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We study liquidity supply in fragmented markets. Market makers intermediate heterogeneous order flows, 
trading off spread revenue against inventory costs. Applying our model to payment for order flow (PFOF), we 
demonstrate that portfolio-based considerations of inventory management incentivize market makers to segment 
retail orders by siphoning them off-exchange. Banning order flow segmentation reduces total welfare, can make 
trading more costly for all investors, and can resolve a prisoner’s dilemma among market makers. These results 
differentiate our inventory-based model from the existing information-based theories of PFOF.

1. Introduction

Trade in modern financial markets is spread across many venues. 
Creation of the National Market System in the U.S. in 1975 marked the 
start of a sustained regulatory effort to create a reliable, integrated ex-

change trading environment. Yet, an enormous amount of trading still 
happens off-exchange—in recent months, nearly half of all equity vol-

ume. In part, this reflects differences in intermediation costs: investors 
who tend to be less costly for market makers to intermediate can be of-

fered better prices if they are segmented into separate venues. But what 
does this order flow segmentation imply for welfare and liquidity? This 
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paper argues that the implications may be nuanced and may depend on 
why certain investors are less costly to intermediate than others.

There are two reasons for why investors may differ in their inter-

mediation costs, each relating to one of the two classic frictions in the 
market microstructure literature: asymmetric information (Glosten and 
Milgrom, 1985; Kyle, 1985) and inventory costs (Stoll, 1978; Amihud 
and Mendelson, 1980; Ho and Stoll, 1981, 1983). On the one hand, cer-

tain orders may be less costly to intermediate because they are less in-

formed about fundamentals. And several existing studies have analyzed 
order flow segmentation through this lens. What has so far received 
less attention in the literature—despite its empirical importance—is the 
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other possibility: that certain orders may be less costly to intermediate 
because they tend to be less correlated in direction with the other or-

ders in a market maker’s portfolio.1 This paper aims to fill that gap. 
The analysis introduces a portfolio perspective on order flow manage-

ment, which underlies an inventory-based incentive to segment orders. 
We obtain additional predictions regarding liquidity and welfare. We 
also discuss implications for the potential consequences of regulatory 
intervention.

We first study a baseline model in Section 2, where order flow seg-

mentation is taken as given: order flows from various sources (e.g., 
retail investors or institutions) are exogenously split across market-

places. These various marketplaces can represent exchanges, “upstairs” 
block trading, or many other forms of segmentation. Yet another form 
of order flow segmentation is payment for order flow (PFOF), a com-

mon order-handling practice in which retail orders are routed directly 
to market makers, who typically execute them against their own bal-

ance sheets. In Sections 3 and 4, we specialize the model to the setting 
of PFOF, where we show how considerations of inventory cost can cause 
this practice to arise endogenously.

Baseline model. A single asset is traded on a fixed number of market-

places, where the volume of liquidity-demanding orders arriving to 
each marketplace is price-elastic (i.e., elastic with respect to the bid-

ask spread). A key characteristic of a marketplace is its order flow 
directionality, which determines the probability with which each or-

der arriving there is a buy or a sell. These directionalities are modeled 
as random variables with an arbitrary joint distribution, and they cap-

ture order correlation within and across marketplaces. Such correlation 
can arise, for example, from the splitting of large institutional parent 
orders into child orders or from sentiment-driven trading by retail in-

vestors. A continuum of market makers choose liquidity supplies—the 
expected numbers of orders that they will receive in each marketplace—

balancing expected revenues from bid-ask spreads against quadratic in-

ventory costs. An equilibrium consists of liquidity supplies and spreads 
for each marketplace such that (i) each market maker’s liquidity sup-

plies are optimal given the spreads, and (ii) each spread clears liquidity 
demand and supply in its marketplace.

A key insight from the baseline model is that market makers must 
consider their liquidity-supply decisions across marketplaces as a port-

folio: the correlation structure of directionalities determines the extent 
to which order flows will offset, hence the expected inventory cost of 
marginal orders. In fact, the market maker’s problem is tightly con-

nected to the optimization problem in standard portfolio theory. Our 
analysis highlights that portfolio considerations matter even for inven-

tory management of a single asset.

The importance of inventory considerations in general—and of a 
portfolio perspective in particular—is consistent with recent empiri-

cal evidence. Daures-Lescourret and Moinas (2023) show that after a 
shock to her inventory from an execution on one venue, a market mak-

er’s liquidity supply on the same (opposite) side becomes less (more) 
aggressive on all venues. Barardehi et al. (2024) argue that market mak-

ers treat retail orders differently, depending on institutional liquidity 
demand imbalances. Portfolio-based inventory considerations also ex-

plain two other facts: (i) Eaton et al. (2022) find that outage-induced 
reductions in Robinhood retail activity improve on-exchange liquidity 
supply (while outages of other brokers harm liquidity), and (ii) Schwarz 
et al. (2023) experimentally document that Robinhood clients receive 
less price improvement than clients of other retail brokers (E*Trade, 
Fidelity, TD Ameritrade). An explanation for both findings is that Robin-

hood order flow tends to exacerbate inventory imbalances: compared 
with order flows from other retail brokerages, Robinhood orders are 

1 Indeed, the staff report of SEC (2021) states that “[retail] orders are more 
likely to be small, uncorrelated with one another, and thus ‘one and done’ (i.e., 
not the first in a series of orders intended to transact a large amount of stock), 
which also allows for a tighter spread.”

more concentrated (Barber et al., 2022) and more correlated with past 
returns (Eaton et al., 2022).

Application to PFOF. Whereas order flow segmentation is exogenous 
in the baseline model, we next investigate how it might endogenously

arise, for example, in the form of PFOF.2 Section 3 considers a setting 
with two marketplaces, on-exchange and off-exchange, and two order 
sources, 𝑅 and 𝐼 , for retail and institutional. 𝐼 -orders must clear on-

exchange, but an endogenous fraction of 𝑅-orders may be siphoned 
off-exchange. This siphoning endogenously affects both the characteris-

tics of on-exchange order flow and the correlation between on-exchange 
and off-exchange order directionalities—and in turn, equilibrium vol-

umes and bid-ask spreads as well.

Depending on parameters, the equilibrium entails either (i) both 𝑅-

and 𝐼 -orders clearing on-exchange (i.e., a “no-siphoning” equilibrium) 
or (ii) all 𝑅-orders siphoned off-exchange, leaving only 𝐼 -orders on-

exchange (i.e., a “with-siphoning” equilibrium). To see how siphoning 
arises, conjecture an equilibrium in which all orders clear on-exchange. 
This implies a specific portfolio of 𝑅- and 𝐼 -orders for market mak-

ers. A market maker might, however, benefit if she could alter the 
composition of 𝑅- and 𝐼 -orders in her portfolio—due to differences 
in the orders’ characteristics, like their arrival rates and directionali-

ties. In particular, if it is beneficial to obtain more 𝑅-orders, they can 
be siphoned off-exchange with the promise of a slightly smaller spread. 
Doing so destroys the conjectured no-siphoning equilibrium, yielding a 
with-siphoning equilibrium instead.

We characterize the exact condition that separates the two regions 
of parameters. In words, the with-siphoning region is precisely where 
𝑅-orders contribute less to inventory costs (at the margin) than 𝐼 -

orders do. For example, this happens when 𝑅-order flow tends to be 
sufficiently well balanced between buys and sells. In this case, market 
makers find 𝑅-orders more attractive and siphon them off-exchange as 
a result. We argue in Section 3.3 that the realistic parameter values 
lie in this with-siphoning region, which is consistent with the fact that 
“in the equity markets right now, if you place a [retail] market order, 
90–95 percent do not go to the lit exchanges, do not go to Nasdaq or 
New York Stock Exchange; they go to wholesalers” (Gensler, 2022).

Most existing models of PFOF analyze it through the lens of asym-

metric information, as in Easley et al. (1996) and Battalio and Holden 
(2001). These models view retail orders as less informed than institu-

tional orders, meaning that they create less adverse selection and can 
therefore be cleared at a smaller spread if siphoned off-exchange. Our 
model proposes an entirely different mechanism: retail orders may con-

tribute less to—and may even reduce—market makers’ inventory risk. 
As we discuss below, this differing mechanism implies different predic-

tions and different policy implications.

One set of predictions concerns the consequences of banning off-

exchange retail trading (hereafter, a “segmentation ban”) on spreads, 
market maker profits, and total welfare. Our analysis adds to the ongo-

ing policy debate regarding PFOF. While the practice is widely preva-

lent in the U.S., it would be affected by new rules that the SEC has 
recently proposed (SEC, 2022). In Europe, the issue remains contentious 
(Reuters, 2023).

When a segmentation ban has an effect (i.e., in the with-siphoning 
region of the parameter space), the model predicts that it harms 𝑅-

investors, in the sense that it leads them to pay a larger spread. One 
might think such a ban would entail a countervailing benefit for 𝐼 -

investors—however, this is not necessarily so. Rather, for certain pa-

rameters, 𝐼 -investors are also harmed. When segmentation is banned 
and 𝑅-investors face a larger spread, fewer 𝑅-investors opt to trade. If 

2 In practice, PFOF may refer to either (i) the practice whereby retail orders 
are routed directly to market makers and executed off-exchange, or (ii) the 
payment transferred from market makers to retail brokers for such a purpose. 
In this paper, PFOF refers primarily to (i). We do not model the payment (ii) 
both for parsimony and because it tends to be very small (Schwarz et al., 2023).
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𝑅-orders are sufficiently effective for hedging 𝐼 -orders, this leads mar-

ket makers to anticipate ending with a larger net inventory imbalance, 
and they set a larger on-exchange spread to compensate. Moreover, 
there is reason to think that this is not only a theoretical possibility, 
but in fact the empirically-relevant case: Evidence from Jones et al. 
(2023) suggests that retail order imbalances negatively correlate with 
institutional imbalances, hence are effective for hedging against them.

These predictions reveal an interesting comparison with the existing 
information-based models of PFOF. These models posit that 𝑅-investors 
pay a smaller spread when siphoned off-exchange because they are 
less informed than 𝐼 -investors (i.e., create less adverse selection). By 
pooling both investor types, a segmentation ban would lead to an inter-

mediate spread, harming 𝑅-investors while unambiguously benefiting

𝐼 -investors. In contrast, our theory makes a more nuanced prediction 
for 𝐼 -investors. And although our theory makes the same prediction for 
𝑅-investors, it is for an entirely different reason: not because their or-

ders are less informed but rather because they contribute less inventory 
risk.

Turning to market maker profitability, the model reveals that PFOF 
can sometimes function as a prisoner’s dilemma: although each market 
maker has a unilateral incentive to siphon 𝑅-orders off-exchange, their 
collective siphoning creates a pecuniary externality, which may lead 
them to be worse off in equilibrium than if the practice were banned. In 
this way, our theory rationalizes market makers’ seeming ambivalence 
toward regulatory discussions of bans on PFOF (and the order flow seg-

mentation that PFOF entails).3

A segmentation ban unambiguously reduces total welfare in our 
model. This is because, absent a segmentation ban, the equilibrium in 
fact leads to the welfare-maximizing quantities of 𝑅- and 𝐼 -investor 
volume, essentially by the First Welfare Theorem. By constraining mar-

ket makers’ liquidity-supply decisions, a segmentation ban distorts out-

comes and necessarily reduces welfare. This analysis identifies a novel 
channel through which regulatory restrictions on PFOF might harm wel-

fare, via market makers’ inventory considerations.

Related literature. Our paper contributes to two strands of literature. 
First, a theoretical literature has studied market fragmentation from 
various angles: investors’ venue choices (Pagano, 1989, Chowdhry and 
Nanda, 1991, Babus and Parlatore, 2022); competition among venue 
operators (Pagnotta and Philippon, 2018, Chao et al., 2019, Baldauf 
and Mollner, 2020, Cespa and Vives, 2022); information and price dis-

covery (Ye and Zhu, 2020, Zhu, 2014); speed and latency arbitrage 
(Foucault and Menkveld, 2008; Kervel, 2015); and price impact (Chen 
and Duffie, 2021). In the work closest to ours, Daures-Lescourret and 
Moinas (2023), as we do, speak to liquidity supply across exogenously 
fragmented exchanges in a setting with inventory frictions. Different 
from their paper, our model highlights that such inventory concerns, in 
fact, endogenously incentivize market makers to siphon certain orders 
off-exchange.

Second, our application to PFOF contributes to the theoretical liter-

ature on the practice. Battalio and Holden (2001) argue that PFOF and 
internalization can arise when orders’ verifiable characteristics are cor-

related with informedness. This is consistent with evidence from Easley 
et al. (1996), who estimate that orders on the main exchange (NYSE) are 
more likely to be informed than those diverted to the regional exchange 
(Cincinnati). More recently, Yang and Zhu (2020) show that “back-

runners” like high-frequency trading firms may be willing to pay for 
retail flows because doing so enables them to learn about institutional 
flows, infer the information driving those flows, and earn subsequent 
trading profits. The above explanations share a common feature: they 
all analyze PFOF through information-based channels, like adverse se-

3 For example, Ken Griffin (CEO of Citadel) has said, “Payment for order flow 
is a cost to me. So if you’re going to tell me that by regulatory fiat one of my 
major items of expense disappears, I’m OK with that” (Financial Times, 2021).

lection and learning. Our model departs from this focus on information, 
turning instead to inventory risk as the key friction.

Various other dimensions of PFOF have also been explored theo-

retically. Chordia and Subrahmanyam (1995) show that order flows 
migrate from exchange (NYSE) to off-exchange (non-NYSE) via PFOF 
when discrete ticks constrain market makers’ price competition. 
Hagerty and McDonald (1996) analyze a broker’s optimal portfolio of 
informed and uninformed clientele. Kandel and Marx (1999) explicitly 
study brokers’ order-handling decisions: sending to the exchange (via 
Nasdaq’s Small Order Execution System), selling to market makers via 
PFOF, or internalizing (vertical integration). Parlour and Rajan (2003)

argue that PFOF can serve as an anticompetitive device, raising market 
maker profits. Glode and Opp (2016) argue that pre-trading order flow 
agreements, like PFOF, can sustain intermediation chains that reduce 
information asymmetry and improve efficiency.

On the empirical side, our model connects to the recent, growing lit-
erature studying new developments in retail trading. Jain et al. (2023)

document how the rise of zero-commission retail brokers changed var-

ious volume shares, for example, across brokers or between exchanges 
and wholesale market makers. Adams and Kasten (2021) study the ex-

ecution quality of small orders in the zero-commission regime. Ernst 
and Spatt (2022) find that retail brokers receive larger PFOF payments 
in options than equities, meaning that they have an incentive to sway 
retail investors to the options market.

Our model also relates to the economics literature on price discrim-

ination in competitive environments, surveyed by Stole (2007). One 
interesting feature of our model is that it is possible for price dis-

crimination to lower spreads for all investors. This cannot happen in 
the classic model of third-degree oligopolistic price discrimination of 
Holmes (1989), which features two firms and two consumer groups (the 
“weak” and “strong” markets). However, Corts (1998) demonstrates 
that if the competing firms differ in which markets they consider strong 
versus weak, then it is possible for price discrimination to lower prices 
in both markets, a phenomenon he calls “all-out competition.”

2. A model of liquidity supply

2.1. Setup

Overview. A single asset is traded on multiple marketplaces. Its fair 
value—the common component of its value—is constant and known 
to all. Liquidity-taking orders arriving at these marketplaces are met by 
liquidity-supplying market makers, at bid-ask spreads that clear each 
market. We assume away information asymmetry so as to mute chan-

nels already analyzed by previous literature. That is, all liquidity-taking 
orders are submitted for non-fundamental, private-value reasons.

Marketplaces and order flows. Marketplaces are indexed 𝑗 ∈ {1, … , 𝐽}. 
For simplicity, we model these marketplaces as clearing simultane-

ously, at a single point in time.4 Appendix C considers dynamics, 
showing that our main conclusions carry over to a two-period version 
of the model. For each marketplace 𝑗, let 𝑠𝑗 ≥ 0 be its half bid-ask 
spread, which will be determined endogenously in equilibrium.5 We 
write 𝒔 ∶= (𝑠1, … , 𝑠𝐽 )⊤. As a convention, bold letters denote vectors 
(always columns) or matrices. A continuum of liquidity-demanding or-

ders with measure 𝜆𝑗 (𝑠𝑗 ) arrives at marketplace 𝑗, with 𝜆𝑗 (⋅) decreasing 
and nonnegative.

4 An alternative but equivalent way to think about our model is that trading 
occurs over a continuous interval, with prices held fixed over that interval. 
Hendershott and Mendelson (2000) adopt a similar approach.

5 Because our primary focus will be on symmetric settings, in which order 
directionality is not predictable ex ante and market makers have zero initial 
inventory, each marketplace’s midpoint (if we were to endogenize it) would be 
naturally at the fair value of the asset, leaving only the spread to be determined. 
This is why our analysis can focus only on the spreads.
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Remark 1. For example, a model of PFOF might entail 𝐽 = 2 market-

places, with one as the exchange and the other as off-exchange execu-

tion on market makers’ own balance sheets. In general, a marketplace 
can represent any trading venue where prices are determined by market 
clearing—including limit order books, periodic auctions, exchanges’ re-

tail liquidity programs, and the market for block trading. On the other 
hand, the marketplaces of our model are less appropriate for capturing 
venues where prices are determined in other ways—including midpoint 
dark pools and workup sessions.

Order directions. Each order arriving on marketplace 𝑗 is independently 
either a one-unit buy or a one-unit sell, with respective probabili-

ties
1
2 (1 + 𝐷𝑗 ) and

1
2 (1 − 𝐷𝑗 ), where 𝐷𝑗 ∈ [−1, 1] captures the average 

direction of the marketplace’s order flow. The vector of directionalities 
𝑫 ∶= (𝐷1, 𝐷2, … , 𝐷𝐽 )⊤ is random, with mean and variance denoted 
𝝁 = 𝔼[𝑫] and 𝚺 = var[𝑫], respectively. We assume 𝚺 is positive-

definite.

Remark 2. Directionalities capture the possibility of correlation among 
orders. In reality, orders may be correlated due to several mechanisms. 
One is trading on private information about fundamentals. Yet, given 
our focus on inventory frictions, our model better fits correlation driven 
by forces other than private information. For example, correlation can 
arise from the splitting of large institutional parent orders placed for 
non-informational reasons like portfolio rebalancing, portfolio transi-

tion, and fund flows. Several datapoints help quantify the importance of 
large, non-informational institutional trades. Index additions and dele-

tions are a source of such trades, because they cause index funds and 
other investors to adjust their holdings for mechanical reasons, and they 
lead to a significant increase in trading volume (e.g., Harris and Gurel, 
1986; Greenwood, 2005). In the data of Kyle and Obizhaeva (2016), an 
average portfolio transition accounts for 4.20% of corresponding stocks’ 
daily trading volume, and this number increases to 16.23% for small 
stocks. Coval and Stafford (2007) find that flows out of (or into) mutual 
funds can result in severe uninformed fire selling (or purchasing), and 
such fund flows amount to as much as 13.9% (Israeli data, Ben-Rephael 
et al., 2011) or 19.19% (U.S. data, Ben-Rephael et al., 2012) of total 
trading volume in the market. Furthermore, non-informational correla-

tion can also arise when retail investors coordinate on online platforms 
(e.g., “WallStreetBets” on Reddit) or herd on the same market senti-

ment.

Microfoundation. The downward-sloping liquidity demand 𝜆𝑗 (⋅) can be 
microfounded as follows. Assume that order flow on marketplace 𝑗

originates from a continuum of investors with measure 𝜅𝑗 . Each in-

vestor submits a one-unit immediate-or-cancel (IOC) order with a limit 
price reflecting her private value for the asset—this order will be mar-

ketable only if the private value is extreme enough, exceeding the half 
spread 𝑠𝑗 . Her private value is positive with probability

1
2 (1 +𝐷𝑗 ) (and 

negative otherwise) and its magnitude is drawn i.i.d. from c.d.f. 𝐹𝑗(⋅). 
We then obtain the decreasing aggregate liquidity demand 𝜆𝑗 (𝑠𝑗 ) ∶=
𝜅𝑗 ⋅

(
1 − 𝐹𝑗 (𝑠𝑗 )

)
.

Liquidity supply. A continuum of market makers, indexed 𝑚 ∈ [0, 𝑀], 
compete to provide liquidity on all 𝐽 marketplaces.6 Before 𝑫 realizes, 
each market maker 𝑚 chooses her liquidity supply 𝑥𝑚𝑗 for each market-

place 𝑗, taking as given the half spreads 𝒔, to maximize her expected 
profit described below. The number of randomly-assigned orders that 
market maker 𝑚 will receive on marketplace 𝑗 is a Poisson-distributed 
random variable with expectation 𝑥𝑚𝑗 . We write 𝒙𝑚 ∶= (𝑥𝑚1, … , 𝑥𝑚𝐽 )⊤.

6 While in reality the market making sector is composed of a handful of large 
wholesale market makers (Citadel, Virtu, etc.), we model them as a continuum 
to simplify the analysis by ensuring price-taking behavior.

Remark 3. The interpretation of 𝑥𝑚𝑗 may depend on what market-

place 𝑗 represents. For example, if 𝑗 refers to an exchange, then 𝑥𝑚𝑗

can represent a market maker’s posted limit orders. Alternatively, 𝑥𝑚𝑗

can reflect the “groundwork” that a market maker needs to lay before 
trading starts, like the allocation of computational power, bandwidth, 
and staffing, data subscription fees, regulatory and compliance costs, 
etc. If 𝑗 refers to market makers’ siphoning of retail orders, then 𝑥𝑚𝑗

can refer to market maker 𝑚’s negotiations with brokers over the terms 
at which retail orders will be processed. In each of these situations, the 
number of orders that a market maker would in practice receive is ran-

dom, determined by how many liquidity-demanding investors happen 
to arrive over the relevant interval of time. This is why we model 𝑥𝑚𝑗

as determining a random (rather than deterministic) number of orders 
that market maker 𝑚 receives from marketplace 𝑗. In fact, the Pois-

son distribution that we assume would be exactly correct if the market 
maker were to receive liquidity-demanding orders at a constant rate 
over a fixed time interval. By letting market makers choose liquidity 
supplies 𝒙𝑚, we effectively base our model of liquidity supply on quan-

tity competition rather than price competition. Empirical evidence, e.g., 
from Brogaard and Garriott (2019), supports such a view.

Market maker profits. A market maker’s profit has two components: 
spread revenue and inventory cost.7 Let 𝑄𝑚𝑗 and 𝑍𝑚𝑗 denote, respec-

tively, market maker 𝑚’s realized volume and realized net inventory 
from supplying liquidity to marketplace 𝑗. For example, 2 buy and 3 sell 
orders would yield volume 𝑄𝑚𝑗 = 2 +3 and net inventory 𝑍𝑚𝑗 = −2 +3. 
Each unit of volume earns her the half-spread 𝑠𝑗 . We assume the inven-

tory cost is quadratic, with 𝛾 > 0 as a common scaling parameter. Ex 
ante both 𝑄𝑚𝑗 and 𝑍𝑚𝑗 are random, with distributions depending on 
her liquidity supply 𝑥𝑚𝑗 . Therefore, her expected profit

𝔼

[
𝐽∑

𝑗=1
𝑄𝑚𝑗𝑠𝑗 −

𝛾

2

( 𝐽∑
𝑗=1

𝑍𝑚𝑗

)2
]

(1)

is an endogenous function of the liquidity supply choices 𝒙𝑚.

Equilibrium definition. An equilibrium consists of liquidity supplies 𝒙𝑚

for each market maker 𝑚 and a half spread 𝑠𝑗 for each market-

place 𝑗, such that (i) each market maker 𝑚’s 𝒙𝑚 maximizes her expected 
profit (1), and (ii) market clearing holds for each marketplace 𝑗:8

𝑀

∫
0

𝑥𝑚𝑗d𝑚 = 𝜆𝑗 (𝑠𝑗 ), ∀𝑗 ∈ {1,… , 𝐽}. (2)

2.2. Equilibrium characterization

We first express a market maker’s expected profit (1) as a function 
of her liquidity supplies 𝒙𝑚. Suppose she has chosen 𝑥𝑚𝑗 , meaning that 
her volume 𝑄𝑚𝑗 is Poisson distributed with mean 𝑥𝑚𝑗 . She therefore 
expects spread revenue of 𝔼 

[
𝑄𝑚𝑗𝑠𝑗

]
= 𝑥𝑚𝑗𝑠𝑗 from marketplace 𝑗. Her 

net inventory from marketplace 𝑗 can be written

𝑍𝑚𝑗 =
𝑄𝑚𝑗∑
𝑖=1

(−1)𝐵𝑖𝑚𝑗 , (3)

7 Market makers’ inventory costs can arise from risk aversion, price impact 
in portfolio rebalancing, capital pledged to clearing houses, or a moral haz-

ard problem between market makers and their financiers (Bruche and Kuong, 
2021).

8 In formulating this market-clearing condition, we follow convention in as-

suming an exact law of large numbers over a continuum of independent random 
variables. See Duffie et al. (2023) for a rigorous formulation.
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where
(
𝐵𝑖𝑚𝑗

)
are i.i.d. Bernoulli draws with success rate

1
2 (1 + 𝐷𝑗 ). 

