2vVar(z+B3|.%;)
)
Z

I e_AWOe 1+Var(i+5§‘3i)

2

1/2
1+
( Var ( m+5g|f >
Bz )

_ e*AWoe_%—Var(iwmgi)wg o2 + Var (% + B§|.%)
Var (Z + 5g|-%)
2

. —1/2
_ e*AWOB_%E[Var(a”c+l[;z§\9’,-)]+o§ U + E [Var (93 + ﬁg| )] /
Var ( + 8g|-%;)

By the law of total variance,

E [Var (& + 8§|%;)] + 02 = E[Var (2 + 8§|.%;)] + Var [E (Z + B§|.Z;) — p]
= Var (Z + g —p) .

Denote

(f%zVar(a%—i—ﬁg—p).
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_ e—AWOE 2Var(z+63|F;)

Then
[ (B(#+831F;)— )2]
1
2

i
2
AW, 2 o2

—1/2
- <Var :L“+Bg|f >

°

12
_ 1Kz 1
=— e_AWO\/Var (Z + Bg|lZ:) - (e 2 ) .
00

At time 0, the information set of score buyers is
F1=1{9rp} = {9:} (A.67)

and the information set of other type-G investors is
= {p}. (A.68)
Let the price of the score be ®, then the equilibrium condition is
e~ Ao, /Var (& + B Fv) = ®)\/Var (Z + 83|.Z1), (A.69)
which is
)

B.6 Proof of Lemma 3
From Lemma 2, the score price is
W (Ve (@ + B3| Fun)\ _ | [0+ B0y (1—r2)
Var (Z + B3| Fin) ) o2+ 202 (1—r1)
1—
=ln< ”r2>—1n<1+ ”)
1—nr

1—nr
r1ro Qg 202 9 Qg 2
— | 5] =h{1l+ny —
= —n \Qr

=1n<1—|—n1_nr1 0 ) o
g 71
0.\ o2
=In|1l+n (ar) 032
(n-mo2in+ 2 (2)") (-p0252)
2 2
=l ”Ang e 15 (~=)) )
02 nag ar
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where — 2= is solved in equilibrium by
s

2
A a o2 1 o2
b s Zu . ATl
nen BAoZ a, o2 * o2 ( )

n 1 (1-6 [
B—Z(Tg+m>(*

) A- 2452 (a)
-2 ()

In the above intermediate steps, we use the following two results from the proof of Proposition 1:

1 0 A as
—=n-n ==
1 ﬁAag Gy
and
1 1 r1—1T9 A ag
ro T 172 BAo2 ay

2 2 2
.. . o,+0;,—no
minimum value —% = 29

ar zy

as\ > o2

+( =) =,

ar) oy

It’s clear that when o, increases, <*Z—S> will increase. When 03
T

¢. From the expression 77, the score price is decreasing in —¢*
.

(A.72)

(A.73)

= 0, —¢* reaches to its
T

as

2 2
no, . . . . no .
when —%= < \/? and is increasing in —%¢ when —%¢ > 4/ —. Then if
ar o2 ar ar o2

2 2 2 2 2
o, + o, —no no ni\g [no
g u g g 2 2 _ g _ 2
—7 = — o0, <0, = GA 2 +(n—1) oy (A.74)
BA s s
2
nA@ [no
— 9 2
—o,<0,= +(n—-1)c A.75
. e . no?
when ag increases from zero to oo, —¢¢ will increase from a value lower thany/— to o0, as a result,

the score price will first increase and then decrease . If 02 > o2, when o

__as

decrease.

B.7 Proof of Theorem 1

The information seller’s problem is

1

2

; increases from zero to oo,

2
. . no . . .
o* will increase from a value above 4/ — to o, as a result, the score price will monotonically
T s

Var (% + B§|.Zv)

(gl,%f) oM\ - A In (

Var G + B3171) ) | (A.76)

From the proof of Lemma 3, the objective function is equivalent to

AB%o? 1

OAln | 1+
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n\f B A Bo?
(o +

2
’VZO'g

(A.77)

()



where g—s satisfies:
™

A ag 2 1 o2
n —nb — =1+ —= a4
2 2 BAG2 (ay 2
pAag ar % (e, o Y (w) (2 Tm(E)) | %
B A\ o2 02+p%02 ar BAc2 ﬂfs)
"o \ar
The unconstrained solution of
A N < as> Bo?
o A 3 ay nag
satisfies
1 as\ Po? as ) 2 03
=’ = (‘) no? < — oz
ar T g T S
which is
_%s\ _ 9%
( ar) Os vn.
Then
A as\ Bo? A o4 3 o2 A O
—+ |- = +2/n—=—-= =40 + 2 )
Ac? < ar> no? A 2 Vi osn o2 Ao Bag\/ﬁ
Then
AB?o? 1
OAIn | 1+ igs ; —
n Os as
(o + 0+ i ()
ApB20? 1
=0AIn |1+ fo X
n>\0 0502 + 20507
Aﬁgcr?
_ 0
=0AIn |1+ - X :2
Ao2 f
1
=0AIn {1+ gA_ A0\ o o
02 AB202 AB202 % ogr/n
=0AIn |1 1
=0\1n + 2 no2 19 NDX
A2O'g B202 BAosog
1
=0AIn |1+ 5
NoY) Y
(Aﬁascrg> + ABosog
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Admati and Pfleiderer (1986) show that there exists a unique solution to the following problem

1
kln(1+ —— A.
ml?x n( +k‘(k‘+2)>’ ( 83)
denote the solution as \g.? Then the information seller’s optimal choice \ is
- AAos
A= 090 02 + 3202
Let M (M) be the solution of
2
A o? 1 2
0——M(\) =1+ = 2. (A.84
n+n Aﬁ(fz ( ) +0.2 + ,BAOSM()\)> 0'3 ( 8 )

g n 1 (1-6 0 A+
B + (@ + 0%+520§> M(A) <1+ﬁAa

£M(N)
Lemma 7. M (\) is a decreasing function of A , and limy_,o M (A) = .

Proof. First, it’s clear that the RHS of (A.84) must be greater than 1. When A\ — 0, we must have

ni\ ()'2 0'2 ﬂ20'2
>14+=-n=14+—-—-"2_>0. )
/l\m% 2]\4 A =1 3 n=1 3 2 3 3 >0 (A.85)

which implies that

lim M () = . (A.86)

The LHS is an increasing function of both M and A, the RHS is a decreasing function of both
M and A. We have

LHS (M,\) = RHS (M, \). (A.87)
Then
OoLHS OoLHS ORHS ORHS
57MdM Td)\ BN dM + E5Y d\ (A.88)

which leads to
dM ORHS _ O0LHS

_ o\ o\ A 89
D T ZgT s 5
Since 61;23[;5 <0, agHS <0, ‘9%15\15 > (0 and aLHS > (0, we must have & d>\ < 0. O

9\ ~ 0.651461.
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As we discussed earlier, the information seller’s problem is

AB?%03 1
max 6AIn | 1+ 27 5 = , (A.90)
B e ()
where = satisfies
2
A 2 1 o2
n — nb A2%=1+%+ Tae? — (A.91)
pAag ay g n_ 1 (120, 0 a ) [ A (&) %9
B8 A\ o2 o2+p%02 ar 1_BA0' (‘Ls)
no ar
When A < 1 and M (/_\) 09 f there must exist o, > o such that
2
2 2
99 /= _ o 1 9q
n+n0Aﬁ2 Vn = 1+U—§+ 0—3 (A.92)

BAJ og
g n 1 o EXE o'sf
B+Z(U2 +g‘2+ﬂ202> g\/7< BAU Ug\/—>
nd o

Then in this case, ), together with o2 satisfying the above condition, must be the solution of the
information seller’s optimization problem, as this is the highest possible utility for the information
seller. It’s easy to see that

1

BAU o
3+ (5 + opley) v | Spr”
gl AN oz | oitpog) o 14225520

(A.93)

is the equilibrium a, in this equilibrium. Denote it as a, then the above equilibrium condition
becomes

2 2
g g, g
n + né =1+ % +a>-1. (A.94)
s g g

ABo2 o

When A > 1 and M (1) < Z—Z n, since M (-) is a decreasing function with M (0) = co, there
must exist

)\1 € [0, 1] (A.95)
such that

M (\) = %\/ﬁ. (A.96)

%)



First, for any A < A1, we must have

A 2 2 1 A 2 2 1
OAIn [ 1+ BA;"S ; N <OAIn |1+ BA;"S
n s as n o2
(o +ogg + 0k (-5)) <’3ﬁ + 057 + o (ﬁ))
(A.97)
For any A € [A1, 1], there must exist o, > ¢ such that
2
+ b Q\F—H + ! % (A.98)
non AB 2 At BAcZ % /n o2’ '
n + l (129 + 5 92 2> ﬂ\/ﬁ nb  os 9
B AN\ o2 o5+pB%05 ) 0s 1+B£;s %}\/ﬁ
We know in equilibrium if we can obtain ( “5> = Z—z\/ﬁ, the objective function becomes
1
OAln [ 1+ 5 , (A.99)
( DY, ) ) 9_y/nA0
ABosog ABosog

which is a unimodal function of A.'9 When X\ > 1, we must have that

1 1
OXIn | 1+ 5 <Oln |1+ 5 (A.100)

oY oY1\ N o/t
(Aﬁa'sgg) +2 ABosog (A,80'50'9> + ABosog

for any A € [0,1]. Then we conclude that in this case, the information seller chooses A = 1 and
chooses o, = ¢ such that

n + nb

AB 5 " (A.101)

