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Abstract. Over the past decade, cryptocurrency has been undergoing
a rapid development. Digital wallet, as the tool to store and manage the
cryptographic keys, is the primary entrance for the public to access cryp-
tocurrency assets. Hierarchical Deterministic Wallet (HDW), proposed in
Bitcoin Improvement Proposal 32 (BIP32), has attracted much attention
and been widely used in the community, due to its virtues such as easy
backup/recovery, convenient cold-address management, and supporting
trust-less audits and applications in hierarchical organizations. While
HDW allows the wallet owner to generate and manage his keys conve-
niently, Stealth Address (SA) allows a payer to generate fresh address
(i.e., public key) for the receiver without any interaction, so that users
can achieve “one coin each address” in a very convenient manner, which
is widely regarded as a simple but effective way to protect user privacy.
Consequently, SA has also attracted much attention and been widely
used in the community. However, as so far, there is not a secure wallet
algorithm that provides the virtues of both HDW and SA. Actually, even
for standalone HDW, to the best of our knowledge, there is no strict def-
inition of syntax and models that captures the functionality and security
(i.e., safety of coins and privacy of users) requirements that practical
scenarios in cryptocurrency impose on wallet. As a result, the existing
wallet algorithms either have (potential) security flaws or lack crucial
functionality features.

In this work, after investigating HDW and SA comprehensively and
deeply, we formally define the syntax and security models of Hierarchical
Deterministic Wallet supporting Stealth Address (HDWSA), capturing
the functionality and security (including safety and privacy) require-
ments imposed by the practice in cryptocurrency, which include all the
versatile functionalities that lead to the popularity of HDW and SA as
well as all the security guarantees that underlie these functionalities. We
propose a concrete HDWSA construction and prove its security in the
random oracle model. We implement our scheme and the experimen-
tal results show that the efficiency is suitable for typical cryptocurrency
settings.
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1 Introduction

Since the invention of Bitcoin in 2008, cryptocurrency has been undergoing a
tremendous development and been attracting much attention in the community.
Digital Signature [14,16] is employed in cryptocurrencies to enable users to own
and spend their coins. More specifically, each coin is assigned to a public key
(which is also referred to as coin-address), implying that the coin belongs to the
owner of the public key. When a user wants to spend the coin on a public key pk,
he needs to generate a transaction tx and a signature σ such that (tx, σ) is a valid
(message, signature) pair with respect to pk, authenticating the spending of the
coin by this transaction. In such a mechanism, the secret key is the only thing
that a user uses to own and spend his coins. Naturally, key management plays a
crucial role in cryptocurrencies and it needs to work like a “wallet” for the coins,
providing some particular features reflecting the functionalities of currency, such
as making the transfers among users convenient and/or preserving the users’
privacy. Actually, digital wallet is indispensable for any cryptocurrency system.
A secure, convenient, and versatile wallet is desired.

Hierarchical Deterministic Wallet and Its Merits. Hierarchical Determin-
istic Wallet (HDW), proposed in BIP32 [21], has been accepted as a standard in
the Bitcoin community. Roughly speaking, HDW is characterized by three func-
tionality features: deterministic generation property, master public key property,
and hierarchy property. As the name implies, the deterministic generation prop-
erty means that all keys in a wallet are deterministically generated from a “seed”
directly or indirectly, so that when necessary (e.g., the crash of the device host-
ing the wallet) the wallet owner can recover all the keys from the seed. The
master public key property means that a wallet owner can generate derived pub-
lic keys from the wallet’s master public key and use the derived public keys
as coin-addresses to receive coins, without needing any secrets involved, and
subsequently, the wallet owner can generate the corresponding derived secret
keys to serve as the secret signing keys. The hierarchy property means that the
derived key pairs could serve as the master key pairs to generate further derived
keys. With these three functionality features, HDW provides very appealing
virtues which lead to its popularity in the community. Readers are referred to
[7,10,12,21] for the details of these use cases.

“One Coin Each Cold-address” for Enhanced Coin Safety and User
Privacy. In cryptocurrencies, before the corresponding secret key appears in
vulnerable online devices (referred to as “hot storage”, e.g., computers or smart
phones that are connected to Internet), a public key (i.e., coin-address) is referred
to as a “cold-address”. Once the corresponding secret key is exposed in any hot
storage, it is not cold any more and thus becomes a “hot address”. The cold/hot-
address mechanism (or referred to as cold/hot wallet mechanism) is used to
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reduce the exposure chance of secret keys and achieve better safety of the coins.
As shown in Fig. 1, comparing with traditional wallet (where the public/secret
key pairs are generated via a standard key generation algorithm), HDW’s master
public key property enables the wallet owner to generate cold-addresses much
more conveniently. Namely, the owner stores the master public key in a hot
storage, and when needed, he can generate derived public keys from the master
public key without needing any secrets. Note that these derived public keys keep
to be cold-addresses until the owner generates the corresponding derived secret
keys and uses them in a hot storage to spend the coins. In addition, as considered
in [1,6–9,13,21], the convenient cold-address generation implied by master public
key property is also used to enhance the privacy of the wallet owner, say achieving
transaction unlinkability. In particular, “one coin each address” mechanism is
a simple but effective way to achieve transaction unlinkability. However, for
traditional wallets, this will result in a huge cost on generating and managing
a large number of (public key, secret key) pairs, especially when cold-address
mechanism is considered simultaneously. In contrast, for wallets with master
public key property, generating derived public keys from master public key is
very simple and convenient and the generated derived public keys are inherently
cold, so they achieve “one coin each cold-address”1 efficiently.

Fig. 1. Cold address genera-
tion/distribution.

Fig. 2. System model.

Stealth Address for Efficient, Non-interactive and Privacy-Preserving
Payment. While HDW focuses on the key derivation and management from
the point of view of a wallet owner managing his keys, stealth address (SA) [5,
15,17,18] is another popular key derivation and management mechanism in the
community, but from the perspective of privacy-preservation when transferring
1 Note that we change the term from “one coin each address” to “one coin each cold-

address”, to explicitly emphasize that it is not only for the privacy-preservation but
also for the safety of coins.
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coins among users. More specifically, with SA mechanism, each user publishes his
master public key, and for each payment, the payer could generate a fresh derived
public key for the payee from the payee’s master public key, without needing any
interaction with the payee. On the payee’s side, when he wants to spend a coin
on a derived public key belonging to him, he can generate the corresponding
derived secret/signing key by himself, without needing any interaction with the
payer or anyone else. While the derived public keys serve as the coin-addresses,
the master public key never appears in any transaction or blockchain of the
cryptocurrency, and no one (except the payer and payee) could link a derived
public key to the corresponding master public key, so that master public key is
“stealth” from the public. In summary, by SA mechanism, each coin-address is
fresh and unique by default (unless the payer uses the same random data for each
of his payments to the same payee2), so that there is no such issue as “address
reuse” by design. In other words, SA is an inherent mechanism for “one coin
each cold-address”.

