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1 INTRODUCTION

The Math Word Problem (MWP) plays an important role in mathematics education, since they
are broadly used to assess and improve students’ understanding of mathematical concepts and
skills of solving math problems [52–54, 59, 67]. As shown in Table 1, an MWP consists of a ques-
tion and a corresponding equation, and the question is composed of the scenario description marked
by the orange color and the logical description marked by the cyan color. Students could strengthen
their problem solving skills by learning from questions with the same logical description but dif-
ferent scenario description [52]. Many studies [16, 17, 48] have showed that high-quality MWPs
could improve the teaching outcomes. However, manually designing MWPs by experts costs a lot,
and the qualities of the generated MWPs heavily rely on the experts.

In this paper, we focus on the task of Math Word Problem Generation (MWPG), which
is to generate a MWP conditioned on both topic words and an equation. Traditional methods
usually heuristically generate MWPs, based on some pre-defined text templates [7, 41, 45, 61].
However, the diversity of MWPs generated by text templates are not high as expected. Recently,
some methods based on deep neural networks have brought significant improvement in generating
MWPs. MaGNET [69], based on a standard encoder-decoder architecture, forces the entities in
the generated MWP to correspond to the variables in inputs. The works in References [36] fuses
information from equations and commonsense knowledge to facilitate the generation. And a recent
work [59], based on a large-scale pre-trained language model, introduces an equation consistency
constraint, which encourages the generated MWP to contain the exact same equation as the one
used to generate it. However, the generation modules of those methods are only conditioned on
the limited input topic words and equation, which might lead to that the scenario description of
the generated MWP often lacks richness and the logical description of the generated MWP usually
does not match the input equation. As shown in Figure 1(a), the generation of seq2seq lacks some
keywords (such as farm for scenario description and more than for logical description).

To solve this problem, we first introduce a simple memory retrieval (SMR) module, which
takes full advantage of the training MWPs, into the MWPG framework. The memory retrieval
module has been demonstrated to enhance a variety of text generation tasks, such as open-domain
question answering [4, 18, 23], dialogue response generation [1, 2, 27, 60, 63], and machine trans-
lation [3]. In specific, we record all the training MWPs into a simple memory (SM) in advance.
During inference, we utilize the joint query (i.e., both topic words and the equation) to retrieve
the simple memory (SM). The retrieved MWPs are used to augment the generation condition.
Since the logical description and the scenario description are entangled and form the MWP, the re-
trieved MWPs with matching logical description may contain mismatched scenario description or
vice versa. As shown in Figure 1(b), retrieved by the joint query, the first retrieved result introduces
a new keyword farm corresponding to ducks and chickens, improving the richness of the generated
MWP’s scenario description. However, it also introduces a new logical description keyword less

to augment the generation condition. This induces the mismatch of the generated MWP and the
input equation without any subtract operation. Similarly, the second retrieved result introduces
times corresponding to the multiplication sign in the equation but also introduces library, which
does not match with the scenario description(ducks and chickens).

To avoid introducing extra mismatched information in the retrieved results, based on the SMR,
we further propose a disentangled memory retrieval (DMR) framework. Instead of directly
building the SM, we first disentangle the training MWPs into the scenario description (orange
part in Table 1) and the logical description (cyan part in Table 1). The scenario description is com-
posed of several topic words. The logical description describes the information of the equation.
Then, we record the scenario description and the logical description to build the scenario de-

scription memory (SDM) and the logical description memory (LDM), respectively. During



Table 1. An Example of MWP

MWP:
There are N0 ducks in the farm, and chickens
are N2 more than N1 times of ducks.How
many chickens and ducks are there in total?

Topic Words: ducks, chickens, farm

Equation: N0 ∗ N1 + N2 + N0 ( 23 ∗ 2 + 6 + 23 )

Final Answer: 75

In the MWP solving problem, the input is the MWP and the output is the

equation or the final answer. In the MWPG problem, the input is the topic words

and equation and the output is the MWP.

Fig. 1. Illustration about the generation of Seq2Seq, SMR, and DMR. Blue entities represent matching key-

words to the generation and red entities represent mismatched keywords to the generation. The crossed

words in (c) mean that those words are masked in the pre-processing stage.

inference, we leverage the input topic words and the input equation to retrieve SDM and LDM,
respectively. Via this disentangled strategy, the retrieved results could preserve the matching in-
formation and avoid the mismatched content. Both the retrieved results are used to augment the
generation condition. As shown in Figure 1(c), the input topic words ducks and chicken retrieve
farm from SDM, improving the richness of the generated MWP’s scenario description. The equa-
tion N0 ∗ N1 + N2 + N0 retrieves more than ... times from the LDM, helping the generated MWP to
be consistent with the input equation.

The contributions are as follows:

— This paper introduces the memory module into the math word problem generation

(MWPG) task and provides a more comprehensive analysis of the SMR method, including
its retrieval quality, training efficiency, and inherent limitations.



— Inspired by the observation that the entanglement of scenario description and logical de-
scription will introduce the noisy retrieval results, we propose a novel disentangled mem-
ory retrieval framework to augment the input of the generation module with only matching
information but not the mismatched information.

— The SMR and DMR outperform all existing MWPG methods. Detailed analysis and discus-
sion verify the effectiveness of the disentangled memory module.

