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Peng Liu 

assistant professor of quantitative finance (practice) at Singapore Management University, 
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Abstract 

Developing an excellent quantitative trading strategy to obtain a high Sharpe ratio 

requires optimizing several parameters at the same time. Example parameters 
include the window length of a moving average sequence, the choice of trading 

instruments, and the thresholds used to generate trading signals. Simultaneously 
optimizing all these parameters to seek a high Sharpe ratio is a daunting and time-
consuming task, partly because of the unknown mechanism determining the Sharpe 

ratio. This article proposes using Bayesian optimization to systematically search for 
the optimal parameter configuration that leads to a high Sharpe ratio. The author 

shows that the proposed intelligent search strategy performs better than manual 
search, a common practice that proves to be inefficient. The author’s framework 
also can easily be extended to other parameter selection tasks in portfolio 

optimization and risk management. 

Key Findings 

• ▪ To find the best settings for a trading strategy, we need to solve a complex 
problem that involves finding the highest (or lowest) value of a function, like 

the Sharpe ratio, without knowing how it behaves. As a nontrivial exercise, 
this requires adjusting many parameters simultaneously, which takes a lot of 

time, so doing it manually is not easy. 
• ▪ Bayesian optimization is a methodical approach to searching for the best 

parameter settings that use probabilistic models. It can identify the most 

promising parameter configurations in far fewer iterations than the random 
search. This can result in substantial improvements in trading performance. 

• ▪ Bayesian optimization is a versatile technique that can be used with a broad 
spectrum of trading strategies, including rule-based approaches that use 

technical analysis and machine learning models. It also holds great promise 
for future research and application in the financial industry. 
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To maximize the profitability of a trading strategy, we need to identify the best 
parameter settings that generate the highest profit in multiple backtesting periods. 

However, backtesting performance can vary depending on the selected period. To 
address this, a robust approach is to back test a specific set of parameters over 

multiple periods that cover different scenarios and report the average performance. 
The optimal set of parameters is the one that consistently produces the highest 
average terminal return. Unfortunately, manually fine-tuning a trading strategy by 

testing different parameter values is a very time-consuming process. 

Two challenges exist in the search for the best parameter settings for a trading 

strategy. First, there may be too many possible parameter values to test, making it 

computationally impractical to loop through every unique configuration, especially 
if each parameter has multiple alternatives. This is particularly problematic for 

continuous parameters, which have infinite potential values to test. Second, 
evaluating the performance of each parameter set takes time and may be slow, 

which makes the search for the best strategy even more difficult. 

A trading strategy usually has one or more parameters that are set to specific values 
within a given range. Some common parameters include the window length for a 
moving average, the risk-return ratio, stop-loss order thresholds, trading volume, 

and entry/exit points. Once these input parameters are set, the strategy generates 
trading signals and the resulting terminal return over a specific backtesting period 

is used to evaluate the performance of the parameters. 

To illustrate, a trend-following strategy relies on two moving averages to generate a 
trading signal. The short-term and long-term moving averages are the input 
parameters, and their optimal values are determined by maximizing a performance 

metric, such as the Sharpe ratio. However, the objective function that returns the 
Sharpe ratio given a set of input parameters is often unknown, meaning we have no 

access to its explicit expression or derivative information. This makes it challenging 
to use modern optimization tools to identify the optimal parameter settings, a 

common task in many other domains such as risk management (Liu 2023a) and 

derivative hedging (Liu 2023b). 

The performance of a trading strategy is governed by a black-box function, which is 
sensitive to the choice of the backtesting period for a set of input parameters. 

Although a more robust approach is to test the parameters over several 
representative periods, including live tests, doing so for multiple periods can be 

https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib9
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib10
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excessively time consuming. Instead, a common alternative is to evaluate a single 
period as a proxy, which is faster but produces an approximate result. However, 

these noisy evaluations make the global optimization problem of maximizing the 

Sharpe ratio even more challenging. 

In this article, we suggest using Bayesian optimization (BO) as a systematic 

approach to finding the optimal parameters that yield the highest Sharpe ratio. We 
employ various BO policies that use different acquisition functions to make 

sequential decisions in uncertain scenarios and show that BO can identify better 
parameters in much fewer iterations than the random search method. In the next 

section, we provide an introduction to BO, including the use of a Gaussian process 

(GP) as a surrogate model for the unknown objective function and the acquisition 
function to navigate the search process. We then demonstrate how BO can be 

applied to identify better parameters, using pairs trading as an example and 
optimizing different input parameter sets. Last, we discuss the potential of BO for 

other quantitative trading and portfolio management tasks. 

BAYESIAN OPTIMIZATION 

BO is a field that focuses on solving optimization problems using the Bayesian 
approach. Optimization aims to find the best objective value, whether it is a global 

maximum or minimum, and its corresponding location within a given search 
domain, also known as the environment. The search process begins at a specific 
initial location and uses a particular policy to iteratively guide the sampling 

locations, collect new observations, and update the search policy. 