Hierarchical Deterministic Wallet Supporting Stealth Address for
Improved Versatility and Security. Noting the virtues of HDW and SA,
as well as the facts that both are related to key derivation/management and
both take convenient cold-address generation as an important virtue, it is nat-
ural to consider Hierarchical Deterministic Wallet supporting Stealth Address
(HDWSA), which will be a more versatile wallet providing virtues of HDW and
SA simultaneously, and consequently will empower more applications in cryp-
tocurrency. However, designing a secure HDWSA is quite challenging, rather
than a trivial combination of two existing mechanisms. To the best of our knowl-
edge, as shown in Table 1, such a wallet has not been proposed yet. Existing
wallet algorithms either suffer from (potential) security flaws or lack crucial
functionality features.

We now explain that HDWSA is well motivated by realistic scenarios, but
existing schemes fail to achieve both security and full functionality. As shown in
[1,6,7,10,21], master public key property enables convenient cold-address gener-
ation, thus supports “one coin each cold-address”, and helps achieve transaction
unlinkability. Note that master public key property means that the wallet owner
can generate cold-addresses from only information stored in hot storage (which
we refer to as “cold-address generation material” below), without needing any
sensitive secrets. Considering this property of HDW more comprehensively and
deeply, we can find two issues: (1) to use these cold-addresses to receive coins,
the wallet owner has to somehow distribute these cold-addresses to the corre-
sponding payers, and (2) as storing the cold-address generation material in hot
storage is the fundamental setting that enables the master public key property,
the cold-address generation material is very likely to be leaked due to its contin-
uous exposure in hot storage. These issues would cause not only inconvenience
but also privacy concerns, since for the existing HDW algorithms, if the cold-
address generation material is leaked, the privacy is compromised completely
(e.g., [6,10,21]) or partially (e.g., [1,7]). In contrast, as shown in Fig. 1, SA
2 Note that the payee can detect such malicious behaviors easily.
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Table 1. Comparison with existing works

Schemea Support

master

public key

property?

Support

hierarchy

property?

Support

stealth

address?

Privilege

escalation

attack

resistant?

Privacy

Preserving?b
Formally

modeled and

proved?

[21] � � � � � �

Hardened [21] � � � � —c �

[10] � � � Partially d � Partially d

[8,9] � � � � � �

[13] � Partially e � � � �

[1,7] � � � —f Partially g �

[6] � � � Partially h � h �

[15,17] —i —i � � � �

[11,12] � � � � � �

This work � � � � � �
a All schemes in this table support deterministic generation property.
b Here “Privacy-Preserving” means “Privacy-Preserving when cold-address generation material (in hot

storage) is compromised”.
c The Hardened BIP32 in [21] does not support convenient cold-address generation, since it loses the

master public key property.
d The scheme in [10] considers only the resistance to complete key-recovery against only severely

restricted adversary.
e The definition in [13] requires the hierarchy organization to be predefined in the setup of the wallet.
f The security models in [1,7] do not capture the privilege escalation attack.
g The schemes in [1,7] consider only forward-unlinkability, for the generated keys prior to a hot wallet

breach.
h The HDW in [6] still suffers from the same security flaws as the initial HDW and the Hardened HDW

in [21].
i The schemes in [15,17] focus on stealth address, without considering the wallet properties.

mechanism does not suffer from these concerns at all. Nevertheless, SA mecha-
nism cannot provide the hierarchy property, which is crucial to its applications
in large companies and institutions, most of which are hierarchical organizations.
A secure and fully-fledged HDWSA will address the shortcomings and provide
all the features of HDW and SA, thus support more applications in practice.

Security Shortfalls of Prior Wallet Schemes. The aforementioned func-
tionality and privacy features have led to the popularity of HDW and SA, but
security is always the primary concern on these cryptographic mechanisms. Actu-
ally, the initial HDW algorithm in BIP32 [21] suffers from a fatal security flaw,
namely, as pointed out in [21] and [4], once an attacker obtains a derived secret
key and the master public key somehow, he could figure out the master secret key
and compromise the wallet completely and steal all the related coins. Note that
this is a very realistic attack (also referred to as privilege escalation attack [8,9])
in various application scenarios. Since then, a series of works [8–13,21] have
attempted to address this problem. However, as shown in Table 1, the Hard-
ened BIP32 in [21] loses the master public key property. The HDW wallet in
[10] considers only the resistance to complete key-recovery against only severely
restricted adversaries (which cannot query the signing oracle) rather than the
standard unforgeability of signature. The wallet in [8,9] lacks formal security
analysis and actually still suffers from a similar flaw. The wallet in [13] requires
the hierarchical organization to be preset in the setup phase of the wallet and
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does not support transaction unlinkability3. The algorithms in [11,12] do not
support the hierarchy property.

Meanwhile, it is widely accepted that provable security, i.e., formal secu-
rity analysis under formal definition of syntax and security models, will pro-
vide solid confidence on the security of a cryptographic scheme. Several existing
works [1,6,7,10–13] aimed to provide formal definitions and security analysis
for HDW and/or SA. However, as shown in Table 1, while the formal definitions
and provably secure constructions for SA have been proposed [11,12], HDW
still lacks a formal definition (of syntax and security models) that captures the
functionality and security requirements in practice. The latest work in providing
provable security for HDW is due to Das et al. [6], which focuses on the for-
mal analysis of BIP32 system [21]. Although the formal definition of syntax and
models in [6] captures the deterministic generation property, master public key
property, and hierarchy property of BIP32 HDW wallet in [21], it inherits the
flaws of BIP32 wallet in [21], namely, (1) the compromising of any non-hardened
node’s secret key may lead to the compromising of all nodes in the hierarchical
wallet, and (2) the hardened nodes escape from this flaw but lose the master
public key property.

1.1 Our Contribution

In this work, we propose a novel Hierarchical Deterministic Wallet supporting
Stealth Address (HDWSA) scheme. In particular, we first formalize the syntax
and the security models for HDWSA, capturing the functionality and security
(including safety of coins and privacy of users) requirements that the cryptocur-
rency practice imposes on wallet. Then we propose a HDWSA construction and
prove its security (i.e., unforgeability for safety and unlinkability for privacy)
in the random oracle model. We implement our scheme and the experimental
results show that it is practical for typical cryptocurrency settings. The full-
fledged functionality, provable security, and practical efficiency of our HDWSA
scheme will empower its applications in practice.