It’s clear that

[u—

— (A.102)
51 alor tommer) vV

is the equilibrium a, in this equilibrium. Denote this as a**. Then the above condition becomes

TLO' —I—nQA—B;\/H—U +0' +a**22 (A103)

IfA<1land M (5\) > Z—Z\/ﬁ, we want to show that the information seller must choose o, = o.
Suppose the information seller chooses A2. Let A; be the solution of M (A1) = Z—Z\/ﬁ If Ao > Aq,

10We can show that function k ln (1 —+ m) is a unimodal function.
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we know that

M (\g) < M (\) = ?\/ﬁ, (A.104)

and the information seller is able to find o2 such that in equilibrium (—Z—:) = g—z\/ﬁ However,

since in this case A < 1 and M (5\) > Z—f n, and since the objective function

1
OAln [ 1+ (A.105)

2
/10 A/nA\O
<Aﬁasag> + 21450509

is a unimodal function of A, we know that Ae is suboptimal, and is dominated by A;. So the

information seller must choose a Ay < A1. When Ay < Ay, we know that
M () =M (\) = 22 y/n. (A.106)
S

g

Since in equilibrium —%= > M (A\g) > 724/n, and we know that

AB?o? 1
oamn [ 14 22 % (A.107)
0 (B 10y + 25 (—a))
—&= Ao2 " no? ar
is decreasing in (—Z—f) = Z—‘:\/ﬁ, the information seller must choose o, = o which leads to

—2 = M (X).

If \>1and M (1) > Z—i n, it’s clear that no matter what A the information seller chooses, we
must have

MO > 22 /n. (A.108)
Os
Since
AB%o? 1
oAl | 14+ 220 (A.109)
nA (B g A Bof(_as
—Z—i Ao? no; ar
is decreasing in —Z—: > Z—Z\/ﬁ, we conclude that the information seller must choose ¢, = o, so
— =M.

B.8 Proof of Proposition 2

To show the results in this proposition, we just need to show that in the unconstrained equilibrium,
the optimal price ®*, the variance of the score Var (g, ), and the informativeness of both the score g,
and price p are independent of ¢ and 0. First, the equation (19) implies that Var (g,) is independent
of ¢ and o, in the unconstrained equilibrium. Note that if Var (g,) is independent of ¢ and oy, the
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informativeness of g,, which is represented by

2
ry = —9 (A.110)
Var (g,)

is also independent of ¢ and o,. Since in the unconstrained equilibrium,

as 0Oy

= —/n, (A.111)
Qp Os
then the informativeness of p, which is represented by

o2 o2

g g9
= - , (A.112)
Var (g,) + (1) o2 V(o) e

is also independent of ¢ and o,. Finally, the optimal score price ®* satisfies

N 1 Var (Z + 5g|p) 1 o2+ B2U§ (1—r9)
F= 1 -1 A1l
24 " <Var @+ Balgr)) 24 "\ o2+ 8202 (1—r1) )’ (4.113)

and it’s clear that ®* is also independent of ¢ and o, in the unconstrained equilibrium.

B.9 Proof of Proposition 3

From the proof of Theorem 1, in the unconstrained equilibrium, the information seller chooses o,
such that

2

+ né A %9 /n 1+Ug+ ! % (A.114)

n n —A\/Nn = -y - .
ABo2 o o2 o2

ﬂAo‘2 og
g g+l<179+ 0 )ag o AT R
2 2 242 2
g AN ety ) o 1+ 2055 20

If o, > o, when o4 increases, it’s clear that the information seller can still make the above condition
hold by choosing a lower o,. And it’s clear that the price of the score is independent of ¢, in the
unconstrained equilibrium. When o, reaches the lowest level g, the information seller can not make
the above condition hold anymore if o, continues to increase. Based on our results in Theorem 1,
this is the case when A < 1 and M (5\) > Z—Z n, and this is the third case in Theorem 1. In this
case, the information seller will always choose 0, = ¢, and will adjust the price as a response to the
increase of oy.
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B.10 Proof of Proposition 4

In the unconstrained equilibrium, \* = %4 [o2 + ,6’203. It’s obvious that when A increases, \*

increases. a; in this equilibrium is

1

*

,BAo'g g

a, =
A+ Vn
n 1 1-6 [ g n o
B8 A\ o2 oz+pB%05 ) os 1+B,:Zs Zf\/ﬁ

1

- A [‘30’2 og
n + 1-60 + U] Ug\/ﬁ Z-‘r n95 Cf‘g\/ﬁ

B o2 02+B202 ) o BAc2 o,
’ ’ 9/ I+ == 2tvn

(A.115)

So when A increases, a¥ increases, and thusVar (0*) = a%ag also increases. The equilibrium condition
in this case is

QN

Ao o2 o
ApB sEVn=n+n =1+ "% +a
olo
g S

n + nf (A.116)

g

QN

&
Since a} is increasing in A, we can conclude that when A increases, o must decrease. The total
variance of g, is
2 2 2 2 2
Var (g,) = 05 + 0" + a;"0; = noy (1 + Ao) , (A.117)

which is independent of A. The correlation

Cov? (v, 9) Var (g)
) = s = A118
cort (gr.5) \/Val" (9r) Var (g) Var (gr) ( :
must also be independent of A. Since Var (g,) is independent of A, corr(g,,g) must also be
independent of A. The variance of the price is

2

o

Var (p) = a*? <J§ + 02 4 a;f202 + gn0§> = a¥? (naz (1+ Xo) + no';) . (A.119)
S

Since a; is increasing in A, Var (p) must also be increasing in A. The correlation

2 o2 .
.0 Cov <gr + Uénsﬂ) Var (5) \/ 03
corr (p,g) = - = : _ . .
Var <gr + ff%né) Var (§) Var (Qr + Zgn§> noz (1+ Ao) + no2

which is independent of A.
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B.11 Proof of Proposition 5

We consider the limiting case when  — o0, or equivalently, when % — (0. Based on Theorem 1,

A= 2000, o2 4 B202 — o, so limg_,q A > 1. Now we consider the value of limg_,o, M ()\). Note

that
2

0-2 moy=1+2 ! % (a121
e Aﬁag ( )_ +073+ n 1 (1-6 0 M () )‘+ﬁﬁ;§M()‘) Uig ( ' )
pta <¥ * ”%Jrﬁz”g) *) 1+%§§M(A)
Since o = 0, we have
2
- M) =1+ = % (A.122)
n+nl—-= = —. .
Aﬁgg n 1 (1-0 0 M () )‘+6233M(>‘) 0-3
pta (@ + Tgw?g) (A) 1+ 22T 0
Let d = %, then when 8 — o0, d — 0 and
By o2 93 2
Then (A.122) becomes
2 2
Oz 2 2 Oz 52 2 A
- —5d +o(d) + (1—03(1 +o(d )>9AO—ZM(>‘)d:
g g 7
2
2
O'S 0'
d—‘;—%d3+%(%’+%d2+o(d2))M()\) <M+A’;3W> g
9 z 9 d+225 M(N)
& 2 2 a; 2 2 A
g g g
2
Aag 2°
d—%d3+%(1;f+%d2+o(d2))M(,\) MESE MO ]9
% 9%z 9 d+ 2% M (N

It’s clear that limg_,g M (A) — oo for any A > 0.Otherwise, when d — 0, the LHS converges to 0,
while the RHS converges to a positive number or co. Besides, we must also have limg_,qgdM (\) — 0
for any A > 0. Otherwise, when d — 0, the LHS converges to a positive number, while the RHS
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converges to 0. Then the above condition can be simplified as

2
A 1 ol
T A </£L;M<A><1+o<d>>+o<d>) 7
which is
1 1\ o2
[(1+0(d) M N = Y (11,9) —2 +0(d)
eAagd A o2 U!]
Then

o2 g 1/3 1\ /3
. _ . q T
i%M(A)_Ez%A(e (1—9)2> <Ad> *

(A.124)

(A.125)

(A.126)

for any A > 0. Since limg_,g M (1) — o0, based on [Theorem 1], we know that in equilibrium, the

information seller must choose

o, =0 =0.
And
2 2
Ae = max Aln 1+AﬁA;S . Al g
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When d = % — 0, the above objective function becomes

An (14 A% 1 )
n
1 d) N0 (_d A do?
(1+o(d)) ( 15+ 02 + = (d))agM()‘))
Ao 1
=AIn| 1+
(1+0(d)) 20 1 + 0P d?+
A(Fakn) Goeen ’
do? o2 gt \1/3 1/3
(T o(d)o? [A<oq<1e)2) () " +o(1)
Ac? 1
=Aln |1+ s
(1+0(d) X PR i + 025 d%+
A(%q (13)2) (% )1/3+o(d1/3) g
d2/3 52 o2 o 1/3 1/3
(T+o(d)o2 [A (7‘1(1_9)2> (1) +0(d'?)
Ac? 1
=Aln |1+ s _
(I+o0(d) A0 [ g2342 02 o 1/3 13
% A<7q(179)2) (3) | + o(d*?)
1 Ac?
=AIn| 1+ s
\2/3 2/8 52 o2 i 1/3
< : o2 |:A (# (1_9‘59)2> :| + 0(d2/3) >