Total net inventory across all marketplaces is 
∑𝐽

𝑗=1 𝑍𝑚𝑗 , where, to eval-

uate her quadratic inventory cost, we need the expectation of its square.

Lemma 1. A market maker 𝑚’s expected squared inventory is

𝔼
⎡⎢⎢⎣
(

𝐽∑
𝑗=1

𝑍𝑚𝑗

)2⎤⎥⎥⎦ = 𝒙⊤
𝑚𝟏+ 𝒙⊤

𝑚

(
𝚺+ 𝝁𝝁⊤

)
𝒙𝑚,

where 𝟏 is a length-𝐽 column vector of ones.

To understand Lemma 1, consider the special case with only one 
marketplace 𝑗 and only sell orders (i.e., 𝜎𝑗 = 0 and 𝜇𝑗 = −1). Because 
all orders are to sell, a market maker’s realized inventory 𝑍𝑚𝑗 equals 
her volume 𝑄𝑚𝑗 , which is a Poisson random variable with mean 𝑥𝑚𝑗 . 
Hence, expected squared inventory is 𝔼 

[
𝑍2

𝑚𝑗

]
= var

[
𝑍𝑚𝑗

]
+𝔼 

[
𝑍𝑚𝑗

]2 =
𝑥𝑚𝑗 + 𝑥2

𝑚𝑗
, consistent with Lemma 1. For general values of 𝜎𝑗 and 𝜇𝑗 , 

we derive in the proof that 𝔼 
[
𝑍2

𝑚𝑗

]
= 𝑥𝑚𝑗 + (𝜎2

𝑗
+ 𝜇2

𝑗
)𝑥2

𝑚𝑗
. Intuitively, 

potential for both buying and selling, on the one hand, allows cer-

tain offsetting in the net inventory 𝑍𝑚𝑗 , thus lowering the 𝑥2
𝑚𝑗

term 
to 𝑥2

𝑚𝑗
𝜇2

𝑗
; but on the other hand, randomness in the composition of buys 

versus sells creates additional variation, thus adding the term 𝑥2
𝑚𝑗

𝜎2
𝑗
. 

With multiple marketplaces, the expectation of the square of total in-

ventory is as stated in Lemma 1.

Using Lemma 1, therefore, we can write the market maker’s opti-

mization problem as9

max
𝒙𝑚

𝒙⊤
𝑚

(
𝒔− 𝛾

2
𝟏
)
− 𝛾

2
𝒙⊤

𝑚

(
𝚺+ 𝝁𝝁⊤

)
𝒙𝑚. (4)

Because the optimization problem (4) is quadratic, first-order condi-

tions yield the market maker’s optimal liquidity supplies

𝒙𝑚 = 1
𝛾

(
𝚺+ 𝝁𝝁⊤

)−1 (
𝒔− 𝛾

2
𝟏
)

. (5)

The equilibrium half spreads 𝒔 can then be pinned down via the market-

clearing condition (2).

Proposition 1 (Equilibrium liquidity supply). There exists a unique equilib-

rium, where the half spreads 𝒔 are the unique solution of
𝑀

𝛾

(
𝚺+ 𝝁𝝁⊤

)−1 (
𝒔− 𝛾

2𝟏
)
=
(
𝜆1(𝑠1),… , 𝜆𝐽 (𝑠𝐽 )

)⊤
; and where each mar-

ket maker 𝑚’s liquidity supply 𝒙𝑚 is given by (5), which moreover satis-

fies 𝒙𝑚 ≥ 𝟎.

2.3. Connections to portfolio theory

The objective (4) resembles the optimization problem in standard 
portfolio theory:

max
𝒘

𝒘⊤
(
𝒓− 𝑟f𝟏

)
− 𝑎

2
𝒘⊤𝚺𝑟𝒘,

where, fixing the risk-free rate 𝑟f, an investor with risk-aversion co-

efficient 𝑎 chooses a weight vector 𝒘 over risky assets with expected 
returns 𝒓 and variances 𝚺𝑟. Analogously, our market makers choose 
liquidity-supply portfolios 𝒙𝑚 for a single asset.

The solution to this standard portfolio problem is 𝒘∗ =
1
𝑎
𝚺𝑟

(
𝒓− 𝑟f𝟏

)
. Naturally, our expression for the optimal supply (5) re-

sembles it. Portfolio theory, therefore, also suggests an intuition for 
equation (5). In choosing her optimal portfolio, an investor trades off 

9 We do not require the liquidity supplies 𝒙𝑚 to be nonnegative, although 
they always are in the unique equilibrium characterized by Proposition 1. For 
example, 𝑥𝑚𝑗 < 0 might be interpreted as the market maker demanding liquidity 
on marketplace 𝑗 by crossing the spread.

the benefit from the assets’ expected returns 𝒘⊤𝒓 against two sources 
of cost: (i) the opportunity cost of not investing in the risk-free as-

set 𝒘⊤𝑟f𝟏 and (ii) the portfolio’s return risk 𝑎

2𝒘
⊤𝚺𝑟𝒘. In optimizing 

her portfolio, the investor maximizes the Sharpe ratio 𝒘
⊤
(
𝒓−𝑟f𝟏

)√
𝒘⊤𝚺𝑟𝒘

then 
scales according to her risk aversion 𝑎. In our setup, a market maker 
trades off the benefit from the spread revenues 𝒙⊤

𝑚𝒔 against the expected 
inventory cost 𝒙⊤

𝑚
𝛾

2𝟏 +
𝛾

2𝒙
⊤
𝑚

(
𝚺+ 𝝁𝝁⊤

)
𝒙𝑚 (see Lemma 1). To obtain her 

optimal liquidity supply (5), a market maker maximizes a similar ratio 
𝒙⊤

𝑚(𝒔−
𝛾
2 𝟏)√

𝒙⊤
𝑚(𝚺+𝝁𝝁⊤)𝒙𝑚

then scales according to the inventory cost parameter 𝛾 .

As another connection, our equilibrium half spreads 𝒔 are deter-

mined via market clearing (as in (2)), similar to how equilibrium ex-

pected returns 𝒓 are determined in, e.g., CAPM. One key difference is 
that, in our model, market makers face spread-elastic liquidity demand 
(𝜆𝑗 (⋅) is downward-sloping), while in CAPM, the assets are in inelas-

tic fixed supplies. This is because whereas every agent in CAPM faces 
a portfolio problem, in our model, only the liquidity-supplying market 
makers do (the liquidity-demanding investors do not).10

3. Endogenous order flow segmentation

We next adapt our general model of liquidity supply to the setting of 
PFOF, highlighting how the economic forces that we model can cause 
order flow segmentation to arise endogenously.

3.1. Setup

To capture PFOF, we model two types of investors: institutional and 
retail. In particular, retail orders can be executed either on-exchange 
or off-exchange (albeit at a spread no worse than that on-exchange). 
This corresponds to a version of the model described in Section 2.1

with 𝐽 = 2 marketplaces whose order flows are an endogenous mixture 
of retail and institutional orders.

Investors and their liquidity demand. The two types of liquidity-demand-

ing investors are labeled 𝑘 ∈ {𝑅, 𝐼}. The measure of type-𝑘 orders 
is 𝜆𝑘(𝑠), where for tractability we assume

𝜆𝑘(𝑠) = max{0, (𝜁 − 𝑠)𝜔𝑘},

where 𝜔𝑘 > 0 measures the magnitude of the type-𝑘 demand, and 𝜁 > 0
reflects the maximum acceptable trading cost—demand falls to zero if 
the half-spread 𝑠 exceeds 𝜁 . We also assume 𝜁 >

𝛾

2 to guarantee trading 
in equilibrium.11

As before, we assume every order from a type-𝑘 investor is in-

dependently either a one-unit buy or a one-unit sell, with respective 
probabilities

1
2 (1 + 𝐷𝑘) and

1
2 (1 − 𝐷𝑘), where 𝐷𝑘 ∈ [−1, 1] captures 

the average direction of type-𝑘 orders. For simplicity, we let 𝔼 
[
𝐷𝐼

]
=

𝔼 
[
𝐷𝑅

]
= 0.12 We write 𝚺◦ = var

[
(𝐷𝐼 ,𝐷𝑅)⊤

]
=
(

𝜎2
𝐼

𝜌𝜎𝐼𝜎𝑅

𝜌𝜎𝐼𝜎𝑅 𝜎2
𝑅

)
and 

assume that 𝚺0 is positive-definite.

10 Another distinction applies to the version of the model that we subsequently 
consider in Sections 3–4. There, market makers are allowed to endogenously 
siphon order flows, which endogenizes the demand 𝜆𝑗 (⋅) in each marketplace, 
as well as the corresponding directionality characteristics 𝝁 and 𝚺.
11 Indeed, (i) liquidity demand vanishes on all marketplaces 𝑗 where 𝑠𝑗 > 𝜁 ; 
(ii) hence, market clearing requires zero liquidity supply (𝑥𝑚𝑗 = 0) for such 
marketplaces and nonnegative liquidity supply (𝑥𝑚𝑗 ≥ 0) elsewhere; (iii) if 𝜁 ≤
𝛾

2
, then we have 𝑠𝑗 ≤ 𝛾

2
for these other marketplaces; (iv) hence, according 

to (4), any such 𝒙𝑚 ≠ 𝟎 leads to negative profit, so that market makers optimally 
choose 𝒙𝑚 = 𝟎.
12 Setting 𝔼[𝐷𝐼 ] = 𝔼[𝐷𝑅] = 0 is with little loss of generality: as seen from 
Section 2.2 and Proposition 1, the mean vector 𝝁 enters the analysis only via 
the matrix 𝚺 + 𝝁𝝁⊤, so that its effects can be equivalently attributed to 𝚺.
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Remark 4. The linear demand can be microfounded, following the 
discussion on p. 4, by assuming that the investors’ private value mag-

nitudes are uniformly distributed on [0, 𝜁]. Setting the same 𝜁 for 
both 𝑘 ∈ {𝑅, 𝐼} amounts to assuming that each investor type exhibits 
the same price elasticity, d𝜆𝑘∕𝜆𝑘

d𝑠∕𝑠
= − 𝑠

𝜁−𝑠
, which is a natural benchmark 

case.

Marketplaces and routing. Aside from differences in the parameters 
(𝜔𝑅, 𝜎𝑅) and (𝜔𝐼 , 𝜎𝐼 ), the other difference between the two investor 
types is that 𝑅-investors’ orders can be siphoned off-exchange, while 𝐼 -

investors’ orders must remain on-exchange.13 Formally, we define 𝐽 = 2
marketplaces, labeled as 1 and 2, where 1 refers to on-exchange and 2 to 
off-exchange execution of retail orders. All 𝐼 -orders are routed to mar-

ketplace 1. For 𝑅-orders, an endogenous fraction 𝛼 ∈ [0, 1] are routed 
to marketplace 2, and the remaining 1 − 𝛼 to marketplace 1. The mea-

sure of liquidity-demanding orders on each of the two marketplaces is 
therefore

𝜆1(𝑠1) = 𝜆𝐼 (𝑠1) + (1 − 𝛼)𝜆𝑅(𝑠1) and 𝜆2(𝑠2) = 𝛼𝜆𝑅(𝑠2).

Order flow on marketplace 1 is a mixture of 𝐼 -orders with weight 𝜔𝐼

and 𝑅-orders with weight (1 − 𝛼)𝜔𝑅. Order flow on marketplace 2 is 
purely type-𝑅. Letting the weighting matrix be

𝑭 (𝛼) =

(
𝜔𝐼

𝜔𝐼+(1−𝛼)𝜔𝑅

(1−𝛼)𝜔𝑅

𝜔𝐼+(1−𝛼)𝜔𝑅

0 1

)
, (6)

the order flow directionality vector 
(
𝐷1,𝐷2

)⊤ = 𝑭 (𝛼) 
(
𝐷𝐼 ,𝐷𝑅

)⊤
is 

a function of 𝛼 and therefore endogenous. We also compute 𝚺 =
var

[
(𝐷1,𝐷2)⊤

]
= 𝑭 (𝛼)𝚺◦𝑭 (𝛼)⊤.

Liquidity supply. Market makers, their liquidity supplies, and their ob-

jective functions are modeled precisely as in Section 2.1.

Equilibrium definition. An equilibrium consists of liquidity supplies 
(𝑥𝑚1, 𝑥𝑚2) for each market maker 𝑚, the fraction 𝛼 ∈ [0, 1] of 𝑅-orders 
that are siphoned off-exchange, and half spreads 𝑠1 and 𝑠2, such that 
(i) each market maker 𝑚’s (𝑥𝑚1, 𝑥𝑚2) maximizes her expected profit (1), 
(ii) market clearing holds for each marketplace 𝑗, which, following (2)

can be written

𝑀

∫
0

𝑥𝑚1d𝑚 = (𝜁 − 𝑠1)
(
𝜔𝐼 + (1 − 𝛼)𝜔𝑅

)
and

𝑀

∫
0

𝑥𝑚2d𝑚 = (𝜁 − 𝑠2)𝛼𝜔𝑅,

and (iii) the spreads satisfy both of the following conditions:

𝑠1 ≤ 𝑠2 if 𝛼 < 1; (7a)

𝑠1 ≥ 𝑠2 if 𝛼 > 0. (7b)

Conditions (7a) and (7b) represent the fiduciary duty of (unmodeled) 
retail brokers to their clients. For example, they together imply that if 
𝛼 ∈ (0, 1), then 𝑠1 = 𝑠2. The intuition is that 𝛼 ∈ (0, 1) means 𝑅-orders 
are routed both off- and on-exchange. This mixing behavior conforms 
with best-execution obligations only if both outlets offer identical exe-

cution quality, in the sense that 𝑠1 = 𝑠2. Similarly, if 𝛼 = 1 (𝛼 = 0), so 
that all 𝑅-orders are routed off-exchange (on-exchange), then 𝑠1 ≥ 𝑠2
(𝑠1 ≤ 𝑠2).14

13 Not modeled are off-exchange venues that cater to 𝐼 -investors. For exam-

ple, many dark pools cross institutional buy and sell orders at the midpoint. 
Appendix B extends our model by introducing a midpoint dark pool accessible 
to 𝐼 -investors. Our results are robust to this extension.
14 The access rule of Reg NMS (Rule 610) prohibits exchanges from differential 
treatment of orders based on the identity of the trader. Our model captures 

Remark 5. In practice, when executing retail orders off-exchange, mar-

ket makers typically charge a spread lower than the one prevailing 
on-exchange. The difference is called price improvement, which endoge-

nously arises in our model whenever 𝑠1 − 𝑠2 > 0. Furthermore, when 
a retail order is siphoned off-exchange in practice, the retail investor’s 
broker may receive an additional payment, known as payment for or-

der flow, from the market maker who handles the order. Schwarz et 
al. (2023) show that this payment is small, ranging “from $0.001 to 
$0.03 per share [. . . ] an order of magnitude smaller than [. . . ] price 
improvement, which ranges from $0.03 to $0.08.” Nor is it central to 
the economic mechanism we analyze. We therefore opt to simplify the 
model by omitting brokers and ignoring payments they would receive.

3.2. The incentive to siphon retail orders off-exchange

Before characterizing equilibrium, we pause to examine market 
makers’ incentives to siphon retail orders off-exchange in our model. 
To do so, we conjecture an equilibrium in which all 𝑅-orders are routed 
on-exchange (i.e., 𝛼 = 0), and we seek conditions under which such a 
no-siphoning equilibrium exists.

With 𝐽 = 2 marketplaces, a market maker’s expected profit (1) can 
in general be written

𝜋𝑚 =
(
𝑠1 −

𝛾

2

)
𝑥𝑚1 +

(
𝑠2 −

𝛾

2

)
𝑥𝑚2

− 𝛾

2
(
𝜎1

2𝑥2
𝑚1 + 2𝑟𝜎1𝜎2𝑥𝑚1𝑥𝑚2 + 𝜎2

2𝑥2
𝑚2
)
, (8)

where 𝜎1
2 and 𝜎22 are the diagonal elements of 𝚺 and 𝑟𝜎1𝜎2 is the 

off-diagonal covariance, with 𝑟 ∈ [−1, 1] as the correlation. Note that 
both 𝜎1 and 𝑟 are functions of 𝛼 via the weighting matrix 𝑭 (𝛼), 
whereas 𝜎2 = 𝜎𝑅 regardless of 𝛼 (as marketplace 2 contains only 𝑅-

orders). Below, we write 𝜎1(𝛼) and 𝑟(𝛼) to emphasize this dependence.

Suppose we are in an equilibrium with 𝛼 = 0. Market clearing there-

fore requires that 𝑥𝑚2 = 0. Because the assumption 𝜁 >
𝛾

2 rules out a 
no-trade equilibrium (cf. Footnote 11), we therefore have 𝑥𝑚1 > 0. To 
sustain the conjectured equilibrium, the profit from a marginal unit 
of 𝑥𝑚2 must be weakly negative:

𝜕𝜋𝑚

𝜕𝑥𝑚2

|||𝑥𝑚2=0
=
(
𝑠2 −

𝛾

2

)
− 𝛾𝑟(0)𝜎1(0)𝜎𝑅𝑥𝑚1 ≤ 0; (9)

and the first-order condition with respect to 𝑥𝑚1 must hold:

𝜕𝜋𝑚

𝜕𝑥𝑚1

|||𝑥𝑚2=0
=
(
𝑠1 −

𝛾

2

)
− 𝛾𝜎1(0)2𝑥𝑚1 = 0. (10)

Therefore, a no-siphoning equilibrium can obtain only if both (9)

and (10) hold. Following (7a), 𝑠2 ≥ 𝑠1, so that both can hold only if 
𝛾𝑟(0)𝜎1(0)𝜎𝑅𝑥𝑚1 ≥ 𝛾𝜎1(0)2𝑥𝑚1. Because 𝛾 , 𝜎1(0), 𝜎𝑅, and 𝑥𝑚1 are all 
strictly positive, this requires 𝑟(0) ≥ 𝜎1(0)

𝜎𝑅
.15

Evaluating 𝑟(0) and 𝜎1(0) in terms of the primitive parameters, we 
find that sign

[
𝑟(0) − 𝜎1(0)

𝜎𝑅

]
matches the sign of the quantity

Δ ∶=
(
𝜎2

𝑅
𝜔𝑅 + 𝜌𝜎𝐼𝜎𝑅𝜔𝐼

)
−
(
𝜎2

𝐼
𝜔𝐼 + 𝜌𝜎𝐼𝜎𝑅𝜔𝑅

)
, (11)

which summarizes the differences between the two investor types that 
are relevant for siphoning decisions. To understand this expression, note 

this through (7b): if 𝑠1 < 𝑠2, then all 𝑅-investors would prefer to trade on the 
exchange; by the access rule, they must be allowed to do so; we therefore obtain 
𝛼 = 0. In contrast, off-exchange execution is not subject to the access rule, which 
is why 𝐼 -investors trade on-exchange, even if 𝑠2 < 𝑠1.
15 This condition becomes less likely to hold if 𝑅-orders become more attrac-

tive: either by virtue of becoming relatively less likely to exhibit significant 
directionality (i.e., small 𝜎𝑅 relative to 𝜎1(0)) or by better diversifying inven-

tory risk from on-exchange orders (i.e., small 𝑟(0)). When 𝑅-orders become so 
attractive that the condition fails, market makers have an incentive to siphon 
them off-exchange, destroying the putative no-siphoning equilibrium.
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that the first bracketed term represents the covariance of the market 
maker’s existing portfolio with a marginal 𝑅-order: 𝜎2

𝑅
is the covari-

ance with another 𝑅-order, 𝜌𝜎𝐼𝜎𝑅 is the covariance with an 𝐼 -order, 
and these are respectively weighted by 𝜔𝑅 and 𝜔𝐼 . The second term 
is the analogue for a marginal 𝐼 -order. If the difference Δ is negative, 
a marginal 𝑅-order amplifies inventory risk by less (or mitigates it by 
more) than a marginal 𝐼 -order, so that market makers have incentive 
to siphon them.16 In fact, Δ is the key determinant of the equilibrium:

Proposition 2 (The PFOF equilibrium). The three equilibrium objects—the 
liquidity supplies

(
𝒙𝑚

)
𝑚∈[0,𝑀], the fraction 𝛼 of off-exchange 𝑅-orders, and 

the half spreads 𝒔—are determined as follows.

(i) If Δ < 0, then there is a unique equilibrium in which 𝛼 = 1.

(ii) If Δ > 0, then there is a unique equilibrium in which 𝛼 = 0.

(iii) If Δ = 0, then there is an equilibrium for any 𝛼 ∈ [0, 1].

In all cases, 
(
𝒙𝑚

)
𝑚∈[0,𝑀] and 𝒔 follow Proposition 1, with 𝜆1(𝑠) = 𝜆𝐼 (𝑠) +

(1 − 𝛼)𝜆𝑅(𝑠), 𝜆2(𝑠) = 𝛼𝜆𝑅(𝑠), 𝝁 = 𝟎, and 𝚺 = 𝑭 (𝛼)𝚺◦𝑭 (𝛼)⊤.

Surprisingly, the equilibrium fraction of off-exchange 𝑅-orders is a 
boundary value 𝛼 ∈ {0, 1} (except when Δ = 0). An intuition is the fol-

lowing. If Δ < 0, then by previous analysis, each market maker wants 
to siphon at least some 𝑅-orders off-exchange. Once all market makers 
do this, however, on-exchange flow becomes more heavily composed 
of 𝐼 -orders, so that each market maker can achieve her targeted mix-

ture of 𝑅- and 𝐼 -order flow only by siphoning even more 𝑅-orders 
off-exchange. This reinforcing logic repeats itself until all 𝑅-orders have 
been siphoned off-exchange in equilibrium.17

Depending on parameters, the equilibrium might not feature on-

exchange trading. This can happen because of off-exchange trading: 
When Δ < 0, market makers siphon 𝑅-orders off-exchange and take on 
the resulting inventories. If 𝜌 > 0, this raises the marginal inventory cost 
of 𝐼 -orders, potentially to the point at which it is no longer profitable 
for market makers to provide liquidity on-exchange. Equilibria without 
on-exchange trading are, of course, inconsistent with the current real-

ity. The following proposition characterizes the parametric conditions 
that ensure both on- and off-exchange trading in equilibrium. Our sub-

sequent analysis focuses on the case in which these conditions hold.

Proposition 3 (Equilibrium with positive volume both on- and off-

exchange). There is a unique equilibrium with both ∫ 𝑀
0 𝑥𝑚1d𝑚 > 0 and 

∫ 𝑀
0 𝑥𝑚2d𝑚 > 0 if and only if both Δ < 0 and

𝑀 >
(
𝜌𝜎𝐼𝜎𝑅 − 𝜎2

𝑅

)
𝜔𝑅𝛾 (12)

hold.18

16 Conversely, if Δ > 0, market makers would want to siphon 𝐼 -orders—if they 
could—leaving only 𝑅-orders on the exchange.
17 Indeed when Δ < 0, market makers always feel they have too few 𝑅-orders 
in the putative equilibrium corresponding to any 𝛼 < 1. To see this, note that by 
market clearing, the equilibrium weight of 𝑅-orders in market makers’ portfolio 
of order flows can in general be written

(1 − 𝛼)𝜆𝑅(𝑠1) + 𝛼𝜆𝑅(𝑠2)
𝜆𝐼 (𝑠1) + (1 − 𝛼)𝜆𝑅(𝑠1) + 𝛼𝜆𝑅(𝑠2)

.

For all 𝛼 ∈ [0, 1), the above remains constant at 𝜔𝑅∕(𝜔𝐼 +𝜔𝑅), because 𝑠1 = 𝑠2
for 𝛼 ∈ (0, 1) following (7a) and (7b) and because 𝑠2 does not enter when 𝛼 = 0. 
Focusing on the case of 𝛼 = 0, the in-text analysis showed that if Δ < 0, this 
exposure to 𝑅-orders is too low: market makers want to siphon 𝑅-orders to 
increase their exposure. We have just shown that any 𝛼 ∈ (0, 1) leads to the 
same exposure, hence the same incentive to siphon further. As this discussion 
suggests, one model change that might lead to an interior equilibrium value for 
𝛼 would be if 𝑅- and 𝐼 -investors exhibited different elasticities of demand (cf.
Remark 4).
18 By Proposition 2, insisting on equilibrium uniqueness merely rules out the 
non-generic case of Δ = 0. In this knife-edge case of Δ = 0, there is an equi-

In summary, the two conditions Δ < 0 and (12) jointly characterize 
where market makers supply liquidity in equilibrium. First, the sign of 
Δ determines whether they supply liquidity off-exchange by siphoning 
𝑅-orders (𝑥𝑚2 > 0). Second, if they do provide liquidity off-exchange, 
do they still provide liquidity on-exchange (𝑥𝑚1 > 0)? The necessary and 
sufficient condition for the latter is (12). One intuitive interpretation 
of this condition is that it requires sufficiently many market makers, 
so that none takes on enough inventory risk via off-exchange liquidity 
supply to fully deter on-exchange liquidity supply.

3.3. Discussion of parameters

Reality features positive volume both on- and off-exchange. Accord-

ing to Proposition 3, this realistic outcome arises in the model when 
both Δ < 0 and (12) hold. Thus, a test of the model is to see whether 
realistic parameter values are consistent with those conditions. This 
subsection argues that this is the case.