The optimization process involves repeated interactions between the policy (the 
optimizer) and the environment (the unknown objective function). The policy is a 

function that takes in a new input parameter and outputs the next value to try out in 
a principled way. The policy is continually learned and improved as the search 

continues. A good policy directs the search toward the global optimum faster than a 
bad policy by spending the limited sampling budget on promising candidate values. 
On the other hand, the environment contains the unknown objective function that 

needs to be learned by the policy within a specific boundary. When probing the 
functional value as requested by the policy, the actual observation revealed by the 

environment to the policy is often corrupted by noise because of the choice of a 
single backtesting period, making the learning even more challenging. Therefore, 
BO, which is a specific approach for global optimization, aims to learn a policy that 
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can help us navigate toward the global optimum of an unknown, noise-corrupted 

objective function as efficiently and effectively as possible. 

When selecting which parameter value to try next, most search strategies must 

balance the exploration and exploitation tradeoff. Exploration means searching 
within an unknown and distant area, and exploitation refers to searching within the 

previously explored neighborhood in the hopes of finding a better functional 
evaluation, that is, a higher Sharpe ratio. BO also faces this tradeoff. Ideally, we 

should explore more at the initial phase to increase our understanding of the 
environment (the black-box function that determines the Sharpe ratio for a specific 

set of parameters) and then gradually shift toward an exploitation mode that uses 

existing knowledge to explore promising regions. Exhibit 1 provides the schematic 
overview of the iterative loop involved in the BO in the context of optimizing trading 

strategies. 

EXHIBIT 1 

Schematic Overview of BO Used to Seek a Higher Sharpe Ratio of a Given 

Trading Strategy 

 

BO balances exploration and exploitation using two components: a GP to 
approximate the unknown objective function and an acquisition function that 
incorporates the exploration–exploitation tradeoff into a scalar value that reflects 

https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#F1
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the sampling utility of all candidates in the domain. We will discuss each component 

in more detail in the following sections. 

GP 

GPs are a popular tool used in trading strategies to help identify optimal parameter 
values for a given trading algorithm. In essence, a GP is a mathematical framework 

used to model and approximate complex functions, where the function is assumed 
to follow a normal distribution for each specific input parameter. The framework is 
used to estimate the most likely values of parameters for a given trading strategy, 

which can then be used to optimize the performance of the strategy. 

The GP is a commonly used stochastic process that can model an unknown black-
box function and the corresponding uncertainties of modeling. It extends finite-

dimensional probability distributions into a continuous search domain that 
contains an infinite number of variables. Any finite set of points in the domain jointly 

forms a multivariate Gaussian distribution. The GP is a flexible framework that can 
model a broad family of functions and quantify their uncertainties. It is a powerful 
surrogate model used to approximate the true underlying function that governs the 

working mechanism of the Sharpe ratio for a specific trading strategy. 

The basic idea behind GPs is that they provide a flexible and powerful means of 
modeling functions that are too complex to be represented using simple 

mathematical formulas. In a trading context, this means that GPs can be used to 
model the relationships between various input parameters and the performance 
(i.e., Sharpe ratio) of a given trading strategy. By analyzing these relationships, a GP 

can help identify the optimal parameter values that lead to the highest possible 

Sharpe ratio (or other user-defined performance metric). 

Overall, GPs represent a valuable tool in the development of quantitative trading 

strategies, allowing researchers and practitioners to more accurately model 
complex financial data and optimize trading performance. We refer readers to 

the supplementary material for a technical introduction of GPs. 

Acquisition Function 

Bayesian inference and GPs provide a principled approach to understanding the 
distribution of the objective function. However, to find the global maximum (such as 

the highest Sharpe ratio) of the objective function, we need to incorporate 

http://jpm.pm-research.com/lookup/suppl/doi:10.3905/jpm.2023.1.497/-/DC1/jpm.2023.1.497_JPM-PengLiu.pdf
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probabilistic information into our decision-making process. We must build a policy 
that maximizes the acquisition function and incorporates the most recent 

information on the objective function, recommending the most promising 

parameter setting for further sampling in the face of uncertainty across the domain. 

The optimization policy, which is guided by maximizing the acquisition function, 

plays a crucial role in connecting the GP to the ultimate goal of BO. The posterior 
predictive distribution obtained from the updated GP provides an outlook on the 

objective value and the associated uncertainty for locations not yet explored. This 
information can be used by the optimization policy to quantify the utility of any 

alternative location within the domain. 

After obtaining posterior knowledge about candidate locations, such as the mean 

and variance of the Gaussian distribution at each location (parameter setting), we 
need to convert this information into a single scalar utility score for the specific 

trading strategy. This is where the acquisition function comes in. The acquisition 
function is a mechanism designed to evaluate the relative potential of each 

candidate location, assigning each location a scalar score. The location with the 

maximum score is then used as the next sampling choice. 