Let

= e 2 1/3 .
9( - [A (#5%>) ] +o(d?3) )

When 8 — o0, d — 0 and thus K — 0. And it’s easy to show that the function

K
)\ln <1+ )\2/3>

(A.129)

(A.130)

is an increasing function of A on A € [0, 1] if K is sufficiently large. Then we conclude that when S

is sufficiently large (or d is sufficiently small), A, = 1.

s i on ELO(A=N6F+2¢7))3]
Now let’s turn to the analysis on E[0(ANoF-roT)]
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E[(0 (1= A) oy + A¢7)) 3]
E[0((1 =) ¢fr + Ao7)]
_Cov (1 =N ¢y + 207, 9) + E[(1 = A) ¢y + AT E (9)
E[(1=A) o + A7l

484 Fu]-p E[Z+B3|F1]-p -~
_COV ((1 - A) A\[/ar(xi-,@gU'—U) + )\AVar(xiBa]:[) g>

E[z+59Fu]—p [2+69|F1]—p
E [(1 B )\) AVar(xg-i—Bg\]-—U) + AAV&I‘(IZ‘B;'.F])]

(1—>\)COV(58+3§+ﬂ7”2(i;p)-ao—argr—ass,g) " ACov(Z+BG+Br1(gr—Fr) —a0—argr—ass,j)
. Var(Z+33|Fu) Var(Z+3g|Fr) +g
- - 1-)
[E [l‘ + ﬁg] o p] [Var(r+ﬂg|.7:u) + Var(r+59|]—'1)]
2 2
Var(z+5g\fu (ﬁT‘Q )0‘9 + Var(i:-i—ﬂf]\]:[ (,37“1 o ar) Tg +3
= 1-X A
(‘T + 89 —ao—ar (g + arq) B ) |:Var(x+ﬁg|~7:U) + Var(i+,3§|]:])]
1-) A
B o2 TTHB22 (1) "2 T sZF A1) ol 43
T c_ o a D — 0.5 1-) A o
T+ B9 — a0 —ar (g +arq) —ass o2+p%02(1-r2) + o2+p%02(1-r1)
1-0 A 1-) 1-X A
o 002 + 02+p202(1—r1) + o2+p%02(1-r2) o2+p%02(1— r2) ! 2 + o2+p%02(1— )L _
=0y “10 ., A= B ) ) —ar |ty
Bggoz + As 713252 o
0c2 oz +p%05(1-r2) oz +p%0;(1-r1)
1-0 | A + 1-) (A-NpBry ABry (A-N)pBry ABry
9 002 o2+p%02(1-r1) o2+p%02(1—r2) o2+p%02(1—72) o2+p%02(1—r1) 9 02+3%02(1—r2) o2+6%02(1-r1)
=0 — 0
g —-1-6 = 1-) A g —~1—6 =
ﬁgw + A5 o2+p202(1—72) + 02+p207(1-r1) ’BQW + A5
(1—X)Brs + A\Bri 1-6 + A + 1—)\
_ 902+B%02(1—r2) ' 02+p%02(1—r1) | 602 " 0Z+B202(1-r1) ' 02+pB%02(1-12) 1 _
e 838 + Az LA A B
9072 AFBo3(1=r2) | FFFo3(I=r)
(1=X)rs + Arq 1-60
2 02+6202(1 r2) 02+6202(1 r1) 002 _
=0yf - +9
g Bgi=l + As =2 + A
02 02+p202(1-r2) ' 02+p2%0Z(1-71)
1—-9 (1-X)rs + A7y
Pz TP | FrFe) |, -
= X ‘ t9

35 A
5602 + A 02+p202(1-72) + o2+p202(1-r1)

In the above derivation, we use the following two results:
(A-X)Bro + ABr1

o2+p%02(1-r2) o2+p%02(1-r1)"

(1=2) A
L. (00’2 + 02+B202(1-r2) + U%Jrﬁzag(lfm)) ar
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Bg _ B3 _As
)\ag+320§(17r1)+(1 /\)a%+520§(17r2) As

2. a9 =7+ —%% R o — (ar (g + arq) + as8) , then

90’% + G%#»BQU‘Z(I*TI) + J%+ﬁ205(17r2)

ﬂ?‘f‘ﬁg_aﬂ_ar(g"’_ar(j)_asg

83 83 .

_ Aammeti (N iy — AS
=Bg — -0 ) + 1—\

0c2 oz +p%02(1-r1) 02+p202(1-r2)

_(1-9 A 1-X Bg Bg 5
Py (W tommeray T ag+52a3(1_r2)) —Azrporamy — (1= A) rrgrezay t 48
= . ) n Y

02 o2+p%02(1-r1) 02+p4202(1—r2)
BQ% + As

= A I 1\
602 U oZ+B%02(1-r1) ' o02+B%02(1-72)

When £ is sufficiently large, the information seller chooses A* = 1, and

(1—)\)7"2

o2 B =4 T2 (1=r) T 0,%+,(32)<\7%1(1—r1) _ o o7 _
75179 e T n 3 t9=—7%"7.3 n lAETl + 4. (A.131)
9 Pasz i | oZ5Ra2(1=r) T o282 (=) 9 9oz T 345
In equilibrium, we have
1 o2 o2 A a A
— =1+ 2 ta2d=n-—nl——-2= O——M (). A.132
- +Ug+arag n nﬁAdgar n+n B o2 (N (A.132)
Note that we introduced d = %, and when d — 0, we have
1 A
— = 0——M (A
o n+n B o2 (N
1/3 )
2 A0 (o2 o 1\ .
=(1- 2242 a)) |1  — d* +0(d
2 4 1/3 1/3
1
SR ( ) 423 4 o(d)
og \ ¢ (1-9) A
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Then equation (A.131) becomes

o2 L

g 0o2 _

— 1= =71 +g

9 gz +dAZ

1/3

% 1 _W<Uq2 oz ) <1)1/3d2/3—|—0(d) +3

P Abo?s 2 _ p)2

91+ 4%55d o5 \ 0 (1-0) A

/3

o2 Abo?s N (o2 ot ! 1\ /3
=2 (1- eZ_ d> 1 1w <> d?B +o(d) | +
=912 q T d2/3 d2/3

g oz \ 0 (1-0) (A) +0( ) t9

E[(0((1=Nof +297))d]

E[0((1-N)of+AeT )| increases.

When S increases, d decreases, and thus

B.12 Proof of Proposition 6

For the first part, from Theorem 1, we know that in both the first and second case, all of corr (g, §),
corr (p, g) and E (g|G) are independent of o,. Then we just need to confirm that there exists a

constant kg, such that when o, < k2, the equilibrium must be in the first or second case in Theorem 1.
a'2+a'2fno'2

It’s clear that for any fixed A, M (X; 04) is increasing in o,. When oy = 0, M (A;0) = “L—F575—2 > 0.

ApB

Let ¢ = min {5\, 1}. If M (¢;0) < Z—Z\/ﬁ, then there exists a constant ko > 0, such that when oy < ko,
we must have M (c; 04) < Z—i n, and thus the equilibrium must be the first or the second case in
Theorem 1. If M (¢;0) > Z—Z\/ﬁ, then the equilibrium must be the third case in Theorem 1 for any
o4 = 0, in this case, let’s define ky = —1.

For the second part, let’s first show that when o, is sufficiently high, the equilibrium must be in
the third case, and the information seller chooses A. = 1. Note that for any A € (0,1], M (\;04)
satisfies

2

A o? 1 o2
nAnf o M=1+=5+ a2 —.
o 9y no 1 (1=0 M A M Og

B Ao ' a2 +52 g 1+’6239M

Rewriting, we have

2
A 02> n 1(1_9 0 ) A+ BA% 02
n+nd——M—-1—-——=| |5+~ + M =1
( Apo? o2 (ﬁ A\ o2 o2+ pP02 1+51235M o2

Apo? A M —1— 2 - 0. We also must have M (X;0q) = M (1;04),

because M (X;04) is a decreasing function of A. Be51des it’s clear that M (1;04) is an increasing
function of o,. Then there must exist a constant k;;, such that when o, > ki1, we have M (1;04) >
Z—Z\/ﬁ In this case, the equilibrium must be in the third case.

It’s clear that we must have n + né
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Lemma 8. There exists ki = ki1, such that when o, = ki, the equilibrium must be the third case
and the information seller always chooses \. = 1 where

AB?0? 1

S

Ae =arg max Aln | 1+

8 X0 po? :
Ac(0.1] nAd M(X;oq) + Ao? + no'gM ()‘aaq)

Proof. Note that M (X; 0,) satisfies

2
A o’ n 1 /1-06 0 /\—l—MM o2
b2 m—1-Z (2= M nf _ %
<n—|—n ABo? U§> <B+A< o2 +J§+ﬂ203> (1.,.:31:33]\4 03’

which is equivalent to

1+ o2 2 )
= n
M — o2 M4 n _ 1—A _ 1 1 I
nh 52— 1 (1-9 0 1 PAs 0 (1 (1-0 P 2 ;2
ABo B 2l t 021 5252 M nf Apog | 3 | 5z + o2+8252 g
2
1+§—2—n ) . -
Let f = nb gl ' = no 1 PR and (% ()\7 M) = 10 n ) — T ;AO’% .
ABoj ABog <% <%+72+%2 2)) 6<Z<?+a?+52d2>> T e
9z %z 99 z z g

Both f and r are positive constant. Then M (\; 0,) satisfies

(AM — f) (M +v)? = ro?

q7

which is equivalent to

(AM — f) (AM)? (1 n %)2 — rA202,

Note that for any o4, when X takes values in (0,1], AM can be arbitrarily close to f.

