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Abstract

We focus on the confounding bias between language and lo-
cation in the visual grounding pipeline, where we find that
the bias is the major visual reasoning bottleneck. For ex-
ample, the grounding process is usually a trivial language-
location association without visual reasoning, e.g., ground-
ing any language query containing sheep to the nearly central
regions, due to that most queries about sheep have ground-
truth locations at the image center. First, we frame the vi-
sual grounding pipeline into a causal graph, which shows the
causalities among image, query, target location and underly-
ing confounder. Through the causal graph, we know how to
break the grounding bottleneck: deconfounded visual ground-
ing. Second, to tackle the challenge that the confounder is
unobserved in general, we propose a confounder-agnostic ap-
proach called: Referring Expression Deconfounder (RED),
to remove the confounding bias. Third, we implement RED
as a simple language attention, which can be applied in any
grounding method. On popular benchmarks, RED improves
various state-of-the-art grounding methods by a significant
margin. Code is available at: https://github.com/JianqiangH/
Deconfounded VG.

Introduction
Visual Grounding, also known as the task of Referring
Expression Comprehension (Karpathy, Joulin, and Fei-Fei
2014; Karpathy and Fei-Fei 2015; Hu et al. 2016), has
greatly expanded the application domain of visual detection,
from a fixed noun vocabulary, e.g., dog, car, and person, to
free-form natural language on demand, e.g., the dog next to
the person who is driving a car. Regarding the place of can-
didate proposal generation in the grounding pipeline, there
are two traditional camps: two-stage and one-stage. For the
two-stage, the first detection stage denotes any object detec-
tors (Ren et al. 2015) for extracting candidate regions from
the image, and the second visual reasoning stage is to rank
the candidates and select the top one based on their simi-
larities to the query embedding (Yu et al. 2018; Liu et al.
2019a); for the one-stage, the detection and reasoning is
unified by directly performing the referent detection: gen-
erating the referent region proposals with confidence scores
and spatial coordinates for each pixel in the multi-modal

Copyright © 2022, Association for the Advancement of Artificial
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Figure 1: Two image examples: one with ground truth loca-
tion of brown color sheep looking at camera; and the other
with a wrong prediction caused by the language bias in the
grounding model. Blue bars denote the distribution of the
center positions of sheep on the y-axis (of the image), and
orange bars for the x-axis (of the image).

feature map, which is usually the concatenation of the vi-
sual feature map, location coordinates, and language em-
beddings (Yang et al. 2019, 2020). However, if the gradi-
ents can backpropagate through the visual detector in the
two-stage methods, there is little difference between the two
camps. Without loss of generality, this paper will be focused
on one-stage methods. In particular, the introduction of our
approach will be based on the one-stage model (Yang et al.
2019) with YOLO (Bochkovskiy, Wang, and Liao 2020)
backbone which has been validated of high inference speed
and good generalizability.

By analyzing the failure examples of existing grounding
methods, we find an ever-overlooked bias, as illustrated in
Figure 1: the bounding box prediction tends to be strongly
biased to some particular position, e.g., for the subject sheep,
the prediction is often on the central area because most of the
ground truth locations for sheep related queries are close to
the center of the image as shown in the statistics in Figure 1.
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Noun Bias:

books under cat Mean box 
of cat
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Mean box 
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Figure 2: Three types of language bias observed in the
grounding model (Yang et al. 2019). The noun and verb bi-
ases are from the model trained on RefCOCO+ (Yu et al.
2016) and the preposition bias is from RefCOCOg (Mao
et al. 2016). Green boxes denote ground-truth, red boxes de-
note biased prediction and purple boxes denote language bi-
ased location. “Mean box” denotes the average region over
all ground truth bounding boxes of a specific language frag-
ment (e.g., horse) in the dataset. For corner of, “mean area”
is the average size of all ground truth boxes and ”Biased”
one is the ground truth boxes averaged over samples with a
specific language fragment (e.g., “corner of”).