The fluctuation of order directionality, 𝜎𝑅 and 𝜎𝐼 . Order flow of either 
type, 𝑘 ∈ {𝑅, 𝐼}, can be viewed as a mixture of independent and coor-

dinated trades, with the parameter 𝜎𝑘 capturing the composition of this 
mixture. For example, the extreme in which each 𝑘-order is indepen-

dently either to buy or to sell (each with equal probability) is captured 
by 𝜎𝑘 = 0. And the extreme in which all 𝑘-orders are children of the 
same parent order (which is either to buy or to sell, each with equal 
probability) is captured by 𝜎𝑘 = 1. Consistent with 𝜎𝑅 < 𝜎𝐼 , indepen-

dent trades empirically feature much more heavily in retail order flow. 
Indeed, the SEC report quoted in Footnote 1 makes exactly this point. 
Likewise, Ken Griffin (CEO of Citadel) said in his 2021 Congressional 
testimony:

the average retail order is much smaller in totality than the average 
order that goes onto an exchange [. . . ] Because it’s a small order, 
the amount of risk that we need to assume in managing that order 
is relatively small, as compared to an order that we have to manage 
from our on exchange trading. (Griffin, 2021)

Yet another economic force operates through midpoint dark pools, 
which allow institutional investors to first cross their buy and sell or-

ders, so that only the remaining imbalance is subsequently passed along 
to the exchange, to be absorbed by market makers. Because order imbal-

ance is necessarily more extremely directional than the original order 
flow, these dark pools effectively enlarge 𝜎𝐼 , and thereby make, all else 
equal, 𝜎𝑅 < 𝜎𝐼 more likely. Appendix B provides a model extension that 
demonstrates this mechanism.

More direct evidence is available from Jones et al. (2023), who use 
comprehensive account-level data from the Chinese stock market to di-

rectly compute signed order imbalance measures for both retail and 
institutional investors at the daily level.19 According to Panel C of their 
Table I, order imbalances are more tightly clustered around zero for 
retail than for institutional, consistent with 𝜎𝑅 < 𝜎𝐼 . The standard de-

viation of imbalances is 0.455 for institutional accounts, and it ranges 
from 0.171 to 0.352 for retail, depending on account size.

The correlation of order directionality, 𝜌. The aforementioned evidence 
from Jones et al. (2023) also speaks to the correlation of signed order 
flow imbalances. According to Panel C of their Table I, retail and in-

stitutional imbalances are negatively correlated, consistent with 𝜌 < 0. 

librium for each 𝛼 ∈ [0, 1], all of which—with the exception of 𝛼 = 0—entail 
∫ 𝑀

0 𝑥𝑚1d𝑚 > 0 and ∫ 𝑀

0 𝑥𝑚2d𝑚 > 0 simultaneously holding.
19 It is difficult to perform a similar exercise using standard, nonproprietary 
datasets—like TAQ and Refinitiv—because they lack retail or institutional trade 
identifiers. It remains possible to imperfectly classify these trades, e.g., using 
the algorithm proposed by Boehmer et al. (2021). However, inexactness in this 
algorithm (Schwarz et al., 2023) could bias estimates.
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The precise correlation ranges from −0.380 to −0.188, depending on 
retail account size. This empirically-documented negative correlation 
can arise for many reasons.20 For simplicity, we assume it is exoge-

nous, yet we conjecture that the effects we study would also arise in a 
model where (negative) correlation arises endogenously. In fact, some 
other models go as far as assuming perfect negative correlation between 
shocks that drive retail and institutional trades, as in Hendershott et al. 
(2022). Similar assumptions are made by, e.g., Grossman and Miller 
(1988); Lo et al. (2004).

The magnitude of liquidity demand, 𝜔𝑅 and 𝜔𝐼 . Despite recent growth, 
retail trading remains small in comparison to institutional trading vol-

umes. For example, Bloomberg (2022) reports that retail trading ac-

counts for 17.5% of total trading volume in the second quarter of 2022, 
while non-bank buy-side institutions account for 34.8%. This suggests a 
ratio of 𝜔𝑅∕𝜔𝐼 ≈ 1∕2.

Summary. Overall, the evidence suggests that 𝜎𝑅 < 𝜎𝐼 , 𝜌 < 0, and 
𝜔𝑅 < 𝜔𝐼 . These are sufficient to guarantee Δ < 0 in our model, implying 
positive off-exchange volume (i.e., siphoning of 𝑅-orders) in equilib-

rium. Further, 𝜌 < 0 is by itself sufficient for (12) to hold, implying also 
positive on-exchange volume. As such, our model yields realistic trad-

ing patterns under realistic parametrizations.

4. Predictions

Continuing the application to PFOF, we now explore the model’s 
predictions. We study three equilibrium objects: bid-ask spreads in Sec-

tion 4.1, market maker profitability in Section 4.2, and total welfare 
in Section 4.3. We also address policy debates over the off-exchange 
segmentation of retail orders. A ban on this practice (henceforth, a 
“segmentation ban”) would consolidate both 𝑅- and 𝐼 -orders on the 
exchange (marketplace 1), yielding an equilibrium characterized by the 
following corollary.

Corollary 1 (Equilibrium under a segmentation ban). Under an exoge-

nous 𝛼 = 0, the equilibrium liquidity supplies 
(
𝒙𝑚

)
𝑚∈[0,𝑀] and the half 

spreads 𝒔 follow Proposition 1, with 𝜆1(𝑠) = 𝜆𝐼 (𝑠) +𝜆𝑅(𝑠), 𝜆2(𝑠) = 0, 𝝁 = 𝟎, 
and 𝚺 = 𝑭 (0)𝚺◦𝑭 (0)⊤.

For the analysis below, we denote the equilibrium objects under the 
ban with a subscript 𝑏. For example, under the ban, all trades happen 
on-exchange and there is only one spread, 𝑠𝑏.

A no-siphoning equilibrium (𝛼 = 0) can endogenously arise under 
certain parameter values and, of course, a segmentation ban has no ef-

fect in this case. More interesting are parameter values leading to a 
with-siphoning equilibrium (𝛼 = 1), meaning that a segmentation ban 
would bite. As discussed earlier, these parameter values are also more 
relevant. For our analysis in this section, we therefore specialize to 
the set of relevant parameters, for which equilibrium features positive 
volume both on- and off-exchange. Using the characterization of Propo-

sition 3, we therefore maintain the following assumption:

20 For example, Linnainmaa (2010) shows empirically that informed institu-

tions adversely select retail investors, so that institutional trades and retail 
trades are, respectively, positively and negatively correlated with contempo-

raneous returns, hence negatively correlated with each other. In addition, retail 
and institutional investors may trade against each other for non-informational 
reasons: Kaniel et al. (2008) show that retail traders pursue contrarian trading 
strategies, whereby they profit from providing liquidity to institutions’ tempo-

rary price impacts; reversely, 𝐼 -investors may crawl online platforms so as to 
monitor and trade against 𝑅-investors’ sentiment; finally, 𝑅-investors may co-

ordinate via online platforms to trade against 𝐼 -investors’ bets, as in how they 
attempted to short squeeze institutions in GameStop and other “meme stocks” 
in early 2021.

Fig. 1. Bid-ask spreads: the effect of a segmentation ban. This figure shows 
how various (half) bid-ask spreads change when a segmentation ban is imposed. 
The order flow direction correlation 𝜌 varies on the horizontal axis. The other 
parameters are set at 𝑀 = 3, 𝛾 = 𝜁 = 1, 𝜔𝐼 = 100, 𝜔𝑅 = 50, 𝜎𝐼 = 0.5, 𝜎𝑅 = 0.2, 
and 𝜇𝐼 = 𝜇𝑅 = 0. In particular, 𝑠1 > 𝑠𝑏 if and only if 𝜌 < −1

2
.

Assumption (Relevant parameter values). Δ < 0 and condition (12) both 
hold.

4.1. Bid-ask spreads: trading costs

This subsection studies equilibrium spreads. Without a segmentation 
ban, we examine 𝑠1 for the on-exchange, 𝑠2 for the off-exchange, and �̄�
for the volume-weighted average half spread, defined as21

�̄� =
𝜆𝐼 (𝑠1)𝑠1 + 𝜆𝑅(𝑠2)𝑠2

𝜆𝐼 (𝑠1) + 𝜆𝑅(𝑠2)
, (13)

as well as price improvement 𝑠1 − 𝑠2. With a segmentation ban, the 
spread is 𝑠𝑏.

4.1.1. Segmentation ban

We find that 𝑅-investors are unambiguously harmed by a segmen-

tation ban, in the sense that it causes them to pay a larger spread 
(𝑠𝑏 > 𝑠2). In contrast, 𝐼 -investors often benefit from a segmentation 
ban—although not always. In particular, a segmentation ban harms not 
only 𝑅-investors but also 𝐼 -investors if and only if 𝜌 is sufficiently neg-

ative (in a way made precise by Proposition 4 and as illustrated by 
Fig. 1). Additionally, such a ban unambiguously causes the volume-

weighted average spread to increase (𝑠𝑏 > �̄�).

Proposition 4 (Segmentation ban and spreads). 𝑠2 < 𝑠𝑏 and �̄� < 𝑠𝑏. More-

over, 𝑠1 < 𝑠𝑏 if and only if 𝜌 < −(𝑀 + 𝜎2
𝑅
𝜔𝑅𝛾)∕(𝜎𝐼𝜎𝑅𝜔𝐼 ).

Comparison with information-based theories of PFOF. We pause here to 
compare and contrast Proposition 4 with predictions from information-

based theories of PFOF (e.g., Battalio and Holden, 2001). Under the 
natural assumption that 𝑅-orders are less informed than 𝐼 -orders, those 
theories predict that 𝑅-investors would be harmed by a segmentation 
ban, while 𝐼 -investors would benefit. Our model predicts the same 
for 𝑅-investors, but for an entirely different reason: 𝑅-investors pay a 
smaller spread when segmentation is allowed not because their orders 
are less informed but rather because their orders generate less inven-

tory risk for market makers. In contrast to those theories, however, our 

21 The volume weights for 𝑠1 and 𝑠2 in (13) are 𝜆𝐼 (𝑠1) and 𝜆𝑅(𝑠2) respectively 
because, under the maintained assumption that Δ < 0, without a segmentation 
ban all 𝑅-orders are siphoned off-exchange (i.e., 𝛼 = 1) in equilibrium, meaning 
that all 𝐼 -investors pay 𝑠1 and all 𝑅-investors 𝑠2.
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model predicts that 𝐼 -investors might also pay a smaller spread when 
segmentation is allowed.

Intuition for why 𝑠2 < 𝑠𝑏. The intuition follows Proposition 2: Given 
the maintained assumption that Δ < 0, 𝑅-investors are less costly for 
market makers to intermediate than 𝐼 -investors. When segmentation is 
allowed, 𝑅-investors therefore pay a smaller spread. That is, 𝑠2 < 𝑠1, 
implying 𝑠2 < �̄�. Combined with �̄� < 𝑠𝑏 (which we explain next), we 
therefore have 𝑠2 < 𝑠𝑏.

Intuition for why �̄� < 𝑠𝑏. Let 𝑓𝑅 denote the fraction of volume due to 
𝑅-orders. When segmentation is banned, volume is proportional to 
demand magnitude, so that 𝑓ban

𝑅
= 𝜔𝑅

𝜔𝑅+𝜔𝐼
in equilibrium. When seg-

mentation is allowed, and given Δ < 0, market makers siphon 𝑅-orders 
off-exchange, meaning that 𝑓no-ban

𝑅
> 𝑓 ban

𝑅
. In either case, the volume-

weighted average spread �̄� is determined by the intersection of an 
average liquidity demand curve and an average liquidity supply curve:

Lemma 2 (Average liquidity demand and supply curves). Investors’ average 
liquidity demand and market makers’ average liquidity supply curves are 
given, respectively, by

�̄�(𝑥;𝑓𝑅) = 𝜁 − 𝑣(𝑓𝑅)𝑥 and �̄�(𝑥;𝑓𝑅) =
𝛾

2
+ 𝑐(𝑓𝑅)𝑥,

where 𝑥 is the aggregate volume, and 𝑣(⋅) and 𝑐(⋅) are the respective curves’ 
slopes:

𝑣(𝑓𝑅) =
(1 − 𝑓𝑅)2

𝜔𝐼

+
𝑓 2

𝑅

𝜔𝑅

and

𝑐(𝑓𝑅) =
𝛾

𝑀
var

[
(1 − 𝑓𝑅)𝐷𝐼 + 𝑓𝑅𝐷𝑅

]
.

The conclusion �̄� < 𝑠𝑏 follows because demand is steeper and supply 
is flatter when segmentation is allowed than when it is banned.

• Demand is at its flattest when both investor types face the same 
pricing, as under a segmentation ban. Mathematically, 𝑣(𝑓𝑅) is 
minimized at 𝑓 ban

𝑅
= 𝜔𝑅

𝜔𝑅+𝜔𝐼
. To understand the intuition, compare 

the following two extremes. On the one hand, a value 𝑓𝑅 = 𝜔𝑅

𝜔𝑅+𝜔𝐼

obtains when both investor types face the same spread 𝑠. In that 
case, total quantity demanded is 𝜆𝑅(𝑠) + 𝜆𝐼 (𝑠) = (𝜁 − 𝑠)(𝜔𝑅 + 𝜔𝐼 ), 
implying a demand curve with slope 𝑣 

(
𝜔𝑅

𝜔𝑅+𝜔𝐼

)
= 1

𝜔𝑅+𝜔𝐼
. On the 

other hand, a value 𝑓𝑅 = 1 obtains when all 𝐼 -investors are priced 
out of the market. In that case, total quantity demanded is en-

tirely determined by the 𝑅-investors: 𝜆𝑅(𝑠) = (𝜁 − 𝑠)𝜔𝑅, implying 
𝑣(1) = 1

𝜔𝑅
. Being at its flattest when segmentation is banned, de-

mand must be steeper when segmentation is allowed.

• Furthermore, supply is flatter when segmentation is allowed, in 
the sense that the ensuing increase in 𝑓𝑅 causes a decrease in 
𝑐(𝑓𝑅). The intuition is that when segmentation is allowed, mar-

ket makers siphon 𝑅-orders, precisely because doing so reduces 
their inventory costs. Formally, 𝑐(𝑓no-ban

𝑅
) < 𝑐(𝑓 ban

𝑅
) follows from 

two facts. First, 𝑐(⋅) is quadratic and convex. Indeed, we can 
compute 𝑐(𝑓𝑅) =

𝛾

𝑀

[
(1 − 𝑓𝑅)2𝜎2

𝐼
+ 2𝑓𝑅(1 − 𝑓𝑅)𝜌𝜎𝐼𝜎𝑅 + 𝑓 2

𝑅
𝜎2

𝑅

]
. 

Second, 𝑓 ban
𝑅

< 𝑓no-ban
𝑅

≤ argmin𝑓𝑅
𝑐(𝑓𝑅). We have already seen 

that 𝑓 ban
𝑅

< 𝑓no-ban
𝑅

. To see 𝑓no-ban
𝑅

≤ argmin𝑓𝑅
𝑐(𝑓𝑅), consider a 

benchmark in which 𝑅- and 𝐼 -orders could be procured at the 
same spread. In that benchmark, a market maker would opti-

mally procure a portfolio in which the fraction of 𝑅-orders was 
argmin𝑓𝑅

𝑐(𝑓𝑅). But because Δ < 0, we have 𝑠2 ≤ 𝑠1 in the no-ban 
equilibrium, rendering 𝑅-orders (weakly) less attractive to market 
makers than they would be in the aforementioned benchmark. As 
a result, 𝑓no-ban

𝑅
≤ argmin𝑓𝑅

𝑐(𝑓𝑅).

Intuition for why 𝑠1 < 𝑠𝑏 is possible. Recall the maintained assump-

tion Δ < 0, which, following the discussion after (11), implies that 

𝑅-orders exert a lower marginal inventory cost on market makers than 
𝐼 -orders. Under a segmentation ban, both types are pooled together and 
are priced at the volume-weighted average of their marginal costs. Once 
segmentation is allowed, each type is charged a spread equal to its own 
marginal cost, creating two effects:

• The first effect can be understood through what would happen 
if liquidity demand were perfectly inelastic. In that case, the less 
costly 𝑅-investors would be charged less (𝑠2 < 𝑠𝑏), and the more 
costly 𝐼 -investors would be charged more (𝑠1 > 𝑠𝑏).

• Crucially, however, liquidity demand is not perfectly inelastic. If 𝑅-

investors are charged less, then 𝑅-investor volume increases. How 
this affects the marginal inventory cost of 𝐼 -orders depends on 𝜌. 
If 𝜌 > 0 (𝜌 < 0), additional 𝑅-investor volume raises (lowers) the 
marginal cost of 𝐼 -orders, reinforcing (counteracting) the first ef-

fect.

It follows that 𝑠1 < 𝑠𝑏 if and only if 𝜌 is sufficiently negative. Propo-

sition 4 provides the exact condition. The economic force discussed 
above echoes a concern raised by the SEC in its recently-proposed Or-

der Competition Rule (p. 298, SEC, 2022): “a reduction in the volume 
of individual investor order flow internalized by wholesalers could in-

crease wholesaler inventory risk, which in turn could cause wholesalers 
to reduce the liquidity they supply as exchange market makers.”

Relation to the empirical literature. Proposition 4 speaks to how off-

exchange siphoning affects on-exchange liquidity. Much empirical lit-
erature has examined this question. On the one hand, on-exchange 
liquidity does not seem to have been harmed by off-exchange siphon-

ing in certain settings (e.g., Battalio, 1997; Battalio et al., 1997; Gar-

riott and Walton, 2018; Elsas et al., 2022), which is consistent with 
our inventory-based theory but inconsistent with the information-based 
theories mentioned earlier. On the other hand, on-exchange liquidity 
does seem to have deteriorated in response to off-exchange siphon-

ing in other settings (e.g., Degryse et al., 2015; Hatheway et al., 2017; 
Comerton-Forde et al., 2018; Hu and Murphy, 2022), which is consis-

tent both with our inventory-based theory and with the information-

based ones.

Discussion of Fig. 1. Fig. 1 illustrates bid-ask spreads as a function of the 
correlation parameter 𝜌, under parameters consistent with the discus-

sion in Section 3.3: we set 𝜎𝑅 = 0.2 and 𝜎𝐼 = 0.5 to be consistent with 
the estimates of Jones et al. (2023), and we also set 𝜔𝑅∕𝜔𝐼 = 1∕2. As 
Proposition 4 states: (i) 𝑠𝑏 > 𝑠2 and 𝑠𝑏 > �̄� in the figure, regardless of 𝜌, 
and (ii) 𝑠𝑏 > 𝑠1 if and only if 𝜌 is sufficiently negative, where for these 
parameters, the precise cutoff is 𝜌 = −1∕2. The estimates of Jones et 
al. (2023) indicate correlations not far from this cutoff, suggesting that 
𝑠1 < 𝑠𝑏 is in fact a realistic possibility.

The figure also indicates how spreads vary with 𝜌. Roughly speak-

ing, there are two effects. First, as 𝜌 increases, 𝑅- and 𝐼 -orders become 
less likely to offset. A given order portfolio therefore creates greater 
inventory risk, so market makers require larger spreads to compensate. 
This effect drives the initial increase of all spreads seen in Fig. 1. Second, 
as spreads change, investors’ participation decisions may change, and a 
market maker’s order portfolio changes as well. For the parametrization 
of Fig. 1, in the limit as 𝜌 → 1, 𝑠1 → 𝜁 , implying that 𝐼 -investors stop 
participating altogether, which reduces the marginal cost of 𝑅-orders, 
driving the subsequent decrease of 𝑠2.

4.1.2. The rise of retail trading

Recent years have seen a rapid growth in retail trading activity. In 
the U.S. equity market, retail trading volume doubled from about $15 
billion per day before 2017 to about $30 billion in 2022 (Mackintosh, 
2022). This trend can be modeled as an increase in the parameter 𝜔𝑅.
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Fig. 2. Bid-ask spreads: the rise of retail trading. This figure shows how various (half) bid-ask spreads change as retail trading demand increases. Panels (a) 
and (b) illustrate the cases of negative and positive order flow correlations (𝜌 = −0.5 and 𝜌 = 0.5, respectively) between retail and institutional order flows. In both 
Panels (a) and (b), price improvement 𝑠1 − 𝑠2 is decreasing in 𝜔𝑅; Panel (c) illustrates an example with increasing price improvement (with 𝜌 = 0.95). The magnitude 
of retail demand 𝜔𝑅 varies on the horizontal axes. The other parameters are set at 𝑀 = 3, 𝛾 = 𝜁 = 1, 𝜔𝐼 = 100, 𝜎𝐼 = 0.5, 𝜎𝑅 = 0.2, and 𝜇𝐼 = 𝜇𝑅 = 0. The vertical 
dotted line in (c) indicates the upper bound on 𝜔𝑅 implied by (12): when 𝜔𝑅 exceeds that bound, no trading occurs on-exchange.

Proposition 5 (Rise of retail trading and spreads). As the magnitude of 
retail demand 𝜔𝑅 increases,

• the off-exchange half spread, 𝑠2, monotonically increases;

• the on-exchange half spread, 𝑠1, monotonically increases (decreases) 
if 𝜌 > 0 (< 0); and

• price improvement, 𝑠1−𝑠2, monotonically decreases (increases) if 𝜌 < �̂�

(> �̂�), where the threshold �̂� is a function of other parameters (given in 
equation (D.5) in the proof) and is strictly positive.

Fig. 2 illustrates these effects. The off-exchange spread 𝑠2 (the 
dashed line) rises with 𝜔𝑅. This is intuitive: the increase in 𝑅-investor 
liquidity demand requires market makers to handle larger volumes, 
hence also higher inventory costs.

As can be seen by comparing Panels (a) and (b), the effect of 𝜔𝑅 on 
the on-exchange spread 𝑠1 (the solid line) depends on the order flow 
correlation 𝜌. If 𝜌 > 0 (< 0), the increase in 𝑅-orders worsens (allevi-

ates) the market makers’ overall inventory costs through its correlation 
with the 𝐼 -orders. In other words, as the “retail army” rises, it exerts a 
negative (positive) externality on other investors who on average trade 
in the same (opposite) direction.

The same force underlies how 𝜔𝑅 affects the price improvement 𝑠1 −
𝑠2. Clearly, when 𝜌 < 0, 𝑠1 − 𝑠2 decreases with 𝜔𝑅, because 𝑠1 decreases 
and 𝑠2 increases. If 𝜌 > 0 instead, then the effect depends on the relative 

speed of the increases in 𝑠1 and in 𝑠2. As Proposition 5 states, 𝑠1 is 
faster only if 𝜌 is sufficiently positive. Intuitively, this is exactly the case 
where, as 𝜔𝑅 increases, 𝑅-investors’ negative externality on 𝐼 -investors 
is particularly strong, thus pushing up 𝑠1 very quickly. Fig. 2(c) depicts 
such an example.

Our predictions regarding how retail trading activity affects spreads 
and price improvement can be empirically tested. In particular, Propo-

sition 5 predicts that 𝜔𝑅 affects the on-exchange spread 𝑠1, and more-

over that the direction of the effect depends on the sign of the order 
flow correlation 𝜌. These are novel predictions. To compare, under 
the information-based theories of PFOF, as long as all (uninformed) 
𝑅-orders are siphoned off-exchange, the adverse-selection risk of the 
on-exchange 𝐼 -orders is unaffected by 𝜔𝑅, and so is the on-exchange 
spread 𝑠1.

4.1.3. The size of the market making sector

Another focal point in debates over PFOF is the concentration of the 
market making sector (e.g., Hu and Murphy, 2022). Would entry of ad-

ditional market makers drive down investors’ trading costs? Our model 
generates predictions along this line via comparative statics with re-

spect to the size of the market-making sector, 𝑀 . Perhaps surprisingly, 
the implications of a change in 𝑀 are nuanced.
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Fig. 3. Bid-ask spreads: the size of the market making sector. This figure shows how various (half) bid-ask spreads change as the market making sector grows. 
Panels (a) and (b) illustrate the cases of moderate and negative order flow correlations, 𝜌 = 0 and 𝜌 = −0.95, respectively. The size of the market making sector 𝑀

varies from 0.1 to 1,000 on the horizontal axes. The other parameters are set at 𝛾 = 𝜁 = 1, 𝜔𝐼 = 100, 𝜔𝑅 = 50, 𝜎𝐼 = 0.5, 𝜎𝑅 = 0.2, and 𝜇𝐼 = 𝜇𝑅 = 0.

Fig. 3 plots the various spreads against 𝑀 . In the limit of 𝑀 →∞, 
in both panels, the spreads converge to 𝛾

2 , which is 0.5 in the numerical 
illustration. This is because, in the limit, an infinite measure of market 
makers compete for a finite measure of orders, and, therefore, each 
market maker expects to receive at most one order. Hence, the limiting 
spread equals the marginal cost of one unit of inventory, which is 𝛾

2 .

However, the convergence to
𝛾

2 is not always monotone. In par-

ticular, if the order flow correlation 𝜌 is sufficiently negative, as in 
Panel (b), the off-exchange spread 𝑠2 is U-shaped. Accordingly, the 
volume-weighted average spread �̄� is also non-monotone. This implies 
that a larger market making sector might actually raise investors’ trad-

ing costs.