System Model. On the functionality, as the first attempt to formally define a
primitive that provides the functionalities of HDW and SA simultaneously, we
would like to present the system and illustrate how HDWSA works in cryptocur-
rency. In particular, as shown in Fig. 2, there are two layers in HDWSA, namely,
the layer supporting the management of hierarchical deterministic wallets for
hierarchical organizations, and the layer supporting stealth address for the wal-
let of each entity in an organization. In other words, from the point of view of
wallet management, HDWSA is a hierarchical deterministic wallet with the hier-
archy property and the deterministic generation property, and from the point
of view of transactions, HDWSA provides enhanced master public key property
3 [13] discussed how to support dynamic hierarchy but does not give formal model or

proof, and discussed a method to achieve transaction unlinkability, but will lose the
master public key property.
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Fig. 3. Safety of Coins. For a tar-
get coin (e.g., the starred one), as
long as the derived signing key of the
coin and the wallet secret spend keys
of its owner and its owner’s ances-
tor entities (i.e., the boxed ones) are
safe, the coin is safe, even if all other
keys (i.e., the non-boxed ones) in the
organization are compromised.

Fig. 4. Privacy of Users. For a target
wallet (e.g., the starred one), as long
as the wallet secret key and its ances-
tor entities’ wallet secret keys (i.e.,
the boxed ones) are safe, no attacker
can tell whether a target coin (e.g.,
the starred one) belongs to the tar-
get wallet, even if the attacker com-
promises all other keys (i.e., the
non-boxed ones) in the organization,
including the derived signing key of
the target coin.

so that the wallet owners can enjoy the virtues of stealth address. More specif-
ically, to capture the essence of hierarchical organizations (as shown later in
Sect. 2.1), each entity is identified by a unique identifier ID = (id0, id1, . . . , idt)
with t ≥ 0, and a HDWSA scheme consists of eight polynomial-time algorithms
(Setup, RootWalletKeyGen, WalletKeyDelegate, VerifyKeyDerive, VerifyKeyCheck,
SignKeyDerive, Sign, Verify), which, from the functionality and data-flow view
points, work as follows:

• (1) The Setup() algorithm is run to generate the system parameter PP.
• (2) For any organization, the root administrator of the organization can set

a unique identifier (e.g., the name of the organization) ID = (id0) and
run the RootWalletKeyGen() algorithm, generating the root wallet key pair
(wpkID,wskID) of the organization.

• (3) With a wallet key pair (wpkID,wskID), the wallet owner (i.e., the
entity with identifier ID = (id0, . . . , idt) with t ≥ 0) can run the
WalletKeyDelegate() algorithm to generate wallet key pair (wpkID′ ,wskID′)
for its any direct subordinate with identifier ID′ = (id0, id1, . . . , idt, idt+1),
where idt+1 ∈ {0, 1}∗ identifies a unique direct subordinate of the entity ID.

• (4) For each entity, its identifier and wallet public key will serve as the cold-
address generation material. In particular, given an identifier ID and corre-
sponding wallet public key wpkID, anyone (e.g., the payer of a transaction)
can run the VerifyKeyDerive() algorithm to generate a fresh derived verifica-
tion key dvk, which will be used as a coin-address for the wallet key owner
(i.e., the entity with identifier ID). Note that VerifyKeyDerive() does not
need secret keys and is a randomized algorithm, namely, each time it out-
puts a fresh (different) derived verification key (even on input the same (ID,
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wpkID)), so that “one coin each cold-address” is achieved in a natural and
very convenient manner.

• (5) From the view of a wallet owner, say with identifier ID, the wallet secret
key wskID is divided into two parts: a wallet secret spend key wsskID and a
wallet secret view key wsvkID. For any coin on the blockchain, a wallet owner
can use his wallet secret view key to run the VerifyKeyCheck() algorithm to
check whether the coin’s address dvk belongs to him, and for a derived verifi-
cation key belonging to him, say dvk, the owner can use his wallet secret spend
key to run SignKeyDerive() to generate the signing key dsk corresponding to
dvk. Moreover, with the dsk, the wallet owner can run the Sign() algorithm
to authenticate a transaction, spending the coin on dvk. Note that wsskID

is more sensitive and high-value than wsvkID while wsvkID is used more fre-
quently than wsskID, such a separation enhances the security from the point
of view of practice since it greatly reduces the exposure chance of the high-
value wsskID. In addition, such a separation enables our HDWSA to support
the promising applications such as trust-less audits, by allowing the wallet
owner to provide the wallet secret view key to the auditor while keeping the
wallet secret spend key secret.4

• (6) For any coin on the blockchain, suppose the coin-address is dvk, anyone
can run the Verify() algorithm on inputs dvk and a (transaction, signature)
pair (tx, σ), checking the validity of the signature, without needing (or more
precisely, being able to learn) any information about the wallet/coin owner.

HDWSA Features, Security and Efficiency. Based on the above system
model, it is easy to see that our HDWSA scheme achieves the deterministic gen-
eration property, the (enhanced) master public key property, and the hierarchy
property of HDW, and simultaneously provides the virtues of stealth address,
namely the convenient fresh cold-address generation and privacy-preserving fea-
tures. Here we would like to clarify that the master public key property of our
HDWSA exactly captures the essence of this property imposed by the practical
applications, in the sense that the derived verification keys (i.e., coin-addresses)
are generated by using only public information (say user’s identifier and wal-
let public key) which are publicly posted in hot-storage without incurring any
security concerns. Note that this is the original motivation of the master public
key property and we indeed achieved, we do not pursue the “master public key
property” for wallet key generation (i.e., wallet key delegation). Actually, from
the point of view of practice, it is natural for an entity to use its wallet public
key and secret key to generate wallet key pairs for its direct subordinates in a
safe environment (i.e., cold storage), and then each entity can publish its wallet
public key and enjoy the advantage of master public key property for derived
verification key (i.e., coin-address) generation.

On the security, our HDWSA scheme achieves full resistance to privilege
escalation attack. Namely, as shown in Fig. 3 and Fig. 4, the compromising of
a derived signing key will not affect the security of any other derived signing
4 This separation is borrowed from the stealth address mechanisms in [12,17].
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key or wallet secret key, and the compromising of a wallet secret key will not
affect the security of any derived signing key or wallet secret key except those
of the compromised wallet and its direct/indirect subordinates. The security of
our HDWSA scheme is proved in the random oracle mode, based on the standard
Computational Diffie-Hellman Assumption in bilinear map groups.