More examples are given in Figure 2, where such bias ubiq-
uitously exists in not only nouns, but also verbs and prepo-
sitions. For example, for corner of in Figure 2, the predicted
region is biased to be of smaller size (than the size of the
ground truth), since most of corner of samples in the dataset
are smaller. The model simply takes this bias rather than jus-
tifies if the content in this region satisfies the query.

One may realize that the above absurd language bias is
due to the confounder, which is a common cause of other
variables, rendering spurious correlations among them, even
if they have no direct causal effects with each other (Pearl,
Glymour, and Jewell 2016). For example, the confounding
effect of the standing bias in Figure 2 may be due to the
common sense that most standing people are the focus of
the photographer. Thus, if we fail to consider such an ef-
fect that causes the correlation between standing people and
the center location in training, when the confounder distri-
bution changes in testing, e.g., most people standing aside,
the former correlation in training will be no longer appli-
cable in testing (Pearl and Bareinboim 2014). Readers are
encouraged to think about the confounders in other exam-
ples. In fact, similar confounding effect is also common in
other classical vision tasks such as classification (Yue et al.
2020), detection (Tang, Huang, and Zhang 2020), and seg-
mentation (Zhang et al. 2020). However, compared to those
single-modal tasks, the confounder in the visual grounding
task is special. As this task is complex and multi-modal, the
confounder is unobserved and non-enumerative in general.
For example, a general “common sense” is elusive and hard

to model.
In this paper, we provide a theoretical ground that ad-

dresses why the visual grounding process is confounded by
the unobserved confounder, and how we can overcome it.
Our technical contributions are three-fold:

• To answer the above question, we frame the visual ground-
ing pipeline into the causal graph. Thanks to the graph, we
can model the causalities between language, vision, and lo-
cations, and thus offer the causal reasons why the ground-
ing process is confounded.

• As the confounder is unobserved and non-enumerative, we
propose a Referring Expression Deconfounder (RED) to es-
timate the substitute confounder based on the deconfounder
theory (Wang and Blei 2019). In this way, we can mitigate
the confounding bias without any knowledge on the con-
founder, i.e., by only using the same observational data just
as other baseline methods of visual grounding.

• We implement RED as a simple and effective language
attention, whose embedding replaces the corresponding
one in any grounding method. Therefore, RED is model-
agnostic and thus can help various grounding methods
achieve better performances.

Related Work
Visual Grounding In earlier works for visual grounding
tasks, most of models are trained in two stages (Plummer
et al. 2018; Wang and Specia 2019): its first stage detects
region proposals using an off-the-shelf object detector (Ren
et al. 2015), and the second stage ranks these regions based
on the distances between visual features and language em-
beddings. Improved methods include using a stronger atten-
tion mechanism (Yu et al. 2018; Liu et al. 2019c,b), a bet-
ter language parsing (Liu et al. 2019a; Niu et al. 2019; Liu
et al. 2020) or a better mechanism of filtering out poor re-
gion proposals (Chen et al. 2021). While, it is often sub-
optimal to train the model in separated stages. Most of re-
cent works (Chen et al. 2018; Liao et al. 2020; Sadhu, Chen,
and Nevatia 2019) are thus proposing to exploit a one-stage
(i.e., end-to-end) training paradigm. Specifically, they fuse
the image features and language embeddings in a dense and
optimizable way, and directly predict the grounding result,
i.e., the bounding box of the query object. The improved
methods (Yang, Li, and Yu 2020; Yang et al. 2020; Shrestha
et al. 2020; Huang et al. 2021) are mainly based on incor-
porating additional head networks that are used in two-stage
models.