Proposition 6 (Size of the market making sector and spreads). As the size 
of the market making sector 𝑀 increases,

• the on-exchange half spread, 𝑠1, monotonically decreases;

• the off-exchange half spread, 𝑠2, initially decreases but eventually in-

creases (i.e., is U-shaped in 𝑀) if 𝜌 < − 𝜎𝑅𝜔𝑅

𝜎𝐼 𝜔𝐼
, and it monotonically 

decreases otherwise.

To see how this happens, note that the off-exchange spread 𝑠2 may, 
in fact, drop below

𝛾

2 under the parameterization of Fig. 3(b). Were 
it not for 𝐼 -orders, market makers would lose money when providing 
liquidity to 𝑅-investors at such a spread, following (4). Why are they 
willing to provide liquidity to 𝑅-orders at such a small spread? This is 
because the acquired 𝑅-orders aid in hedging 𝐼 -orders, thanks to the 
negative order flow correlation 𝜌. In other words, the inventory cost 
savings from hedging 𝐼 -orders subsidizes losses in providing liquidity to 
𝑅-orders. Mapping to the real world, this “subsidy” effect helps explain 
why market makers are willing to provide significant price improve-

ments to their purchased retail orders (cf. Remark 5).

The U-shape of 𝑠2 is riven by two countervailing effects of 𝑀 . First 
is an intuitive “supply effect:” As 𝑀 increases, the total liquidity sup-

ply curve 𝑀𝑥𝑚2(𝒔) to 𝑅-investors increases, and the market makers 
effectively walk down the decreasing demand curve given by 𝜆𝑅(𝑠2). 
Second, as explained in the previous paragraph, 𝑠2 may decrease be-

low
𝛾

2 when 𝜌 is sufficiently negative. In that case, 𝑠2 must be eventually 
increasing in 𝑀 , because, as we have previously observed, 𝑠2 converges 
to

𝛾

2 (the marginal cost of the first unit of inventory) as 𝑀 →∞.

Fig. 4. Market maker profits. This figure shows how the size of the market 
making sector 𝑀 affects a market maker’s expected profit 𝜋 with versus without 
a segmentation ban. The other parameters are set at 𝛾 = 𝜁 = 1, 𝜔𝐼 = 100, 𝜔𝑅 =
50, 𝜎𝐼 = 0.5, 𝜎𝑅 = 0.2, 𝜌 = −0.3, and 𝜇𝐼 = 𝜇𝑅 = 0.

4.2. Market maker profitability

We now turn to market maker profitability, denoted 𝜋 with segmen-

tation and 𝜋𝑏 under the ban. An insight from the model is that market 
makers might face a “prisoner’s dilemma” in which each unilaterally 
wants to siphon 𝑅-orders off-exchange and yet, collectively they would 
be better off if they all refrained from doing so. In such cases, a segmen-

tation ban actually benefits market makers. Such a prisoner’s dilemma 
can be seen in Fig. 4 where the solid line falls below the dashed line—

with sufficiently many market makers.

Proposition 7 (Market maker profits). Market maker profits are higher 
under the segmentation ban, i.e., 𝜋 > 𝜋𝑏, if and only if 𝑀 < �̂� , where �̂�

denotes the unique strictly positive root of a cubic polynomial given by equa-

tion (D.6) in the proof.

How does the prisoner’s dilemma arise in this context? As we have 
seen in Section 3.2, under the maintained assumption that Δ < 0, each 
market maker individually benefits from siphoning, as it provides flex-

ibility for tailoring exposure to 𝑅- and 𝐼 -order flows. However, when 
all market makers collectively siphon, that changes the order flow com-

position (i.e., the 𝑭 (𝛼) matrix) as well as the liquidity demands 𝜆1(⋅)
and 𝜆2(⋅). Equilibrium spreads then also change—potentially in a way 
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Fig. 5. Welfare. This figure shows how total welfare is affected by the magnitude of retail liquidity demand 𝜔𝑅 in Panel (a) and the order flow correlation 𝜌 in 
Panel (b). For Panel (a), 𝜌 = −0.3; for Panel (b), 𝜔𝑅 = 50. The other parameters are set at 𝑀 = 3, 𝛾 = 𝜁 = 1, 𝜔𝐼 = 100, 𝜎𝐼 = 0.5, 𝜎𝑅 = 0.2, and 𝜇𝐼 = 𝜇𝑅 = 0.

that harms market makers. Indeed, Proposition 4 has established that 
the volume-weighted average spread is lower when segmentation is al-

lowed (i.e., �̄� < 𝑠𝑏).

A prisoner’s dilemma emerges when the negative pecuniary exter-

nality (lowered spread revenues) outweighs the individual benefit of 
segmentation (flexibility for tailoring order flow exposures). External-

ities often loom large when more parties are involved, so that as in-

dicated by the proposition, the prisoner’s dilemma arises when 𝑀 is 
sufficiently large.

A puzzle is why some market makers (e.g., Citadel as quoted in Foot-

note 3) have been quite open to a potential segmentation ban—after 
all, such a ban would undermine a core aspect of their current busi-

ness model. Our analysis highlights a novel explanation for this puzzle: 
a segmentation ban might actually benefit market makers by resolving 
a prisoner’s dilemma among them.

Comparison with information-based theories of PFOF. Inventory costs are 
central to this prisoner’s dilemma. To see this, compare our model to 
Easley et al. (1996) and other existing models of PFOF, which do not 
feature inventory costs (but asymmetric information instead). In these 
models, market makers earn zero profits—both in the equilibrium with 
segmentation and in the equilibrium segmentation is banned—so that 
this type of prisoner’s dilemma cannot arise.

4.3. Welfare

Finally, we turn to welfare. We first derive a general expression for 
total welfare—the sum of the investors’ and the market makers’ surplus. 
To do so, note that each individual market maker expects to receive 
Poisson-distributed numbers of 𝑅- and 𝐼 -orders. Define 𝑥𝐼 and 𝑥𝑅 as 
the respective expectations of these Poisson random variables. Simi-

larly, define 𝑠𝐼 and 𝑠𝑅 as the respective spreads charged to 𝑅- and 
𝐼 -orders.

Now we consider investor surplus. Under the maintained assumption

of this section (p. 8), 𝑠𝑘 ≤ 𝜁 for 𝑘 ∈ {𝐼, 𝑅} holds in equilibrium both 
with and without the segmentation ban. Then the 𝑘-investors’ inverse 
demand curve is 𝑠(𝑞) = 𝜁 − 𝑞

𝜔𝑘
and their surplus can be computed as

𝑀𝑥𝑘

∫
0

(
𝜁 − 𝑞

𝜔𝑘

− 𝑠𝑘

)
d𝑞 = (𝑀𝑥𝑘)𝜁 −

(𝑀𝑥𝑘)2

2𝜔𝑘

− (𝑀𝑥𝑘)𝑠𝑘.

An individual market maker’s surplus is given by

𝑥𝐼𝑠𝐼 + 𝑥𝑅𝑠𝑅 − 𝛾

2
(𝑥𝐼 + 𝑥𝑅) −

𝛾

2
(𝑥2

𝐼
𝜎2

𝐼
+ 2𝜌𝜎𝐼𝜎𝑅𝑥𝐼𝑥𝑅 + 𝑥2

𝑅
𝜎2

𝑅
).

Summing the above, noting that there is a measure of 𝑀 market makers 
in total, we obtain the welfare expression:

𝑤(𝑥𝐼 , 𝑥𝑅) =
∑

𝑘∈{𝐼,𝑅}

[
(𝑀𝑥𝑘)

(
𝜁 − 𝛾

2

)
−

(𝑀𝑥𝑘)2

2𝜔𝑘

]
− 𝑀𝛾

2
(
𝑥2

𝐼
𝜎2

𝐼
+ 2𝜌𝜎𝐼𝜎𝑅𝑥𝐼𝑥𝑅 + 𝑥2

𝑅
𝜎2

𝑅

)
. (14)

By substituting the corresponding equilibrium supplies 𝑥𝑘, this welfare 
expression applies generally to any equilibrium. Let 𝑤 and 𝑤𝑏 respec-

tively denote equilibrium welfare with segmentation and under the ban. 
In the model, a segmentation ban can only reduce welfare (i.e., 𝑤𝑏 < 𝑤). 
This follows from a stronger result—that the equilibrium without a seg-

mentation ban in fact leads to the welfare-maximizing (𝑥𝐼 , 𝑥𝑅). Fig. 5

illustrates.

Proposition 8 (Segmentation ban and welfare). Absent a segmentation 
ban, the equilibrium outcome maximizes total welfare, hence, 𝑤 > 𝑤𝑏.

That the equilibrium without a segmentation ban leads to the 
welfare-maximizing outcome essentially follows from the First Welfare 
Theorem. For example, our model features competitive pricing, no ex-

ternalities (aside from pecuniary ones), and separate “prices” (spreads 
𝑠1 and 𝑠2) for each and every different “good” (liquidity to 𝑅- and 𝐼 -

orders). With a segmentation ban in place, the First Welfare Theorem 
no longer applies, for we then have only a single “price” (𝑠𝑏) for the two 
“goods.” The reason for strict (rather than weak) inequality in Propo-

sition 8 is the maintained assumption Δ < 0, which implies that the 
segmentation ban bites.

Our result adds to recent policy discussions about PFOF. Both in 
the U.S. and in Europe, financial market regulators have expressed con-

cerns regarding PFOF as well as intentions to ban it.22 Their arguments 
largely refer to negative effects of PFOF that are not captured by our 
model. For example, some have argued that the practice poses conflicts 
of interest, as a broker would “choose the [market maker] offering the 
highest payment, rather than the best possible outcome for its clients” 
(ESMA, 2021). The SEC chair, Gary Gensler, also warns that via PFOF, 
“[market makers] get the data, they get the first look, they get to match 

22 Following the discussion in Footnote 2, what precisely would be banned 
often varies: (i) some have discussed banning the practice whereby retail orders 
are routed directly to market makers and executed off-exchange—what we have 
called a “segmentation ban,” while (ii) others have discussed banning only the 
accompanying payments that are often transferred from market makers to retail 
brokers. Our analysis speaks only to the implications of (i).
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off buyers and sellers out of that order flow” (Barron’s, 2021). Our 
welfare result, as stated in Proposition 8 above, cuts in the opposite 
direction. We contribute to these discussions by highlighting the ben-

efit of order flow segmentation, in a stylized setting featuring market 
makers’ inventory concerns.

Comparison with information-based theories of PFOF. The first part of 
Proposition 8 says that, without a segmentation ban, the equilibrium 
outcome maximizes welfare. No analogous result typically holds in 
information-based theories of PFOF, for the reason that adverse selec-

tion generally invalidates the First Welfare Theorem. The second part 
of Proposition 8 says that a segmentation ban would reduce welfare. No 
analogous welfare comparison is made in many information-based mod-

els of PFOF (e.g., Easley et al., 1996; Battalio and Holden, 2001), for the 
reason that uninformed investors are assumed to be price-inelastic in 
those models, so that a segmentation ban has no effect on total welfare. 
Incorporating an elasticity into those models could, however, permit an 
analogous result in certain cases.

5. Conclusion

This paper studies order flow segmentation from the novel perspec-

tive of market makers’ inventory management. In isolation, a given 
source of orders is riskier for market makers to intermediate if it is more 
likely to exhibit significant directionality. Yet, market makers typically 
intermediate order flow from several sources, whose directionalities are 
potentially correlated. These considerations incentivize market makers 
to form portfolios of liquidity supply to different order flows, so as 
to optimally balance spread revenues against overall inventory costs. 
While the portfolio perspective on inventory management across assets

has been previously examined in the literature (Stoll, 1978; Ho and 
Stoll, 1983), our portfolio perspective on inventory management across 
order flows of the same asset is new.

In a setting tailored to PFOF, we show that siphoning specific 
types of orders off-exchange may be a part of portfolio-based inventory 
management by market makers. That is, order flow segmentation can 
endogenously emerge out of inventory considerations. Our inventory 
perspective on PFOF moreover makes novel predictions about conse-

quences of regulations that ban order flow segmentation.

As we have pointed out, there are a variety of empirical facts, which 
our inventory-based theory can explain, but which an information-

based theory of PFOF would struggle to explain on its own. See, for 
example, our discussion of the empirical literature on how off-exchange 
siphoning affects on-exchange liquidity (on p. 9). It follows that infor-

mation cannot constitute the entire explanation for why retail orders 
have been siphoned off-exchange—considerations of inventory, like 
those we model, play a role also. A more challenging question, which 
could be addressed in future work, concerns the relative importance of 
information versus inventory in driving this siphoning. One way to ad-

dress this question would be by assembling and estimating a structural 
model that is rich enough to encompass both frictions.
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Appendix A. Notation

Notation used in Section 2

Exogenous parameters

𝐽 number of marketplaces

𝜆𝑗 (⋅) measure of liquidity-demanding orders on marketplace 𝑗

𝐷𝑗 (random) directionality of liquidity-demanding orders on⎫⎪⎬⎪⎭
Endogenized

in Section 3

marketplace 𝑗

𝝁 𝔼[(𝐷1,𝐷2,… ,𝐷𝐽 )⊤]
𝚺 var[(𝐷1,𝐷2,… ,𝐷𝐽 )⊤]
𝑀 measure of market makers

𝛾 parametrization of market maker inventory costs

Endogenous variables

𝑠𝑗 half bid-ask spread of marketplace 𝑗

𝑥𝑚𝑗 Poisson intensity of liquidity supply for market maker 𝑚 on marketplace 𝑗

𝑄𝑚𝑗 (random) volume of market maker 𝑚 on marketplace 𝑗

𝑍𝑚𝑗 (random) net inventory of market maker 𝑚 on marketplace 𝑗

𝜋𝑚 expected profit of market maker 𝑚

Additional notation used in Sections 3–4

Exogenous parameters

𝜆𝑘(⋅) measure of type-𝑘 liquidity-demanding orders

𝜁 maximum acceptable half spread

𝜔𝑘 magnitude of type-𝑘 liquidity demand

𝐷𝑘 (random) directionality of type-𝑘 liquidity demand

𝚺◦ var
[
(𝐷𝐼 ,𝐷𝑅)⊤

]
𝜎𝑘 sd(𝐷𝑘)
𝜌 corr(𝐷𝐼 ,𝐷𝑅)
Δ

(
𝜎2

𝑅
𝜔𝑅 + 𝜌𝜎𝐼 𝜎𝑅𝜔𝐼

)
−
(
𝜎2

𝐼
𝜔𝐼 + 𝜌𝜎𝐼 𝜎𝑅𝜔𝑅

)
Endogenous variables

𝛼 fraction of 𝑅-orders routed off-exchange (i.e., to marketplace 2)

𝑭 (𝛼) order flow weighting matrix

�̄� volume-weighted average half spread

𝜋 market maker profitability

𝑤 total welfare

𝑏 subscript to indicate that segmentation is banned, as in 𝑠𝑏, 𝜋𝑏, and 𝑤𝑏

Additional notation used in Appendix B

Exogenous parameters

𝐷◦
𝐼

(random) 𝐼-directionality, before crossing in the midpoint dark pool

Additional notation used in Appendix C

Exogenous parameters

𝑡 time period (𝑡 ∈ {1,2}); superscripted on other variables as “(𝑡)”
𝜙𝑘 autocorrelation of type-𝑘 order flow

Endogenous variables

𝜋(𝑡)
𝑚

a market maker 𝑚’s expected profit, before period 𝑡 trading

𝑧(𝑡)
𝑚

a market maker 𝑚’s inventory after period 𝑡 trading

�̄�(𝑡) market makers’ average inventory after period 𝑡 trading

(1)
𝑚

{𝑧(1)
𝑚

,𝐷
(1)
𝐼

, �̄�(1)}
Δ(2) (

𝜙𝐼 𝐷
(1)
𝐼

𝑀�̄�(1)
)
∕
(
𝜁 − 𝛾

2

)
− 𝜎2

𝐼
𝜔𝐼

Appendix B. Extension: adding a midpoint dark pool

In Section 3, we assume that 𝐼 -investors can trade on-exchange 
only. Yet, in reality, institutional investors do occasionally trade off-

exchange. Nevertheless, the off-exchange venues on which institutional 
investors tend to trade differ in crucial ways from off-exchange execu-

tion of retail orders, which we have modeled. For example, institutional 
investors often trade in midpoint dark pools. In these venues, the spread 
is not determined by market clearing (as it is for off-exchange retail ex-

ecution); rather the spread is zero by construction. Accordingly, these 

https://data.mendeley.com/datasets/x44cvwpw9h/1
https://data.mendeley.com/datasets/x44cvwpw9h/1
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markets may fail to clear, in the sense that an order routed to a mid-

point dark pool might fail to execute, if it cannot be crossed against a 
corresponding order in the other direction.

We study in this appendix a model extension that additionally fea-

tures a midpoint dark pool, in which 𝐼 -investors can first cross their 
liquidity demand. Our formulation of this dark pool is standard, follow-

ing, for example, Hendershott and Mendelson (2000) and Zhu (2014).23

The extension also suggests an additional microfoundation for why it is 
likely that 𝜎𝑅 < 𝜎𝐼 , complementing the empirical evidence discussed in 
Section 3.3.

𝐼 -investor characteristics. We follow the discussion on microfoundation 
in Section 2.1 to model 𝐼 -orders: There is a continuum of measure 𝜅𝐼 of 
𝐼 -investors, each of whom wants to trade one unit of the asset. Each of 
them has an i.i.d. private value for the asset: it is positive with probabil-

ity
1
2 (1 +𝐷◦

𝐼
) (and negative otherwise), and its magnitude is distributed 

according to the c.d.f. 𝐹𝐼 (⋅).
Note that we use 𝐷◦

𝐼
to denote the “original” directionality of 𝐼 -

investors’ trading needs. It is randomly distributed on [−1, 1], where we 
assume that 𝐷◦

𝐼
≠ 0 almost surely and that the distribution is symmetric 

around 0. As in the main text, we use 𝐷𝐼 to denote the directionality 
of the 𝐼 -flow that enters the exchange. Below we shall see how 𝐷◦

𝐼
endogenously affects—hence also differs from—𝐷𝐼 .

Trading. In aggregate, a fraction
1
2 (1 + 𝐷◦

𝐼
) of these 𝐼 -investors want 

to buy and the rest
1
2 (1 − 𝐷◦

𝐼
) want to sell. Upon arrival, an 𝐼 -investor 

seeks liquidity according to the following pecking order:

• First, she sends an order, in the direction of her private value, to 
the midpoint dark pool, on which offsetting orders are randomly 
matched. If her order is on the short side, it is always matched; if it 
is on the long side, it is matched only with probability 

1−|𝐷◦
𝐼
|

1+|𝐷◦
𝐼
| .24

Once matched, the order trades at the “midpoint,” i.e., at zero 
spread. Midpoint dark pool volume is then publicly observed.

• Second, only if unmatched in the midpoint dark pool, she sends 
an IOC order with a limit price reflecting her private value to the 
exchange, where market makers provide liquidity according to the 
setup in Section 2.1.

Compared to Section 2.1, the key difference is the added possibility 
of crossing in the midpoint dark pool. In particular, we have assumed 
that 𝐼 -investors always first attempt crossing at the midpoint dark pool 
before turning to the exchange. Although we take this pecking order 
as exogenous, it would in fact arise endogenously: if an 𝐼 -investor suc-

ceeds in her attempt to trade at the dark pool, then she will have traded 
at a spread of zero, leaving her better off than if she had instead traded 
at a positive spread on the exchange; and if she fails in her attempt to 
trade at the dark pool, then she is no worse off for having tried.

Midpoint dark pool volume is therefore

min
{1
2
(1 +𝐷◦

𝐼
)𝜅𝐼 ,

1
2
(1 −𝐷◦

𝐼
)𝜅𝐼

}
= 1

2

(
1 − |||𝐷◦

𝐼
|||)𝜅𝐼 ,

and, therefore, IOC orders sent by unmatched 𝐼 -investors to the ex-

change have measure|||12 (1 +𝐷◦
𝐼
)𝜅𝐼 −

1
2
(1 −𝐷◦

𝐼
)𝜅𝐼

||| = |||𝐷◦
𝐼
|||𝜅𝐼 =∶ 𝜔𝐼 .

Further, these on-exchange IOC orders will all have the same sign. For-

mally,

23 There are many different forms of dark pools, as detailed in Menkveld et 
al. (2017). In this extension, we consider a midpoint dark pool because it is the 
most common form of dark trading in practice. For example, Nimalendran and 
Ray (2014) document that about 57% dark transactions are within 0.01% of the 
price around the midpoint.
24 An 𝐼 -buyer is on the short side (long side) if 𝐷◦

𝐼
< 0 (> 0). Vice versa, an 

𝐼 -seller is on the short side (long side) if 𝐷◦
𝐼

> 0 (< 0).

𝐷𝐼 = sign
[1
2
(1 +𝐷◦

𝐼
) − 1

2
(1 −𝐷◦

𝐼
)
]
= sign

[
𝐷◦

𝐼

]
.

That is, the on-exchange 𝐼 -order directionality 𝐷𝐼 has a two-point dis-

tribution, with ℙ[𝐷𝐼 = 1] = ℙ[𝐷◦
𝐼

> 0] = 1
2 and ℙ[𝐷𝐼 = −1] = ℙ[𝐷◦

𝐼
<

0] = 1
2 (recall that 𝐷◦

𝐼
is assumed to be symmetrically distributed 

around 0). The analysis in Sections 3.1 and 3.2 can then be carried 
out with the above 𝜔𝐼 and 𝐷𝐼 .

How the midpoint dark pool exacerbates the directionality of 𝐼 -orders. As 
seen above, because 𝐼 -investors naturally first turn to the cheaper mid-

point dark pool to cross their orders, the residual on-exchange orders 
become more extreme, with |𝐷𝐼 | = 1. (Instead, in reality retail orders 
typically do not go through midpoint dark pools.) We argue this is one 
realistic mechanism through which 𝐼 -orders are more likely to be di-

rectional than 𝑅-orders, i.e., why 𝜎𝑅 < 𝜎𝐼 . Indeed, 𝜎2
𝐼
= var[𝐷𝐼 ] = 1

following the above analysis, while by definition 𝜎2
𝑅
≤ 1.

Appendix C. Extension: dynamics

In the model, market makers’ liquidity-supply decisions can be in-

terpreted as their limit orders, their ex-ante allocation of groundwork, 
or their negotiations with brokers (see Remark 3). In Sections 2 and 3, 
we assume that these decisions are made once, before trading starts. In 
this section, we relax this assumption and examine how market makers 
supply liquidity dynamically.

In C.1, we describe the model setup. To keep the analysis tractable 
and to highlight the main insights, we also introduce a few simplifying 
assumptions. We then characterize the equilibrium in C.2, showing that 
market makers’ incentive to siphon 𝑅-orders remains intact. In fact, this 
dynamic extension highlights a novel effect that further incentivizes 
siphoning. This new mechanism arises from two unique features of the 
dynamic extension: (1) market makers inherit inventories accumulated 
in previous periods, and (2) these inventories can be correlated with 
future orders because of autocorrelation in order flows.

C.1. Setup

Timing. There are two trading periods 𝑡 ∈ {1, 2}. As in Section 3, there 
are two marketplaces 𝑗 ∈ {1, 2}, where 1 denotes on-exchange and 
2 off-exchange trading. In each period 𝑡, each market maker 𝑚 ∈
[0, 𝑀] chooses her liquidity supply for the two marketplaces 𝒙(𝑡)𝑚 =(
𝑥
(𝑡)
𝑚1, 𝑥

(𝑡)
𝑚2
)⊤

, where the superscript “(𝑡)” indicates the period. The 
period-𝑡 half spreads for these two marketplaces are denoted 𝒔(𝑡) =(
𝑠
(𝑡)
1 , 𝑠(𝑡)2

)⊤
and will be determined endogenously in equilibrium. A mar-

ket maker’s profit is her spread revenue (across both marketplaces and 
both time periods) minus 𝛾

2 times the square of her terminal inventory.

Liquidity demand. As in Section 3, there are two types of investors, 𝑘 ∈
{𝑅, 𝐼}. For simplicity, their liquidity demands are assumed to be time-

invariant, i.e., 𝜆(𝑡)
𝑘
(𝑠) = 𝜆𝑘(𝑠) = max{0, (𝜁 − 𝑠)𝜔𝑘}, for both 𝑡 ∈ {1, 2}. 