On the efficiency, from the experimental results shown in Table 2 and Table 3
(in Sect. 4), we can see that the efficiency of our HDWSA scheme is lower than
that of ECDSA, but is still practical for typical cryptocurrency settings. Given
the versatile functionalities and provable security provided by our HDWSA
scheme, such costs are reasonable and acceptable.

With the above versatile functionalities and the strong (i.e., provable) secu-
rity that underlies these functionalities, our HDWSA scheme could solidly (with-
out any security concern) support the promising use cases that have led to the
popularity of HDW and SA, such as low-maintenance wallets with easy backup
and recovery, convenient fresh cold-address generation, trust-less audits, trea-
surer allocating funds to departments in hierarchical organizations, and privacy-
preservation, and so on.

1.2 Related Work

Table 1 gives a comprehensive comparison between our work and the existing
related works, and below we would like to give further details on the comparison
with the state-of-the-art HDW and SA.

When compared with the state-of-the-art HDW [6], besides providing the
virtues of SA, our HDWSA can be regarded as a more secure HDW than the
HDW in [6] and can support more promising applications. More specifically, the
HDW in [6] consists of two types of nodes, say non-hardened nodes and hardened
nodes, where the hardened nodes are leaf nodes of the hierarchy. If any of the
non-hardened nodes is compromised, then the privilege escalation attack will
work and all nodes (including the root node and all hardened nodes) will be
compromised completely. The compromising of hardened nodes will not affect
the security of other nodes, but the cost is that the public key generation of a
hardened node requires its parent node’s secret key, i.e., losing the master public
key property. In addition, on the privacy, if the cold-address generation material
(i.e., the public key and the chain code) of any non-hardened node is leaked,
then the privacy of all its descendent non-hardened nodes is compromised. As
a result, due to its vulnerability to the privilege escalation attack, the HDW
in [6] cannot support the use case of treasurer allocating funds to departments
(which is supposed to be the main reason that leads to HDW’s popularity in
hierarchical organizations), and due to the existing of hardened nodes, the HDW
in [6] cannot support the use case of trust-less audits. In contrast, when working
as a HDW, our HDWSA does not have these concerns at all and can support all
the promising use cases that lead to the popularity of HDW in the community. It
is worth mentioning that the advantage of the HDW in [6] over our HDWSA is its
compatibility with ECDSA, as well as the resulting better efficiency. Actually, the
above advantages and disadvantages are not surprising, since while [6] focuses
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on formalizing the BIP32 HDW system and its security, our work focuses on
(1) establishing the functionality and security requirements of HDW (with SA)
that underlie the use cases leading to its popularity in the community, and (2)
proposing a concrete construction with provable security and practical efficiency.
Finally, we would like to point out that while the HDW in [6] only works under
the assumption that the non-hardened nodes are trusted (i.e., would not attempt
to compromise other nodes’ secret keys) and could protect their secret keys from
being compromised, our HDWSA scheme does not need such assumptions and
can work in much more harsh environments.

When compared with the state-of-the-art SA [11,12], the advantage of our
HDWSA is the hierarchy property, which will enable our HDWSA scheme to be
applied in the hierarchical organizations (i.e., large companies and institutions)
and support the use cases such as treasurer allocating funds to departments.
While this work is the first one to formalize the definition and security models
of HDWSA, the construction in this work seems to follow the approach of [12].
We would like to point out that this is not trivial, since supporting hierarchy
property makes the formal definition, the construction, and the formal security
proof pretty challenging. The effort from provably secure deterministic wallet
[1,7] to provably secure hierarchical deterministic wallet [6] could serve as an
evidence of such challenges.

1.3 Outline

We formalize the syntax and security models for HDWSA in Sect. 2. Then we
present our HDWSA construction with its security analysis in Sect. 3. Finally
we describe an implementation of our HDWSA construction in Sect. 4.

2 Definitions of HDWSA

In this section, we first clarify the notations of hierarchical wallet, then we for-
malize the syntax and security models of HDWSA.

2.1 Notations of Hierarchy

In this work, we use the typical hierarchical identifiers to capture the features
of hierarchical organizations/wallets. In particular,

• All wallet owners are regarded as entities in hierarchical organizations.5

• Each entity in the system has a unique identifier ID in the form of ID =
(id0, . . . , idt) with t ≥ 0 and idi ∈ {0, 1}∗(i = 0, . . . , t).

5 Actually, an individual user can also be regarded as a special organization, for exam-
ple, a user may manage his wallets in a hierarchy manner.
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• For any identifier ID = (id0, . . . , idt) with t ≥ 0, we define ID|i :=
(id0, . . . , idi) for i = 0, . . . , t, and we have that (1) ID|t is just ID, (2)
ID|(t−1) is the identifier of ID’s parent (i.e., direct supervisor) entity, (3)
ID|i(i = 0, . . . , t − 1) are the identifiers of ID’s ancestor entities, and (4)
ID|0 is the identifier of the root entity (root administrator) of the organiza-
tion that ID belongs to.

• For an identifier ID = (id0, . . . , idt) with t ≥ 0, we say that the entity lies in
the Level-t of an organization with identifier ID|0 = (id0). Note that for any
Level-0 identifier ID, it is the identifier of the root entity of some organization,
and does not have parent entity.

From now on, we will denote a hierarchical organization by the identifier of
its root entity, say a Level-0 identifier, e.g., “organization ID0”, and for an entity
in some organization, we will use its identifier to denote the entity or its wallet,
e.g., “ID’s wallet public key”.

2.2 Algorithm Definition

A HDWSA scheme consists of a tuple of algorithms (Setup, RootWalletKeyGen,
WalletKeyDelegate, VerifyKeyDerive, VerifyKeyCheck, SignKeyDerive, Sign, Verify)
as below:

• Setup(λ) → PP. On input a security parameter λ, the algorithm runs in
polynomial time in λ, and outputs system public parameter PP.

The system public parameter PP consists of the common parameters used by
all entities (e.g., wallet owners, users, etc.) in the system, including the under-
lying groups, hash functions, and some specific rules such as the hierarchical
identifier rules in Sect. 2.1, etc. Below, PP is assumed to be an implicit input to
all the remaining algorithms.

• RootWalletKeyGen(ID) → (wpkID,wskID). This is a randomized algorithm.
On input a Level-0 identifier ID, the algorithm outputs a root (wallet pub-
lic key, wallet secret key) pair (wpkID,wskID) for ID, where wskID :=
(wsskID,wsvkID) consists of a wallet secret spend key wsskID and a wallet
secret view key wsvkID.