After careful comparison, we find that regardless of the
different types of object detectors (e.g., YOLO and Faster
R-CNN), the two-stage and one-stage methods do not have
significant difference in terms of the learning pipeline, if all
gradients can backpropagate through the backbone of the de-
tector. Without loss of generality, this paper deploys multiple
one-stage methods as baselines to show that our method is
effective and generic.
Causal Inference. Causal inference (Rubin 2019; Pearl,
Glymour, and Jewell 2016; Bareinboim and Pearl 2012)
is often used to mitigate spurious correlations. Its meth-
ods include deconfounding (Wang et al. 2020; Zhang et al.
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Conventional Methods [1, 2, 3] Referring Expression Deconfounder (Ours)
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Figure 3: The pipeline of conventional grounding methods vs. our RED. [1, 2, 3] denote the methods in (Yang et al. 2019),
(Yang et al. 2020) and (Huang et al. 2021), respectively. In the left part, green bars denote different region features and blue
bars denote the duplicated language features. In the right part, the gray region denotes the process of dictionary extraction
before training any grounding model. “Query” denotes all the referring expressions in the current training grounding dataset.
The dashed black box bounding multiple pink bars represents the dictionary we get by clustering all “pink features” extracted
via a trained auto-encoder (in the gray region). The purple bars denote the deconfounded language features derived by our RED.

2020; Yue et al. 2020) and counterfactual inference (Tang,
Huang, and Zhang 2020; Tang et al. 2020; Niu et al. 2020).
The generic way is to disentangle the factors (in the task),
and modeling the existing causal effects (among the fac-
tors) on the structural causal graph. In our work, we lever-
age the method of deconfounding to remove the bias we
found in visual grounding datasets. We understand that the
confounder is often invisible and non-enumerative from the
given dataset. We propose an approach to solve this by gen-
erating the proxy of the confounder inspired by a data gen-
eration method called Deconfounder (Wang and Blei 2019).

Our approach is different from existing deconfounding
methods. For example, (Wang et al. 2020; Yue et al. 2020;
Zhang et al. 2020) select a specific substitute for confounder
(like object class) and build the confounder set by enumerat-
ing its values. (Qi et al. 2020; Yang, Zhang, and Cai 2020b)
use a learnable dictionary to learn the values of the con-
founder in the main training process. In contrast, we build
the dictionary by Deconfounder (Wang and Blei 2019) first
as an off-the-shelf part, and then in the grounding stage, we
directly use the fixed deconfounder set based on which we
are able to guarantees the confounder set is the cause of the
feature but not vice versa.

Visual Grounding in Causal Graphs

We frame the grounding pipeline summarized in Figure 3
into a structural causal graph (Pearl, Glymour, and Jewell
2016), as shown in Figure 4, where the causalities among
the ingredients, e.g., image, language query, and locations,
can be formulated. The nodes in the graph denote data vari-
ables and the directed links denote the causalities between
the nodes. Now, we introduce the graph notations and the
rationale behind its construction at a high-level.

Causal Graph
X → L← R. L is an object location. X → L and R→ L
denote that L is directly detected from X according to R.
X ← G→ R. G is the invisible (unobserved) confounder
whose distribution is dataset-specific. For example, when G
is a dominant visual context (e.g., if there are more sam-
ples of horses on grass than horse on road, on grass domi-
nates). G → X indicates that most images picturing horse
and grass (Zhang et al. 2020), and G → R denotes that
most language queries R contain the words about horse and
grass (Zhang, Niu, and Chang 2018).
G → L. This is the ever-overlooked causation for the
grounding: the confounder G directly causes L, because the
ground truth of L is annotated under the same dataset con-
taining the confounder G. For example, under the visual
scene horses on grass, G → L indicates where and how
to put L (e.g., at the middle bottom position, with certain
shape and size), which is the root of the bias in the ground-
ing (Zhang et al. 2020).

Causal Inference Process
Given an image, the causal inference process of the ground-
ing task is to maximize the intervention conditional prob-
ability of the object location L according to the language
query R, which is not equal to the observational conditional
probability:

P (L | do(R), X) ̸= P (L | R,X), (1)

where the do-operation for R denotes that we want to pur-
sue the causal effect of R to L by intervening R = r (Pearl,
Glymour, and Jewell 2016), i.e., we expect that the model
should predict location L that varies from queries R. The
inequality is because of the confounding effect (Pearl, Gly-
mour, and Jewell 2016): Shown in Figure 4, even though we
conditional on X (i.e., cutting off the backdoor path R ←
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Figure 4: The proposed causal graph and the examples of
corresponding nodes. G: unobserved confounder, X: pixel-
level image, R: language query, L: the location for the query.