2 RELATED WORK

Math Word Problem Generation. Traditional methods usually heuristically generate MWPs,
based on some pre-defined text templates [7, 41, 45, 61]. However, due to the limited structure of
the pre-defined text templates, the MWPs generated by those methods are dull. Recently, deep
learning methods have been utilized to enhance the quality of MWP generation. MaGNET [69]
is a seq2seq encoder-decoder model that aligns the entities in the generated MWPs with the cor-
responding variables in input equations. However, this model is limited by the input topic words
and equations, and its input to the decoder is restricted. To overcome this limitation, our method,
which is also based on a seq2seq encoder-decoder architecture, introduces retrieval modules to
retrieve related training data, thus augmenting the input of the decoder. Another recent work [36]
employs commonsense knowledge to improve the richness of MWP generation. Wang et al. Ref-
erence [59] introduced a GPT-based method to ensure that the equation that solves the generated
MWP is the same as the input equation. Compared to our methods, GPT-based models require
significantly more computational resources, which will be analyzed in Section 5.1. However, due
to its ability to better encode text, we aim to investigate the integration of retrieval modules with
GPT models in future work. As noted in Reference [36], the generation quality is impacted by the
insufficient conditions of input topic words and equations only.

Math Word Problem Solver. There also are some works using deep models to automatically
solve the math word problems (MWPs) [55, 57]. Tree structure decoders are introduced to boost
the generation results [34, 65]. Several works leverage graph neural networks to encode the math
word problems [26, 62]. Recently, pre-trained language models are employed as the math word
problem encoders [28, 29].

Text Generation and Memory Retrieval. Deep neural networks including large pre-training
language models have been shown to implicitly store the knowledge in their parameters [31, 46,
56, 64, 68]. To utilize the knowledge in a more explicit and interpretable way, memory retrieval
modules are introduced [30, 38–40, 49]. Retrieval modules are shown to bring significant improve-
ment in a number of natural language processing tasks especially the text generation tasks. Some
recent works [4, 18, 23] leverage the retrieval results to improve the quality of the generated
answers for open-domain question answering. In the dialogue response generation tasks, Refer-
ences [1, 2, 27, 60, 63] leverage the results of retrieval systems to generate more informative and
diverse responses. To boost the machine translation quality, Reference [3] copies the retrieved tar-
get language sentences to the generated sentences via the cross attention mechanism. This work
verifies the effectiveness of the retrieval system in the cross-lingual setting. Retrieval systems are
also employed to augment the language pre-training models, which allows the models to retrieve
documents from a large corpus and to generate more informative text [10, 11, 19]. In the code
generation task, the introduced retrieval system attends over all the available code repositories
and the retrieved codes are used to augment the input of the generation modules [12, 14]. Exper-
iments in Reference [25] demonstrate that the retrieval-augmented generation could improve the
performance of several knowledge-intensive natural language processing tasks. Inspired by those
works, we introduce the retrieval module for the MWPG task and use the retrieved results as an
extra generation condition beside the input.



Disentanglement. Recent AI research has emphasized the importance of learning disentan-
gled representations of data. To quantitatively evaluate the disentangled representations, Refer-
ences [5, 8] propose a framework for the quantitative evaluation of disentangled representations.
Some recent work use the disentanglement strategy to boost the performance of different specific
tasks. For the pretrained vision-language model, Reference [33] finds that the generated vision-
language representations are entangled in one common latent space and then proposed a disen-
tangled framework that applies explicitly separated attention spaces for vision and language. To
solve the MWP, Reference [15] divides the question into two parts, i.e., a concept representation
that captures its explicit concept meaning and an individual representation that preserves its per-
sonal characteristics. Reference [44] presents a non-parametric algorithms for symmetry-based
disentangling of data manifolds. Reference [37] rethinks several commonly held assumptions in
the disentangled representations and releases a new library to train and evaluate disentangled
representations. A recent work [66] leverages the disentangled strategy to implement the causal
intervention in video moment retrieval task.

3 PROBLEM SETUP

Following Reference [59], we formulate MWP generation as a task of multi-view (topic words and
an equation) conditional text generation. Specifically, we feed the generation network pΘ with

topic words x tw
i and the equation x

eq
i , and the output is the generated MWP M̂i . The generated

MWP M̂i is expected to be same as the generation targetMi and consistent with the input equation
x

eq
i (the detailed evaluation metric will be discussed in Section 5). Then, we describe the MWP

generation process as

M̂i = pΘ

(
x

eq
i ,x

tw
i

)
, (1)

where {Mi ,x
eq
i ,x

tw
i } is the ith example in the dataset; Mi = {m1, . . . ,mT }, as the generation

target, represents the MWP as a sequence of T tokens. Similarly, M̂i = {m̂1, ..., ˆmT
′ } represents

the generated MWP as a sequence of T generated tokens.

4 MEMORY RETRIEVED-BASED MWP GENERATION FRAMEWORK

4.1 Overview of our Memory Retrieval-based Approach

The MWPG framework based on memory retrieval is composed of pre-processing stage, retrieval
module, and generation module.

Pre-processing. Before training, we build the memory Φ by recording all training MWPs. Dur-
ing inference, the retrieval module will retrieve the built memory.

Retrieval Module. In this module, we use the queryq to retrieve the memory Φ to obtain the top
N relevant memory items, according to the relevance score f (q,φ j ). We define the relevance score
f (q,φ j ) between the query q and the memory item φ j as the inner product of their representation,

f (q,φ j ) = ENCq (q)
T ENCφ (φ j ), (2)

where the specific query q, φ and encoders are to be determined in the specific implementation.
And then the retrieved results will be fed into the generation module with the original input.

Generation Module. This module is a common encoder-decoder generation framework. The
original input (topic words and equation) and the retrieved results are fed into the generation
module as its condition. By encoding and decoding those condition, the generation module outputs
the generated MWPs.