The root administrator of each organization can run this algorithm to gener-
ate the root wallet key pair for the organization.

• WalletKeyDelegate(ID,wpkID|(t−1)
,wskID|(t−1)) → (wpkID, wskID). This is a

deterministic algorithm. On input an entity’s identifier ID = (id0, . . . , idt)
with t ≥ 1 and its parent entity’s (wallet public key, wallet secret key) pair, say
(wpkID|(t−1)

, wskID|(t−1)), the algorithm outputs a (wallet public key, wallet
secret key) pair (wpkID,wskID) for ID, with wskID := (wsskID,wsvkID) con-
sisting of wallet secret spend key wsskID and wallet secret view key wsvkID.
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Each entity can run this algorithm to generate wallet key pairs for its direct
subordinates.

• VerifyKeyDerive(ID,wpkID) → dvk. This is a randomized algorithm. On input
an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0 and its wallet public key
wpkID, the algorithm outputs a derived verification key dvk of the entity.

Anyone can run this algorithm to generate a fresh public/verification key for
an entity at Level ≥ 0.

• VerifyKeyCheck(dvk, ID,wpkID,wsvkID) → 1/0. This is a deterministic algo-
rithm. On input a derived verification key dvk, an entity’s identifier ID =
(id0, id1, . . . , idt) with t ≥ 0, and the entity’s wallet public key wpkID and
wallet secret view key wsvkID, the algorithm outputs a bit b ∈ {0, 1}, with
b = 1 meaning that dvk belongs to the entity (i.e., is a valid derived verifica-
tion key generated for the entity), and b = 0 otherwise.

Each entity can use this algorithm to check whether a verification key belongs
to him. Note that only the wallet secret view key is needed here, rather than the
whole wallet secret key.

• SignKeyDerive(dvk, ID,wpkID,wskID) → dsk or ⊥. On input a derived ver-
ification key dvk, an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0, and
the entity’s (wallet public key, wallet secret key) pair (wpkID,wskID), the
algorithm outputs a derived signing key dsk, or ⊥ implying that dvk is not a
valid verification key derived from (ID,wpkID).

• Sign(m, dvk, dsk) → σ. On input a message m in message space M and a
derived (verification key, signing key) pair (dvk, dsk), the algorithm outputs
a signature σ.

• Verify(m,σ, dvk) → 1/0. This is a deterministic algorithm. On input a (mes-
sage, signature) pair (m,σ) and a derived verification key dvk, the algorithm
outputs a bit b ∈ {0, 1}, with b = 1 meaning the validness of signature and
b = 0 otherwise.

Correctness. A HDWSA scheme must satisfy the correctness property: for any
ID = (id0, . . . , idt) with t ≥ 0, any 0 ≤ j ≤ t, and any message m ∈ M, suppose

PP ← Setup(λ), (wpkID|0 ,wskID|0) ← RootWalletKeyGen(ID|0),

(wpkID|i ,wskID|i) ← WalletKeyDelegate(ID|i,wpkID|(i−1)
,wskID|(i−1))

for i = 1, . . . , j,

dvk ← VerifyKeyDerive(ID|j ,wpkID|j ),

dsk ← SignKeyDerive(dvk, ID|j ,wpkID|j ,wskID|j ),

it holds that VerifyKeyCheck(dvk, ID|j ,wpkID|j ,wsvkID|j ) = 1 and
Verify(m,Sign(m, dvk, dsk), dvk) = 1.
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Remark: The deterministic algorithm WalletKeyDelegate() enables the deter-
ministic generation property and hierarchy property, and the randomized
algorithm VerifyKeyDerive() enables the enhanced master public key property
where the identifier and wallet public key of the target wallet owner serve as
the cold-address generation material. Also, the algorithms VerifyKeyDerive(),
VerifyKeyCheck(), and SignKeyDerive() together enable the features of SA.

In addition, as the hierarchical identifiers are the foundation on which the
hierarchy features are built, in the above syntax, each entity, as well as its wallet,
is uniquely identified by its (hierarchical) identifier. Here we would like to point
out that, the binding of an entity’s wallet public key and its identifier could be
achieved using the standard approach of digital certificates. While the details of
certificate mechanism are out of the scope of this work, here we would like to
point out that, in our HDWSA, publishing the binding relation of wallet pub-
lic key and its owner’s (real) identifier will not cause any problem of privacy.
Instead, this is an advantage of HDWSA over pure HDW and traditional wallet
(in Bitcoin). In particular, in pure HDW and traditional wallet, the privacy is
achieved by artificially hiding the real identity of a coin-address’ owner, whereas
in HDWSA, each entity can enjoy the convenience of (wallet) public key distri-
bution while keeping its privacy protected, as the wallet public key is stealth
in the blockchain. For simplicity, below we will assume that each entity’s wallet
public key and its identifier are integrated, i.e., each wallet public key is identified
by corresponding identifier.

2.3 Security Models

In this section, we define the security models for HDWSA, capturing the require-
ments on the safety (of coins) and privacy (of users) by unforgeability and (wal-
let) unlinkability, respectively.

In particular, unforgeability is defined by the following game GameEUF,
which captures that, as shown in Fig. 3, for a target derived verification key
dvk belonging to a target entity/wallet in some organization, as long as the
corresponding derived signing key dsk is safe and the wallet secret spend keys of
the target entity and its ancestor entities are safe, no attacker can forge a valid
signature with respect to dvk, even if the attacker compromises all other wallet
secret keys and derived signing keys in the organization.

Definition 1. A HDWSA scheme is existentially unforgeable under an adaptive
chosen-message attack (or just existentially unforgeable), if for all probabilistic
polynomial time (PPT) adversaries A, the success probability of A in the follow-
ing game GameEUF is negligible.

� Setup. PP ← Setup(λ) is run and PP is given to A.

An empty set Lwk = ∅ is initialized, each element of which will be an (identifier,
wallet public key, wallet secret key) tuple (ID,wpkID,wskID).

An empty set Ldvk = ∅ is initialized, each element of which will be a (derived
verification key, identifier) pair (dvk, ID).
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Note that the two sets are defined just for the simplicity of description, and
A knows the (ID,wpkID) pairs in Lwk and (dvk, ID) pairs in Ldvk.