G → X → L), there is still another one, R ← G → L,
confounding R and L. Therefore, this is the key bottleneck
that the grounding pipeline is confounded by language.
Remarks. One may argue that we should also intervene X ,
because X leads another symmetric backdoor path like R
and P (L|do(R), do(X)) ̸= P (L|do(R), X). Although this
is true in general, we argue that such confounding effect does
not only exist in the grounding task, but also ubiquitously ex-
ist in any visual recognition tasks (Schölkopf 2019), which
is not the main confounding effect in the language-dominant
task.

To solve the confounding problem in visual grounding,
the general way is to deconfound by using the backdoor ad-
justment (Pearl, Glymour, and Jewell 2016) through control-
ling all the values of G:

P (L | do(R), X) = Eg∼G[P (L | R,X, g)]. (2)

Yet, as the confounder is unobserved in general, we cannot
enumerate its exact semantic, let alone control it.

Deconfounded Visual Grounding
Deconfounder
Thanks to Deconfounder (Wang and Blei 2019), we can de-
rive a substitute confounder Ĝ from a data generation model
M even if the confounder is unobserved (invisible). Suppose
we have the model M that can generate R from Ĝ:

P (R | Ĝ) =
m∏
i=1

P (Ri | Ĝ), (3)

where Ri denotes the i-th feature of R (e.g., the i-th dimen-
sion or i-th word embedding), respectively. M ensures the
independence among the features in R conditional on Ĝ,
making Ĝ include all the confounder stratifications g ∼ G.
Here we give a sketch proof: If a confounder stratification
(i.e., a value) g is not included in Ĝ, according to the causal
graph illustrated in Figure 4, g can simultaneously cause
multiple dimensions in X , R and L, making the different
dimensions in R dependent, which contradicts with Eq. (3).
Please kindly refer to the formal proof in Appendix.

Therefore, if we have a model M , we can sample ĝ ∼
Ĝ to approximate stratifying the original G. By doing this,
Eq. (2) can be re-written as:

P (L | do(R), X) = Eĝ∼Ĝ[P (L | R,X, ĝ)]. (4)

In practice, to avoid expensive network forward pass cal-
culation, thanks to (Xu et al. 2015; Yang, Zhang, and Cai
2020a), we can apply the Normalized Weighted Geometric
Mean to move the outer expectation into the feature level
(The proof can be found in Appendix):

P (L|do(R), X) = Eĝ∼Ĝ[P (L|R,X, ĝ)]

≈ P (L | Eĝ∼Ĝ[R, ĝ], X).
(5)

Next, we detail how to obtain the generative model M and
implement the above Eq. (5).

Referring Expression Deconfounder (RED)
Shown in the right part of Figure 3, our proposed approach
includes two steps: training the generative model M (illus-
trated as the shaded part) and training the deconfounded
grounding model.

In the first step, we propose to use an auto-encoder to im-
plement the generative model M . The auto-encoder encodes
language query R into a hidden embedding, i.e., the sub-
stitute confounder Ĝ (denoted as pink bar), which can be
decoded to the query R′:

Encoder: Ĝ = Fenc(R),

Decoder: R′ = Fdec(Ĝ),
(6)

where Fenc and Fdec are deterministic neural networks, i.e.,
once R is set to specific values, the values of Ĝ and R′ will
be collapsed to a certain value with probability 1. Then, we
can use a reconstruction loss Lrecon = d(R,R′) to train
the generative model M , where d(, ) is a distance function
for the features (e.g., we use Euclidean distance after fea-
ture pooling). Note that our deconfounder formulation also
supports other non-deterministic generative models such as
VAEs (Kingma and Welling 2013; Nielsen et al. 2020) and
conditional GANs (Douzas and Bacao 2018).