Fig. 2. Framework of our SMR consists of the retrieval module and the generation module. In the retrieval

module, we use the input topic words xtw
i and the input equation x

eq
i as a joint query to retrieve the SM

Φ. According to the relevant score (i.e., the inner product between the presentations of the joint query and

the memory item), we select top N retrieved items. Conditioned on the retrieved items and the input, the

generation module outputs the MWP.

4.2 Simple Memory Retrieval

Based on the overview of Section 4.1, the proposed SMR also contains the Pre-processing stage
and the Memory Retrieval Module (i.e., the Simple Memory Retrieval Module) and its specific
Generation Module. In further, SMR determines the specific implementation of all the encoders,
decoders, and the query. The framework of the proposed SMR is shown in Figure 2.

Pre-processing. We build the SM Φ by recording each training MWP {Mi } as a memory
item φ j .

Simple Memory Retrieval Module. In this module, we use the joint query (both the topic
words x tw

i and equation x
eq
i ) to retrieve SM Φ and obtain the top Nsm relevant memory items

{φ j }
Nsm

j=0 . Since the memory is constructed by recording the MWPs of all the training examples,

it is important to note that the input for each example will not retrieve its corresponding target
MWP from the memory. The relevance score fsm(x tw

i ,x
eq
i ,φ j ) is defined as

fsm

(
x tw

i ,x
eq
i ,φ j

)
= ENCjnt

(
x tw

i ,x
eq
i

)T
ENCsm(φ j ), (3)

where ENCjnt and ENCsm encode the query and the SM item and are defined as

ENCjnt

(
x tw

i ,x
eq
i

)
= δ

(
Wjnt

(
Trtw

(
x tw

i

)
+GRU

(
x

eq
i

) )
, (4)

ENCsm(φ j ) = δ (WsmTrsm(φ j )), (5)

where Trtw and Trsm are the Transformer [51] encoder of the input topic words x tw
i and the SM

item φ j , respectively. GRU stands for Gated Recurrent Units, which are commonly utilized to de-
code sequential information. In this equation, we useGRU to decode the input equation.Wjnt and
Wsm are the matrices of the linear projections, which reduce the dimension of the representations.
Function δ () could normalize any vector to a unit vector, regulating the range of the relevance
score.

Generation Module. Conditioned on both the original input (x tw
i ,x

eq
i ) and the retrieved results

{φ j }
Nsm

j=1 from the retrieval module, our generation module, built upon standard encoder-decoder

structure, outputs the generated MWP M̂i . Therefore, the generation module could be regarded as
a probabilistic model,

p
(
M̂i |x

tw
i ,x

eq
i ,φ1, . . . ,φNsm

, fsm

(
x tw

i ,x
eq
i ,φ1

)
, . . . , fsm

(
x tw

i ,x
eq
i ,φNsm

) )
. (6)

We use the retrieved memory to augment the generation module by copying them into generation
via the cross attention mechanism [50]. The cross attention mechanism copies related tokens in
the retrieved MWP to the generation outputs.



The encoder encodes the original input (x tw
i ,x

eq
i ) and every retrieved memory item (i.e., MWP) φ j

into representations,

v
input
i = ENCinput

(
x tw

i ,x
eq
i

)
, (7)

vφ j
= ENC

′

φ (φ j ), (8)

where the functions ENCinput and ENC
′

φ are similar to ENCjnt and ENCsm defined in Equations (3)

and (4), respectively. In Equation (7), the ENCinput encodes the input x tw
i and x

eq
i into the repre-

sentation v
input
i . In Equation (8), the ENC

′

φ encodes each retrieved memory item (i.e., MWP) φ j

into the representation vφ j
individually, resulting in a set of contextualized token embeddings

{vφ j k }
Lj

k=1
, where Lj denotes the length of the token sequence φ j .

The decoder can be regarded as a probabilistic model,

p
(
M̂i |v

input
i ,vφ1 , . . . ,vφNsm

, fsm

(
x tw

i ,x
eq
i ,φ1

)
, . . . , fsm

(
x tw

i ,x
eq
i ,φNsm

) )
. (9)

Fed with the presentations v
input
i and {vφ j

}
Nsm

j=1 , the decoder generates an output sequence M̂i

in an auto-regressive fashion. At each timestep t , the generation decoder attends over both the

representation v
input
i from the encoder and previously predicted sequence m̂1:t−1, outputting a

hidden state ht . The hidden state ht is then converted to next-token probabilities through a linear
projection followed by softmax function,

Pv = so f tmax(Wvht + bv ). (10)

In addition, we compute a cross attention over the representations of all retrieved memory items,

α jk =
exp(hT

t Wmvφ j k )
∑Nsm

j=1

∑Lj

k=1
exp(hT

t Wmvφ j k )
, (11)

ct =Wc

Nsm∑
j=1

Lj∑
k=1

α jkvφ j k , (12)

where vφ j k is the kth token in the jth retrieved memory, α jk is the attention score of vφ j k , ct is a
weighted combination of memory embeddings, andWm andWc are trainable matrices. The cross
attention is used twice in the decoding stage. First, we update the decoder’s hidden state by a
weighted sum of memory embeddings, i.e., ht = ht + ct . Second, we regard every cross attention
score as a probability of copying the corresponding token of the retrieved memory items [9, 50].
Therefore, we use Pv and the weighted combination of memory embeddings ct to compute the
final next-token probabilities as

p(m̂t |·) = (1 − λt )Pv (m̂t ) + λt

Nsm∑
j=1

Lj∑
k=1

α jk1vφj k=m̂t
, (13)

where 1 is the indicator function and λt is a gating variable computed by another feed-forward
network λt = д(ht , ct ).