Whereas we permitted an arbitrary joint distribution for directionali-

ties in previous sections, we impose additional structure here so as to 
introduce autocorrelation in a tractable way. Formally, we model direc-

tionalities as follows:

𝐷
(1)
𝐼

= (−1)𝑌
(1)
𝐼 𝜎𝐼 , 𝐷

(2)
𝐼

= 𝑋𝐼𝐷
(1)
𝐼

+ (1 −𝑋𝐼 )(−1)
𝑌
(2)
𝐼 𝜎𝐼 ,

and 𝐷
(1)
𝑅

= 𝐷
(2)
𝑅

= 0, (C.1)

where 
{
𝑌
(1)
𝐼

, 𝑌 (2)
𝐼

, 𝑋𝐼

}
are independent Bernoulli draws with respective 

success rates 
{ 1
2 , 12 , 𝜙𝐼

}
with 𝜙𝐼 ∈ [0, 1) and 𝜎𝐼 ∈ (0, 1]. In words, for 

each period 𝑡, 𝐼 -orders will realize a directionality 𝐷(𝑡)
𝐼

of either ±𝜎𝐼 , 
yet are unconditionally balanced, with 𝔼

[
𝐷

(𝑡)
𝐼

]
= 0. The period-2 di-

rectionality 𝐷(2)
𝐼

remains equal to the period-1 directionality 𝐷(1)
𝐼

with 
probability 𝜙𝐼 and is an i.i.d. new draw with probability 1 − 𝜙𝐼 . In 
contrast, we assume that 𝑅-orders lack directionality altogether, which 
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lends tractability while simultaneously encoding the realistic feature 
that 𝑅-orders are less directional than 𝐼 -orders (as discussed in Sec-

tion 3.3).25

Siphoning. In each period 𝑡 ∈ {1, 2}, a fraction 𝛼(𝑡) ∈ [0, 1] of the 𝑅-

orders is endogenously siphoned off-exchange, so that the marketplace-

level directionalities are 𝑫(𝑡) = 𝑭
(
𝛼(𝑡))(𝐷(𝑡)

𝐼
, 𝐷(𝑡)

𝑅

)⊤
, where the weight-

ing matrix 𝑭 (⋅) remains as in (6). As in Section 3, brokers honor 
the best-execution requirement, so that 𝑠

(𝑡)
1 ≤(≥)𝑠

(𝑡)
2 if 𝛼(𝑡) < 1(> 0); 

see (7a)–(7b) and Remark 5.

Trading outcomes from 𝑡 = 1. After the 𝑡 = 1 trading, a market maker 𝑚

observes (1)
𝑚 =

{
𝑧
(1)
𝑚 , 𝐷(1)

𝐼
, �̄�(1)

}
, where 𝑧(1)𝑚 is the market maker’s own 

inventory at that time, and �̄�(1) ∶= 1
𝑀

∫ 𝑀
0 𝑧

(1)
𝑚 d𝑚 is the average inven-

tory across all market makers. Naturally, the market maker knows her 
own 𝑧

(1)
𝑚 . She can further infer 𝐷(1)

𝐼
and �̄�(1), for example, from a public 

data feed.26

Equilibrium definition. Analogous to Section 3.1, an equilibrium consists 
of, for both 𝑡 ∈ {1, 2}, liquidity supplies 𝒙(𝑡)𝑚 for each market maker 𝑚, 
siphoning fractions 𝛼(𝑡), and half spreads 𝒔(𝑡). In particular, for 𝑡 = 2, 
a market maker 𝑚’s supply 𝒙

(2)
𝑚 can depend on her own informa-

tion (1)
𝑚 , while the market-wide variables, 𝛼(2) and 𝒔(2) can depend 

on ∪𝑚∈[0,𝑀](1)
𝑚 . The equilibrium conditions determining these endoge-

nous variables are: (i) each market maker 𝑚 chooses her liquidity-

supply strategy 
{
𝒙
(1)
𝑚 , 𝒙(2)𝑚

}
to maximize her expected profit—not only 

in the entire game but also in each 𝑡 = 2 subgame (as in the spirit of 
subgame perfection); (ii) market clearing holds for each marketplace 𝑗

(in every subgame), and (iii) the best-execution requirement is satisfied 
(in every subgame).

Comparison with existing literature. A key feature of our analysis is that 
we consider an environment with two marketplaces, so as to highlight 
endogenous order flow segmentation—the off-exchange siphoning of 
retail orders. In contrast, existing inventory-based models of dynamic 
liquidity supply typically consider only a single venue; see, e.g., Amihud 
and Mendelson (1980), Ho and Stoll (1981, 1983), and Hendershott and 
Menkveld (2014).27

Different from the above literature, we maintain the standing as-

sumption that each marketplace’s midpoint is fixed at the asset’s fair 
value throughout the two periods (so that only the spreads 𝒔(𝑡) remain 
to be determined in equilibrium). Hendershott and Mendelson (2000)

25 Our analysis can be generalized to the case where 𝑅-order directional-

ities take the same functional form as for 𝐼 -orders: 𝐷
(1)
𝑅

= (−1)𝑌
(1)
𝑅 𝜎𝑅, and 

𝐷
(2)
𝑅

= 𝑋𝑅𝐷
(1)
𝐼

+ (1 − 𝑋𝑅)(−1)𝑌
(2)
𝑅 𝜎𝑅, where 

{
𝑌

(1)
𝑅

, 𝑌 (2)
𝑅

, 𝑋𝑅

}
are independent 

Bernoulli draws with respective success rates 
{ 1

2
, 1
2
, 𝜙𝑅

}
with 𝜙𝑅 ∈ [0, 1) and 

𝜎𝑅 ∈ [0, 1]. In particular, the same key result (that retail orders are all siphoned 
off-exchange) will be obtained for sufficiently small 𝜎𝑅 > 0.
26 For example, such a data feed may contain the on-exchange half spread 𝑠

(1)
1 , 

trading volume 𝑉
(1)
1 ∶= 𝜆𝐼

(
𝑠
(1)
1

)
+
(
1 − 𝛼(1))𝜆𝑅

(
𝑠
(1)
1

)
, and order imbalance 

𝐼
(1)
1 ∶= 𝜆𝐼

(
𝑠
(1)
1

)
𝐷

(1)
𝐼

+
(
1 −𝛼(1))𝜆𝑅

(
𝑠
(1)
1

)
𝐷

(1)
𝑅

= 𝜆𝐼

(
𝑠
(1)
1

)
𝐷

(1)
𝐼

(where the last equal-

ity holds because 𝐷
(1)
𝑅

= 0). Each market maker can infer 𝐷
(1)
𝐼

by solving 
those two equations for the two unknowns 𝐷

(1)
𝐼

and 𝛼(1) . The average inven-

tory also follows �̄�(1) = − 1
𝑀

𝐼
(1)
1 (note that the off-exchange imbalance 𝐼 (2)

2 ∶=
𝛼(1)𝜆𝑅

(
𝑠
(1)
2

)
𝐷

(1)
𝑅

is zero and hence does not affect �̄�(1)).
27 In addition to considerations related to inventory management, the liter-

ature has also highlighted several other dimensions of strategic behavior in 
dynamic liquidity supply. For example, Glosten and Milgrom (1985) and Kyle 
(1985) analyze how competitive market makers dynamically supply liquidity 
in view of information asymmetry. Bernhardt et al. (2004) show that dealers 
provide better liquidity to frequent customers to secure future business. Des-

granges and Foucault (2005) show that repeated trading relationships can shield 
a dealer from being adversely selected by a possibly-informed investor. Barbon 
et al. (2019) find evidence consistent with brokers leaking information about 
some of their clients’ fire-selling orders to other clients.

make a similar assumption. Nevertheless, we acknowledge that this as-

sumption is a substantive one, as market makers would have incentives 
to skew their quotes against their inventories. For example, if a mar-

ket maker becomes long, then she would set the midquote below the 
fair value, so as to encourage buyers and discourage sellers. Such “price 
pressure” is a key insight from the above literature.

By fixing the midpoint, we effectively ignore how market makers 
might use price pressures to manage their inventories over time. In re-

turn, we obtain the tractability necessary to demonstrate the robustness 
of our main result—that even in a dynamic framework, market mak-

ers’ incentive to segment orders persists. In other words, our analysis 
highlights that order flow segmentation can serve as a further tool—

in addition to price pressure—with which market makers can manage 
their inventories. We leave it as an open question for future research 
how these two tools might interact with each other.

C.2. Equilibrium

The equilibrium is solved backwards: We first derive the 𝑡 = 2 equi-

librium objects for any given 𝑡 = 1 trading outcomes. This gives market 
makers’ continuation values, with which we then solve for the 𝑡 = 1
equilibrium objects.

C.2.1. Period 2

The analysis for period 2 is similar to that for the single-period 
model, with two key differences. First, given her observation (1)

𝑚

from 𝑡 = 1, each market maker 𝑚 possesses information about the 𝑡 = 2
directionality of 𝐼 -orders, 𝐷(2)

𝐼
. In particular, all market makers observe 

the realized 𝑡 = 1 directionality 𝐷(1)
𝐼

, which following (C.1) is a suffi-

cient statistic. For notational simplicity, we write 𝔼1[⋅] = 𝔼
[
⋅ |||𝐷(1)

𝐼

]
and 

var1[⋅] = var
[
⋅ |||𝐷(1)

𝐼

]
. Therefore, by Bayes’ rule, every market maker ob-

tains the same posterior moments: 𝔼1
[
𝐷

(2)
𝐼

]
= 𝜙𝐼𝐷

(1)
𝐼

, var1
[
𝐷

(2)
𝐼

]
= (1 −

𝜙2
𝐼
)𝜎2

𝐼
, and we of course also have 𝔼1

[
𝐷

(2)
𝑅

]
= 0 and var1

[
𝐷

(2)
𝑅

]
= 0. We 

write the posterior mean and variance of 𝑫(2) = 𝑭
(
𝛼(2)) ⋅ (𝐷(2)

𝐼
, 𝐷(2)

𝑅

)⊤

as 𝝁(2|1) and 𝚺(2|1), respectively, and derive their expressions in the 
proof of Lemma 3.

Second, in the single-period model, all market makers begin with 
zero inventory, whereas now in 𝑡 = 2, each market maker 𝑚 inherits 
from her trading at 𝑡 = 1 the inventory 𝑧

(1)
𝑚 . We show in the proof of 

Lemma 3 that her objective now becomes:

𝜋(2)
𝑚

(
𝒙(2)𝑚 ;𝑧(1)𝑚 ,𝐷

(1)
𝐼

)
= 𝒙(2)𝑚

⊤
(
𝒔(2) − 𝛾

2
𝟏
)

− 𝛾

2

[
𝒙(2)𝑚

⊤
(
𝚺(2|1) + 𝝁(2|1)𝝁(2|1)⊤)𝒙(2)𝑚 − 2𝒙(2)𝑚

⊤
𝝁(2|1)𝑧(1)𝑚 +

(
𝑧(1)𝑚

)2]
,

(C.2)

where she takes as given the half spreads 𝒔(2) and the siphoning frac-

tion 𝛼(2) (which determines 𝚺(2|1) and 𝝁(2|1)). Compared with the objec-

tive (4) in the single-period model, the last two terms in the squared-

brackets are new. They arise from the market maker’s existing inven-

tory 𝑧
(1)
𝑚 : The expected inventory cost created by that existing inventory 

itself is proportional to
(
𝑧
(1)
𝑚

)2
, and that created by its covariance with 

her 𝑡 = 2 trading is proportional to −𝒙(2)𝑚

⊤
𝝁(2|1)𝑧(1)𝑚 .

We show in the proof of Lemma 3 that the objective (C.2) is strictly 
concave in 𝑥

(2)
𝑚1 but linear in 𝑥

(2)
𝑚2. Therefore, the first-order condi-

tion determines the optimal 𝑥
(2)
𝑚1 (as a function of the on-exchange 

half spread 𝑠
(2)
1 ) and the off-exchange half spread 𝑠

(2)
2 . Market clear-

ing then determines the on-exchange half spread 𝑠
(2)
1 and the aggregate

off-exchange liquidity supply. The equilibrium siphoning fraction 𝛼(2)

is determined by the best-execution requirement. The following lemma 
summarizes the results:
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Lemma 3 (Period 𝟐). Given period-1 outcomes 𝐷
(1)
𝐼

and �̄�(1), the period-2 
continuation game always has an equilibrium. All equilibria are character-

ized as follows. Define

Δ(2) ∶=
𝜙𝐼𝐷

(1)
𝐼

𝑀�̄�(1)

𝜁 − 𝛾

2

− 𝜎2
𝐼
𝜔𝐼 . (C.3)

(i) If Δ(2) < 0, then 𝛼(2) = 1.

(ii) If Δ(2) > 0, then 𝛼(2) = 0.

(iii) If Δ(2) = 0, then 𝛼(2) can take any value in [0,1].

In all cases, the equilibrium half spreads 𝑠
(2)
1 and 𝑠

(2)
2 are defined by 

equations (D.9)–(D.10); equilibrium on-exchange liquidity supply 𝑥
(2)
𝑚1 is 

given by (D.11); and equilibrium off-exchange aggregate liquidity sup-

ply ∫ 𝑀
0 𝑥

(2)
𝑚2d𝑚 is given by (D.12) (but may be allocated arbitrarily among 

the individual market makers). Furthermore, when the market clears at 𝑡 = 1
(as it would in equilibrium of the full game), we have 𝛼(2) = 1 (i.e., all 𝑅-

orders are siphoned off-exchange in 𝑡 = 2).

According to the last part of the lemma, in (the full game) equilib-

rium, all 𝑅-orders are siphoned off-exchange in 𝑡 = 2. Two effects drive 
this equilibrium feature.

• First, suppose (contrary to the equilibrium) that all market makers 
were to enter period 2 without any inventory. This would imply 
that �̄�(1) = 0, leading to Δ(2) = −𝜔𝐼𝜎2

𝐼
< 0 by equation (C.3). Thus, 

even absent the inventories inherited from 𝑡 = 1, 𝑅-orders would 
be siphoned off-exchange. The intuition is that 𝑅-orders, being bal-

anced, would be cheaper than 𝐼 -orders, being imbalanced, in terms 
of market makers’ inventory costs. In fact, this first effect is im-

plied by the analysis in Section 3, where 𝑅-orders are siphoned 
off-exchange if Δ < 0.28 In other words, the siphoning incentive 
identified in the single-period case remains robust in the dynamic 
extension.

• Second, the inventory that market makers bring into period 2 leads 
to an extra term in the expression for Δ(2), namely 𝜙𝐼𝐷

(1)
𝐼

𝑀�̄�(1)∕(
𝜁 − 𝛾

2

)
. Equilibrium requires market clearing at 𝑡 = 1 so that 

𝑀�̄�(1) = −𝜆𝐼

(
𝑠
(1)
1
)
𝐷

(1)
𝐼

. Plugging this in, the extra term becomes 
−𝜙𝐼𝜆𝐼

(
𝑠
(1)
1
)
𝜎2

𝐼
∕
(
𝜁 − 𝛾

2

)
, which makes Δ(2) even more negative. 

The intuition is that autocorrelation in 𝐼 -investor order flow im-

plies that 𝐼 -orders in 𝑡 = 2 are on average expected to exacerbate 
market makers’ inventories inherited from 𝑡 = 1: 𝐼 -investors are 
expected to buy (sell) in 𝑡 = 2 precisely when market makers are 
short (long) on average, owing to 𝐼 -orders from 𝑡 = 1. This makes 
𝐼 -orders even less attractive relative to 𝑅-orders, further incentiviz-

ing market makers to siphon 𝑅-orders off-exchange.

28 In Section 3, to simplify notation, we assumed 𝔼[𝐷𝐼 ] = 𝔼[𝐷𝑅] = 0 (cf.

Footnote 12), so that 𝚺 + 𝝁𝝁⊤ reduces to 𝚺. Without such a simplification, 
it can be shown that the definition of Δ generalizes from (11) to Δ ∶=(
𝔼[𝐷2

𝑅
]𝜔𝑅 + 𝔼[𝐷𝑅𝐷𝐼 ]𝜔𝐼

)
−
(
𝔼[𝐷2

𝐼
]𝜔𝐼 + 𝔼[𝐷𝑅𝐷𝐼 ]𝜔𝑅

)
; that is, 𝜎2

𝑘
= var[𝐷𝑘] is 

replaced by 𝔼[𝐷2
𝑘
] and 𝜌𝜎𝑅𝜎𝐼 = cov[𝐷𝑅, 𝐷𝐼 ] by 𝔼[𝐷𝑅𝐷𝐼 ]. To adapt this gener-

alized definition of Δ to the second-period phase of our dynamic model (for the 
case of �̄�(1) = 0), we simply use the conditional expectation 𝔼1[⋅] and set 𝜎𝑅 = 0
to obtain

Δ=
(
𝔼1

[(
𝐷

(2)
𝑅

)2]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=0

𝜔𝑅 + 𝔼1

[
𝐷

(2)
𝑅

𝐷
(2)
𝐼

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

𝜔𝐼

)

−
(
𝔼1

[(
𝐷

(2)
𝐼

)2]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=𝜎2
𝐼

𝜔𝐼 + 𝔼1

[
𝐷

(2)
𝑅

𝐷
(2)
𝐼

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=0

𝜔𝑅

)
= −𝜔𝐼𝜎2

𝐼
< 0,

which exactly coincides with the result of setting �̄�(1) = 0 in the expression for 
Δ(2) given in (C.3).

The second effect above is new in the dynamic model. It arises only if 
𝐼 -orders are autocorrelated. Indeed, if 𝜙𝐼 = 0, then in expectation, the 
average market maker’s inventory �̄�(1) is no longer exacerbated by the 
period-2 𝐼 -orders.

C.2.2. Period 1

The equilibrium analysis for period 1 proceeds similarly. We sketch 
the steps below and defer details to the proof of Proposition 9. First, 
taking the spreads 𝒔(1) and siphoning 𝛼(1) as given, a market maker 𝑚

chooses her optimal liquidity supply 𝒙
(1)
𝑚 to maximize

𝜋(1)
𝑚

(
𝒙(1)𝑚

)
= 𝒙(1)𝑚

⊤
𝒔(1) + 𝔼

[
𝜋(2)

𝑚

(
𝒙(2)𝑚 ;𝑧(1)𝑚 ,𝐷

(1)
𝐼

)]
,

which is the sum of her expected spread revenue from 𝑡 = 1 and her ex-

pected continuation value 𝜋(2)
𝑚 (⋅) as given in (C.2). Note that the choice 

variable 𝒙
(1)
𝑚 affects the continuation value 𝔼

[
𝜋
(2)
𝑚 (⋅)

]
for it affects the 

distribution of 𝑧
(1)
𝑚 , the inventory that the market maker will acquire 

in 𝑡 = 1. We derive the expression of 𝜋
(1)
𝑚 in the proof of Proposition 9

and show that, analogous to 𝜋(2)
𝑚 , it is strictly concave in 𝑥

(1)
𝑚1 but lin-

ear in 𝑥
(1)
𝑚2. We then proceed exactly as in C.2.1 for 𝑡 = 2. The following 

proposition summarizes the equilibrium.

Proposition 9 (Equilibrium). An equilibrium for the full game always ex-

ists. All equilibria are characterized as follows. In period 1, all 𝑅-orders are 
siphoned off-exchange, i.e., 𝛼(1) = 1; the equilibrium half spreads 𝑠

(1)
1 and 

𝑠
(1)
2 are defined by (D.23) and (D.21); equilibrium on-exchange liquidity 

supply 𝑥
(1)
𝑚1 is given by (D.22); and equilibrium off-exchange aggregate liq-

uidity supply ∫ 𝑀
0 𝑥

(2)
𝑚2d𝑚 is given by (D.24) (but may be allocated arbitrarily 

among the individual market makers). The period-2 equilibrium objects are 
as described in Lemma 3.

Although equilibrium (for the full game) is not unique, equilibrium 
does make a unique prediction regarding the spreads.29 For period 1, 
these unique spreads entail 𝑠(1)1 > 𝑠

(1)
2 , consistent with how, according 

to the proposition, all 𝑅-orders are siphoned off-exchange in 𝑡 = 1. This 
is because, as before, the 𝑅-orders are balanced and, thus, are relatively 
cheaper than the directional 𝐼 -orders in terms of inventory costs. And as 
previously discussed, on the equilibrium path, all 𝑅-orders are also si-
phoned off-exchange in 𝑡 = 2. Therefore, we conclude that the economic 
forces that drive siphoning are robust to the dynamic considerations we 
have modeled here.30

Appendix D. Proofs

Proof of Lemma 1. Consider first 𝑍𝑚𝑗 , market maker 𝑚’s net inven-

tory from marketplace 𝑗. Conditional on the realizations of (𝑄𝑚𝑗 )𝐽𝑗=1, 
we have

𝔼
[
𝑍2

𝑚𝑗 |𝑄𝑚𝑗

]
= 𝔼

⎡⎢⎢⎣
𝑄𝑚𝑗∑
𝑖=1

(−1)2𝐵𝑚𝑗𝑖 + 2
∑
𝑖≠𝑖′

(−1)𝐵𝑚𝑗𝑖 (−1)𝐵𝑚𝑗𝑖′
⎤⎥⎥⎦

29 The (full game) equilibrium is unique up to (i) how the aggregate off-

exchange liquidity supply is allocated across market makers in each period, and 
(ii) how 𝛼(2) is specified for the off-path period-2 subgames in which Δ(2) = 0.
30 Interestingly, our model also entails a prediction on spread dynamics: It can 
be shown that for both marketplaces 𝑗, 𝑠(1)𝑗 < 𝑠

(2)
𝑗 . Intuitively, this is because the 

dynamic model allows market makers to flexibly adjust their liquidity supply 
over time. In fact, they have an incentive to frontload their liquidity supplies, 
because doing so resolves uncertainty while they still have time to react, which 
permits them to reduce the variance of their terminal inventory. For example, 
if a market maker received positive inventory after 𝑡 = 1 and if she expects 
the 𝑡 = 2 order flow to be buying (selling), then she can scale up (down) her 
liquidity supply in 𝑡 = 2. As liquidity supply is frontloaded, spreads are narrower 
in 𝑡 = 1 than in 𝑡 = 2.
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= 𝑄𝑚𝑗 + (𝑄𝑚𝑗 − 1)𝑄𝑚𝑗𝔼
[
𝔼
[
(−1)𝐵𝑚𝑗𝑖 (−1)𝐵𝑚𝑗𝑖′ |𝐷𝑗

]]
= 𝑄𝑚𝑗 + (𝑄𝑚𝑗 − 1)𝑄𝑚𝑗𝔼

[
𝐷2

𝑗

]
= 𝑄𝑚𝑗 + (𝑄𝑚𝑗 − 1)𝑄𝑚𝑗 ⋅ (𝜎2

𝑗 + 𝜇2
𝑗 ),

where (𝐵𝑚𝑗𝑖) are i.i.d. Bernoulli draws with success rate 12 (1 + 𝐷𝑗 ), 𝜇𝑗

is the 𝑗-th element of 𝝁, and 𝜎2
𝑗

is the 𝑗-th diagonal element of 𝚺; and, 
for 𝑗 ≠ 𝑗′,

𝔼
[
𝑍𝑚𝑗𝑍𝑚𝑗′ |𝑄𝑚𝑗,𝑄𝑚𝑗′

]
=

𝑄𝑚𝑗∑
𝑖=1

𝑄𝑚𝑗′∑
𝑖′=1

𝔼
[
(−1)𝐵𝑚𝑗𝑖 (−1)𝐵𝑚𝑗𝑖′

]
= 𝑄𝑚𝑗𝑄𝑚𝑗′𝔼

[
𝔼
[
(−1)𝐵𝑚𝑗𝑖 (−1)𝐵𝑚𝑗𝑖′ |||𝐷𝑗,𝐷𝑗′

]]
= 𝑄𝑚𝑗𝑄𝑚𝑗′𝔼

[
𝐷𝑗𝐷𝑗′

]
= 𝑄𝑚𝑗𝑄𝑚𝑗′ ⋅

(
𝜌𝑗𝑗′𝜎𝑗𝜎𝑗′ + 𝜇𝑗𝜇𝑗′

)
,

where 𝜌𝑗𝑗′ is the correlation between 𝐷𝑗 and 𝐷𝑗′ . The market maker’s 
total net inventory is 𝑍𝑚 ∶=

∑𝐽
𝑗=1 𝑍𝑚𝑗 , and

𝔼
[
𝑍2

𝑚|𝑄𝑚1,… ,𝑄𝑚𝐽

]
=

𝐽∑
𝑗=1

𝔼
[
𝑍2

𝑚𝑗 |𝑄𝑚𝑗

]
+
∑
𝑗≠𝑗′

𝔼
[
𝑍𝑚𝑗𝑍𝑖𝑗′ |𝑄𝑚𝑗,𝑄𝑚𝑗′

]
=

𝐽∑
𝑗=1

(
𝑄𝑚𝑗 + (𝑄𝑚𝑗 − 1)𝑄𝑚𝑗 (𝜎2

𝑗 + 𝜇2
𝑗 )
)

+
∑
𝑗≠𝑗′

𝑄𝑚𝑗𝑄𝑚𝑗′
(
𝜌𝑗𝑗′𝜎𝑗𝜎𝑗′ + 𝜇𝑗𝜇𝑗′

)
=

𝐽∑
𝑗=1

𝑄𝑚𝑗 +
𝐽∑

𝑗=1
(𝑄2

𝑚𝑗 −𝑄𝑚𝑗 )(𝜎2
𝑗 + 𝜇2

𝑗 )

+
∑
𝑗≠𝑗′

𝑄𝑚𝑗𝑄𝑚𝑗′
(
𝜌𝑗𝑗′𝜎𝑗𝜎𝑗′ + 𝜇𝑗𝜇𝑗′

)
.