A submits a Level-0 identifier, say ID∗
0 , to trigger the setup of the target

organization. (wpkID∗
0
,wskID∗

0
) ← RootWalletKeyGen(ID∗

0) is run, wpkID∗
0

is
given to A, and (ID∗

0 ,wpkID∗
0
, wskID∗

0
) is added into Lwk.

This captures that the adversary may manipulate the organization’s identi-
fier.

� Probing Phase. A can adaptively query the following oracles:

• Wallet Key Delegate Oracle OWKeyDelegate(·):
On input an identifier ID = (id0, . . . , idt) with t ≥ 1 such that ID|(t−1) ∈
Lwk,6 this oracle runs (wpkID, wskID) ← WalletKeyDelegate(ID,wpkID|(t−1)

,

wskID|(t−1)), returns wpkID to A, and sets Lwk = Lwk ∪(ID,wpkID,wskID),7

where (wpkID|(t−1)
, wskID|(t−1)) is the wallet key pair for ID|(t−1).

This captures that A can trigger the wallet key delegation for any identifier
ID of its choice, as long as ID|(t−1) ∈ Lwk, i.e., ID’s parent entity’s wallet
key pair has been generated (resp. delegated) previously due to A’s trigger
in the Setup phase (resp.A’s query on OWKeyDelegate(·)). Note that the
requirement ID|(t−1) ∈ Lwk is natural, since ID∗

0 is the target organization
and A will attack some derived verification key belonging to some entity in
the organization ID∗

0.
• Wallet Secret Key Corruption Oracle OWskCorrupt(·):

On input an entity’s identifier ID = (id0, . . . , idt) with t ≥ 08 such that
ID ∈ Lwk, this oracle returns the wallet secret key wskID of ID to A.
This captures that A can obtain the wallet secret keys for the existing wallets
of its choice.

• Wallet Secret View Key Corruption Oracle OWsvkCorrupt(·):
On input an entity’s identifier ID = (id0, . . . , idt) with t ≥ 0 such that ID ∈
Lwk, this oracle returns the wallet secret view key wsvkID of ID to A.
This captures that A can obtain the wallet secret view keys for the existing
wallets of its choice.

• Verification Key Adding Oracle ODVKAdd(·, ·):
On input a derived verification key dvk and an identifier ID =
(id0, . . . , idt) with t ≥ 0 such that ID ∈ Lwk, this oracle returns b ←
VerifyKeyCheck(dvk, ID,wpkID, wsvkID) to A, where wpkID and wsvkID are
ID’s wallet public key and wallet secret view key respectively. And if b = 1,
this oracle sets Ldvk = Ldvk ∪ (dvk, ID).
This captures that A can probe whether the derived verification keys generated
by it are accepted by the owners of the target wallets.

6 Note that we are abusing the concept of ‘∈’. In particular, if there exists a tuple
(ID,wpkID,wskID) ∈ Lwk for some (wpkID,wskID) pair, we say that ID ∈ Lwk.

7 Note that WalletKeyDelegate(·, ·, ·) is a deterministic algorithm, so that querying
OWKeyDelegate(·) on the same identifier will obtain the same response.

8 Note that actually the adversary A here should not make such a query with t = 0
(as required by the success conditions defined in later Output Phase). In later
definition of unlinkability, the adversary may query this oracle on ID with t = 0.
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• Signing Key Corruption Oracle ODSKCorrupt(·):
On input a derived verification key dvk such that there is a correspond-
ing pair (dvk, ID) in Ldvk, this oracle returns dsk ← SignKeyDerive(dvk,
ID,wpkID,wskID) to A, where (wpkID, wskID) is the wallet key pair of ID.
This captures that A can obtain the derived signing keys for the existing
derived verification keys of the target wallets, of its choice.

• Signing Oracle OSign(·, ·):
On input a message m ∈ M and a derived verification key dvk ∈ Ldvk

9, this
oracle returns σ ← Sign(m, dvk, dsk) to A, where dsk is a signing key for dvk.
This captures that A can obtain the signatures for messages and derived
verification keys of its choice.

� Output Phase. A outputs a message m∗ ∈ M, a signature σ∗, and a derived
verification key dvk∗ such that dvk∗ ∈ Ldvk.

Let (dvk∗, ID∗) ∈ Ldvk, and suppose the target wallet identifier ID∗ be a
Level-t∗ identifier, say ID∗ = (id∗

0, . . . , id
∗
t∗). A succeeds in the game if Verify(m∗,

σ∗, dvk∗) = 1 under the restrictions that (1) A did not query OWskCorrupt(·) on
ID∗

|i for any i such that 0 ≤ i ≤ t∗, (2) A did not query ODSKCorrupt() on dvk∗,
and (3) A did not query OSign() on (m∗, dvk∗).

Remark: It is worth mentioning that A is allowed to query the wallet secret view
keys for ID∗

|i (i = 0, . . . , t∗) by OWsvkCorrupt(·). Note this will guarantee the
safety of coins when the trust-less audits functionality is employed.

As the above unforgeability model captures the attackers’ ability exactly
and completely, below we also present a weaker unforgeability model, where the
adversary is required to commit its target wallet’s identifier (i.e., ID∗, which the
target derived verification key dvk∗ belongs to) in ahead.

Definition 2. A HDWSA scheme is existentially unforgeable under an adaptive
chosen-message attack with selective wallet (or just selective wallet existentially
unforgeable), if for all PPT adversaries A, the success probability of A in the
following game GameswEUF is negligible.

The game GameswEUF is identical to the above game GameEUF, except that the
adversary commits its target wallet in the Setup phase. More specifically, just
before the start of Probing Phase, the adversary A commits the identifier of
its target wallet, say, ID∗ = (id∗

0, . . . , id
∗
t∗) such that t∗ ≥ 0 and ID∗

|0 = ID∗
0 ,

committing that the target derived verification key dvk∗ in the Output Phase
will be one belonging to ID∗.

The wallet unlinkability is defined by the following game GameWUNL, which
captures that, the adversary is unable to identify the wallet, out of two wallets,
from which a target derived verification key was generated from, whatever the
two wallets belong to the same organization or different organizations. Note that
such an “indistinguishability” model captures the intuition in Fig. 4 well.
9 Note that we are abusing the concepts of ‘∈’. In particular, if there exists a pair

(dvk, ID) ∈ Ldvk for some ID, we say that dvk ∈ Ldvk.
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Definition 3. A HDWSA scheme is wallet unlinkable, if for all PPT adver-
saries A, the advantages of A in the following game GameWUNL, denoted by
AdvWUNL

A , is negligible.

� Setup. PP ← Setup(λ) is run and PP is given to A.
As in the Setup phase of GameEUF, Lwk = ∅ and Ldvk = ∅ are initialized.