Lemma 9. For any K > 0, there exists k12 (K) > 0, such that if o4 > k12, M (X\;04) > K for all
A e (0,1].

Proof. First, we know (AM — f) (M +v)? = rog, when A = 1, v (1) = " and
W )

(M (1;04) — f) (M (1;0,) + v (1))* = rag. It’s clear that M (1;0,) is an increasing function of oy,

and for any K > 0, there exists k12 > 0, such that if oq > k12, M (1;04) > K. Since M (\;04) is

a decreasing function of A € (0,1], then we conclude that for any K > 0, there exists k12 (K) > 0,

such that if o4 > k12, M (X\;04) > K for all X € (0,1]. O
Let
ApB?0? 1
F (0, M) = Aln |14 25 5
nf At Aoz + g AM
1

=AIn |1+

n0 (B L 220 0
5202 (W + AT§> + Apo? AM
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Leta (A, M (V) = 42, (% + gigg) and z (\, M (\)) = g AM. Then F (\; o) = Aln (1 +

dF 1 1 -1 da
—=In(1+ + A
X a+x 14+ —— (a+x)?

a+x

1 A da dM
:ln(1+a+x>_ (a+x)(1—|—a+x)< +Aﬁa <M+)\d)\)>

I\ A( LA dM)
1 1 1 A T2 M dx T ABoZ dx
=1In (1 + > _ ﬂa Bo?

1
a(AM)+xz(\,M) > )

+
l+a+z l14a+z (a+zx)(l+a+z) (a+z)(1+a+x)

:{ln<1+ : >— ! ]+ L [1_( z }_)‘<dx+A%§2CfK)

a+x l+a+x l+a+x a+x) (a+z)(1+a+2x)
APog da
1 1 1 a ABU2)\( 9,\gd,\+d,\>
=|(In{1+ — + - .
a+w l+a+z l+a+za+zx (a+2x)(1+a+ )
By (AM — f) (M +v)* = roz, we get
M 1-—
(M +AM') (M +v)* + (MX— £)2(M +v) [ M’ + — A M| =0.

FAo? 2
L+ 55 M (14 22t

M A 402+ (MA— )2 +0) [ 1— — 222 Va4 o2 BN 2D H o)

(1+ 2tr)’ 1+ Ziu

Since M + v > 0 and MA — f > 0 for all A € (0,1], we have

M =0.

YL A(M +v) e 1-X MM+ M
2(MM— a2 N\ || 2(MX— BAgZ 3
( f) (1+ A M) ( o1+ M
So
M(M+v) M
M/ _ Q(M)\,f) 1+’8:%M
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Then

2 2
Aﬁag@_i_diM: no; E—ABE 2000\ |y
OX dx  d\ ABoZ \ M M2 Ag?

AM+v) 1-)
w1 —122
2(MA—f) ( BAJ >2
142295
u 2(MA—f)
_noy (B 200 . no; UL BAot
~ \Bo? M+A03 I R V2
MM +v)+2(MX—f) 1—#
<1+ n95M>

Based on Lemma 9, there exists k14 > k11, such that when oy > k14,

A(M +v) <2M

and
1-A
2(MA—f)[1-——T—— | <2M.
(1 ,BAO'SM)
Then SHMAf)
M+ v+ ===
14222 Y - M 1
oM +2M 4’
AMM+v)+2(MA—f) [1-——12—
(14252 u)
no
Then

Apoy da L AM no? (3 L2\ LAY
0N d\  dA Aoz \ M Aag M?c2
Again, based on Lemma 9, there exists ki > k14, such that when o4 > k1, Ag; g Elli + ijj\f < 0. Note

that for any positive (a + z), we must have [ln (1 + a+x) — ﬁ] > 0, then we conclude that

when oy > ky, %5 > 0, and thus F (1;04) > F (\;04) for any A > 0. So

1= F (X
arg max, F' (X o)

for any oy > ky. O

Now let’s focus on the region when o4 > k1. In equilibrium,

1 a

2 2 s
O'+O' +a.o —na +nb— ,
r Aﬁ( ar)
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then in this case, the correlations are

0—3
corr §g) =Al—5——S 5>
(9r.9) oZ + g%+ alo?

2
2 1 (_as
nog +nb 45 ( ai)
and
2
99

corr (p, §) =

where <—Z—f) is solved by

2

1 a o’ 1 ol

n—i—n@m <—8>:1+2+ 1 1o 0 %
g a g n — as g

g " g B+Z<H+ag+7,gzag)(—a> g

When o, increases, it’s clear that (—Z—j) increases, then both corr (g, §) and corr (p, g) decrease.

Based on our results in Proposition 5, we know

PG CR L RSk N GiL R ]
[9 ((1 N )\) ¢U + AQSI)] g 6903 * A% a§+ﬁ(21cr§)e)17r2) + a%+520>\§(17r1)
Taking A\, = 1, we have
ok Bz
E(9|G) = ?B%_’_A% 1+4g

Note that 71 = corr? (g, §). Since we’ve already shown that corr (g,, §) > 0 decreases in o, we can
E[0((1-N)oE+26F) 3]
E[0((1-N)of+As¥) |

conclude that r decreases in 0,4, and thus decreases in oy.

B.13 Proof of Proposition 7

Let’s focus on the case when o, > k1, where k; is the parameter in Proposition 6, and thus in
equilibrium, the information seller must choose A. = 1. Note that in this case,

2
99

2 9
nag + nHAiB (—%) + <Z—j> o2

corr (p, §) =

where (—g—j) = M is solved by

2 2
o 1 op
BO’.‘] O'g %‘i‘z(%‘f’m)M Jg



To show that dcoréé 9 <0, it’s sufficient to show that 44 &4 > 0. . Rewriting (A.133), we have

[n+n0Aﬁ A52 M~ 1_22] <g+/11<10_%0+02 +6B202)M)2:U§
[0M+ABU ( _ )](( 0))M+Ana (o2 +ﬁ22>
2 (o2 >]”¢2
Tz %z n(8202)

—

~[v

Taking derivatives for both sides,

(v + 5) (g + A= 0) M+ B3 02+ o)) +
2[oar + 2t (n_l_%g)](_M(mm—m)%) )

dM
where
oz Ano? 5 o o & Apo; a?
LHS = (ﬂ203 +(1 _9>> M+ 5303 (Ux + 8 Ug)+2 <ﬂ203 +(1- 9)) Oy + — (n— 1-— Ug) > 0,
and
Be--g)- (3
ris =2 fonr+ A0 (S EY (T M % o2 )
[ n 03 5203 5303 g
o2 ) Bo? o? Ano
30—-1— "1 M+2 9( _ _>_ x(0'2+ﬁ20'2)
< pro; n o2 302 g
For any 0 satisfying 30 — —22 > 0, based on Lemma 9, there exists k21, such that when o, > ko1,

we must have M large enough satlsfylng

o2 ABo> 2 Ang?
<39—1— >M+2 b <n—1—02>—|— 275 (02 + f02) > 0.
g

2.2 3
p*o n 7 pioy

Then we must have
dM

W>O'

Together with Lemma 8, we conclude that, for any 0 satisfying 30 — 1 — 5‘;—(3;2 > 0, there exists

g
k4 > 0, such that when o4 > k4, % > (0, which means that

deorr (p, §)

70 < 0.
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B.14 Proof of Theorem 2

We almost replicate the proof of Theorem 1. The information seller’s objective function is still

Var (Z + 5g|-Zv)
A <Var @+ B3l.71) ) ‘

And the optimization problem is

max Ae'lln(

Var (Z + 8g|-Fv)
(®p,w) 2A )

Var (i‘ + ﬂ§|ﬁj)

(A.134)

(A.135)

It can be shown (similar to the proof in Theorem 1), the objective function is equivalent to

Var (Z + 53| Fv)
A <Var @ +5g%>>

ApB252 1
=0AIn |1+ 5)\05 E S 52 ,
o
(G rody i (-8)
where Z—j satisfies:
2
A Qg 2 1 0.2
n—nb =1+—=+ 1
2 2 BAG2 (ag 2
BAc; ar oy w1 (10, o . Sy L (E) o2
B A\ o2 02 +p%02 ar _ BAo2 (ai)
né ar

The unconstrained solution of

2
min ! ,6’+(9L + (_as> bo,
a

_as 2 2
o Aag r) no
satisfies
2 2 2
Lo (%) 0% as\" _ %
as 7 a, ) no? a — 52
ar r g T s
which is
as Ug\/7
_ = 2 n
< ar> Os
Then