Finally, take the unconditional expectation to get

𝔼
[
𝑍2

𝑚

]
=

𝐽∑
𝑗=1

𝑥𝑚𝑗 +
𝐽∑

𝑗=1
(𝑥2

𝑚𝑗 + 𝑥𝑚𝑗 − 𝑥𝑚𝑗 )(𝜎2
𝑗 + 𝜇2

𝑗 )

+
∑
𝑗≠𝑗′

𝑥𝑚𝑗𝑥𝑚𝑗′
(
𝜌𝑗𝑗′𝜎𝑗𝜎𝑗′ + 𝜇𝑗𝜇𝑗′

)
=

𝐽∑
𝑗=1

𝑥𝑚𝑗

⏟⏟⏟

=𝒙⊤
𝑚𝟏

+
𝐽∑

𝑗=1
𝑥2

𝑚𝑗

(
𝜎2

𝑗 + 𝜇2
𝑗

)
+
∑
𝑗≠𝑗′

𝑥𝑚𝑗𝑥𝑚𝑗′
(
𝜌𝑗𝑗′𝜎𝑗𝜎𝑗′ + 𝜇𝑗𝜇𝑗′

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝒙⊤
𝑚

(
𝚺+𝝁𝝁⊤

)
𝒙𝑚

. □

Proof of Proposition 1. Given the optimal supply (5), the market-

clearing conditions (2) become

𝑀

𝛾

(
𝚺+ 𝝁𝝁⊤

)−1 (
𝒔− 𝛾

2
𝟏
)
=
(
𝜆1(𝑠1),… , 𝜆𝐽 (𝑠𝐽 )

)⊤
. (D.1)

We now show the existence and the uniqueness of a solution 𝒔 to (D.1).

Existence: Notice that a solution to (D.1) is equivalent to a fixed point 
of the function

𝑮(𝒔) = 𝛾

𝑀

(
𝚺+ 𝝁𝝁⊤

)(
𝜆1(𝑠1),… , 𝜆𝐽 (𝑠𝐽 )

)⊤ + 𝛾

2
𝟏.

Because each 𝜆𝑗 (⋅) is nonincreasing and nonnegative, the range of (
𝜆1(𝑠1),… , 𝜆𝐽 (𝑠𝐽 )

)⊤
is the compact, convex set 

∏𝐽
𝑗=1[0, 𝜆𝑗 (0)]. The 

range of 𝑮(𝒔) is a linear transformation of that set, so is also com-

pact and convex. Moreover, 𝑮 is continuous. It therefore follows from 
Brouwer’s fixed-point theorem that 𝑮 has a fixed point, and hence 
that (D.1) has a solution.

Uniqueness: Suppose there are two solutions to (D.1), denoted by 𝒔

and 𝒔′ = 𝒔+𝜹, where the vector 𝜹 = (𝛿1, … , 𝛿𝐽 )⊤ is the difference of the 
two solutions. For notational simplicity, write 𝝀 as the right-hand side 
of (D.1) under 𝒔 and 𝝀′ for that under 𝒔′. Difference the two market-

clearing conditions and then left-multiply both sides with 𝜹⊤ to get

𝜹⊤

(
𝑀

𝛾

(
𝚺+ 𝝁𝝁⊤

)−1)
𝜹 = 𝜹⊤

(
𝝀′ − 𝝀

)
,

where if 𝜹 ≠ 𝟎, the left-hand side is positive, because 
(
𝚺+ 𝝁𝝁⊤

)−1
is 

positive-definite. Suppose 𝛿𝑗 > 0 (< 0). Then, since the demand func-

tions are monotonically weakly decreasing, 𝜆𝑗 (𝑠𝑗 +𝛿𝑗 ) −𝜆𝑗 (𝑠𝑗 ) ≤ 0 (≥ 0), 
and the right-hand side above is weakly negative. Therefore, the two so-

lutions 𝒔 and 𝒔′ must collapse with 𝜹 = 𝟎. □

Proof of Proposition 2. We consider the three cases of 𝛼 = 1, 𝛼 = 0, 
and 𝛼 ∈ (0, 1) separately, following conditions (7a)–(7b).

Consider first the case of 𝛼 = 1. Then Proposition 1 applies with 𝜆1(𝑠1) =
𝜆𝐼 (𝑠1), 𝜆2(𝑠2) = 𝜆𝑅(𝑠2), and weighting matrix 𝑭 (1). To verify that this 
outcome satisfies the notion of equilibrium defined in Section 3.1, it 
remains only to check (7b), which requires 𝑠1 ≥ 𝑠2. Recall that the 
demand 𝜆𝑘(𝑠) exhibits a kink at 𝑠 = 𝜁 . We then have three subcases 
depending on the ranking of 𝑠1, 𝑠2, and 𝜁 .

• If 𝜁 > 𝑠1 ≥ 𝑠2, then 𝜆1(𝑠1) = (𝜁 − 𝑠1)𝜔𝐼 and 𝜆2(𝑠2) = (𝜁 − 𝑠2)𝜔𝑅. 
Jointly solving the two market-clearing conditions 𝑀𝑥𝑚𝑗 = 𝜆𝑗 (𝑠𝑗 )
for 𝑠1 and 𝑠2, we obtain 𝑠𝑗 =

𝛾

2 +
(
𝜁 − 𝛾

2

)
𝛽𝑗 , where

𝛽1 =
(𝜎2

𝐼
𝜔𝐼 + 𝜌𝜎𝐼𝜎𝑅𝜔𝑅)𝛾𝑀 + (1 − 𝜌2)𝜎2

𝐼
𝜎2

𝑅
𝛾2𝜔𝐼𝜔𝑅

𝑀2 + (𝜎2
𝐼
𝜔𝐼 + 𝜎2

𝑅
𝜔𝑅)𝛾𝑀 + (1 − 𝜌2)𝜎2

𝐼
𝜎2

𝑅
𝛾2𝜔𝐼𝜔𝑅

; and (D.2)

𝛽2 =
(𝜎2

𝑅
𝜔𝑅 + 𝜌𝜎𝐼𝜎𝑅𝜔𝐼 )𝛾𝑀 + (1 − 𝜌2)𝜎2

𝐼
𝜎2

𝑅
𝛾2𝜔𝐼𝜔𝑅

𝑀2 + (𝜎2
𝐼
𝜔𝐼 + 𝜎2

𝑅
𝜔𝑅)𝛾𝑀 + (1 − 𝜌2)𝜎2

𝐼
𝜎2

𝑅
𝛾2𝜔𝐼𝜔𝑅

. (D.3)

It can be seen that 𝜁 > 𝑠1 (equivalently, 1 > 𝛽1) is satisfied if and 
only if (12) holds. In addition, 𝑠1 ≥ 𝑠2 (equivalently, 𝛽1 ≥ 𝛽2) is 
satisfied if and only if Δ ≤ 0.

• If 𝑠1 ≥ 𝜁 > 𝑠2, then 𝜆1(𝑠1) = 0 and 𝜆2(𝑠2) = (𝜁 − 𝑠2)𝜔𝑅. The market-

clearing conditions then yield 𝑠𝑗 =
𝛾

2 +
(
𝜁 − 𝛾

2

)
𝛽𝑗 , where

𝛽1 =
𝜌𝜎𝐼𝜎𝑅𝜔𝑅𝛾

𝑀 + 𝜎2
𝑅
𝜔𝑅𝛾

and 𝛽2 =
𝜎2

𝑅
𝜔𝑅𝛾

𝑀 + 𝜎2
𝑅
𝜔𝑅𝛾

.

This solution is consistent with 𝑠1 ≥ 𝜁 > 𝑠2 (equivalently, 𝛽1 ≥ 1 >
𝛽2) if and only if (12) fails. We also note that the failure of (12)

necessarily implies Δ < 0. To see this, suppose the opposite is true, 
i.e., (12) fails and that

(
𝜎2

𝑅
𝜔𝑅 + 𝜌𝜎𝐼𝜎𝑅𝜔𝐼

)
−
(
𝜎2

𝐼
𝜔𝐼 + 𝜌𝜎𝐼𝜎𝑅𝜔𝑅

) ≥
0, the latter implying(
−𝜎2

𝐼
+ 𝜌𝜎𝐼𝜎𝑅

)
𝜔𝐼 ≥ (𝜌𝜎𝐼 − 𝜎𝑅

)
𝜎𝑅𝜔𝑅

⟹ 𝜌 ≥
(
𝜌𝜎𝐼 − 𝜎𝑅

)
𝜔𝑅

𝜎𝐼𝜔𝐼

+
𝜎𝐼

𝜎𝑅

.

Note that for (12) to fail, we must have 𝜌𝜎𝐼 > 𝜎𝑅, for otherwise 
the right-hand side of (12) is weakly negative, which would mean 
that (12) must hold, because 𝑀 > 0. It then follows that 𝜌𝜎𝐼 −𝜎𝑅 >

0 and 𝜎𝑅 < 𝜌𝜎𝐼 < 𝜎𝐼 ⟹ 𝜎𝐼

𝜎𝑅
> 1. Therefore, we obtain from the 

above inequality that 𝜌 > 1, a contradiction.

• Finally, if 𝑠1 ≥ 𝑠2 ≥ 𝜁 , then 𝜆1(𝑠1) = 𝜆2(𝑠2) = 0. But then using 
the optimal demand (5), market clearing requires 𝑠1 = 𝑠2 =

𝛾

2 < 𝜁 . 
Hence, this cannot be an equilibrium.
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Hence, there is an equilibrium with 𝛼 = 1 if and only if Δ ≤ 0. Fur-

thermore, this equilibrium is such that 𝑠1 < 𝜁 if and only if (12) also 
holds.

Next, suppose 𝛼 = 0. Then Proposition 1 applies with 𝜆1(𝑠1) = 𝜆𝐼 (𝑠1) +
𝜆𝑅(𝑠1), 𝜆2(𝑠2) = 0, and weighting matrix 𝑭 (0). To verify that this out-

come satisfies the notion of equilibrium defined in Section 3.1, it re-

mains only to check (7a), which requires 𝑠1 ≤ 𝑠2. Because there is no 
demand in 𝑗 = 2 in this case, we only need to discuss two subcases.

• If 𝑠1 < 𝜁 , then 𝜆1(𝑠1) = (𝜁 − 𝑠1)(𝜔𝐼 +𝜔𝑅) and 𝜆2(𝑠2) = 0. By market 
clearing, we obtain 𝑠𝑗 =

𝛾

2 +
(
𝜁 − 𝛾

2

)
𝛽𝑗 , where

𝛽1 =
(𝜎2

𝐼
𝜔2

𝐼
+ 2𝜌𝜎𝐼𝜎𝑅𝜔𝐼𝜔𝑅 + 𝜎2

𝑅
𝜔2

𝑅
)𝛾

𝑀(𝜔𝐼 +𝜔𝑅) + (𝜎2
𝐼
𝜔2

𝐼
+ 2𝜌𝜎𝐼𝜎𝑅𝜔𝐼𝜔𝑅 + 𝜎2

𝑅
𝜔2

𝑅
)𝛾
; and (D.4)

𝛽2 =
(𝜌𝜎𝐼𝜔𝐼𝜎𝑅 + 𝜎𝑅𝜔2

𝑅
)(𝜔𝐼 +𝜔𝑅)𝛾

𝑀(𝜔𝐼 +𝜔𝑅) + (𝜎2
𝐼
𝜔2

𝐼
+ 2𝜌𝜎𝐼𝜎𝑅𝜔𝐼𝜔𝑅 + 𝜎2

𝑅
𝜔2

𝑅
)𝛾

.

Note that 𝛽1 < 1 must hold, which guarantees 𝑠1 < 𝜁 . Also, 𝑠1 ≤ 𝑠2
(equivalently, 𝛽1 ≤ 𝛽2) is satisfied if and only if Δ ≥ 0.

• If 𝑠1 ≥ 𝜁 , then 𝜆1(𝑠1) = 𝜆2(𝑠2) = 0. But then market clearing re-

quires 𝑠1 = 𝑠2 =
𝛾

2 < 𝜁 . Hence, this cannot be an equilibrium.

Hence, there is an equilibrium with 𝛼 = 0 if and only if Δ ≥ 0.

Finally, suppose 𝛼 ∈
(
0,1

)
. Then Proposition 1 applies with 𝜆1(𝑠1) =

𝜆𝐼 (𝑠1) + (1 − 𝛼)𝜆𝑅(𝑠1), 𝜆2(𝑠2) = 𝛼𝜆𝑅(𝑠2), and weighting matrix 𝑭 (𝛼). 
To verify that this outcome satisfies the notion of equilibrium defined 
in Section 3.1, it remains only to check (7a) and (7b), which jointly 
require 𝑠1 = 𝑠2 = 𝑠. There are then two subcases.

• If 𝑠 < 𝜁 , then 𝜆1(𝑠) = (𝜁−𝑠)
(
𝜔𝐼 +(1 −𝛼)𝜔𝑅

)
and 𝜆2(𝑠) = (𝜁−𝑠)𝛼𝜔𝑅. 

The two remaining unknowns 𝑠 and 𝛼 are pinned down by the 
market-clearing conditions, which yield 𝑠 = 𝛾

2 + (𝜁 − 𝛾

2 )𝛽 with

𝛽 =
(1 − 𝜌2)𝜎2

𝐼
𝜎2

𝑅
(𝜔𝐼 +𝜔𝑅)𝛾

𝑀(𝜎2
𝐼
− 2𝜌𝜎𝐼𝜎𝑅 + 𝜎2

𝑅
) + (1 − 𝜌2)𝜎2

𝐼
𝜎2

𝑅
(𝜔𝐼 +𝜔𝑅)𝛾

;

and for 𝛼:

(𝜔𝐼 +𝜔𝑅 − 𝛼𝜔𝑅)

×
[(

𝜎2
𝑅
𝜔𝑅 + 𝜌𝜎𝐼𝜎𝑅𝜔𝐼

)
−
(
𝜎2

𝐼
𝜔𝐼 + 𝜌𝜎𝐼𝜎𝑅𝜔𝑅

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Δ

]
= 0,

which, for any 𝛼 ∈ (0, 1), holds if and only if Δ = 0. Note that 𝛽 < 1
must hold, which guarantees 𝑠 < 𝜁 .

• If 𝑠 ≥ 𝜁 , then 𝜆1(𝑠) = 𝜆2(𝑠) = 0. But then market clearing requires 
𝑠 = 𝛾

2 < 𝜁 . Hence, this cannot be an equilibrium.

Hence, for any 𝛼 ∈ (0, 1), there is a corresponding equilibrium if and 
only if Δ = 0. □

Proof of Corollary 1. A segmentation ban exogenously forces 𝛼 = 0. 
Then Proposition 1 applies, with 𝜆1(𝑠𝑏) = 𝜆𝐼 (𝑠𝑏) + 𝜆𝑅(𝑠𝑏), 𝜆2(𝑠) = 0, 
and weighting matrix 𝑭 (0). Although this completes the proof, it is 
useful for subsequent proofs to derive an expression for 𝑠𝑏, the spread 
prevailing in this equilibrium. We conjecture (and subsequently verify) 
that 𝑠𝑏 < 𝜁 . Under this conjecture, liquidity demand is 𝜆1(𝑠𝑏) = (𝜁 −
𝑠𝑏)(𝜔𝐼 +𝜔𝑅), so that market-clearing implies 𝑠𝑏 =

𝛾

2 +
(
𝜁 − 𝛾

2

)
𝛽𝑏, where 

𝛽𝑏 has the same expression as (D.4). Note that 𝛽𝑏 < 1 must hold, which 
guarantees 𝑠𝑏 < 𝜁 . □

Proof of Proposition 3. Equilibrium involves positive volume on-

exchange, i.e., ∫ 𝑀
0 𝑥𝑚1d𝑚 > 0, if and only if 𝑠1 < 𝜁 . And equilibrium 

involves positive volume off-exchange, i.e., ∫ 𝑀
0 𝑥𝑚2d𝑚 > 0, if and only 

if both 𝛼 > 0 and 𝑠2 < 𝜁 . According to Proposition 2, there is a unique 
equilibrium involving 𝛼 > 0 if and only if Δ < 0. The proof of Propo-

sition 2 establishes that when Δ < 0, the equilibrium is guaranteed to 
feature 𝑠2 < 𝜁 . Finally, the proof of Proposition 2 additionally estab-

lishes that this equilibrium also features 𝑠1 < 𝜁 if and only if (12) also 
holds. □

Proof of Lemma 2. Consider the average demand curve. With segmen-

tation, �̄� as defined in (13) can be rewritten as

�̄� = 𝜁 −
𝜆𝐼 (𝑠1)2∕𝜔𝐼 + 𝜆𝑅(𝑠2)2∕𝜔𝑅

𝜆𝐼 (𝑠1) + 𝜆𝑅(𝑠2)

= 𝜁 −
(𝑀𝑥𝑚1)2∕𝜔𝐼 + (𝑀𝑥𝑚2)2∕𝜔𝑅

𝑀𝑥𝑚1 +𝑀𝑥𝑚2

= 𝜁 −

(
(1 − 𝑓𝑅)2

𝜔𝐼

+
𝑓 2

𝑅

𝜔𝑅

)
𝑥,

where the first equality follows from the individual liquidity demand 
curves of the two investor types: 𝜆𝐼 (𝑠1) = (𝜁 − 𝑠1)𝜔𝐼 and 𝜆𝑅(𝑠2) = (𝜁 −
𝑠2)𝜔𝑅; the second equality follows from market clearing; and the third 
equality uses 𝑓𝑅 ∶= 𝑥𝑚2

𝑥𝑚2+𝑥𝑚1
and 𝑥 ∶= (𝑥𝑚1 + 𝑥𝑚2)𝑀 . The expression 

also applies when segmentation is banned, in which case 𝑓𝑅 = 𝜔𝑅

𝜔𝐼+𝜔𝑅
, 

implying 𝑠𝑏 = �̄� = 𝜁 − 𝑥∕(𝜔𝐼 +𝜔𝑅).
Consider next the average supply curve. With segmentation, market 

makers’ equilibrium supply quantities satisfy the first-order conditions 
to (8):

𝑠1 −
𝛾

2
− 𝛾 ⋅

(
𝜎2

𝐼
𝑥𝑚1 + 𝜌𝜎𝐼𝜎𝑅𝑥𝑚2

)
= 0; and

𝑠2 −
𝛾

2
− 𝛾 ⋅

(
𝜎2

𝑅
𝑥𝑚2 + 𝜌𝜎𝐼𝜎𝑅𝑥𝑚1

)
= 0.

Multiply the first with 𝑥𝑚1 and the second with 𝑥𝑚2, add them up, and 
finally divide the sum by 𝑥𝑚1 + 𝑥𝑚2 to get

�̄� =
𝑥𝑚1𝑠1 + 𝑥𝑚2𝑠2

𝑥𝑚1 + 𝑥𝑚2

= 𝛾

2
+

𝜎2
𝐼
𝑥2

𝑚1 + 2𝜌𝜎𝐼𝜎𝑅𝑥𝑚1𝑥𝑚2 + 𝜎2
𝑅
𝑥2

𝑚2
𝑥𝑚1 + 𝑥𝑚2

𝛾

= 𝛾

2
+

𝛾var
[
𝑥𝑚1𝐷𝐼 + 𝑥𝑚2𝐷𝑅

]
𝑥𝑚1 + 𝑥𝑚2

= 𝛾

2
+
( 𝛾

𝑀
var

[
(1 − 𝑓𝑅)𝐷𝐼 + 𝑓𝑅𝐷𝑅

])
𝑥,

where the last equality uses 𝑓𝑅 ∶= 𝑥𝑚2
𝑥𝑚2+𝑥𝑚1

and 𝑥 ∶= (𝑥𝑚1 + 𝑥𝑚2)𝑀 . 
When segmentation is banned, the above expression also applies, with 
𝑓𝑅 = 𝜔𝑅

𝜔𝐼+𝜔𝑅
. □

Proof of Proposition 4. Under Δ < 0 and under (12), the equilibrium 
features both on-exchange and off-exchange volume. Hence, follow-

ing the proofs of Proposition 2 and Corollary 1, 𝑠𝑗 =
𝛾

2 +
(
𝜁 − 𝛾

2

)
𝛽𝑗

for 𝑗 ∈ {1, 2, 𝑏}, where 𝛽1, 𝛽2, and 𝛽𝑏 are given by (D.2), (D.3), 
and (D.4), respectively. Compare first 𝑠𝑏 and 𝑠2. Direct calculation 
shows that sign[𝑠2 − 𝑠𝑏] = sign[𝛽2 − 𝛽𝑏] = sign

[
(𝜎2

𝑅
𝜔𝑅 + 𝜌𝜎𝐼𝜎𝑅𝜔𝐼 ) −

(𝜎2
𝐼
𝜔𝐼 + 𝜌𝜎𝐼𝜎𝑅𝜔𝑅)

]
sign[𝑀 + 𝛾𝜎2

𝐼
𝜔𝐼 + 𝛾𝜌𝜎𝐼𝜎𝑅𝜔𝑅]. The first factor is 

exactly sign[Δ], which is negative, as assumed. For the second factor, 
note that 𝑀 + 𝛾𝜎2

𝐼
𝜔𝐼 + 𝛾𝜌𝜎𝐼𝜎𝑅𝜔𝑅 is increasing in 𝜌. We therefore 

examine this factor at the minimum value of 𝜌 that is jointly per-

mitted by the assumptions Δ < 0 and (12). To begin, (12) implies 
no lower bound for 𝜌 (only the upper bound 𝜌 < 𝜎𝑅

𝜎𝐼
+ 𝑀

𝛾𝜎𝐼 𝜎𝑅𝜔𝑅
), so 

it suffices to consider only the implications of Δ < 0. On the one 
hand, suppose Δ < 0 implies no lower bound for 𝜌, meaning that 0 ≥
lim𝜌→−1 Δ(𝜌) = (𝜎𝐼 + 𝜎𝑅)(𝜎𝐼𝜔𝐼 − 𝜎𝑅𝜔𝑅), and hence 𝜎𝐼𝜔𝐼 − 𝜎𝑅𝜔𝑅 ≥ 0. 
Then 𝑀 + 𝛾𝜎2

𝐼
𝜔𝐼 + 𝛾𝜌𝜎𝐼𝜎𝑅𝜔𝑅 > 𝑀 + 𝛾𝜎𝐼 (𝜎𝐼𝜔𝐼 − 𝜎𝑅𝜔𝑅) > 0, so that 

the second factor is positive. On the other hand, suppose Δ < 0 does 
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imply a lower bound for 𝜌: 𝜌 ≥ 𝜎2
𝐼
𝜔𝐼−𝜎2

𝑅
𝜔𝑅

(𝜔𝐼−𝜔𝑅)𝜎𝐼 𝜎𝑅
≥ −1. Note that this can be 

the case only if both 𝜔𝐼 < 𝜔𝑅 and 𝜎𝑅𝜔𝑅 > 𝜎𝐼𝜔𝐼 . At this constrained 
lower bound, 𝑀 + 𝛾𝜎2

𝐼
𝜔𝐼 + 𝛾𝜌𝜎𝐼𝜎𝑅𝜔𝑅 = 𝑀 + 𝛾(𝜎𝐼𝜔𝐼 + 𝜎𝑅𝜔𝑅)(𝜎𝐼𝜔𝐼 −

𝜎𝑅𝜔𝑅)∕(𝜔𝐼 − 𝜔𝑅) > 0, so that the second factor is positive. In either 
case, we conclude 𝑠2 < 𝑠𝑏.

Next, compare 𝑠𝑏 and 𝑠1. Direct calculation shows that sign[𝑠1 −
𝑠𝑏] = sign[𝛽1 − 𝛽𝑏] = sign[−Δ]sign[𝑀 + 𝛾𝜎2

𝑅
𝜔𝑅 + 𝛾𝜌𝜎𝐼𝜎𝑅𝜔𝐼 ]. Since Δ <

0, it remains to sign the second part. It is negative if and only if 𝜌 <
−(𝑀 + 𝛾𝜎2

𝑅
𝜔𝑅)∕(𝜎𝑅𝜎𝐼𝜔𝐼 ).

Finally, we compare 𝑠𝑏 and �̄�. To do so, we first define 𝑓𝑅 ∈ [0, 1] as 
the fraction of 𝑅-orders in a market maker’s portfolio of orders. When 
segmentation is banned, both investor types pay the same spread, so 
we have 𝑓 ban

𝑅
= 𝜔𝑅

𝜔𝑅+𝜔𝐼
. Let 𝑓no-ban

𝑅
denote the equilibrium value for 𝑓𝑅

when segmentation is allowed. Given that Δ < 0, market makers want 
to siphon 𝑅-orders off-exchange, so that 𝑓no-ban

𝑅
>

𝜔𝑅

𝜔𝑅+𝜔𝐼
. Specifically, 

𝑓no-ban
𝑅

= (𝜁−𝑠2)𝜔𝑅

(𝜁−𝑠2)𝜔𝑅+(𝜁−𝑠1)𝜔𝐼
, which, following (D.2) and (D.3), becomes

𝑓no-ban
𝑅

=
𝜔𝑅 + (𝜎2

𝐼
− 𝜌𝜎𝐼𝜎𝑅)𝜔𝐼𝜔𝑅𝛾∕𝑀

(𝜔𝐼 +𝜔𝑅) + (𝜎2
𝐼
− 2𝜌𝜎𝐼𝜎𝑅 + 𝜎2

𝑅
)𝜔𝐼𝜔𝑅𝛾∕𝑀

.