A submits two different Level-0 identifiers, say ID∗
0
(0) and ID∗

0
(1).

For k = 0, 1: (wpkID∗
0
(k) ,wskID∗

0
(k)) ← RootWalletKeyGen(ID∗

0
(k)) is run,

wpkID∗
0
(k) is given to A, and (ID∗

0
(k),wpkID∗

0
(k) ,wskID∗

0
(k)) is added into Lwk.

This captures that the adversary may manipulate the organizations’ identi-
fiers.

� Probing Phase 1. Same as the Probing Phase of GameEUF.
� Challenge. A submits two different challenge wallets’ identifiers ID(0) =

(id(0)0 , . . . , id
(0)

t(0)
) and ID(1) = (id(1)0 , . . . , id

(1)

t(1)
), such that t(0) ≥ 0, t(1) ≥ 0,

and ID(0), ID(1) ∈ Lwk (implying ID
(0)
|0 , ID

(1)
|0 ∈ {ID

∗(0)
0 , ID

∗(1)
0 }).

A random bit c ∈ {0, 1} is chosen, dvk∗ ← VerifyKeyDerive(ID(c), wpkID(c))
is given to A. And (dvk∗, ID(c)) is added into Ldvk.

� Probing Phase 2. Same as Probing Phase 1.
� Guess. A outputs a bit c′ ∈ {0, 1} as its guess to c.

A succeeds in the game if c′ = c under the restrictions that (1) A did not
query OWskCorrupt(·) or OWsvkCorrupt(·) oracle on any ID ∈ {ID

(0)
|i | 0 ≤ i ≤

t(0)} ∪ {ID
(1)
|i | 0 ≤ i ≤ t(1)}, and (2) A did not query oracle ODVKAdd(·, ·) on

(dvk∗, ID(0)) or (dvk∗, ID(1)). The advantage of A is AdvWUNL
A = |Pr[c′ = c]− 1

2 |.
Remark: Note that the adversary is allowed to choose the challenge identifiers
ID(0) and ID(1) of its choice completely, namely, they could be from same or
different organizations, from same or different levels, or one could be an ancestor
of another. Note that the adversary is allowed to query the ODskCorrupt() and
OSign() oracles on the challenge derived verification key dvk∗, and this captures
that neither the signature nor the derived signing key leaks the privacy of the
owner of dvk∗. It is also worth noticing that, while the adversary in GameEUF
should not query OWskCorrupt(·) on an identifier ID = (id0, . . . , idt) with t = 0
such that ID ∈ Lwk (since it means corrupting the root wallet secret key of the
target organization ID∗

0), the adversary in GameWUNL may query OWskCorrupt(·)
and/or OWsvkCorrupt(·) on an identifier ID = (id0, . . . , idt) with t = 0 such that
ID ∈ Lwk, depending on its challenge wallet identifier pair (ID(0), ID(1)). In
particular, if ID

(0)
|0 = ID

(1)
|0 = ID

∗(k)
0 , then the adversary is allowed to query

OWskCorrupt(·) and/or OWsvkCorrupt(·) on ID
∗(1−k)
0 .

As the above unlinkability model captures the attackers’ ability exactly and
completely, below we also present a weaker unlinkability model, where the adver-
sary is required to commit its challenge wallets in ahead.
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Definition 4. A HDWSA scheme is selective wallet unlinkable, if for all PPT
adversaries A, the advantage of A in the following games GameswWUNL, denoted
by AdvswWUNL

A , is negligible.

The game GameswWUNL is identical to the above game GameWUNL, except that
the adversary commits the two challenge wallet identifiers in the Setup phase.
More specifically, just before the start of Probing Phase 1, the adversary A
commits the two challenge wallet identifiers, namely, ID(0) = (id(0)0 , . . . , id

(0)

t(0)
)

and ID(1) = (id(1)0 , . . . , id
(1)

t(1)
) such that t(0) ≥ 0, t(1) ≥ 0, and ID

(0)
|0 , ID

(1)
|0 ∈

{ID∗
0
(0), ID∗

0
(1)}.

3 Our Construction

In this section, we first review some preliminaries, including the bilinear groups
and CDH assumption. Then we propose our HDWSA construction.

3.1 Preliminaries

Bilinear Map Groups [3]. Let λ be a security parameter and p be a λ-bit prime
number. Let G1 be an additive cyclic group of order p, G2 be a multiplicative
cyclic group of order p, and P be a generator of G1. (G1,G2) are bilinear groups if
there exists a bilinear map ê : G1 ×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀(S, T ) ∈ G1 × G1,∀a, b ∈ Z, ê(aS, bT ) = ê(S, T )ab.
2. Non-degeneracy: ê(P, P ) �= 1.
3. Computable: ∀(S, T ) ∈ G1 × G1, ê(S, T ) is efficiently computable.

Definition 5 (Computational Diffie-Hellman (CDH) Assumption [20]).
The CDH problem in bilinear groups (p,G1,G2, P, ê) is defined as follows: given
(P, aP, bP ) ∈ G

3
1 as input, output an element C ∈ G1 such that C = abP .

An algorithm A has advantage ε in solving CDH problem in (p,G1,G2, P, ê) if
Pr[A(P, aP, bP ) = abP ] ≥ ε, where the probability is over the random choice of
a, b ∈ Zp and the random bits consumed by A.

We say that the (t, ε)-CDH assumption holds in (p,G1,G2, P, ê) if no t-time
algorithm has advantage at least ε in solving the CDH problem in (p,G1,G2, P, ê).

3.2 Construction

• Setup(λ) → PP. On input a security parameter λ, the algorithm chooses
bilinear groups (p,G1,G2, P, ê) and cryptographic hash functions H0 : SID →
G

∗
1, H1 : G1 × G1 → Z

∗
p, H2 : G1 × G1 → Z

∗
p, H3 : G1 × G1 × G1 → G

∗
1, and

H4 : (G1×G2)×M×G2 → Z
∗
p, where G∗

1 = G1\{0}, M = {0, 1}∗, and SID :=
{ID = (id0, id1, . . . , idt) | t ≥ 0, idi ∈ {0, 1}∗ ∀0 ≤ i ≤ t}. The algorithm
outputs public parameter PP = ((p,G1,G2, P, ê),H0,H1,H2,H3,H4), where
the message space is M and the identifier space is SID.
PP is assumed to be an implicit input to all the algorithms below.
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• RootWalletKeyGen(ID) → (wpkID,wskID). On input a Level-0 identifier ID,
the algorithm chooses uniformly random αID, βID ∈ Z

∗
p, then outputs a (root)

waller key pair (wpkID,wskID):

wpkID := (AID, BID) = (αIDP, βIDP ) ∈ G1 × G1,

wskID := (wsskID,wsvkID) = (αID, βID) ∈ Z
∗
p × Z

∗
p.