After we derive the generative model M , we can collect
all the samples of substitute confounders ĝ ∈ Ĝ for R, then
cluster them to a dictionary Dĝ for Ĝ (denoted as the stack
of pink bars in Figure 3). The reason of clustering is because
the number of ĝ is too large for backdoor adjustment, while
a clustered dictionary can efficiently represent the main ele-
ments of Ĝ.

In the second step, we use the dictionary Dĝ to perform
deconfounded training by Eq.(5). We can instantiate the
backdoor adjustment as:

Eĝ∼Ĝ[R, ĝ] =
∑
ĝ∼Dĝ

f(r, ĝ)P (ĝ), (7)

where the right-hand-side is summed over elements in the
dictionary Dĝ , f(r, ĝ) is a feature fusion function and P (ĝ)
is 1/n, which is an empirical prior. We implement f(r, ĝ)
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Algorithm 1: Visual Grounding with RED
Input: Training images, language queries, and

ground-truth locations D = {(xi, ri, li)}
Output: Deconfounded grounding model

Pθ(L = l | do(R = r), X = x) in Eq. (9),
whose illustration is in Figure 3

1 Train the generative model Fenc and Fdec in Eq. (6);
2 Cluster the substitute confounders to derive Dĝ;
3 Initialize grounding model parameters θ randomly;

while not converged do
4 Extract features (x, r) for sample (xi, ri);
5 Calculate deconfounded language feature

r′ =
∑

ĝ f(r, ĝ)P (ĝ) in Eq. (8);
6 Calculate deconfounded prediction

P (L = l | do(R = r), X = x) in Eq. (9);
7 Update θ by using the loss in Eq. (10);

as a simple language attention mechanism and derive our
deconfounded language feature r′ by:

r′ =
∑

ĝ∼Dĝ

f(r, ĝ)P (ĝ)

=
∑

ĝ∼Dĝ

Att(Q = r,K = ĝ, V = r)P (ĝ),
(8)

where Att(Q,K, V ) can be any attention (Vaswani et al.
2017) with the Query-Key-Value convention. In this paper,
we only adopt a simple top-down attention. Recall in Fig-
ure 3 to equip our RED with any conventional grounding
method, all we need to do is just to replace the original lan-
guage embedding feature r (i.e., the light blue bar) with r′

(i.e., the purple bar).
Then, the overall deconfounded visual grounding model

in Eq. (5) can be implemented as:

P (L = l | do(R = r), X = x)

≈ P (l | (
∑

ĝ
f(r, ĝ)P (ĝ))⊕ x) = P (l | r′ ⊕ x),

(9)

where ⊕ denotes feature concatenation and l is a location
index. In particular, the grounding model P (l | ·) can be
any detection head network that is a softmax layer output-
ing the probability of the l-th anchor box in the image (Yang
et al. 2019, 2020). Specifically, the reason why we only fuse
r and ĝ without x is because the ignorability principle (Imai
and Van Dyk 2004) should be imposed to the variable under
causal intervention, that is, R but not X . Table 3 demon-
strates that other fusions that take X as input will hurt the
performance.

So far, we are ready to train the deconfounded grounding
model with the following training losses:

Loverall = −logP (lgt | r′ ⊕ x) + Lreg, (10)

where lgt is the ground-truth location and Lreg is a regres-
sion loss for the ground-truth bounding box (Yang et al.
2019; Redmon and Farhadi 2018) or mask (Luo et al. 2020).
The whole implementation is summarized in Algorithm 1.

Experiments
Datasets
To evaluate RED, we conducted extensive experiments on
the following benchmarks. RefCOCO, RefCOCO+ and
RefCOCOg are three visual grounding benchmarks and
their images are from MS-COCO (Lin et al. 2014). Each
bounding box from MS-COCO object detection ground
truth is annotated with several referring expressions. Ref-
COCO (Yu et al. 2016) has 50,000 bounding boxes with
142,210 referring expressions in 19,994 images and is split
into train/ validation/ testA/ testB with 120,624/ 10,834/
5,657/ 5,095 images, respectively. RefCOCO+ (Mao et al.
2016) has 19,992 images with 141,564 referring expres-
sions and is split into train/ validation/ testA/ testB with
120,191/ 10,758/ 5,726/ 4,889 images, respectively. Note
that, during testing, RefCOCO and RefCOCO+ provide two
splits as testA and testB. Images in testA contain multiple
people and images in testB contain multiple instances of
all other objects. For RefCOCOg, we deploy the popular
data partition called RefCOCOg-umd (Nagaraja, Morariu,
and Davis 2016), and denote the partitions as val-u and
test-u in Table 1. We also conduct experiments on Refer-
ItGame (Kazemzadeh et al. 2014) and Flickr30K Enti-
ties (Plummer et al. 2015). More details can be found in the
supplementary materials.