Inspired by References [3, 24], to enable the gradient flow from the generation output to the
simple retrieval module, we add the relevance scores as bias items on the attention scores, so we
rewrite Equation (11) as

α jk =
exp(hT

t Wmvφ j k + β fsm(x tw
i ,x

eq
i ,φ j ))

∑Nsm

j=1

∑Lj

k=1
exp(hT

t Wmvφ j k + β fsm(x tw
i ,x

eq
i ,φ j ))

, (14)

where β is a trainable scalar that controls the weight of the relevance scores.



Fig. 3. The pre-processing of DMR. We first disentangle each training MWP and then use them to build

SDM and LDM.

4.3 Disentangled Memory Retrieval

Similarly to the SMR, our DMR also contains the Pre-processing stage and Memory Retrieval Mod-
ule (i.e., the Disentangled Memory Retrieval Module) and its specific Generation Module. Figure 3
illustrates that, in contrast to the SMR, our DMR approach separates the training MWP during
the pre-processing phase and establishes two distinct memory structures. Our DMR Module con-
sists of two parallel retrieval modules where we use different input as queries to retrieved the two
disentangled memories, respectively. All the retrieved results and the input are fed into its spe-
cific generation module that output the generated MWP. The framework of the proposed DMR is
shown in Figure 4.

Pre-processing. In the pre-processing stage, as shown in Figure 3, we disentangle training

MWPs {Mi }
N
i=1 into logical description {M ld

i }N
i=1 and scenario description {Msd

i }N
i=1 and build the

memories, i.e., LDM and SDM. Initially, we utilize dependency parsing technology to analyze the
sentences in the MWP. Subsequently, we identify the root verb and additional verbs that exhibit
a coordination relationship with the root verb. In the dependency tree, all child nodes that have
relationships of nsubj, obj, iobj, or obl with the above verb nodes, along with their respective sub-
trees, are considered to be part of the scenario description. The verb nodes and all the child nodes
that are related to the verb nodes via advmod, advcl, or mark relationships, as well as their cor-
responding subtrees, are considered part of the logical description. Interrogative words are also
considered part of the logical description. The numbers are discarded. Further, Figure 3 shows that
we record all logical description {M ld

i }N
i=1 and scenario description {Msd

i }N
i=1 into LDM Φldm and

SDM Φsdm , respectively.
Disentangled Retrieved Module. This module contains two independent retrieved modules,

i.e., topic-words-based retrieved module and equation-based retrieved module. Each of them is a com-
plete retrieval module like SMR.
In Topic-words-based retrieved module, we use the topic words x tw

i as the query to retrieve SDM

Φsdm and obtain the top Nsdm relevant SDM items {φsdm
j }

Nsdm

j=0 . The relevant score ftw (x
tw
i ,φ

sdm
j )

is defined as

ftw

(
x tw

i ,φ
sdm
j

)
= ENCtw

(
x tw

i

)T
ENCsdm

(
φsdm

j

)
(15)

and the encoders are defined as

ENCtw

(
x tw

i

)
= δ

(
WtwTrtw

(
x tw

i

) )
, (16)

ENCsdm

(
φsdm

j

)
= δ

(
WsdTrcn

(
φsdm

j

))
, (17)



Fig. 4. Framework of our DMR consists of the topic-words-based retrieval module, the equation-based re-

trieval module, and the generation module. In the topic-words-based retrieval module, we use the input topic

words to retrieve the SDM. According to the relevant score (i.e., the inner product between representations of

the input topic words and SDM item), we select top N retrieved SDM items. Similarly, in the equation-based

retrieval module, we use the input equation to retrieve the LDM. According to the inner product between the

representations of the input equation and the LDM item, we select top N retrieved LDM items. The retrieved

results from both the LDM and the SDM are used to augment the input of the generation module, which

generates the MWP.

where Trtw and Trsdm are the Transformer encoders for the input topic words x tw
i and the re-

trieved SDM items φsdm
j . Wtw and Wsdm are the matrices of the linear projections, which reduce

the dimension of the representations. Function δ () could normalize any vector to a unit vector,
regulating the range of the relevance score.
In equation-based retrieved module, we use the input equation x

eq
i as the query to retrieve LDM

Φeq and obtain the top Nldm relevant LDM items {φldm
j }

Nldm

j=0 . The relevant score feq(x
eq
i ,φ

ldm
j ) is

defined as

feq

(
x

eq
i ,φ

ldm
j

)
= ENCeq

(
x

eq
i

)T

ENCldm

(
φldm

j

)
, (18)

ENCeq

(
x

eq
i

)
= δ

(
WeqGRUeq

(
x

eq
i

))
, (19)

ENCldm

(
φldm

j

)
= δ

(
WldmTrldm

(
φldm

j

))
, (20)

where the function ofGRUeq ,Trldm ,Weq , δ , andWldm are similar toTrtw ,Trsdm ,Wtw , δ , andWsdm

mentioned in Equation (16) and Equation (17), respectively. In Equation (19), we employ GRUeq

rather than Transformer to encode the equation x
eq
i , since using GRU achieves better performance

empirically.
Generation Module. Conditioned on both the original input (x tw

i ,x
eq
i ) and the retrieved results

({φsdm
j }

Nsdm

j=1 , {φ
ldm
j }

Nldm

j=1 ) from the disentangled retrieval module, our generation module outputs

the generated MWP M̂i . Therefore, the generation module could be regarded as a probabilistic
model,

p
(
M̂i |x

tw
i ,x

eq
i ,φ

sdm
1 , . . . ,φsd

Nsdm
,φldm

1 , . . . ,φldm
Nldm
, fldm

(
x

eq
i ,φ

ldm
1

)
, . . . , fldm

(
x

eq
i ,φ

ldm
Nldm

))
. (21)