• WalletKeyDelegate(ID,wpkID|(t−1)
,wskID|(t−1)) → (wpkID,wskID). On input

an entity’s identifier ID = (id0, . . . , idt) with t ≥ 1 and its parent entity’s
(wallet public key, wallet secret key) pair, say wpkID|(t−1)

∈ G1 × G1 and
wskID|(t−1) = (αID|(t−1) , βID|(t−1)) ∈ Z

∗
p×Z

∗
p, the algorithm proceeds as below:

1. Compute QID = H0(ID) ∈ G
∗
1,

2. Compute αID = H1(QID, αID|(t−1)QID) and βID = H2(QID, βID|(t−1)

QID),
3. Output wallet key pair (wpkID,wskID) for ID as

wpkID := (AID, BID) = (αIDP, βIDP ) ∈ G1 × G1,

wskID := (wsskID,wsvkID) = (αID, βID) ∈ Z
∗
p × Z

∗
p.

• VerifyKeyDerive(ID,wpkID) → dvk. On input an identifier ID = (id0, . . . , idt)
with t ≥ 0 and its wallet public key wpkID = (AID, BID), the algorithm
chooses a uniformly random r ∈ Z

∗
p and outputs a derived verification key

dvk := (Qr, Qvk) with Qr = rP ∈ G1, Qvk = ê(H3(BID, rP, rBID),−AID) ∈
G2.

• VerifyKeyCheck(dvk, ID,wpkID,wsvkID) → 1/0. On input a derived verifica-
tion key dvk = (Qr, Qvk) ∈ G1 ×G2, an entity’s identifier ID = (id0, . . . , idt)
with t ≥ 0, and the entity’s wallet public key wpkID = (AID, BID) ∈ G1×G1

and wallet secret view key wsvkID = βID ∈ Z
∗
p, the algorithm checks whether

Qvk
?= ê(H3(BID, Qr, βIDQr),−AID) holds. If it does not hold, the algorithm

outputs 0, otherwise outputs 1.
• SignKeyDerive(dvk, ID,wpkID,wskID) → dsk or ⊥. On input a derived veri-

fication key dvk = (Qr, Qvk) ∈ G1 × G2, an entity’s identifier ID = (id0, . . . ,
idt) with t ≥ 0, and the entity’s (wallet public key, wallet secret key) pair,
say wpkID = (AID, BID) ∈ G1 × G1 and wskID = (αID, βID) ∈ Z

∗
p × Z

∗
p, the

algorithm checks whether Qvk
?= ê(H3(BID, Qr, βIDQr),−AID) holds. If it

does not hold, the algorithm outputs ⊥, otherwise outputs a derived signing
key dsk

dsk = αIDH3(BID, Qr, βIDQr) ∈ G1.

• Sign(m, dvk, dsk) → σ. On input a message m in message space M, a derived
verification key dvk = (Qr, Qvk) ∈ G1 × G2, and a derived signing key dsk ∈
G1, the algorithm proceeds as below:
1. Choose a uniformly random x ∈ Z

∗
p, then compute X = ê(xP, P ) ∈ G2.

2. Compute h = H4(dvk,m,X) ∈ Z
∗
p and Qσ = h · dsk + xP ∈ G1.

3. Output σ = (h,Qσ) ∈ Z
∗
p × G1 as the signature for m.
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Table 2. Sizes of signature and keys of an implementation of our HDWSA scheme

Derived verification key Signature Wallet public key Wallet secret key Derived signing key

193 Bytes 97 Bytes 130 Bytes 64 Bytes 65 Bytes

Table 3. Computation time of an implementation of our HDWSA scheme

Setup RootWalletKeyGen WalletKeyDelegate VerifyKeyDerive VerifyKeyCheck SignKeyDerive Sign Verify

7.769 ms 0.920 ms 4.111 ms 3.352 ms 3.122 ms 3.322 ms 1.505 ms 0.665 ms

• Verify(m,σ, dvk) → 1/0. On input a (message, signature) pair (m,σ) with σ =
(h,Qσ) ∈ Z

∗
p ×G1 and a derived verification key dvk = (Qr, Qvk) ∈ G1 ×G2,

the algorithm checks whether h
?= H4(dvk,m, ê(Qσ, P ) · (Qvk)h) holds. If it

holds, the algorithm outputs 1, otherwise outputs 0.

Correctness. The correctness of the construction can be easily verified. Due to
space limitation, we defer the details to the full version [22].

3.3 Security Analysis

Due to space limitation, we only give the security conclusion here and readers
are referred to the full version [22, Appendix B] for the proof details.

Theorem 1. The HDWSA scheme is selective wallet existentially unforgeable
under the CDH assumption in the random oracle model.

Theorem 2. The HDWSA scheme is selective wallet unlinkable under the CDH
assumption in the random oracle model.

Unforgeability and Unlinkability in the Adaptive Model. Following
Boneh et al.’s approach for achieving full security of Hierarchical Identity Based
Encryption (HIBE) construction [2], our HDWSA construction can be proven
unforgeable in the adaptive model, at the cost of a reduction loss factor of
1

h+1
1

qh
H0

, where qH0 is the number of hash oracle queries to H0 and h is the max-

imum level of identifiers/entities in an organization. Note that for hierarchical
systems, it is natural to set such a parameter h, and in a practical organization
hierarchy, h would be a small integer. We give more details of the reduction in
the full version [22, Sect. 4.3]. The proof for unlinkability in the adaptive model
is similar.
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4 Implementation

We implemented our HDWSA scheme in Golang and the source codes are avail-
able at https://github.com/cryptoscheme/hdwsa. Our implementation uses the
Pairing-Based Cryptography Library [19], and uses a type A pairing on elliptic
curve y2 = x3 + x over Fq for a 512-bit q and group with 160-bit prime order,
implying 80-bit security. Our implementation uses SHA-256 to implement the
hash functions.

Table 2 and Table 3 show the experimental results of our implementation on
a usual computation environment, namely, a desktop with Intel(R) Core(TM)
i7 10700 CPU @2.90GHz., 16 GB memory, and operating system Ubuntu 20.04
LTS. We clarify that our implementation was simply experimental and did not
optimize further. We clarify further that we use point compression in computing
the size of element in group G1.
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