Implementation Details
As our RED is model-agnostic, We followed the same set-
tings of implemented methods to extract the visual represen-
tations. As for language representations, before the ground-
ing model training, we used the embedding extracted from
uncased version of BERT (Devlin et al. 2018) to train an
auto-encoder. Then, we used the trained auto-encoder to ex-
tract the substitute confounders for all the training samples
R. We deployed the K-Means algorithm to cluster those into
N = 10 clusters forming the confounder dictionary Dg∗ in
Eq. (7). In the grounding model training stage, we first used
a pre-trained frozen BERT to extract language embeddings
from the query. Note that we applied the same frozen BERT
used in auto-encoder training to make the extracted embed-
dings consistent with our dictionary. Second, we computed
the deconfounded language embeddings by Eq. (8). Then, it
will be concatenated to the visual features as shown in Fig-
ure 3. Limited by the theory of deconfounder, to ensure the
validity of confounder embeddings, we have to use the same
structure (i.e., the same frozen BERT structure) to prevent
the embeddings gap between the substitute confounders and
deconfounded training. As a finetuned BERT is more popu-
lar, We will closely follow the breakthroughs of the decon-
founder to improve this implementation. More other details
of implementations and training settings can be found in the
supplementary materials.

Quantitative Results
Comparing with the state-of-the-art (SOTA). In Table 1,
we summarize the results of SOTA methods and those w/
and w/o our RED, on RefCOCO-series datasets. We used
4 SOTA methods as our baselines: Yang’s-V1 (Yang et al.
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Methods RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-u test-u

Tw
o-

St
ag

e

SO
TA

MattNet(Yu et al. 2018) 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01
NMT(Liu et al. 2019a) 76.41 81.21 70.09 66.46 72.02 57.52 65.87 66.44
CM-Att(Liu et al. 2019c) 78.35 83.14 71.32 68.09 73.65 58.03 67.99 68.67
DGA (Yang et al. 2019) - 78.42 65.53 - 69.07 51.99 - 63.28
Ref-NMS (Chen et al. 2021) 80.70 84.0 76.04 68.25 73.68 59.42 70.55 70.62

O
ne

-S
ta

ge SO
TA

RCCF (Liao et al. 2020) - 81.06 71.85 - 70.35 56.32 - 65.73
Yang’s-V1 (Yang et al. 2019) 72.54 74.35 68.50 56.81 60.23 49.60 61.33 60.36
Iterative (Sun el al. 2021) - 74.27 68.10 - 71.05 58.25 - 70.05
PFOS (Suo et al. 2021) 79.50 81.49 77.13 65.76 69.61 60.30 69.06 68.34
LBYL (Huang et al. 2021) 79.67 82.91 74.15 68.64 73.38 59.49 - -
Yang’s V1† (YOLO-V4) 74.67 75.98 70.76 57.21 61.11 50.93 61.89 61.56
MCN (Luo et al. 2020) 80.08 82.29 74.98 67.16 72.86 57.31 66.46 66.01
MCN (fixed BERT) 78.93 82.21 73.95 65.54 71.29 56.33 65.76 66.20

O
U

R
S Yang’s-V1 +RED 78.04 79.84 74.58 62.82 66.03 56.72 66.40 66.64

Yang’s-V1†+RED 78.76 80.75 76.19 63.85 66.87 57.51 69.46 69.51
MCN (fixed BERT) +RED 79.23 83.22 75.23 66.84 72.47 59.03 67.28 67.02
LBYL +RED 80.97 83.20 77.66 69.48 73.80 62.20 71.11 70.67