Since the retrieved scenario description {φsdm
j }

Nsdm

j=1 is a set of nouns without structure infor-

mation, we use them to augment the input topic words x tw
i directly. On the contrary, since the



retrieved logical description {φldm
j }

Nldm

j=1 contains the structure information, we copy the retrieved

logical description into generation via the cross attention mechanism [50]. The generation module
consists of an encoder and a decoder.
The encoder encodes the original input (x tw

i ,x
eq
i ) and the retrieved results ({φsdm

j }
Nsdm

j=1 ,

{φldm
j }

Nldm

j=1 ) into representations,

vtw
i = Tr

′

tw

(
x tw

i ,φ
sdm
1 , . . . ,φsdm

Nsdm

)
, (22)

v
eq
i = GRU

(
x

eq
i

)
, (23)

v
f s
i = Trf usion

(
vtw

i ,v
eq
i

)
, (24)

vφldm
j
= Tr

′

ldm

(
φldm

j

)
, (25)

In Equation (22), the Transformer Tr
′

tw encodes the input topic words x tw
i and all the retrieved

SDM items {φsdm
j }

Nsdm

j=1 into the representation vtw
i . In Equation (23), the GRU encodes the input

equation x
eq
i into the representationv

eq
i . In Equation (24), the TransformerTrf usion fusesvtw

i and

v
eq
i into v

f s
i . In Equation (25), the logical description Transformer encoder Tr

′

ldm
encodes each

the retrieved LDM item φldm
j individually, resulting in a set of contextualized token embeddings

{vφ j k }
Lj

k=1
, where Lj denotes the length of the token sequence φldm

j .

The decoder can be regarded as a probabilistic model,
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Fed with the presentations v
f s
i , {vφldm

j
}

Nldm

j=1 and corresponding relevance score{ fldm(x
eq
i ,

φldm
j )}

Nldm

j=1 , the decoder generates an output sequence M̂i in an auto-regressive fashion. At each

timestep t , the generation decoder attends over both the representation v
f s
i from the encoder and

previously predicted sequence m1:t−1, outputting a hidden state ht . The hidden state ht is then
converted to next-token probabilities through a linear projection followed by softmax function,

Pv = so f tmax(Wvht + bv ). (27)

In addition, we also compute a cross attention over the representation of all tokens of all re-
trieved LDM items,

α jk =
exp(hT

t Wmvφldm
j k )

∑Nldm

j=1

∑Lj

k=1
exp(hT

t Wmvφldm
j k )

, (28)

ct =Wc

Nldm∑
j=1

Lj∑
k=1

α jkvφldm
j k , (29)

where α jk is the attention score of the kth token in the jth retrieved LDM item, ct is a weighted
combination of memory embeddings, and Wm , Wc are trainable matrics. Similarly to the SMR,
the cross attention is used twice in the decoding stage. First, we update the decoder’s hidden
state by a weighted sum of memory embeddings, i.e., ht = ht + ct . Second, we regard every cross
attention score as a probability of copying the corresponding token of the retrieved memory items.
Therefore, we use Pv and the weighted combination of memory embeddings ct to compute the final



next-token probabilities are computed as

p(m̂t |·) = (1 − λt )Pv (m̂t ) + λt

Nldm∑
j=1

Li∑
k=1

α jk1v
φldm

j
k
=m̂t
, (30)

where 1 is the indicator function and λt is a gating variable computed by another feed-forward
network λt = д(ht , ct ).

Similarly to SMR, we add the LDM relevance scores as bias items on the attention scores, so we
rewrite Equation (28) as

α jk =
exp(hT

t Wmvφ j k + β fldm(x
eq
i ,φ

ldm
j ))

∑Nldm

j=1

∑Lj

k=1
exp(hT

t Wmvφ j k + β fldm(x
eq
i ,φ

ldm
j ))

, (31)

where β is a trainable scalar that control the weight of the relevance scores. We do not add the
SDM relevance scores on the attention score. On the one hand, we pre-train the encoders of the
topic-words-based module and its retrieval performance is good enough. On the other hand, the
SDM retrieved results are used to augment the input topic words directly rather than copied by the
cross attention mechanism. Technically, we cannot add the SDM relevance to the cross attention
of LDM.

4.4 Training

We optimize the parameters Θ of the model using stochastic gradient descent on the negative
log − likelihood loss function,

L = − logp
(
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(32)

where Mi refers to the target MWP. To improve training efficiency, we warm-start the retrieval
module by pre-training the four encoders in the disentangled retrieval module with a cross-
alignment task.

Pre-training for topic-words-based retrieval module. We sample all topic-words and sce-
nario description pairs {x tw

i ,φ
sdm
i }N

i=1 from training set and SDM at each training step. Let

Xtw ∈ RB×b and Psdm ∈ RB×b be the representation of the topic words and scenario description
through ENCtw and ENCsdm , respectively. S = XtwP

T
sdm

is a (B × B) matrix of relevance scores,
where each row corresponds to the topic words of one training example and each column corre-
sponds to the scenario description of one SDM item. Any (Xtw,i , Psdm, j ) pairs should be aligned
when i = j and should not otherwise. Therefore, the loss function should maximize the scores
along the diagonal of the matrix and minimize the other scores. The loss function can be written
as

L
(i)
tw =

−exp(Sii )

exp(Sii ) +
∑

j�i exp(Si j )
. (33)

Pre-training for equation-based retrieval module. We sample all equation and logical-
description pairs {x

eq
i ,φ

ldm
i }N

i=1} from the training set and LDM at each training step. Let Xeq ∈

RB×b and Pldm ∈ RB×b be the representation of the equation and logical description through ENCeq

and ENCldm , respectively. Similarly to S in Equation (33),U = XeqP
T
ldm

is a (B × B) matrix of rele-
vance scores between the equation and retrieved logical description from LDM. Thus, the loss for
this module is computed as follows:

L
(i)
eq =

−exp(Uii )

exp(Uii ) +
∑

j�i exp(Ui j )
. (34)



Table 2. Summary Statistics of Datasets

#trainset #valset #testset total

Math23K 16,781 2,083 2,111 20,975
Dolphin18K 7,593 847 2,110 10,550
MAWPS 1,865 241 241 2,347

5 EXPERIMENTS

We now perform a series of experiments to validate the effectiveness of our proposed MWP gen-
eration approach.