1 < 2 2 s
B+9’\+<—a> bos g A L oumaB% g A g5 0
ag

2 2 :
osno; Ao og\/n
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(A.136)

(A.137)

(A.138)

(A.139)

(A.140)

(A.141)

(A.142)



Then the objective becomes

2 9
HAIn 1+ABA;’S — ! g
n o5 as
( as +0 02 + nO,Q <_a>)
ApB?%0? 1
=01 1
. + n\@ 025 )‘
A/32o?
=0AIn | 14+ ——2X
9 7oZ + 2 \F
2N 1+ 1
=vAln X nAd 0 o 0.
0452 AP0 T AFe?25,0m
=01 1 1
= n + VR 5 NDY)
A202 202 + BAcsoy
1
—OAIn | 1+ 5
( N ) ) 9_/1A0
ABosog ABosoy

Admati and Pfleiderer (1986) shows that there exists a unique solution to the following problem

mgxkln (1 + (A.143)

wen)

denote the solution as A\g'!. Then the information seller’s optimal choice A is

- AodAoy
A= 7 [+ B2o2. (A.144)

Let My (A) be the solution of

A\ 2 1 o2 (w
n+nl——— My (\) = min 1 + Tu (2W) + A 1 (2 )
(5w oot w00 (Y |
B A\ o2 o2+p2%07 b 1+/3:;§ M)
(A.145)

By choosing different w, the rating agency can achieve equilibrium with any (f—r) = My (N).
Lemma 10. My (\) is a decreasing function of A , and limy_,og M (\) = o0.

Proof. First, it’s clear that the RHS of A.145 must be greater than 1. When A — 0, we must have

n o2 o2 [2o?
lim ——M,(\) >14+= —n=1 ——— 9 5. A.146
’00 BAG2 BAc2 W) =1+7 o2 =T 03 o2 + 202 ~ ( )

1\ ~ 0.651461
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which implies that

)l\mb My, (\) = 0. (A.147)

The LHS is an increasing function of both M, and A, the RHS is a decreasing function of both
My and A. We have

LHS (My, \) = RHS (Mj, ). (A.148)
Then
OLIHS OLHS . ORHS ORHS
AMy, + S0 gy = O g 4 RS Al4
o, T o ang, et oA (A-149)

which leads to

dM, ~OBHS _ oLHS

_ 0\ o\
d\ _ OLHS _ 9RHS" (A.150)
oM, oM,
Since a%fs <0, aRAI;S <0, aLaiIS > (0 and 6LHS > 0, we must have —dfgb < 0. OJ

As we discussed earlier, the information seller’s problem is

2 2
max OAIn [ 14+ 220 ! (A.151)

Py, n\g 8 A Bo? s ’
o) (2 + om0 ()

where Z—S satisfies:
™

A 2 1 o2
R v B B — 9. (A152)
pdag ar % n_1(1-0_ 6 o) (5 (&) %9
B A\ o2 02+ B202 ar 1 BAc2 (%)
When )\ < 1 and M, (5\) < Z—Z\/ﬁ, there must exist w such that
2
2 2
1 ol (w
n+nd g\f—1+ ”(W)+ g (W)
Aﬁ 2 o2 BAoZ g o2
% ny L < 4 ¢> 079\/% M 9
B o2 " 0248252 ) o 1+ 5:;5 a;g J
(A.153)

Then in this case, \, together with w satisfying the above condition, must be the solution of the
information seller’s optimization problem, as this is the highest possible utility for the information
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seller. It’s easy to see that
1

ﬁAd o
Q_'_l 1-6 4 Y 0—79\/5 At no agf
5 A o’% 0'3-1—520'3 Os 1+ BAU Lq\f

nb og

(A.154)

is the equilibrium a, in this equilibrium, and is the same as the ) in Theorem 1.

When A > 1 and M, (1) < 22\/n, since My (+) is a decreasing function with M (0) = oo, there
must exist

Ao €[0,1] (A.155)
such that
o
My (N\2) = ;gﬁ (A.156)
First, for any A < Ao, we must have
22 2 _2
oAln | 1+ 207 ! <orin |14+ A0 !
nAd ( @1 —|—9 =5 + Bog 5 (_afs)) nAg 0 Bo2 (a4
2s Ao no2 ar Zi[ + Ac? + no2 (?s\/ﬁ>
(A.157)

For any A € [Ag, 1], there must exist w such that

2

)\ 2 1 0'2 %%
na 220 = 14 T i ()
Aoy os % no 1 (1.0 o\ oy A+ BﬁZS 2 yn 9
5+ % (5 + ) 2V N
(A.158)

We know in equilibrium if we can obtain (—Z—:) = Z—Z\/ﬁ, the objective function becomes

1
OAln | 1+ : (A.159)

( Ny )2+2 Ny

ABosog ABosog

which is a unimodal function of \. When X > 1, we must have that

OAln [ 1+ ! <6l |1+ ! (A.160)

(ﬁx0)2+ NDY) <ﬁ9>2+2ﬁ9

ABosog ABosog ABosog ABosoy

for any A € [0,1]. Then we conclude that in this case, the information seller chooses A = 1 and w
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such that

2
2 2
1 oo (w
n+ né g\f—l—i— 7u (W )—i- a ( )
Aﬁ 2 o2 A Bactos o o2
I Q‘f‘l(l;ze‘f‘%)ig\/ﬁ e !
B ANer © ogtBlog) o 142478 2vn
(A.161)
It’s clear that
1

(A.162)

n 1(1=6_, 6 \oJg
545 (5 + o) 2

is the equilibrium a, in this equilibrium. This is the same as the a;* in Theorem 1. Then the above
condition becomes

- — *%2 2
no, +n9ABUS\/ﬁ oo+ o (W) + ai*ol (w). (A.163)

If A <1and M, (5\) > Z—Z n, we want to show that the information seller must choose Wyax ().

Suppose that the information seller chooses A3. Let Ay be the solution of M} (A\2) = g—z\/ﬁ Since
M, () is a decreasing function, we know A < Ap. If A3 > A9, we know that

My (3s) < My (h2) = “2+/i, (A.164)

s

and the information seller is able to find w such that (—Z—:) = g—i\/ﬁ However, since in this case
A <1 and M, (5\) > Z—Z\/ﬁ, and since the objective function

1
OAln [ 1+ (A.165)

NV o /A0
ABosog +2 ABosog

is a unimodal function of A, we know that A3 is suboptimal, and is dominated by As. Since

My (M) = 22y/n, (A.166)

s

the information seller will choose Wpax (A) in this case. If A3 < A2, we know that
My (Ns) = My (o) = Z24/n. (A.167)
Os

Since —%= > M, (A3) = Z—i n, and we know that

(A.168)

O JE] A Bo? s
A (0 + o ()
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is decreasing in (—fﬁ) > 20 2\/n, the information seller must choose w which leads to —¢= = M} (A2).

If A\ >1and M, (1) > U—'S n, it’s clear that no matter what A the information seller chooses, we

must have
My (\) > ?\/ﬁ (A.169)

Since

Ap%o? 1

eTEE S

a'r

OAln | 1+ (A.170)

is decreasing in <—Z—j) = Zg n, we conclude that the information seller must choose Wpax (A), so
5= My (V).

B.15 Proof of Corollary 3

In the unconstrained equilibrium, the optimal is w* satisfies

2

2 * 2 *
1 o5 (w
n + nb 5 gf—1+ “(‘;V)+ q(2 )
Aﬂ % sk (B ) 2V |5 SV %
B A\ o2 02+p202 ) os 1+B:g %ﬁ
(A.171)

Since the RHS of the above equation is a quartic equation of w*, the solution is generically not

unique.

B.16 Proof of Proposition 8

Suppose mandate investors purchase the score, as we discussed in the model, the market clear
condition is

FE(2|.%~N) —D E(z Gr 7 —p
@ FN) =D\ E@E+ B4 Fn) =D _ (A.172)

AVar (2|.%N) AVar (2|.% )

(1-0)

Let’s conjecture that the price is a linear combination of the score g, and the noisy demand 3§, i.e.,

there exists cg, ¢; and co, such that
p = co + C1Gr + C25. (A.173)
If an investor doesn’t purchase the score, then his information set is

= {p}- (A.174)
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If an investor purchasese the score, then his information set is
F =D, 9r} = {9r,5}.
Note that we have
{py L

and
then we must have

and
Var (#|.Zn) = Var (2|.7g) = 2.

The market clear condition then becomes the following.

r—p T+ Bgr—p
1-6 0
( )A02 A Ac?

T

=3,
which is equivalent to

A

N0BG, — Ac2s
=4 29P9r = AdyS

1—-0+ X0

Given the equilibrium price and the index, the firm’s problem is the following.