Table 1: The performance (Acc@0.5%) compared to the state-of-the-art (SOTA) methods on RefCOCO, RefCOCO+ and
RefCOCOg, where † denotes applying the visual feature backbone from YOLO-V4, methods with citation denote that the
results are from the cited papers. Bold text denotes the best performance. We will use the same notation in the following tables.
Note that our reproduced performance of MCN is different from the original paper, because we applied fixed BERT instead of
LSTM for language embedding and the reason can be found in “Implementation Details”.

Method ReferIt Game Flickr30K Entities
ZSGNet (Sadhu el al. 2019) 58.63 63.39
RCCF (Liao et al. 2020) 63.79 -
Yang’s-V1 (Yang et al. 2019) 60.67 68.71
Yang’s-V2 (Yang et al. 2020) 64.33 69.04
LBYL (Huang et al. 2021) 66.51 -
Yang’s-V1† (YOLO-V4) 61.21 70.25
Yang’s-V1† +RED 64.37 70.50
Yang’s-V2 +RED 66.09 69.76
LBYL +RED 67.27 -

Table 2: Comparing with SOTA methods on the test sets of
ReferItGame and Flickr30K Entities (Acc@0.5%). It is rea-
sonable that ours gets significantly higher gains on the more
difficult dataset—ReferIt Game. Please refer to “Comparing
with the state-of-the-art (SOTA)”.

2019), Yang’s-V2 (Yang et al. 2020), LBYL (Huang et al.
2021), and MCN (Luo et al. 2020). Table 2 shows the results
on the ReferItGame and Flickr30K Entities. From an overall
view, we observe that using our RED method, which means
mitigating the bias in language features, improves the per-
formance of grounding models generally. We elaborate the
improvements in the following two points.
RED achieved more improvements for RefCOCOg. This
is because RefCOCOg have longer queries than other
datasets. Our approach is used to mitigate the bias in lan-
guage queries. Longer queries contain more bias, so they
can benefit more from our approach. For example, our gain
on ReferItGame is more than that on Flickr30K Entities,
i.e., an increase of 3.16% vs. 0.25%, as most of queries in

Methods RefCOCO+ RefCOCOg
testA testB val-u test-u

Yang’s-V1† 61.11 50.93 61.89 61.56
+AE(X ⊕R,X ′ ⊕R′) 66.74 57.23 69.01 68.55
+AE(R,R′) (our RED) 66.87 57.51 69.46 69.51
+Att(X)+Att(R) 65.57 56.37 67.83 68.11
+Att(R) (our RED) 66.87 57.51 69.46 69.51

Table 3: The ablation study of using different auto-encoders
and different fusion methods. X and R denote image and
language query, respectively. AE(input value, output value)
denotes the auto-encoder in Eq. (6) fed with different
input values for generating corresponding output values.
Att(value) denotes the attention operation in Eq. (8) using
different values of V .

Flickr30K Entities (e.g., a man, a bench) are as short as class
labels, which contain very little language bias.

In addition, we find that RED can improve more on testB
than on testA or val on RefCOCO and RefCOCO+. The rea-
son is that the distribution of testB data is more discrepant
than that of training data. It means the testing on testB suf-
fers more from the bias in the grounding model.
RED improved Yang’s-V1 (or -V1†) the most. The im-
provement of RED is brought by applying the deconfound-
ing operation—do(R) (and optionally using do(X)). While,
those methods with complex co-attention operations and
additional visual controlling, e.g., MCN and LBYL, may
downplay the effectiveness of deconfounding. In specific,
MCN uses extra mask supervision to enforce model looking
at the shapes rather than only the bounding boxes. Because
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Figure 5: Results using different values of cluster number
N and distances for clustering from RefCOCOg. Note that
the skyblue, pink, yellow and green columns use Euclidean
distance (default), and the blue with N = 10 (default).