Datasets. We perform experiments on three commonly used MWP solving datasets, i.e.,
Math23K [58], MAWPS [20], and Dolphine18K [13]. Following the splitting strategy of Refer-
ence [21], we split each dataset into train set, validation set, and test set. The summary statistics
of datasets are shown in Table 2.

To transfer those MWP solving datasets into MWPG datasets, we obtain equation and topic
words for each problem as their input. We extract as most ntp words with highest TF-IDF scores
as the topic words in our experiments. As shown in Table 1, the equation N0 ∗N1+N2+N0 and the
extracted topic words ducks, chickens is the input and the MWP is its ground-truth label. For a fair
comparison, we follow the settings of baselines and set ntp = 5, ntp = 10, and ntp = 5 on Math23K,
Dolphin18K, and MAWPS, respectively. Different from Math23K and MAWPS, Dolphin18K is a
multiple-equation MWP dataset. Following Reference [69], we concatenate multiple equations as
a single equation.

Baselines. In Table 3, seq2seq-rnn, based on the LSTMs with attention [35, 69], regards the
MWP generation task as a sequence-to-sequence task, which splices the input equation and the
input topic words together as a single sequence input. Compared with seq2seq-rnn, seq2seq-rnn-

glove uses GloVe [43] instead of random embeddings at initialization and seq2seq-tf is based on
Transformers [51] rather than RNN. We also compare our approach to vanilla GPT-2 [47], either
with fine-tuning or not; we denote these models as GPT and GPT-ft, respectively. Based on GPT-ft,
MCPCC introduces an equation consistency constraint, which encourages the generated MWP to
contain the exact same equation as the one used to generate it [59]. In Table 4, MaGNET [69], based
on a standard seq2seq encoder-decoder architecture, forces the entities in the generated MWP
to correspond to the variables in the equation. KNN, Equ2Math, and Topic2Math are MaGNET’s
ablation methods. In the original papers of baselines [59, 69], experiments are only performed
on part of those three datasets. Therefore, our method is compared with different baselines on
different datatsets.

Metrics. We leverage the following three commonly used evaluation metrics: BLEU-4 [42],
Metric for Evaluation of Translation with Explicit ORdering ()METEOR [22], and Recall-

Oriented Understudy for Gisting Evaluation (ROUGE) [32] to measure the language quality.
BiLingual Evaluation Understudy (BLEU), METEOR, and ROUGE are proposed to evaluate the
quality of machine translation. Then they are used as evaluation metrics in many text generation
tasks, e.g., machine translation, image caption and dialog generation. In the BLEU evaluation met-
ric, BLEU-4 refers to the use of a modified 4-gram precision function. The BLEU score is commonly
used to measure the level of correspondence between the generated text and the ground-truth
text. The METEOR score measures the similarity between the generated text and the target text
by computing the harmonic mean of precision and recall, where recall is given more weight than
precision. It is based on a generalized concept of unigram matching, which considers unigrams
in the generated and target text, matching them based on their surface form, stemmed form, or
meaning. ROUGE and BLEU are both commonly used evaluation metrics in text generation tasks;



Table 3. Experiment Results on MAWPS and Math23k

MAWPS Math23K

BLEU-4 METEOR ROUGE-L ACC-eq BLEU-4 METEOR ROUGE-L ACC-eq

Seq2Seq-rnn 0.153 0.175 0.362 0.472 0.196 0.234 0.444 0.390
+GloVe 0.592 0.412 0.705 0.585 0.275 0.277 0.507 0.438
Seq2Seq-tf 0.544 0.387 0.663 0.588 0.301 0.294 0.524 0.509
GPT 0.368 0.294 0.538 0.532 0.282 0.297 0.512 0.477
GPT-ft 0.504 0.391 0.664 0.512 0.325 0.333 0.548 0.498
MCPCC 0.596 0.427 0.715 0.557 0.329 0.328 0.544 0.505

SMR 0.618 0.557 0.741 0.590 0.330 0.333 0.545 0.511
DMR 0.655 0.610 0.778 0.618 0.399 0.377 0.637 0.544

Bold numbers indicate the best results.

Table 4. Experiment Results on Dolphin18K

BLEU-4 METEOR ROUGE-L

Equ2Math 0.050 0.135 0.296
KNN 0.120 0.168 0.361
Topic2Math 0.123 0.239 0.422
MaGNET 0.125 0.248 0.436

SMR 0.158 0.312 0.407
DMR 0.238 0.367 0.496

Bold numbers indicate the best results.

however, they differ in their focus. BLEU is based on precision, while ROUGE is based entirely on
recall. For a comprehensive understanding of the metrics, refer to Reference [42] for BLEU, [22] for
METEOR, and [32] for ROUGE. We implement those three metrics using the package provided in
Reference [6]. For mathematical consistency, we use the equation accuracy (ACC-eq) metric that
measures whether the generated MWP is mathematically consistent with the input equation.