1 - 0 Ao2s 1 -
E(p)— —0% =7+ —0 B8R () — — a5 _ _§2
max B (p) = 50" =T+ 7 5P o) — 7= g T o
_ A0 _ Ao?s 1 4
i ey v AUl sy s v R L

It’s clear that the optimal manipulation is

N A0
* _
1t
Then the equilibrium score is
g g+ a+ A9 B
= U+ —fq.
I =9 =6+ "

7

(A.175)

(A.176)

(A.177)

(A.178)

(A.179)

(A.180)

(A.181)

(A.182)

(A.183)

(A.184)

(A.185)



B.17 Proof of Proposition 9

First, from Proposition 8, the equilibrium score is

A0

EESve (4150

Since § ~ N (0 o ) o~ N (() 62), and ¢ ~ N (d, 03), the informativeness of the score is
measured by corr(g, g, ) or equivalently,

- % ! (A.187)
Var (§lg,) o2’ '
(91gr) (1 0+/\9> 8202 + 6 F
Then it’s clear that when 6 or 3 increases, WI) decreases.
corr (gr,p) = Cov (9P)
T y/Var (3,) Var (p)

Cov (g,«gr - 1= 9+’\0A0 s)

\/Var (gr) Var (f]r - %Aagé)
Var (§,)

2
\/Var (Gr) <Var (Gr) + (1 961\%’\91402) a?)

1

—
1 (1-0+)0
\/1+Var(gr)< NG A‘72> o3

Note that ) 9
1-04-)0 2 2 1-04-)0 2 2
( Y A0$> lop < Y AU:C) o;
Var (gr) 2 g2 s\ o
09+ 0ut (1—6+>\49) 9
A8 (Lo a0z) o2
When B or 0 increases, =55y increases, and thus T S decreases. Then corr (g, p)
increases.
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Finally,

~ ~ O\ — ~ ~
Cov (g +4+ 170f>\9q —1 9‘1?914035,9)

\/Var (g + 4+ 1};&\9(] - 1‘&2”140%5) Var (§)

2 2
R o) 1-6+4)0
\/(Jg +65+ (17939) of + ( Y ) A2U§U§> o5

52 A8 \2 o, (1-6430\% g2 _4_2
\/1 4 Uu+(1—e+>\9> 0q+< Y ) Alogog

Note that

2 2
2 A3 2 (120420 42,4 2
Ou + (170+)\0> 0g + ( DY ) Atoz0;

2
7

. DY 073 [Ac20s . L 0A8 078 Ac2o,
is decreasing in 1—5 55 when =555 < - and increasing in =5 g when =55 = .

Aoy e OV DY AcZa, Y
Then corr (p, §) is increasing in =555 when =555 < 4/ o and decreasing in =555 when

OB Aoc2o, . ONE8 . . . . . ~ o~
g = A/ . Since ;=5 57 is increasing in 8 and ¢, then when 3 or § increase, corr (p, §) first
increases and then decreases.

B.18 Proof of Proposition 10

We know that
E(z + Bgr|Fm) — D

AVar (z)
L an | OABgr—Ao2s
T+ Bgr — (“f' + %)

B Ac?

B, — ONBGr—Ac23
r 1—0+7\0

Ac?
B(l_a)ﬁr + S
1-60+ ) A2 10170

¢m =
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Then

E(¢39) _ Cov(¢h,9) +E (63) E(9)
E (¢3r) E(#3)

6(1_0)‘@7" 5 ~
—0+70) A2 + 1_95+A9=9)

80—, | 3
(T—6+10)Ac2 © T—6+r0

(
(

Cov (g, + 51755, .
(

+9

A~ Ac2 -
- 5n)
2
g
g —
SV Ao?__
E <9 TUT et B0 3)
2
O' —
_ 9 0

T 0N  ~
9+ =0 T san

E

Since § > 0,

ON3 Ao? Ao25(1— 0+ \9)
q: S{:ﬂ: —
1-0+X0" pB(1-96) OX(1—6)q

- %k ~
It’s clear that 1799/\ f 9 + Bécig@)E decreases in 3 if and only if 8 < W. Then W
M

. o . Ac25(1—0+70)
increases in 3 if and only if 5 < o

B.19 Proof of Lemma 4

If mandate investors buy the score, under optimal holdings, their utility is

_e AWo-®) g [e—A[@E(a*:—ﬁwm\ﬂ‘m—éwﬁwr(f%j)]] ‘ (A.188)

If they do not buy the score, under optimal holdings, they can only buy the risk-free asset, and thus
their utility is

—e Mo, (A.189)
Then the maximum price &) that the information seller can charge satisfies
_e—A(Wo—é)E [efA[ﬁlE(ngmﬁgT\EM)%M%?VM@WM)]] _ _e—AW()’ (A.190)

which is

AR [e—A[ﬁIE(aﬁ—mﬁm\%)—%Aaﬁj‘f\far(ﬂ%)]] -1 (A.191)
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Since

E(j_ﬁ_’_ﬂgr‘yM)

= : A.192
Oh AVar (Z|-Z) ( )
E (2| %) = z, (A.193)
and
Var (&)%) = 02, (A.194)
we have
E ‘e—A[¢§E<a~:—ﬁ+ﬂgr\%I)—éAﬁ}Var(MM)]]
I  [B@E+8ar1F0) 5]
=F |e 2Var(Z|.Z )
- N _12
[a’ﬁ»ﬁ@r*i* 7“?21‘2255 ]
=K e_ 202
- . _12
[ o 24054555 |
:E ei 20%
[ [a-0)sr+4023]
=k e_ (1—0+x6)2252
Then
1 [(p@)ﬂgrmagg]Z
b= _"1nF|e 010222
I n e
Let

L (1—0)Bgr + Ao2s

(1—0+ M) oy,

then z is a normally distributed random variable with mean

(1-0)8 (7 + =)%5g80) + Ao
He= (1—0+ ) o, ’

and standard deviation

2
\/(1 —0)* 32 (ag +02+ <71—3iw> 6%3) + A20402
(1— 0+ A\0) g '

O, =
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The expectation

E (e_z22> (A.195)

can be obtained using the moment generating function of noncentral chi-squared distributions. Note

that
22 710—2(i)2
E (6_2> =E (e 272\ oz ) (A.196)
and here
z
d A.197
- (A197)

has unit variance and mean Z—z We have
22 _1 2 2 ]_ 2
InE (6_2> =nE (e 202("2) > = —— [ Mz +In (1—&-03)} ) (A.198)

Then the price P is

[(1—9)B§T+Aa%§]2

é:%hﬂa e W :2{4[ = +1n(1+a§)] (A.199)

B.20 Proof of Proposition 11

The information seller’s problem is equivalent to

2
max H (A, 0,) = A { Pz 4ln (1 +O‘§):|

A\,0u 1+ O'g
where o
(1-0)Bg+ (1-0) ;5rxgBa+ Aols
He = (1—0+ 0o,
and

2
\/(1 — 9)2 B2 (03 +o02 4+ <717?0\1A9> ,82(72) + A20%02
10+ 7)o, '

g, =

For any A and o, € [o,7],

~ (1—0)Bg+ \0B%q + AcZs
2z < Hz = )
(1-0)o,

(=022 (03 + 52 + 026202) + A20lo?
0y K0, = )

(1-0)o,
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and

V(1= 0)? 5202 + A2040?2

Oz

0, =20, =

Then for any A and oy, € [o,7],

(1-6)Bg+ 082G+ Ac25 |2
(1-6)o

1+ o2

H(\oy) <A [ +In (1+02)

When A =1,
(1—0)Bg+ (1—0)0p% + Ac2s

Ox

z

Then the optimal A must satisfy

[(1—9)ﬂ§+?\9ﬁ2q+Aagg]2
(1-0)o

1+ o2

A~

[(1—9)6§+(1—0)9525+Aagg] 2
A >

+In(1+02) | > z

+1In (1 +0?)

1+ a2

When ¢ — o0, to make the above condition hold, we must have

[forta] (- oo
(1-0)2(1+02) 1+ o2

)

N 2 1/3
which is A > <1+gz (1-— 9)4) . Then there must exist ¢,,1 > 0, such that when ¢ > ¢,,1, we have

1452
2 1/3
)\>)\:;<1+U'Z(1—6)4> .

Here A is independent of q.

Note that p, is independent of o, and o2 is increasing in o, , we first examine how the objective
function changes with o2. It’s easy to show that

2 2
0|+ (1+02)) 2 )

— +
2(0?) (1+02)° 1+02

_ L (e
1402 1+02)°

Then the objective function is increasing in o2 if and only if 1 + 02 > p2. We view o
of o,. Then for any A > X\ and oy,

2

2 as a function

N2
0232 (2 Y 2,2 2,42
. (1-0)"p <ag+a+<1_9+;\6> Baq>+A 050%
g g =

z = Yzmin (1 — 9) 0_% ’
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and

y (1= \)?B% (02 + 5% + 025202) + A20l0?
0, = Uz,max = 0_2
xX
For any ., let
e (14 02)
Fr=—"2%—+In(l1+0o?
1+ U,Z,mm Z,min
and
p2 |
Fr=—"—=—+In(l+o .
i 1+ Ug,ma;r ( ‘ max)

It’s clear that for any given pu,, we have

max {Fr, Fr} = max 2+1n(1+az).

ouelo,g] 1 + 02
Fr, > FpR is equivalent to

M2
———— +In(l+
1 + Uz ,max ( az max)

,u2

z

74—111 1+o0 =
1 szzn ( Zml?’b)

2 1 1 >n Ww
1+ o2 1+Uzmax 1+ 02

z m'm z mzn

l 1+UZ max
1402

z,min

T 1
1407 1+02 a0

2
=L =

Since for any A > A and oy,

089+ (1) 35+ Ao
Hz 2 (1-6)o, ’

when
1 +O.Z ,max

_ 2
<(1 —0)Bg+ (1—-0) = 9+,\952q + Aoy 5) n 1402 in

>
1— = 1 B 1 )
(1=8)o T T

the optimal solution is 6, = o. Let ¢, be maximum of the the positive solution of the above
condition and @1, it’s clear that when q > ¢,,, the optimal solution must be 6, = o.