language confounding effect only influences the location L,
the additional shape in the objective function will not be con-
founded. Therefore, the whole training process of MCN will
take less language confounding effects. LBYL splits the im-
age features into four parts combining with queries respec-
tively. This is to intervene X by the value of each part of X ,
playing the similar role of do(X). Therefore, plugging our
RED brings only a partial margin of improvement.
Justification for do(R) and attention for R. We use
AE(X ⊕ R,X ′ ⊕ R′) to evaluate the performance of lan-
guage and vision deconfounder for do(R,X), where ⊕ de-
notes concatenation operation. Specifically, before training
grounding models, we reconstruct the embeddings of R and
X simultaneously, and drive the dictionary by clustering
the language and vision confounder using the same way in
“Implementation Details”. As shown in Table 3, we find
RED can achieve higher improvements than language and
vision deconfounder. The reason may be the embeddings of
X need to change during the grounding training, which hurts
the consistency of the dictionary of vision deconfounder.
Then, we perform attention on both X,R (i.e.,+Att(X) +
Att(R)) by the substitute confounder, where the attention
for X is implemented as a normal channel attention follow-
ing SENet. We found the performance drop in this ablation.
This generally conforms to our statement for Eq (9): To pur-
sue the causal effect from R to L, we need to use the con-
founder of R and conduct intervention on R.
Hyperparameter selection. We explore different numbers
of clustering centers and two clustering distance metrics. As
shown in Figure 5, all the clustering numbers N from 5 to 20
show significant improvements over the baseline. After N
exceeding 10, the performance won’t show further improve-
ment, thus we set N = 10. In the comparison of cluster-
ing criterion, Euclidean distance shows constant superiority,
which is reasonable because of the usage of L2 loss in the
auto-encoder.
Time Consumption. As a significant advantage of the one-
stage grounding model is its speed, we test the overhead of

(a) cat
looking 
at you

(b) man 
holding

cup

(c) blank com-
puter screen

(d) bench
blurred in the 

foreground

Figure 6: Qualitative examples. The left two examples show
that RED mitigates the language bias in the results of
Yang’s-V1†, where the red boxes denote the biased predic-
tions of Yang’s-V1†, blue boxes denote prediction of Yang’s-
V1†+RED and greens ones are ground-truth boxes. The right
two examples show our failure cases.

our RED in the inference stage to ensure it will not hurt the
speed. Under fair settings, we test the speed of Yang’s-V1
and Yang’s-V1+RED on a single Tesla V100. The results
are 24.56ms and 26.53ms per sample, respectively, and the
overhead is only 8%, which is reasonable.

Qualitative Results

Language Bias Corrections. The qualitative results illus-
trated in the left half in Figure 6 show that our RED can help
models to remove the spurious correlations. In (a) and (b),
the location bias is drawn at the left-bottom corner which
misleads the grounding models to choose red boxes. After
applying our RED, we find that the model can counter such
bias (i.e., predict blue boxes near to the ground truth).
Failure Cases. We still find some failure cases shown in
the right in Figure 6. In (d), for example, both the red and
blue boxes (predicted by baseline and +RED) tend to se-
lect the colorful computer screen, which is more common
in the dataset. On the contrary, bench is the salient subject
compared to the complicated description. That’s why both
models tend to choose the middle bench.

Conclusions

We investigated the confounding effect that exists ubiqui-
tously in visual grounding models, where the conventional
methods may learn spurious correlations between certain
language pattern and object location. As the confounder is
unobserved in general, we proposed a Referring Expression
Deconfounder (RED) approach that seeks a substitute one
from observational data. The implementation result of RED
is just a simple language attention feature that replaces the
language embeddings used in any grounding method. By
doing this, RED improves various strong baselines consis-
tently. Our future plans include: 1) We will use other gen-
erative models to implement RED (Nielsen et al. 2020). 2)
As hacking the unobserved confounder is ill-posed in gen-
eral (D’Amour 2019), we will try to introduce the large-scale
vision-language pre-training priors (Lu et al. 2020, 2019)
into the deconfounder.
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