5.1 Quantitative Results

Comparsion with baselines. We show the quantitative results of our experiments performed
on MAWPS, Math23K, and Dolphin18K in the Table 3 and Table 4. As shown in Table 3, both our
SMR and DMR get higher BLEU-4, METEOR, and ROUGE-L scores on the MAWPS and Math23K.
Therefore, the MWPs generated by our methods have better language quality than the MWPs gen-
erated by both the seq2seq-based methods and GPT-based methods (i.e., GPT, GPT-ft, and MCPCC).
SMR and DMR also have higher Acc-eq scores, which means that the generated MWPs of our meth-
ods are more consistent with the input equation. Thus, our method could generated better MWPs
than all baselines. However, the metric ACC-eq of the MWPs generated by all the methods in-
cluding our methods is not good enough. As the best method, the ACC-eq of our DMR achieves
only 60.5% and 54.5% on the MAWPS and Math23K, respectively. In other words, about 39.5% and
45.5% of the generated MWPs are not consistent with their input equations and those generated
MWPs are meaningless in the real education scenarios. Therefore, there is still a lot of room for
improvement in this task.

Table 4 shows our DMR outperforms all the baselines on Dolphin18K. The performance on Dol-
phin18K is worse than the performance on MAWPS and Math23k, since Dolphin18K is a multiple-
equation MWP dataset. Compared with generating MWPs on a single-equation dataset, generat-
ing MWPs on a multiple-equation MWP datset is much more difficult. Due to the difficulty of



Table 5. The Training Efficiency of Our Methods

and Baselines

Models #params training epochs

seq2seq-rnn 11M 5,000
seq2seq-tf 52M 5,000
GPT 774M 15,000
MCPCC 774M 16,000
SMR 53M 8,000
DMR 59.39M 8,000

Fig. 5. Ablation study on Math23K.

calculating the accuracy of a multiple-equation MWP, we do not compare the metric ACC-eq on
Dolphin18K.

Training Efficiency. As demonstrated in Table 5, our methods (SMR and DMR) based on the
seq2seq architecture have comparable GPU memory usage and training time to other seq2seq-
based methods. However, Table 5 also indicates that GPT-based methods (GPT and MCPCC) re-
quire 13 times more GPU memory and take twice as long to train as our methods. This low training
efficiency of GPT-based methods limits their application in real-world scenarios. In conclusion, our
methods have a lower resource consumption, similar to seq2seq-based methods, while delivering
better performance than GPT-based methods.

Ablation Study. We perform two ablation methods on Math23K to verify the effectiveness of
the memory module and the disentangle strategy, respectively. seq2seq(ours) and seq2seq(ours) w/

memory are based on the same encoder-decoder structure as our DMR. Different with our DMR,
seq2seq(ours) does not contain the memory module and seq2seq(ours) w/ memory employs a single
memory module without the disentangle strategy. Since Math23K is the largest dataset of those
three datasets, the ablation study is performed on the Math23K.

From Figure 5, we can observe that our proposed SMR, the seq2seq architecture with a sim-
ple memory, performs slightly better than seq2seq. This shows that the retrieved results from the
simple memory do improve the quality of the generated MWPs. However, the improvement SMR

bring is limited. According to the case study in Figure 1, we can speculate that this may be because
not all information of the retrieved results from the SM is beneficial. Our DMR achieves much



Fig. 6. Experiments with different max numbers of topic words words as input.

better performance than both seq2seq and SMR. Therefore, we can conclude that the disentangled
memory retrieval module is better than the single memory retrieval module.

Number of the input topic words. As shown in Figure 6, we perform experiments with differ-
ent numbers of topic words as input on Dolphin18K. First, with fewer topic words, the generation
of MWPs is more difficult. When we decrease the number of the input topic words, the BLEU-4
score is decreasing, too. Only a small number of topic words in the training examples could not
fully summarize the scenarios of the MWPs and thus the generation condition is insufficient. Com-
paring our DMR and Seq2Seq with different number of input topic words verify that our method
could improve the richness of the scenario description. As shown in Figure 6, the fewer topic words
we input, the greater gap the sentences generated by our DMR and the Seq2Seq methods has . Since
the retrieved results are leveraged to augment the input of the generation module, our methods,
especially the DMR, still achieve higher BLEU scores by generating MWPs with rich scene descrip-
tions. Our method can compensate for the problem caused by fewer input topic words. In other
words, our DMR could improve the richness of the scenario description by augmenting the topic
words with retrieved scenario description.

5.2 Qualitative Results

Human Evaluation. Since automatic evaluation metrics are not always consistent with human
judgments on the correctness of a MWP, we conducted human evaluation on our model compared
with several baselines mentioned above. We consider three metrics as follows:

— Equation Relevance: whether a problem is relevant to the given equation;
— Topic Word Relevance: whether a problem is relevant to all given topic words;
— Language Fluency: whether a problem is grammatically correct and is fluent to read.

For human evaluation, we randomly selected 100 instances from the Math23K test set and then
show the equations and topic words lists with generated math problems from different models
to three human annotators to evaluate the generated problems’ quality. For each metrics, we ask
the annotators to rate the problems on a scale from 1 to 3 (where 3 is the best). Results of each
human evaluation metric are presented in Table 6. We can see that our DMR has the highest scores
across all the metrics. Therefore, the MWPs generated by our method achieve better performance
on Equation Relevance, Topic Word Relevance, and Language Fluency.

Case Study. From Figure 1 (i.e., the real cases from the generation results of test set), we
can observe the intuitive impact brought by SMR and DMR. From Figure 1(a), the generated



Table 6. Human Evaluation Results

Equation
Relevance

Topic Words
Relevance

Language
Fluency

Seq2Seq-tf 1.71 2.34 2.19
GPT-pre 2.17 2.57 2.55
MCPCC 2.24 2.71 2.60
SMR 2.39 2.80 2.64
DMR 2.54 2.88 2.76

Bold numbers indicate the best results.