B.21 Proof of Proposition 12

The information seller’s problem is

2
Mz
max H (A, W)—)\[1+U§+ln(1+og)}

A0

where
(1-0)8g + (1 — 0) (=58 2y wids + Aoys
(1= 0+ A\0) oy

Mz =
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and

\/(1 )2 p2 <ag + 02 (w) + (71_35‘;A6)2 202 (w)> + A20ig2
(1= 0+ ) oy ‘

Oy, =

First, let’s show that there exists ¢, such that when g; > ¢, for all ¢, we must have A=1. We
prove this by contradiction. Suppose that there exists A; < 1, such that for any M > 0, there exist
q; > M for all i and Ap; < Aq, such that

Hlv%XH()\M,W) > mv%XH(l,w). (A.200)

For any M, let
(Aar,war) = arg max H (A, w).

<A,w

) . . H(,wpy)
Let’s consider the ratio 0w

which means that there exists C1 > 0, such that max {07 (w),07 (w)} < Ci for any w.When

Since w; > 0 for all 7, then both o7 (w) and o7 (w) are bounded,
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¢ > M for all i, we must have > | w;g;

1i
Mlgloo H (1, WM)

> M for any w. Then

H (A, way)

0
(1-0)Bg+(1— 6)%&221 1 WM,iditAog

(1=0+Aps0)0

( )

AM 1

In|1

A0

2,52 2 4,2
(1*9>2B2<09+gu(w1\1)+(w) 52"q(WM)>+AQ%%

(1-0+2p70)%02
(1-6)%p2 <a§+aﬁ(wM)+< )262

+

A0
T=0+Xp70

_|_

"3(“’M)> +A%0307

+

lim
J\/[—»OO

In

(1-0)8g+(1-0)082 X | wyr 13+ A025
ox

(1*94’)\1&19)2‘7%
( ]

\/(1—9)252(UZ+U%(WM)+92ﬂ2‘73(WM))+A20303

ox

1

\/(1—9)2,6’2 (U§+UE(WM)+92520'3 (wM))+A20—;10§

Ox
)2

1+

A0 2 _
(1=0) =525 5 82 Sy war,ids
(1-0+x,,0)

AM (

2
ozt

Ap6

2
1-0)252 <"527+‘712L(WM)+(W> ﬁZ"«?(“’M)> +AZo303

lim
M—o0

((1 9)95222 1wleIz)

|: o2+

(1—0+x76)>

(1-0)°p2

(02402 (war)+0%5202(war) ) +A20402
g0

2
((179)1 9+>‘A{9ﬁ22 1wJMzQz)

Am
o2(1-6

lim

+AM9)2+(1—9)252(ag+ag(wM)+< Sl

) 823 wan) )+ Atato?

M—oo

((1-0)68> 37 warid)
+(1-6)%52 (02402 (wWar)+628%02(war) ) +A20 402

((1 9):8221 lefzqz)Q

T=0+Xx70

(1-0

5 (1— +/\MQG)4
(A\ns9)

(1-0)252(02+02 (wyr) ) +A20202
+(179)2ﬁ403(W1\/j)+ ( u M ) x

lim
M—o0

((l 6)9B2Z'L lw]VIz(h)

|

02+(1-0)232 (02 +02 (War)+02 202 (way) )+ A20 k02

(=45)
| |

T—0+Xp,0
L (102 pod (wa) (1-0)262 (02402 (wyy) ) +A420 802

9 (1—0+,\Me)
x A3
M

lim

AM N Angf 2
M\ T=0+Xx,,0

M—o0

E

+(1—9)252(U§+05(WM

1
)+92,8203(WM))+A20;103 ]

g

2+(1-

0)? 32 (03 + 02 (wa)

+0%5%07 (war)) + A%0p07

lim
M—o0 2
Oz

(1—0+Ap0)*

(1-0)*B402(way)

(1-0)*B2(02+02(wpr) ) +A204 02

3
)‘JVI

+

AM

A0 2
AM ( 176+AM€>
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It’s clear that
(1-6)> 802 (wy) . (1—0)*B2 (02 + 02 (wn)) + A2oko?

A e )2
A (1—0+AM9)

is a decreasing function of x, we can conclude that

(1-— 9)2 52 (03 + 02 (war) + HQBQUS (WM))+A2O'§O'§ >

4
for any Ay < A1 < 1. Then if function w

limpy_,q ZAMWM) 1 Note that

H(1,wxr)
(=04 a0)’ w3
x3 T 1-0+20 =z

And 1_§ix0 —3 <0« 0z <3(1-0). When # < 2, this condition always holds. This is a

contradiction to (A.200). Since we always have A =1 in this case, it’s easy to see that the objective
function is a supermodular function of (w;, g;), and thus we must have

ow;
0.
0qi ~

B.22 Proof of Proposition 13

First, we want to verify that when IV is large enough, if all information sellers choose ¢, > 0, and a
sufficiently low price ® > 0 (which is a function of N), there exists an equilibrium such that all
type-G investors would like to buy all scores. For any N, if all type-G investors buy all scores, then
the sufficient statistic of the N scores is

N
.1
Gr=g+ Z; u; + 0. (A.201)
Let’s assume that the equilibrium price equation is
1Y a
p=a0+a,,G,n+aS§=ag+ar<§+N2ui+6+;§>. (A.202)

Then the optimal level of manipulation is
& = ayq. (A.203)

For any type-G investor, the total cost he would like to pay for m scores, P (m), is given by

1 . Var(z + 8g|p)
P(m) =541 (Var (z + Balp, {921}?11)>

= i In (Var(z + 8g|p)) — i In (Var (50 + B4lp, {g;}ZT;)) . (A.204)

So we can consider the following utility function of an type-G who buys m scores

_i i (Var(f + B4lp, {93;};11» —m®*. (A.205)
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Let

V(m)=—-+In (Var (m + B3lp, {gi}:;)) - (A.206)
Then the marginal price that the investor would like to pay for the score m is
V(m) -V (m—1). (A.207)

Lemma 11. There exists Ny such that when N > N,

V(N)-V(N—1)= min (V(i)—=V(i—1)). (A.208)
i€{2,3...N}
Proof. We have
“2AV (m) = In <Var <:1: + Bilp, {gﬁ}zl))
N
1 N ag
=1 r g9 i d 7~7 g 7 ni
H<Var<w+ﬂglg+N_mA doui+ +N—maf{g+u +5}Z_1>>
i=N—m+1
=In | Var |2+ Bglg+ 6+ ! i T a5”+5+1i
n r i D) - 1
e 99 N—m.N “ N—maTSg m,iu
i=N—m+1 =1
N m
1 N a 1
2 S ~ ~
ln(a +ﬁVar<g|g+5+N mANZ ui+N—m%S’g+6+mZui>>’
i=N—m+1 1=1
and
1 N m
Var<g‘9+5+N_ | Z Ui+ 3 s +5+Zuz>
i=N—m+1 =1
N
E<Var(§| 9)| 90+ 3o e m+1“l+Nmaﬁ>
o g+(5+ PIARRTS
= N .
+Var<E(g| )|g+5+N ZszJrluZ—i_N maTS)
g+5+ PIRRT
Since
i~ 1
Var (§lg +6) = +——— I (A.209)
o2 azo?
g9 r7q
which is a constant number in equilibrium, we have
_ Jg+0+ Z ul—i-s) 1
E ( Var N =Nl N—m ar = A.210
(var alg + 6 T —r (A210)
g Tq
Second,
o2
~| ~ = g —~ — —
E(9|9+5)—9+m(g+5—g—arq). (A211)
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Then

: a 1 N N a.~
g 5 N oa
Var |+ 555 (G+6—g—asq)| G+0+ xm X A =
Jg+a7‘0—q g_'_é_}_ﬁzl IUZ
2
2 . o
= 2‘7g22 Vr<(g+5)‘g+6+N~mZZ=N1m4;7}Lu’+NmaT.5)
Ug"‘araq g+5—|—azz_lui
o2 2
(42)
U‘g+a%03 i’r‘rL‘:‘."QL-+_<NN’m Zi) g 0—121,