Let �̄�(𝑓𝑅) denote the volume-weighted average spread as a function 
of 𝑓𝑅, defined as the intersection of the two curves from Lemma 2: 
the average liquidity demand curve �̄�(𝑓𝑅) = 𝜁 − 𝑣(𝑓𝑅)𝑥 and the aver-

age liquidity supply curve �̄�(𝑓𝑅) =
𝛾

2 + 𝑐(𝑓𝑅)𝑥. Thus, �̄� < 𝑠𝑏 will follow 
if we show that �̄�(𝑓 ban

𝑅
) > �̄�(𝑓no-ban

𝑅
). To do so, we solve for �̄�(𝑓𝑅), by 

eliminating the aggregate volume 𝑥:

�̄�(𝑓𝑅) =
𝛾

2𝑣(𝑓𝑅) + 𝜁𝑐(𝑓𝑅)
𝑣(𝑓𝑅) + 𝑐(𝑓𝑅)

= 𝛾

2
+
(
𝜁 − 𝛾

2

) 𝑐(𝑓𝑅)
𝑣(𝑓𝑅) + 𝑐(𝑓𝑅)

= 𝛾

2
+
(
𝜁 − 𝛾

2

) 1
1 + 𝑣(𝑓𝑅)∕𝑐(𝑓𝑅)

.

As observed in the text (in the two bullet points following Lemma 2), we 
have both 𝑣(𝑓 ban

𝑅
) < 𝑣(𝑓no-ban

𝑅
) and 𝑐(𝑓 ban

𝑅
) > 𝑐(𝑓no-ban

𝑅
), which together 

imply �̄�(𝑓 ban
𝑅

) > �̄�(𝑓no-ban
𝑅

), as desired. □

Proof of Proposition 5. Under Δ < 0 and under (12), the equilibrium 
features both on-exchange and off-exchange volume. Hence, following 
the proof of Proposition 2, 𝑠𝑗 =

𝛾

2 +
(
𝜁 − 𝛾

2

)
𝛽𝑗 for 𝑗 ∈ {1, 2}, where 𝛽1

and 𝛽2 are given by (D.2) and (D.3), respectively. Hence, sign
[

d𝑠2
d𝜔𝑅

]
=

sign
[

d𝛽2
d𝜔𝑅

]
= sign[𝑀+(𝜎2

𝐼
−𝜌𝜎𝐼𝜎𝑅)𝛾𝜔𝐼 ]. Using (12), we have sign[𝑀+

(𝜎2
𝐼
−𝜌𝜎𝐼𝜎𝑅)𝛾𝜔𝐼 ] ≥ sign[𝜎2

𝐼
𝜔𝐼 −(𝜔𝐼 −𝜔𝑅)𝜎𝐼𝜎𝑅𝜌 −𝜎2

𝑅
𝜔𝑅] = sign[−Δ] >

0. Therefore, d𝑠2
d𝜔𝑅

> 0.

Likewise,

sign

[
d𝑠1
d𝜔𝑅

]
= sign

[
d𝛽1
d𝜔𝑅

]
= sign[𝜌]sign[𝑀 + (𝜎2

𝐼
− 𝜌𝜎𝐼𝜎𝑅)𝛾𝜔𝑅].

The second factor was shown to be positive above. Hence, sign
[

d𝑠1
d𝜔𝑅

]
=

sign[𝜌].
Finally, sign

[
d(𝑠1−𝑠2)

d𝜔𝑅

]
= sign

[
d(𝛽1−𝛽2)

d𝜔𝑅

]
= sign

[
𝛾𝜎2

𝐼
𝜎𝑅𝜔𝐼𝜌2+𝑀𝜎𝐼𝜌 −

(𝑀 + 𝛾𝜎2
𝐼
𝜔𝐼 )𝜎𝑅

]
. This quadratic expression in 𝜌 ∈ [−1, 1] is convex, is 

strictly negative at 𝜌 = 0, and is strictly increasing at 𝜌 = 0. Note also 
that at 𝜌 = −1, it becomes −(𝜎𝐼 + 𝜎𝑅)𝑀 < 0, implying that d(𝑠1−𝑠2)

d𝜔𝑅
< 0

for all 𝜌 ∈ [−1, 0]. Therefore, there exists a unique threshold �̂� > 0,

�̂� = 1
2𝛾𝜎𝐼𝜎𝑅𝜔𝐼

(
−𝑀 +

√
𝑀2 + 4𝑀𝛾𝜎2

𝑅
𝜔𝐼 + 4𝛾2𝜎2

𝐼
𝜎2

𝑅
𝜔2

𝐼

)
, (D.5)

which is the positive root of the above quadratic expression, such that 
d(𝑠1−𝑠2)

d𝜔𝑅
> 0 for 𝜌 > �̂�. (Note that the threshold �̂� may or may not lie 

within the domain of 𝜌, i.e., �̂� can be ≶ 1.) In summary, the necessary 
and sufficient condition for

d(𝑠1−𝑠2)
d𝜔𝑅

< 0 is 𝜌 < �̂�. □

Proof of Proposition 6. Under Δ < 0 and under (12), the equilibrium 
features both on-exchange and off-exchange volume. Hence, follow-

ing the proof of Proposition 2, 𝑠𝑗 = 𝛾

2 +
(
𝜁 − 𝛾

2

)
𝛽𝑗 for 𝑗 ∈ {1, 2}, 

where 𝛽1 and 𝛽2 are given by (D.2) and (D.3), respectively. Hence, 
sign

[
d𝑠1
d𝑀

]
= sign

[
d𝛽1
d𝑀

]
= sign

[
(1 − 𝜌2)(𝜌𝜎𝐼 − 𝜎𝑅)𝜎𝐼𝜎3

𝑅
𝜔𝐼𝜔2

𝑅
𝛾2 − 2(1 −

𝜌2)𝑀𝛾𝜎𝐼𝜎2
𝑅
𝜔𝐼𝜔𝑅 − (𝜎𝐼𝜔𝐼 + 𝜌𝜎𝑅𝜔𝑅)𝑀2

]
. That is, we need to evalu-

ate the sign of this quadratic expression in 𝑀 . There are two cases, 
depending on whether 𝑀 is constrained by (12).

• Suppose (12) is not binding, i.e., 𝜌𝜎𝐼𝜎𝑅 − 𝜎2
𝑅
≤ 0. First, we note 

that this implies that the intercept of the quadratic expression is 
negative. Second, we show that the quadratic expression in 𝑀 must 
be (weakly) concave. To do so, we assume the opposite, i.e., the 
coefficient on 𝑀2 is positive, i.e., 𝜎𝐼𝜔𝐼 + 𝜌𝜎𝑅𝜔𝑅 < 0. Next, Δ < 0
implies, after some rearranging, that (𝜎𝑅𝜔𝑅 + 𝜌𝜎𝐼𝜔𝐼 )𝜎𝑅 < (𝜎𝐼𝜔𝐼 +
𝜌𝜎𝑅𝜔𝑅)𝜎𝐼 . Hence, 𝜎𝑅𝜔𝑅 + 𝜌𝜎𝐼𝜔𝐼 < 0. Summing 𝜎𝐼𝜔𝐼 + 𝜌𝜎𝑅𝜔𝑅 <

0 and 𝜎𝑅𝜔𝑅 + 𝜌𝜎𝐼𝜔𝐼 < 0 implies that (1 + 𝜌)(𝜎𝐼𝜔𝐼 + 𝜎𝑅𝜔𝑅) < 0, 
which is a contradiction because 𝜌 > −1. Third, in the limit of 𝑀 →
0, the slope of the quadratic expression is negative.

• Suppose (12) is binding, i.e., 𝜌𝜎𝐼𝜎𝑅 − 𝜎2
𝑅

> 0. First, we note that 
this implies 𝜌 > 0 and, hence, the coefficient on 𝑀2 in the above 
quadratic expression is strictly negative. Second, just as in the 
previous case, the slope of the quadratic expression is negative 
at 𝑀 = 0. Note, however, that the relevant domain for 𝑀 is now 
bounded away from 0; rather, (12) implies 𝑀 > (𝜌𝜎𝐼𝜎𝑅 − 𝜎2

𝑅
)𝜔𝑅𝛾 . 

Third, in the limit as 𝑀 → (𝜌𝜎𝐼𝜎𝑅 −𝜎2
𝑅
)𝜔𝑅𝛾 , the quadratic expres-

sion evaluates to 𝛾3𝜌𝜎𝐼𝜎𝑅(𝜌𝜎𝐼𝜎𝑅 − 𝜎2
𝑅
)𝜔2

𝑅
Δ < 0.

Summing up, in either case, the quadratic expression above is negative 
for all 𝑀 on the relevant domain. Therefore, 𝛽1 (hence also 𝑠1) is always 
decreasing in 𝑀 .

Likewise, sign
[

d𝑠2
d𝑀

]
= sign

[
d𝛽2
d𝑀

]
. We first show that 𝛽2 is quasi-

convex in 𝑀 . Direct evaluation shows

d𝛽2
d𝑀

=
𝛾𝜎𝑅

ℎ(𝑀)
(
− (1 − 𝜌2)(𝜎𝐼 − 𝜌𝜎𝑅)𝜎3

𝐼
𝜎𝑅𝜔2

𝐼
𝜔𝑅𝛾2

− 2(1 − 𝜌2)𝛾𝜎2
𝐼
𝜎𝑅𝜔𝐼𝜔𝑅𝑀 − (𝜌𝜎𝐼𝜔𝐼 + 𝜎𝑅𝜔𝑅)𝑀2),

where ℎ(𝑀) is some strictly positive 4th-order polynomial in 𝑀 , not 
affecting the sign of

d𝛽2
d𝑀

. Consider a stationary point denoted by 𝑀∗. 
We have

d2𝛽2
d𝑀2

|||𝑀=𝑀∗

=
2𝛾𝜎𝑅

ℎ(𝑀∗)
(
−(1 − 𝜌2)𝛾𝜎2

𝐼
𝜎𝑅𝜔𝐼𝜔𝑅 − (𝜌𝜎𝐼𝜔𝐼 + 𝜎𝑅𝜔𝑅)𝑀∗)

= 2𝛾2(1 − 𝜌2)
ℎ(𝑀∗)𝑀∗ 𝜎2

𝐼
𝜎2

𝑅
𝜔𝐼𝜔𝑅

(
𝑀∗ + 𝛾(𝜎2

𝐼
− 𝜌𝜎𝐼𝜎𝑅)𝜔𝐼

)
>

2𝛾2(1 − 𝜌2)
ℎ(𝑀∗)𝑀∗ 𝜎2

𝐼
𝜎2

𝑅
𝜔𝐼𝜔𝑅 ⋅ (−𝛾Δ) > 0,

where the last equality follows from d𝛽2
d𝑀

|||𝑀=𝑀∗ = 0 by substituting 

(𝜌𝜎𝐼𝜔𝐼 + 𝜎𝑅𝜔𝑅)𝑀∗ = − 1
𝑀∗ (1 − 𝜌2)(𝜎𝐼 − 𝜌𝜎𝑅)𝜎3

𝐼
𝜎𝑅𝜔2

𝐼
𝜔𝑅𝛾2 − 2(1 −

𝜌2)𝛾𝜎2
𝐼
𝜎𝑅𝜔𝐼𝜔𝑅, the first inequality follows from (12), and the second 

inequality follows from Δ < 0. That is, at all stationary points (if any 
exist), 𝛽2 is strictly convex, and, hence, 𝛽2 is quasi-convex on the do-

main 𝑀 > 0. We then examine the limits of 𝛽2. Direct computation 
shows that if 𝑀 is not constrained by (12), lim𝑀↓0 𝛽2 = 1; that if 𝑀

is constrained by (12), lim𝑀↓(𝜌𝜎𝐼 𝜎𝑅−𝜎2
𝑅
)𝜔𝑅𝛾 𝛽2 = 𝜎𝑅

𝜌𝜎𝐼
(note that 𝜌 > 0

in this case); and that lim𝑀→∞ 𝛽2 = 0. That is, the left limit of 𝛽2, ir-
respective of whether 𝑀 is constrained, is always strictly larger than 
its right limit. Together with the quasi-convexity, it follows that 𝛽2
(hence also 𝑠2) is either monotonically decreasing or U-shaped in 𝑀 , 
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depending on lim𝑀→∞ sign
[

d𝛽2
d𝑀

]
. Since sign

[
d𝛽2
d𝑀

]
= sign

[
𝑀2 d𝛽2

d𝑀

]
, we 

directly compute lim𝑀→∞ sign
[
𝑀2 d𝛽2

d𝑀

]
= sign

[
−(𝜌𝜎𝐼𝜔𝐼 + 𝜎𝑅𝜔𝑅)

]
, re-

calling that ℎ(𝑀) is a 4th-order polynomial in 𝑀 . Therefore, if 𝜌 <
− 𝜎𝑅𝜔𝑅

𝜎𝐼 𝜔𝐼
, then the off-exchange spread 𝑠2 is U-shaped in 𝑀 ; or else, 𝑠2 is 

also monotonically decreasing in 𝑀 . □

Proof of Proposition 7. We first derive a market maker’s equilibrium 
expected profit 𝜋 without the ban and 𝜋𝑏 with the ban. To do so, we 
calculate market makers’ aggregate surplus as the area of the trian-

gle, in a supply-demand graph, formed by the vertical (price) axis, 
the aggregate supply in marketplace 𝑗, and the horizontal line at 𝑠𝑗 . 
The per capita surplus, therefore, amounts to 1

2𝑀

(
𝑠𝑗 −

𝛾

2

)
(𝜁 − 𝑠𝑗 )𝜔𝑗 , 

where 𝜔𝑗 = 𝜔𝐼 if 𝑗 = 1, 𝜔𝑗 = 𝜔𝑅 if 𝑗 = 2, and 𝜔𝑗 = (𝜔𝐼 +𝜔𝑅) if 𝑗 = 𝑏. We 
then further plug in 𝑠𝑗 =

𝛾

2 + (𝜁 − 𝛾

2 )𝛽𝑗 for 𝑗 ∈ {1, 2, 𝑏}, where the equi-

librium values for 𝛽1, 𝛽2, and 𝛽𝑏 are given by (D.2), (D.3), and (D.4), 
respectively. This gives 𝜋 = (𝜁−𝛾∕2)2

2𝑀

(
(1 − 𝛽1)𝛽1𝜔𝐼 + (1 − 𝛽2)𝛽2𝜔𝑅

)
; and 

𝜋𝑏 =
(𝜁−𝛾∕2)2

2𝑀 (𝜔𝐼 +𝜔𝑅)(1 − 𝛽𝑏)𝛽𝑏. Directly evaluating 𝜋 − 𝜋𝑏 yields that 
sign[𝜋 − 𝜋𝑏] is equivalent to the sign of the following cubic polynomial 
in 𝑀 :

−2(𝜔𝐼 +𝜔𝑅)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

<0

𝑀3

+
(
2𝜌𝜎𝐼𝜎𝑅𝜔𝐼𝜔𝑅 + 𝜎2

𝐼
𝜔𝐼 (2𝜔𝐼 +𝜔𝑅) + 𝜎2

𝑅
𝜔𝑅(𝜔𝐼 + 2𝜔𝑅)

)
𝛾

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

𝑀2

+ 𝛾3
(
1 − 𝜌2

)
𝜎2

𝐼
𝜎2

𝑅
𝜔𝐼𝜔𝑅

(
2𝜌𝜎𝐼𝜎𝑅𝜔𝐼𝜔𝑅 + 𝜎2

𝐼
𝜔2

𝐼
+ 𝜎2

𝑅
𝜔2

𝑅

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

>0

.

(D.6)

Clearly, its derivative is a concave quadratic function of 𝑀 , with one 
strictly negative root and the other root at zero. That is, for all 𝑀 > 0, 
the cubic expression is strictly decreasing in 𝑀 . Since the intercept is 
positive, the cubic polynomial always has a unique positive root �̂� >

0. □

Proof of Proposition 8. Under Δ < 0 and under (12), the equilib-

rium without a segmentation ban involves all 𝑅-orders being siphoned 
off-exchange, as well as positive volume both on-exchange and off-

exchange. Hence, (𝑥𝐼 , 𝑥𝑅, 𝑠𝐼 , 𝑠𝑅) are characterized by the following two 
conditions, which respectively capture market maker optimization (fol-

lowing (5)) and market-clearing:(
𝑥𝐼

𝑥𝑅

)
= 1

𝛾
𝚺−1
0

(
𝑠𝐼 −

𝛾

2
𝑠𝑅 − 𝛾

2

)
𝑀

(
𝑥𝐼

𝑥𝑅

)
=
(
(𝜁 − 𝑠𝐼 )𝜔𝐼

(𝜁 − 𝑠𝑅)𝜔𝑅

)
.

Eliminating (𝑠𝐼 , 𝑠𝑅), we obtain a condition involving 𝑥𝐼 and 𝑥𝑅 only:

𝛾𝚺0

(
𝑥𝐼

𝑥𝑅

)
=

(
𝜁 − 𝛾

2 −
𝑀

𝜔𝐼
𝑥𝐼

𝜁 − 𝛾

2 −
𝑀

𝜔𝑅
𝑥𝑅

)
.

It is straightforward to verify that this condition coincides with the 
first-order conditions of the expression for welfare given by (14). Be-

cause (14) is concave, it follows that, as claimed in the text, the equi-

librium without a segmentation ban leads to the welfare-maximizing 
choices of (𝑥𝐼 , 𝑥𝑅). It follows trivially that 𝑤𝑏 < 𝑤. □

Proof of Lemma 3. We first derive the posterior order flow character-

istics in each marketplace 𝑗. In equilibrium, a fraction 𝛼(2) ∈ [0, 1] of 
𝑅-orders are siphoned off-exchange. Hence, 𝐷(2)

2 = 𝐷
(2)
𝑅

= 0 as all off-

exchange orders are 𝑅-type, and 𝐷
(2)
1 = 𝑤

(2)
𝐼

𝐷
(2)
𝐼

+
(
1 − 𝑤

(2)
𝐼

)
𝐷

(2)
𝑅

=
𝑤

(2)
𝐼

𝐷
(2)
𝐼

, where 𝑤
(2)
𝐼

∶= 𝜔𝐼

𝜔𝐼+(1−𝛼(2))𝜔𝑅
is the relative weight of 𝐼 -

orders on-exchange. Given 𝔼1
[
𝐷

(2)
𝐼

]
= 𝜙𝐼𝐷

(1)
𝐼

, var1
[
𝐷

(2)
𝐼

]
= (1 − 𝜙2

𝐼
)𝜎2

𝐼
, 

𝔼1
[
𝐷

(2)
𝑅

]
= 0, and var1

[
𝐷

(2)
𝑅

]
= 0, we obtain31

𝝁(2|1) =(𝑤
(2)
𝐼

𝜙𝐼𝐷
(1)
𝐼

0

)
and 𝚺(2|1) =

((
𝑤

(2)
𝐼

)2(1 − 𝜙2
𝐼
)𝜎2

𝐼
0

0 0

)
. (D.7)

Next, we derive the objective function (C.2) of a market maker 𝑚, 
who enters period 2 with inventory 𝑧

(1)
𝑚 . Suppose her liquidity supply 

is 𝒙
(2)
𝑚 =

(
𝑥
(2)
𝑚1, 𝑥

(2)
𝑚2
)⊤

. Then her number of trades 𝑄
(2)
𝑚𝑗

in each mar-

ketplace 𝑗 is Poisson distributed with expectation 𝑥
(2)
𝑚𝑗

. Her expected 
spread revenue from marketplace 𝑗 remains 𝔼1

[
𝑄

(2)
𝑚𝑗

𝑠
(2)
𝑗

]
= 𝑥

(2)
𝑚𝑗

𝑠
(2)
𝑗

. De-

note her inventory from marketplace 𝑗 by 𝑧(2)
𝑚𝑗

. At the beginning of 

period 2, her expectation of her terminal squared inventory is 𝔼1

[(
𝑧
(1)
𝑚 +∑2

𝑗=1 𝑧
(2)
𝑚𝑗

)2] =
(
𝑧
(1)
𝑚

)2 + 2𝑧(1)𝑚 𝔼1
[∑2

𝑗=1 𝑧
(2)
𝑚𝑗

]
+ 𝔼1

[(∑2
𝑗=1 𝑧

(2)
𝑚𝑗

)2]
. The 

third term, following Lemma 1, is

𝔼1

[( 2∑
𝑗=1

𝑧
(2)
𝑚𝑗

)2
]
= 𝒙(2)𝑚

⊤𝟏+ 𝒙(2)𝑚

⊤
(
𝚺(2|1) + 𝝁(2|1)𝝁(2|1)⊤)𝒙(2)𝑚 .

Directly evaluating the expectation in the second term yields

𝔼1

[ 2∑
𝑗=1

𝑧
(2)
𝑚𝑗

]
=

2∑
𝑗=1

𝔼1

[
𝔼1

[
𝑧
(2)
𝑚𝑗
|𝑄(2)

𝑚𝑗

]]

=
2∑

𝑗=1
𝔼1

[
𝔼1

[𝑄
(2)
𝑚𝑗∑

𝑖=1
(−1)𝐵𝑚𝑗𝑖

]]

=−
2∑

𝑗=1
𝔼1

[
𝔼1

[
𝑄

(2)
𝑚𝑗

𝐷
(2)
𝑗

]]
= −

2∑
𝑗=1

𝑥
(2)
𝑚𝑗

𝜇(2|1)
= − 𝒙(2)𝑚

⊤
𝝁(2|1),

where
(
𝐵𝑚𝑗𝑖

)𝑄
(2)
𝑚𝑗

𝑖=1 are i.i.d. Bernoulli draws with success rate
1
2

(
1 +𝐷

(2)
𝑗

)
. 

Combining the above results, we obtain the objective 𝜋
(2)
𝑚 as given in 

(C.2).

The first-order condition regarding 𝑥
(2)
𝑚1 uniquely solves the opti-

mal 𝑥
(2)
𝑚1 (and the second-order condition clearly holds):

d𝜋
(2)
𝑚

d𝑥
(2)
𝑚1

= 𝑠
(2)
1 − 𝛾

2
+𝑤

(2)
𝐼

𝛾𝜙𝐼𝐷
(1)
𝐼

𝑧(1)𝑚 − 𝛾
(
𝑤

(2)
𝐼

𝜎𝐼

)2
𝑥
(2)
𝑚1 = 0

⟹ 𝑥
(2)
𝑚1 =

𝑠
(2)
1 − 𝛾

2 +𝑤
(2)
𝐼

𝛾𝜙𝐼𝐷
(1)
𝐼

𝑧
(1)
𝑚

𝛾
(
𝑤

(2)
𝐼

𝜎𝐼

)2 . (D.8)

However, d𝜋
(2)
𝑚

d𝑥
(2)
𝑚2

= 𝑠
(2)
2 − 𝛾

2 does not depend on 𝒙
(2)
𝑚 ; in other words, the 

objective 𝜋
(2)
𝑚 is linear in 𝑥

(2)
𝑚2. Therefore, to satisfy the first-order con-

dition d𝜋
(2)
𝑚

d𝑥
(2)
𝑚2

= 0, the equilibrium off-exchange half spread must be

𝑠
(2)
2 = 𝛾

2
. (D.9)

The on-exchange market-clearing condition is

∫ 𝑀
0 𝑥

(2)
𝑚1d𝑚 = 𝜆𝐼

(
𝑠
(2)
1
)
+ (1 − 𝛼(2))𝜆𝑅

(
𝑠
(2)
1
)
, or

31 Note that, because we assume 𝐷(2)
𝑅

= 0 is a constant, var
[
𝐷

(2)
𝑅

]
= 0, and (

𝚺(2|1) + 𝝁(2|1)𝝁(2|1)⊤) is no longer invertible. Hence, unlike in (5), for example, 
an individual market maker’s optimal liquidity supply 𝒙(2)

𝑚
cannot be uniquely 

determined. Nevertheless, as the proof shows below, the on-exchange liquidity 
supply, the aggregate off-exchange liquidity supply, and the half spreads 𝒔(2) all 
remain unique in equilibrium.
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𝑀

𝛾
(
𝑤

(2)
𝐼

𝜎𝐼

)2 (𝑠
(2)
1 − 𝛾

2
+𝑤

(2)
𝐼

𝛾𝜙𝐼𝐷
(1)
𝐼

�̄�(1)
)
=max

{
0, 𝜁 − 𝑠

(2)
1
} 𝜔𝐼

𝑤
(2)
𝐼

,

using (D.8) and 𝜆𝑘(𝑠) =max{0, 𝜁 − 𝑠}𝜔𝑘. Define

𝜏(2) ∶= 𝜁 − 𝛾

2
+ 𝛾𝑤

(2)
𝐼

𝜙𝐼𝐷
(1)
𝐼

�̄�(1).