Table 7. Additional Examples of MWPs Generated by Our Approach

Equation N0 ∗ N1

Topic words car, place
Ground truth A car travels N0 kilometers per hour from place A to place B and arrives in N1 hours.

How many kilometers are A and B apart?
Gen.MWP A car travels N0 kilometers per hour and travels N1 hours from place A to place B in total.

How many kilometers is the distance from A to B?

Equation N0 − N1

Topic words group, boys, girls
Ground truth

There are N0 boys in the group, N1 more than girls. How many girls are there?

Gen.MWP
There are N0 people in the group, including N1 girls. How many boys are there?

Equation N0/(N1 ∗ N2)

Topic words library, books, bookshelves, floors
Ground truth The library bought N0 books and placed them on N1 bookshelves. Each bookshelf

has N2 floors. How many books are on each floor on average?
Gen.MWP The library bought N0 books. These books should be placed on N1 bookshelves

and each bookshelf is divided into N2 layers. How many books are placed on
each layer on average?

Equation: N0 ∗ N1 + N2

Topic words orchard, trees, apple, peach
Ground truth There are N0 rows of apple trees in the orchard, N1 trees in each row, and N2 peach trees.

How many trees in the orchard?
Gen.MWP There are N0 apple trees in the orchard, and the number of peach trees is N2 more than N1 times

the number of apple trees. How many peach trees are there in the orchard?

We use the blue to mark the novel words and phrases that our method introduce.

MWP of the seq2seq is limited to the input topic words. As shown in Figure 1(b), some re-
trieved results (i.e., “farm” and “times”) from the SM of SMR facilitate the generation and some
accompanying retrieved results (i.e., “library” and “less”) damage the generation. Figure 1(c) shows
that our DMR could only retrieve the beneficial results and avoid the accompanying poisonous re-
sults via its disentangled strategy.

Successful examples of MWPs generated by our DMR on the test set of Math23K are shown in
Table 7. The first generated MWP from Table 7 is almost identical with the ground-truth MWP. In
the second case, our DMR introduces a novel topic word “people” corresponding to the input topic
words “boys” and “girls.” In the third case, our DMR introduces a novel phrase “is divided into”
corresponding to division and a novel topic word “layer.” In the fourth case, our DMR introduces
novel phrases “more than” and “times” corresponding to the addition and multiplication in the
input equation.



Table 8. Some Failed Cases Generated by Our Approach

Equation N0 ∗ N1 ∗ N2

Topic words school, pens
Ground truth The school bought N0 boxes of pens, N1 pens per box, N2 yuan each.How much

did it cost in total?
Gen.MWP The school bought N0 boxes of pens, each with N1 pens, and each pencil cost

N2 yuan. How much did it cost in total?
Error Redundant topic word (pencil) destroyed the information integrity of the sentence.

Equation N0 − N1 − N2

Topic words rope
Ground truth A rope is N0 meters long, N1 meters are used for the first time, and N2 meters

are used for the second time. How many meters are left?
Gen.MWP A rope is N0 meters long, N1 meters are used for the first time, and N2 meters are

used for the second time. How many meters are used in total?
Error Unsuitable query causes equation template to be irrelevant to the input ones.

Equation (N0 + N1) ∗ N2

Topic words orchard, rows, apple, peach, trees
Ground truth In the orchard there were N0 rows of apple trees and N1 rows of peach trees, each

rows has N2 trees.,How many trees in this orchard?
Gen.MWP There are N0 peach trees in the orchard, which is N1 more than the apple trees. The

apple trees are N2 times as many as the peach trees. How many apple trees are there?
Error Sentence are incoherent and cannot be read properly.

We use the red color to mark the poisonous word our method introduce.

Failed examples of MWPs generated by our DMR on the test set of Math23K are shown in Table 8.
In the first case, our retrieval system may introduce a poisonous word “pencil” corresponding to the
query (i.e., the input topic word “school” and “pens”). The introduced “pencil” confuses the logic
of the generated MWPs. In the second case, the problem description of generated MWP meets
the requirement. However, it asks a wrong question. The third case is interesting. The introduced
phrase of the third case is exactly matched with the query. The introduced phrase “more than”
between N0 and N1 corresponds to a part of the input equation(i.e., N0+N1). The introduced phrase
“times as many as” near N2 corresponds to a part of the input equation(i.e., ∗N2). All the introduced
phrases are matched with the query. However, since the order of the introduced phrase is wrong,
the generated MWP is not as expected. This case shows that introducing matching retrieved results
is not enough to generate ideal MWPs. The retrieved results still need to be well leveraged.

6 CONCLUSIONS

In this work, we introduce a memory retrieval module to the MWP generation framework and use
the retrieved results to augment the input of the generation module. We observe that each MWP
is composed of two parts (i.e., logical descriptions corresponding to the equation and scenario de-
scription corresponding to the topic words). To avoid the irrelevant information of the retrieved
results, we propose a disentangled memory module that leverages the equation to retrieve the logi-
cal description memory and leverages the topic words to retrieve the scenario description memory.
Experiments and case study show our superior performance and the effectiveness of each intro-
duced module.

In the future, we can further explore on the basis of our approach. Considering that the mis-
matching retrieved results could damage the generation quality, we could try to improve the qual-
ity of the retrieved results. As shown in the third case of the Table 8, introducing matching re-
trieved results is not enough. Therefore, we could improve the generation module to fully utilize
the retrieved results.
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