We used the following result in the above derivation

1 1, 1
~ N N asgz 2 2.2 2
R +5+ 1 N Ui + N 3s3 o4+ asto 1 N s
Var <(g +0)] Y N Zglz*me% W ) T wmit v o
G+ 0+ 5 Dy wi
(A.212)
Then
N m
L N  as. _
Var<g|g+5+N Z Uit N 88,g+5+2%>
i=N—m+1 i=1
o2 2
1 n (anga%Ug)
—1 1 1 1 m
=+ == 7 2.2 T + 52
og ajog ogtazog Nimgg""(Ni]m%) 2 o2
N m
o 1 N as_ . 1
In |02+ g%Var | glg + 6 + Z u; + —Ss,g+5+—2ui
N—=m, NS N —may mia
2 2
2 94 )
2
RN DS 7 (v
x 1 1 1 + 1 + 1
AR R ()
Then
2 2
2 9g
—1 2 p ( 3+a? 2)
Vim) = = |o2+ Zotore
24 x 1 + 1 1 + 1 + 1
I AT Y (e P
2 2
2 99
_ ;1111 o2+ 5203&%03 + ’ <U§+a303)
24 Y 02+ ato? S 1 + L
PO e T et (W)
2 2 PBPogalod
N ( g by [ S !
24 02 + a2o? 24 2\ T ! +
g q 52 (O_g_,'_ago_Q) U§+a303 Nlmo-12t+(me%f>20—§ %



Let

and

Then

g r-gq
A oz + o2+atos 0
2
52< 2 0—32 2)
ogtazog
1 1 1
B(m) = 5——— 7t o7
o + a;0q 124 N _as)” 52 Ty
N—m"~u N—m a, s m
1 1 m
T 02 1 a202 L N o\’ o + 52"
g rYq as u
N mau+ (N—maT> O

We consider the following derivative

dV (m)

dm

For any N, since o, = ¢ > 0, we must have

lim ———
m—N M

2A AB? (m) + B (m)

11 1 dB(m)
2A A+ Blrn) B2(m) dm
1 dB (m)
2AAB(m)+ B(m) dm

1 1

2A AB? (m) + B (m)

1 1

24 AB2?(m) + B (m)

1 1

B (m) 1

1
2 2.2
mog + apog

90

(A.213)

(A.214)

(A.215)



and

lim (AB?(m)+ B (m)) dv (m) — ii (A.217)

m—N dm 2402

Note that the above results imply that when both N and m are sufficiently large, B (m) is an

increasing function of m, and B (m) — o0; d‘gﬁ;n) is a decreasing function of m and % — 0.

Then there must exist /N, such that when N > N,

d‘;;m) =D d‘;;m), (A.218)
which implies
V(N)-V(N-1)= ie{?},i?zv} (V@) -V (@i—1). (A.219)
O
In this case, if all information seller charges
P<P*=V(N)-V(N-1), (A.220)

then all type-G investors would like to buy all scores.

Now let’s turn to an arbitrary information seller’s problem, WLOG, let’s consider information
seller N, and show that oy = o and ® = ®* is indeed the best response if all other information
sellers choose this strategy. When information seller N deviates from the above strategy, suppose
that it chooses oy and @, and in equilibrium a fraction of Ay type-G investors buy score N. We
focus on symmetric off-equilibrium market after this deviation, such that all scores from information
seller 1,2,...N — 1 are sitll purchased by all type-G investors, as in the proposed equilibrium."? Since
scores 1 to N — 1 are purchased by all type-G investors, the sufficient statistics for scores 1 to N — 1
is

1 N—-1
GT=g+N_1i:Zlui+5. (A.221)

The public price has the following functional form

p=ag+ agG, + arg,],v + ass

N—1
:a0+ag<§+N_1izlui%-é)—i-ar(g—i-ui—i—é)—l—as& (A.222)
Then the manipulation level is
d=(ag +ar)q. (A.223)

For type-G investors who do not buy score N, the additional info contained in the price is

1280 type-G investors are considering a constrained optimization problem: they decide whether to buy
score N conditional on purchasing all scores 1 to N — 1.
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equivalent to

a

P a6Gr _ vy g (A.224)
ar

Qr

If a type-G investor does not buy the score, his info set is

a

{GT,gi\’ + 55}, (A.225)
Qp

and if a type-G investor buys the score, his info set is

{Gr,g"} (A.226)

According to the baseline model, the price of the info seller N’s score is

1 Var(f + B3|Gr, g + Z—jé)

Oy =—1 A.227
NToa ™ Var (z + 89|Gr, g) ( )
And the info seller N’s problem is
) Var(gz + B3|Gyr g + g—s)
max A—In : (A.228)

Non | 2A Var (Z + 9|Gr, gY) ’

where

Var(:f: + B3|Gy, g + %5) Var (:i + B3|Gr, gN + %5) — Var (& + 83|Gr, gY)
r :1 1 + T
Var (i + B3lGrgl) Var (i + 83]Gr, g7)

In

Var (§|Gr,gﬁv + %:5) — Var (§|Gr,g£\7)

=In|1+p2
n|l+p o2 + B2Var (g|Gy, gN)

(A.229)

When N is large, from the above analysis, ®* converges to zero, and both Var(f]]Gr, gy ) and

Var (g\Gr,g,{V + g—j§) converge to zero. Formally speaking, limy_, Var (g\G,,giV) = 0(1) and
limy_,o Var (§|Gr,g7{v + %5) =o0(1). Then when N — oo,

Var (1Gr, g + 25) = Var (31GrgY) | Var (g1 g + 25) = Var (3(Gr, o)

In |1+ 32
e Var & + B31Cr, o) o

(A.230)
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Note that

Var (élegiv + ZS§> =E <Var (913 +6)|Gr g + Z‘*g) + Var (]E (317 + ) |Gy, gN + ZSS>

r

2
1 Tigas 1
_ i <9; ) , (A.231)
Tg + Ts Ty T(g+s) T 71+ T2
1 1 1 1 N—1
where 7, = =5, 75 = T =——1 o =—1 _ andmn = =
g o2’ [ (aG+a'r)20'§’ (g+9) UZJr(aGJrCLr)QUg’ 1 012\]+(Z—i>20'§ 2 (Nil)QQ a2

and

72
- i — @%6) T(g+5> +170 = (A.232)
Where 7y = % Then
~ N, 9 ~ N T(Qg+5) 1 1
Var <g|GT,gT + ars) — Var (g1Gr.g;") = 72 (T(g+5) e— T(g+6) + 70 + 7'2>
_ Toso) T T (A.233)

Tg2 (T(g+6) +71+ 72) (T(g+5) + 70 + 7’2)

When N is sufficiently large, 9 >> max {7'1, T0, T(g+5)}, SO

2

T(g+9) To — T1
73 (T(gre) + 71+ T2) (T(gs) + 70 + T2)
2

-
(g+9)

N _ A.234
7927'22 (0= 71) ( )

r

Var <§|Gr,gfqv + ZS§> — Var (§|G,ﬂ,gr{v) =

Then the information seller N’s optimization problem becomes

2

/32 T(g+6)
A— — . A.235
max " 7'927'22 (0 — 1) ( )

Since
2
1 (&) o2

(A.236)
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Then

2
2 as 2
B Tlg+9) _ B Tig+o) (a) %s
A 7 (0 —71) =A% 2
o2 72 2 2 2
T TgTQ T TgTQ 02 4 (as o2 02
N ar s N
2 4_4
T, O 1
= )\B— I— : (A.237)

2 2 ;2
O% (0'3 + (ag + a,)? Ug) (N —1) <<Z:) 5+ 1) o3

In this equilibrium, since the number of scores is very large, then any individual score will have
little impact on the equilibrium price. But the impact of the aggregate supply § on price should not

be negligible, which implies limy o g = 0 and limy o d%ﬁ% = (0. Then it’s obvious that to

maximize
% 2 2 — , (A.238)
x <03 + (ag + ay) U?) (N —-1) <<Z:> ‘;1; + 1) 012\,
the information seller NV should choose oy = o. Besides, since we also have limy_, Z—Z =0 and
limpy o0 d%c/\i;ar) = 0, the information seller N should also choose Ay = 1. Based on our previous

analysis, ®* is the highest price that can guarantee Ay = 1 with o = ¢, so the information seller
N will choose & = O*.

B.23 Proof of Lemma 5

The proof is included in the proof of Proposition 13.

B.24 Proof of Lemma 6

As shown in the proof of Proposition 13, when N is sufficiently high, all type-G borrowers buy all
the scores, and all information sellers choose o; = ¢. In this case, the market equilibrium can be
characterized by Proposition 1. The market equilibrium condition becomes

2
1 as o? 1 o2
s _ 1. T Za (A.239)
2 2 _ 2
BAo2 ay No? T <% N ag+%2ag> (%) o2

= will decrease. The equilibrium a, is solved by

T

n —nb

When N increases, it’s clear that the equilibrium
1
ar = .
() )
B A\ o2 a2+p%02 ar

It’s clear that when —%* decreases, a, will increase, and thus the variance Var(d) = a%ag will
r
increase.

(A.240)
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B.25 Proof of Proposition 14

Note that the equilibrium price is

p=ag+ a.Gy + as8

N
o1 as
—ao—i-ar(g—FNE ui+5+ass>.

i=1 T

2
Then the correlation corr(g,p) is determined by the variance o + g—; +ajo; + (%) o2. With
the equilibrium conditions (A.239) and (A.240) in the proof of Lemma 6, we have

0" o3 gL as, () o) (A.241)
— ) = =n—nbl—5— — ] =. )
ar) o BAag ayr ayr 03

When N increases, we have shown in the proof of Lemma 6 that _a‘:" > 0 will decrease, so

§ 204
+a.— +

1+;
2 2
Nag oy

2 o
n— ”95%(73%3 + (Z—:) Z—% will also decrease, and thus the correlation corr(g, p) will increase.
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