We then obtain the equilibrium on-exchange half spread

𝑠
(2)
1 =

⎧⎪⎨⎪⎩
𝛾

2
𝑀+2𝑤(2)

𝐼

(
𝜁𝜔𝐼 𝜎2

𝐼
−𝜙𝐼 𝐷

(1)
𝐼

�̄�(1)𝑀
)

𝑀+𝑤
(2)
𝐼

𝛾𝜔𝐼 𝜎2
𝐼

if 𝜏(2) > 0;

𝛾

2

(
1 − 2𝑤(2)

𝐼
𝜙𝐼𝐷

(1)
𝐼

�̄�(1)
)

if 𝜏(2) ≤ 0.
(D.10)

Plugging (D.10) into (D.8), an individual market maker 𝑚’s equilibrium 
on-exchange supply is

𝑥
(2)
𝑚1 =

⎧⎪⎨⎪⎩
(

𝑧
(1)
𝑚 −�̄�(1)

)
𝑀𝜙𝐼 𝐷

(1)
𝐼

+
(

𝜁− 𝛾
2 +𝑤

(2)
𝐼

𝛾𝜙𝐼 𝐷
(1)
𝐼

𝑧
(1)
𝑚

)
𝜎2

𝐼
𝜔𝐼

𝑀𝑤
(2)
𝐼

𝜎2
𝐼
+𝛾
(

𝑤
(2)
𝐼

𝜎2
𝐼

)2
𝜔𝐼

if 𝜏(2) > 0;

1
𝑤
(2)
𝐼

𝜎2
𝐼

(
𝑧
(1)
𝑚 − �̄�(1)

)
𝜙𝐼𝐷

(1)
𝐼

if 𝜏(2) ≤ 0.
(D.11)

Similarly, the off-exchange market-clearing condition is ∫ 𝑀
0 𝑥

(2)
𝑚2d𝑚 =

𝛼(2)𝜆𝑅

(
𝑠
(2)
2
)
. Using (D.9), we obtain the equilibrium aggregate off-

exchange liquidity supply

𝑀

∫
0

𝑥
(2)
𝑚2d𝑚 = 𝛼(2)

(
𝜁 − 𝛾

2

)
𝜔𝑅. (D.12)

The best-execution requirement says that if 𝑠(2)2 < (>)𝑠(2)1 , then all 
(no) 𝑅-orders are siphoned off-exchange, i.e., 𝛼(2) = 1 (= 0). If 𝑠(2)2 =
𝑠
(2)
1 , then 𝛼(2) can take any value in [0, 1]. Recall the definition of Δ(2)

from (C.3). On the one hand, if 𝜏(2) > 0, then using the spread expres-

sions (D.9) and (D.10) (the 𝜏(2) > 0 case), we have

𝜏(2) > 0⟹

⎧⎪⎪⎨⎪⎪⎩

𝑠
(2)
2 < 𝑠

(2)
1 ⟺ 𝑤

(2)
𝐼

𝛾𝜔𝐼𝜎2
𝐼

< 2𝑤(2)
𝐼

(
𝜁𝜔𝐼𝜎2

𝐼
− 𝜙𝐼𝐷

(1)
𝐼

�̄�(1)𝑀
)
⟺Δ(2) < 0;

𝑠
(2)
2 > 𝑠

(2)
1 ⟺ 𝑤

(2)
𝐼

𝛾𝜔𝐼𝜎2
𝐼

> 2𝑤(2)
𝐼

(
𝜁𝜔𝐼𝜎2

𝐼
− 𝜙𝐼𝐷

(1)
𝐼

�̄�(1)𝑀
)
⟺Δ(2) > 0.

(D.13)

(Note that 𝑤(2)
𝐼

is strictly positive and, hence, can be canceled out with-

out affecting the inequalities above.) On the other hand, if 𝜏(2) ≤ 0, 
then 𝐷(1)

𝐼
�̄�(1) ≤ 1

𝛾𝑤
(2)
𝐼

𝜙𝐼

(
𝜁 − 𝛾

2

)
< 0. Using the spread expressions (D.9)

and (D.10) (the 𝜏(2) ≤ 0 case), this inequality implies 𝑠(2)2 < 𝑠
(2)
1 . Recall-

ing (C.3), the same inequality also implies Δ(2) < 0. It follows that we 
have also the following (with the second case holding vacuously)

𝜏(2) ≤ 0 ⟹

{
𝑠
(2)
2 < 𝑠

(2)
1 ⟺ Δ(2) < 0;

𝑠
(2)
2 > 𝑠

(2)
1 ⟺ Δ(2) > 0.

(D.14)

Combining (D.13) and (D.14) with the best-execution requirement, the 
relationship between Δ(2) and 𝛼(2) is precisely as stated in the lemma.

Finally, assume market clearing from 𝑡 = 1. Then �̄�(1) =
− 1

𝑀
𝜆𝐼

(
𝑠
(1)
1
)
𝐷

(1)
𝐼

. Plugging this into (C.3), the expression for Δ(2) be-

comes

Δ(2) = −
𝜙𝐼𝜆𝐼

(
𝑠
(1)
1
)
𝜎2

𝐼

𝜁 − 𝛾

2

− 𝜎2
𝐼
𝜔𝐼 ,

which is negative. Following the previous paragraph, best-execution 
therefore requires 𝛼(2) = 1, and, hence, 𝑤(2)

𝐼
= 1. □

Proof of Proposition 9. The first step is to characterize the order flow 
characteristics in each marketplace 𝑗. Similar to 𝑡 = 2, defining 𝑤

(1)
𝐼

=
𝜔𝐼

𝜔𝐼+(1−𝛼(1))𝜔𝑅
as the on-exchange weight of 𝐼 -orders, we have

𝝁(1) = 𝔼

[
𝐷

(1)
1

𝐷
(1)
2

]
=
(
0
0

)
and

𝚺(1) = var

[
𝐷

(1)
1

𝐷
(1)
2

]
=

((
𝑤

(1)
𝐼

)2
𝜎2

𝐼
0

0 0

)
.

The second step is to derive the objective function 𝜋
(1)
𝑚 = 𝒙

(1)
𝑚

⊤
𝒔
(1)
1 +

𝔼
[
𝜋
(2)
𝑚 (⋅)

]
. In particular, we are only interested in how it is affected 

by the supply 𝒙
(1)
𝑚 . To do so, we first evaluate 𝜋

(2)
𝑚 (⋅) using the 𝑡 = 2

solution derived above. In particular, recall that under 𝑡 = 1 market 
clearing, Δ(2) < 0 and so 𝑤

(2)
𝐼

= 1. Then plug into (C.2) the half spread 
𝑠
(2)
2 as given by (D.9) and the posterior moments (D.7) to get

𝜋(2)
𝑚 =

(
𝑠
(2)
1 − 𝛾

2

)
𝑥
(2)
𝑚1 −

𝛾

2

((
𝑧(1)𝑚

)2 − 2𝜙𝐼𝐷
(1)
𝐼

𝑧(1)𝑚 𝑥
(2)
𝑚1 +

(
𝑥
(2)
𝑚1
)2)

.

To substitute in 𝑠
(2)
1 and 𝑥

(2)
𝑚1, we need to discuss two cases.32

Case 1: Conjecture 𝜁− 𝛾

2 ≤ 𝛾𝜙𝐼 𝜎2
𝐼

𝑀
𝜆𝐼

(
𝑠
(1)
1
)
. Given market clearing at 𝑡 = 1, 

it follows that 𝜏(2) ≤ 0:

𝜏(2) = 𝜁 − 𝛾

2
+ 𝛾𝑤

(2)
𝐼

𝜙𝐼𝐷
(1)
𝐼

�̄�(1) = 𝜁 − 𝛾

2
−

𝛾𝜙𝐼𝜎2
𝐼

𝑀
𝜆𝐼

(
𝑠
(1)
1
) ≤ 0,

where the first equality is the definition of 𝜏(2), and the second equality 
uses that, as discussed in the proof of Lemma 3, 𝑡 = 1 market clear-

ing implies (i) �̄�(1) = − 1
𝑀

𝜆𝐼

(
𝑠
(1)
1
)
𝐷

(1)
𝐼

and (ii) 𝑤(2)
𝐼

= 1. Substituting 
the 𝜏(2) ≤ 0 cases of (D.10) and (D.11) into 𝜋

(2)
𝑚 and then also, by market 

clearing, substituting �̄�(1) = − 1
𝑀

𝜆𝐼

(
𝑠
(1)
1
)
𝐷

(1)
𝐼

into 𝜋
(2)
𝑚 , we get

𝜋(2)
𝑚 =− 𝛾

2
(1 − 𝜙𝐼 )2

(
𝑧(1)𝑚

)2 + 𝛾

𝑀
𝜆𝐼

(
𝑠
(1)
1
)
𝜙2

𝐼
𝐷

(1)
𝐼

𝑧(1)𝑚

+
[
terms unaffected by 𝒙(1)𝑚

]
.

From the market maker’s point of view in 𝑡 = 1, the above involves 
two random variables: 𝑧(1)𝑚 and 𝐷(1)

𝐼
. Recall that 𝑧(1)𝑚 = 𝑧

(1)
𝑚1 + 𝑧

(1)
𝑚2 and, 

hence, by Lemma 1, 𝔼
[(

𝑧
(1)
𝑚

)2] = 𝒙
(1)
𝑚

⊤
𝟏 +𝒙

(1)
𝑚

⊤
(
𝚺(1) + 𝝁(1)𝝁(1)⊤

)
𝒙
(1)
𝑚 =

𝑥
(1)
𝑚1 + 𝑥

(1)
𝑚2 +

(
𝑤

(1)
𝐼

𝜎𝐼

)2(
𝑥
(1)
𝑚1
)2

. Note that 𝑧(1)𝑚 and 𝐷
(1)
𝐼

are correlated: 
𝔼
[
𝐷

(1)
𝐼

𝑧
(1)
𝑚

]
= 𝔼

[
𝐷

(1)
𝐼

𝑧
(1)
𝑚1
]
= −𝑤

(1)
𝐼

𝑥
(1)
𝑚1𝜎

2
𝐼
. Therefore, taking the uncondi-

tional expectation of 𝜋
(2)
𝑚 and adding the 𝑡 = 1 spread revenues 𝒙

(1)
𝑚

⊤
𝒔(1), 

we obtain

𝜋(1)
𝑚 =

(
𝑠
(1)
1 − 𝛾

2
(1 −𝜙2

𝐼
)
)

𝑥
(1)
𝑚1

+
(
𝑠
(1)
2 − 𝛾

2
(1 − 𝜙2

𝐼
)
)

𝑥
(1)
𝑚2 −

𝛾

2
(1 − 𝜙2

𝐼
)
(
𝑤

(1)
𝐼

𝑥
(1)
𝑚1𝜎𝐼

)2
−

𝛾𝜎2
𝐼
𝜙2

𝐼

𝑀
𝜆𝐼

(
𝑠
(1)
1
)
𝑤

(1)
𝐼

𝑥
(1)
𝑚1 +

[
terms unaffected by 𝒙(1)𝑚

]
.

As in the case of 𝑡 = 2, the first-order conditions with respect to 𝑥
(1)
𝑚1

and 𝑥
(1)
𝑚2 determine

𝑥
(1)
𝑚1 =

(
𝑠
(1)
1 − 𝛾

2 (1 − 𝜙2
𝐼
)
)
𝑀 − 𝜆𝐼

(
𝑠
(1)
1
)
𝑤

(1)
𝐼

𝛾𝜎2
𝐼
𝜙2

𝐼

(1 − 𝜙2
𝐼
)
(
𝑤

(1)
𝐼

𝜎𝐼

)2
𝑀𝛾

; and (D.15)

𝑠
(1)
2 = 𝛾

2
(1 − 𝜙2

𝐼
). (D.16)

On-exchange market clearing requires ∫ 𝑀
0 𝑥

(1)
𝑚1d𝑚 = 𝜆𝐼

(
𝑠
(2)
1
)
+ (1 −

𝛼(1))𝜆𝑅

(
𝑠
(2)
1
)
, i.e.,

32 The off-exchange liquidity supply 𝑥
(2)
𝑚2 is not needed: Recall from the proof 

of Lemma 3 that the equilibrium off-exchange half spread 𝑠
(2)
2 as given in (D.9)

ensures that the off-exchange supply 𝑥
(2)
𝑚2 is irrelevant for 𝜋(2)

𝑚
.
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𝑠
(1)
1 − 𝛾

2 (1 −𝜙2
𝐼
)
)
𝑀 − 𝜆𝐼

(
𝑠
(1)
1
)
𝑤

(1)
𝐼

𝛾𝜎2
𝐼
𝜙2

𝐼

(1 −𝜙2
𝐼
)𝛾
(
𝑤

(1)
𝐼

𝜎𝐼

)2 = max
{
0, 𝜁 − 𝑠

(1)
1
} 𝜔𝐼

𝑤
(1)
𝐼

.

Assuming 𝜁 − 𝑠
(1)
1 ≤ 0, then 𝜆𝐼

(
𝑠
(1)
1
)
= 0, and the above equation gives 

𝑠
(1)
1 = 𝛾

2 (1 − 𝜙2
𝐼
) ≤ 𝛾

2 < 𝜁 , which contradicts the assumption. We con-

clude that 𝜁 > 𝑠
(1)
1 , in which case 𝜆𝐼

(
𝑠
(1)
1
)
=
(
𝜁 − 𝑠

(1)
1
)
𝜔𝐼 and the above 

market-clearing condition yields

𝑠
(1)
1 = 𝛾

2
(1 −𝜙2

𝐼
)𝑀 + 2𝑤(1)

𝐼
𝜔𝐼𝜎2

𝐼
𝜁

𝑀 +𝑤
(1)
𝐼

𝛾𝜔𝐼𝜎2
𝐼

. (D.17)

Direct computation gives

𝑠
(1)
1 − 𝑠

(1)
2 =

𝑤
(1)
𝐼

𝛾𝜔𝐼𝜎2
𝐼

𝑀 +𝑤
(1)
𝐼

𝛾𝜔𝐼𝜎2
𝐼

(
𝜁 − 𝛾

2
(1 − 𝜙2

𝐼
)
)

> 0.

Therefore, best-execution requires all 𝑅-orders to be siphoned off-

exchange in period 1, yielding 𝛼(1)
1 = 1 and 𝑤(1)

𝐼
= 1. Finally, we need to 

verify the initial conjecture. Using (D.17) (with 𝑤(1)
𝐼

= 1),

𝜁 − 𝛾

2
≤ 𝛾𝜙𝐼𝜎2

𝐼

𝑀
𝜆𝐼

(
𝑠
(1)
1
)
⟺ 𝜁 ≤ 𝛾

2
𝑀 +

(
1 −𝜙𝐼 +𝜙3

𝐼

)
𝛾𝜔𝐼𝜎2

𝐼

𝑀 +
(
1 − 𝜙𝐼

)
𝛾𝜔𝐼𝜎2

𝐼

,

that is, this case applies if and only if the last inequality holds.

Case 2: Conjecture 𝜁− 𝛾

2 >
𝛾𝜙𝐼 𝜎2

𝐼

𝑀
𝜆𝐼

(
𝑠
(1)
1
)
. Given market clearing at 𝑡 = 1, 

it follows that 𝜏(2) > 0:

𝜏(2) = 𝜁 − 𝛾

2
+ 𝛾𝑤

(2)
𝐼

𝜙𝐼𝐷
(1)
𝐼

�̄�(1) = 𝜁 − 𝛾

2
−

𝛾𝜙𝐼𝜎2
𝐼

𝑀
𝜆𝐼

(
𝑠
(1)
1
)

> 0,

where the first equality is the definition of 𝜏(2), and the second equality 
uses that, as discussed in the proof of Lemma 3, 𝑡 = 1 market clear-

ing implies (i) �̄�(1) = − 1
𝑀

𝜆𝐼

(
𝑠
(1)
1
)
𝐷

(1)
𝐼

and (ii) 𝑤(2)
𝐼

= 1. Substituting 
the 𝜏(2) > 0 cases of (D.10) and (D.11) into 𝜋

(2)
𝑚 and then also, by market 

clearing, substituting �̄�(1) = − 1
𝑀

𝜆𝐼

(
𝑠
(1)
1
)
𝐷

(1)
𝐼

into 𝜋
(2)
𝑚 , we get

𝜋(2)
𝑚 =− 𝛾

2
(1 − 𝜙2

𝐼
)
(
𝑧(1)𝑚

)2
+

(
𝜁 − 𝛾

2

)
𝜔𝐼 + 𝜙𝐼𝜆𝐼

(
𝑠
(1)
1
)

𝑀 + 𝛾𝜔𝐼𝜎2
𝐼

𝛾𝜙𝐼𝐷
(1)
𝐼

𝑧(1)𝑚

+
[
terms unaffected by 𝒙(1)𝑚

]
.

As in the previous case, taking the unconditional expectation of 𝜋
(2)
𝑚 and 

adding the 𝑡 = 1 spread revenues 𝒙
(1)
𝑚

⊤
𝒔(1), we obtain

𝜋(1)
𝑚 =

(
𝑠
(1)
1 − 𝛾

2
(1 −𝜙2

𝐼
)
)

𝑥
(1)
𝑚1

+
(
𝑠
(1)
2 − 𝛾

2
(1 − 𝜙2

𝐼
)
)

𝑥
(1)
𝑚2 −

𝛾

2
(1 − 𝜙2

𝐼
)
(
𝑤

(1)
𝐼

𝑥
(1)
𝑚1𝜎𝐼

)2
−

𝛾𝜎2
𝐼
𝜙𝐼

𝑀 + 𝛾𝜎2
𝐼
𝜔𝐼

((
𝜁 − 𝛾

2

)
𝜔𝐼 +𝜙𝐼𝜆𝐼

(
𝑠
(1)
1
))

𝑤
(1)
𝐼

𝑥
(1)
𝑚1

+
[
terms unaffected by 𝒙(1)𝑚

]
.

Then, as before, the first-order conditions pin down

𝑥
(1)
𝑚1 =

(
𝑠
(1)
1 − 𝛾

2 (1−𝜙2
𝐼
)
)(

𝑀+𝛾𝜎2
𝐼
𝜔𝐼

)
−𝜆𝐼

(
𝑠
(1)
1

)
𝑤
(1)
𝐼

𝛾𝜎2
𝐼
𝜙2

𝐼
−
(
𝜁− 𝛾

2

)
𝑤
(1)
𝐼

𝜙𝐼 𝛾𝜎2
𝐼
𝜔𝐼

(1−𝜙2
𝐼
)
(

𝑤
(1)
𝐼

𝜎𝐼

)2
(𝑀+𝛾𝜎2

𝐼
𝜔𝐼 )𝛾

; and

(D.18)

𝑠
(1)
2 = 𝛾

2
(
1 −𝜙2

𝐼

)
. (D.19)

On-exchange market clearing requires ∫ 𝑀
0 𝑥

(1)
𝑚1d𝑚 = 𝜆𝐼

(
𝑠
(2)
1
)
+ (1 −

𝛼(1))𝜆𝑅

(
𝑠
(2)
1
)
, i.e.,

𝑀 ⋅

(
𝑠
(1)
1 − 𝛾

2 (1−𝜙2
𝐼
)
)(

𝑀+𝛾𝜎2
𝐼
𝜔𝐼

)
−𝜆𝐼

(
𝑠
(1)
1

)
𝑤
(1)
𝐼

𝛾𝜎2
𝐼
𝜙2

𝐼
−
(
𝜁− 𝛾

2

)
𝑤
(1)
𝐼

𝜙𝐼 𝛾𝜎2
𝐼
𝜔𝐼

(1−𝜙2
𝐼
)
(

𝑤
(1)
𝐼

𝜎𝐼

)2
(𝑀+𝛾𝜎2

𝐼
𝜔𝐼 )𝛾

=max
{
0, 𝜁 − 𝑠

(1)
1
} 𝜔𝐼

𝑤
(1)
𝐼

.

Assuming 𝜁 − 𝑠
(1)
1 ≤ 0, then 𝜆𝐼

(
𝑠
(1)
1
)
= 0, and the above equation then 

gives

𝑠
(1)
1 − 𝜁

=
𝛾

2 (1 − 𝜙2
𝐼
) ⋅𝑀 +

(
𝛾

2 (1 −𝜙2
𝐼
) +

(
𝜁 − 𝛾

2

)
𝜙𝐼𝑤

(1)
𝐼

)
𝛾𝜎2

𝐼
𝜔𝐼

𝑀 + 𝛾𝜎2
𝐼
𝜔𝐼

− 𝜁,

which decreases in 𝜁 and, hence, when 𝜁 ↓ 𝛾

2 , reaches its maximum of 
− 𝛾

2𝜙2
𝐼

< 0, thus rejecting the assumption. We conclude that 𝜁 > 𝑠
(1)
1 , 

in which case 𝜆𝐼

(
𝑠
(1)
1
)
=
(
𝜁 − 𝑠

(1)
1
)
𝜔𝐼 and the above market-clearing 

condition yields

𝑠
(1)
1 = 𝛾

2
(1−𝜙2

𝐼
)(𝑀+𝛾𝜔𝐼 𝜎2

𝐼
)
(

𝑀+2𝜁𝑤
(1)
𝐼

𝜔𝐼 𝜎2
𝐼

)
+
(
2(𝜙𝐼+𝜙2

𝐼
)𝜁−𝜙𝐼 𝛾

)
𝑀𝑤

(1)
𝐼

𝜔𝐼 𝜎2
𝐼

(𝑀+𝛾𝜔𝐼 𝜎2
𝐼
)
(

𝑀+𝛾𝑤
(1)
𝐼

𝜔𝐼 𝜎2
𝐼

)
−𝑤

(1)
𝐼

𝜙2
𝐼
𝛾2𝜔2

𝐼
𝜎4

𝐼

.

(D.20)

Directly comparing the two half spreads in this case yields

𝑠
(1)
1 − 𝑠

(2)
2

= 𝛾

2

[
2(1 + 𝜙𝐼 )𝜁 − 𝛾

]
𝜙𝐼𝑀𝑤

(1)
𝐼

𝜔𝐼𝜎2
𝐼
+ (1 − 𝜙2

𝐼
)𝑤(1)

𝐼
𝜙2

𝐼
𝛾2𝜔2

𝐼
𝜎4

𝐼

𝑀2 + (1 +𝑤
(1)
𝐼
)𝑀𝛾𝜔𝐼𝜎2

𝐼
+ (1 − 𝜙2

𝐼
)𝑤(1)

𝐼
𝛾2𝜔2

𝐼
𝜎4

𝐼

> 0,

where the last inequality is guaranteed by 𝜁 >
𝛾

2 . Therefore, best-

execution requires all 𝑅-orders to be routed off-exchange in period 1, 
yielding 𝛼(1) = 1 and 𝑤

(1)
𝐼

= 1. Finally, we need to verify the initial con-

jecture. Using (D.20) (with 𝑤(1)
𝐼

= 1),

𝜁 − 𝛾

2
>

𝛾𝜙𝐼𝜎2
𝐼

𝑀
𝜆𝐼

(
𝑠
(1)
1
)
⟺ 𝜁 >

𝛾

2
𝑀 +

(
1 −𝜙𝐼 +𝜙3

𝐼

)
𝛾𝜔𝐼𝜎2

𝐼

𝑀 +
(
1 − 𝜙𝐼

)
𝛾𝜔𝐼𝜎2

𝐼

.

Summary: As seen above, in either case, 𝛼(1) = 1 (and, hence, 𝑤(1)
𝐼

= 1). 
Define

𝜏(1) ∶= 𝜁 − 𝛾

2
𝑀 +

(
1 −𝜙𝐼 + 𝜙3

𝐼

)
𝛾𝜔𝐼𝜎2

𝐼

𝑀 +
(
1 − 𝜙𝐼

)
𝛾𝜔𝐼𝜎2

𝐼

.

Then, combining (D.17) and (D.20), we obtain the equilibrium on-

exchange half spread as

𝑠
(1)
1 =

⎧⎪⎪⎨⎪⎪⎩
𝛾

2
(1−𝜙2

𝐼
)(𝑀+𝛾𝜔𝐼 𝜎2

𝐼
)
(

𝑀+2𝜁𝜔𝐼 𝜎2
𝐼

)
+
(
2(𝜙𝐼+𝜙2

𝐼
)𝜁−𝜙𝐼 𝛾

)
𝑀𝜔𝐼 𝜎2

𝐼(
𝑀+𝛾𝜔𝐼 𝜎2

𝐼

)2
−𝜙2

𝐼
𝛾2𝜔2

𝐼
𝜎4

𝐼

if 𝜏(1) > 0;

𝛾

2
(1−𝜙2

𝐼
)𝑀+2𝜔𝐼 𝜎2

𝐼
𝜁

𝑀+𝛾𝜔𝐼 𝜎2
𝐼

if 𝜏(1) ≤ 0.

(D.21)

Combining (D.15) and (D.18), then plugging in (D.21), we obtain an 
individual market maker 𝑚’s on-exchange equilibrium liquidity supply 
as

𝑥
(1)
𝑚1 =

⎧⎪⎪⎨⎪⎪⎩

(
𝜁− 𝛾

2 (1−𝜙2
𝐼
)
)
𝑀𝜔𝐼+

(
(1−𝜙𝐼 )𝜁−

𝛾
2 (1−𝜙𝐼−𝜙2

𝐼
)
)
𝛾𝜔2

𝐼
𝜎2

𝐼(
𝑀+𝛾𝜔𝐼 𝜎2

𝐼

)2
−𝜙2

𝐼
𝛾2𝜔2

𝐼
𝜎4

𝐼

if 𝜏(1) > 0;(
𝜁− 𝛾

2 (1−𝜙2
𝐼
)
)
𝜔𝐼

𝑀+𝛾𝜔𝐼 𝜎2
𝐼

if 𝜏(1) ≤ 0.

(D.22)

Combining (D.16) and (D.19), we obtain the equilibrium off-exchange 
half spread as

𝑠
(1)
2 = 𝛾

2
(
1 −𝜙2

𝐼

)
. (D.23)
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Using (D.23), by market clearing, we obtain the equilibrium aggregate

off-exchange liquidity supply

𝑀

∫
0

𝑥
(1)
𝑚2d𝑚 =

(
𝜁 −

(
1 − 𝜙2

𝐼

) 𝛾

2

)
𝜔𝑅. □ (D.24)
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