The acquisition function is a critical component of BO because it assesses how 
valuable a candidate location is when we acquire or sample it. It also is relatively 

cheap to evaluate, making it an efficient tool for locating the maximum utility score. 
However, evaluating the acquisition function requires solving another optimization 

problem, which can add additional computational complexity to the overall 

optimization process. 

When determining the next sampling location, the acquisition function must 

balance exploration of uncertain regions and exploitation of promising regions 
based on current information. The acquisition function can be myopic, considering 

only the immediate impact of the current sampling decision, or nonmyopic, taking 

into account long-term gain versus immediate reward. Standard acquisition 
functions could be either single-stage myopic (e.g., Thomson sampling [TS] 

[Thompson 1933], probability of improvement [PI] [Kushner 1963], expected 
improvement [EI] [Jones, Schonlau, and Welch 1998], and UCB [Srinivas et al. 2010]), 
single-stage nonmyopic (e.g., knowledge gradient [KG] [Frazier, Powell, and Dayanik 

2008], entropy search [ES] [Hennig and Schuler 2011], and predictive entropy search 
[PES] [Hernández-Lobato, Hoffman, and Ghahramani 2014]), and multistage 

https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib12
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib8
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib7
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib11
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib2
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib2
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib3
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib4
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nonmyopic (e.g., two-step lookahead EI [Wu and Frazier 2019] and multistep 

lookahead acquisition functions [Jiang et al. 2020]). 

Acquisition functions can vary in different ways, such as the type of utility function 

used and the number of steps taken to look ahead. The level of risk aversion or 
preference also can be taken into account when designing the acquisition function. 

When using GP regression, the level of risk is quantified by the covariance function, 
which expresses the level of uncertainty about the possible values of the objective 

function. By incorporating risk aversion or preference into the acquisition function, 
we can guide the search toward regions that have lower risk or higher potential 

rewards. The choice of acquisition function depends on the specific goals of the 

optimization process. In the following, we test a few commonly used acquisition 
functions, including EI, q-Expected Improvement (qEI), Upper Confidence Bound 

(UCB), and q-Knowledge Gradient (qKG), and defer a technical introduction to these 

acquisition functions in the supplementary material of the article. 

OPTIMIZING TRADING STRATEGIES VIA BO 

In this section, we use the pairs-trading strategy to demonstrate how BO can be 
applied to optimize the input parameters. The strategy has three input parameters: 
δ1, δ2, and l, which determine the thresholds for entering and exiting positions and 

the window length used for calculating the Z-score of the spread time series. We test 
four different acquisition functions, including EI, UCB, qEI, and qKG, to maximize the 
Sharpe ratio as a black-box function S = f(δ1, δ2, l). We calculate the Sharpe ratio only 

once over the entire investment period to simulate the noisy evaluation. In addition, 

we set the UCB policy parameter β to 0.8 to encourage more exploration. 

We conduct experiments in three groups, optimizing δ1, δ1, and δ2, and all three 

parameters. We start all policies with the same training set of three observations and 
compare them with the random policy. Because the window size parameter, l, can 

take only an integer value, we round the resulting proposals to the nearest integer. 
We also use a technique called continuous relaxation over integer-valued variables, 
which is shown to speed up the optimization process without affecting the 

performance, especially in the case of mixed search space (Daulton et al. 2022). 

Exhibit 2 displays the performance of different policies over 20 iterations by 
comparing their maximum Sharpe ratio. There are three experiment groups, and the 

qKG policy performs the best in group 1 (optimizing over one parameter as shown in 

https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib13
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib6
http://jpm.pm-research.com/lookup/suppl/doi:10.3905/jpm.2023.1.497/-/DC1/jpm.2023.1.497_JPM-PengLiu.pdf
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib1
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#F2
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the left panel) but has a weaker performance in group 2 (optimizing over two 
parameters as shown in the middle panel) and group 3 (optimizing over three 

parameters as shown in the right panel). The qKG policy encourages more 
exploration, so it is important to appropriately balance the tradeoff between 

exploration and exploitation for the specific trading strategy being studied. The best 

tradeoff is attained by UCB in group 2 and EI in group 3. 

EXHIBIT 2 

Comparing the Cumulative Maximum Sharpe Ratio of the Pairs-Trading 

Strategy Identified Using Different Search Policies for 20 Iterations 

NOTES: When optimizing over one parameter as shown in the left panel, the qKG 
policy takes the lead, possibly because of its nonmyopic nature in the search. 

However, all other BO policies (EI, qEI, and UCB) dominate qKG when optimizing 
over two parameters as shown in the middle panel, highlighting the dynamic nature 
of the exploration–exploitation tradeoff in different settings. EI reports the highest 

Sharpe ratio in the third group as shown in the right panel, the highest among the 
three groups. Most BO policies have a higher Sharpe ratio than the baseline random 

policy. 
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We also note that not all policies perform better than the random strategy in the 
third group; however, the additional performance boost from EI and qEI at the later 

iterations demonstrates the potential of BO in seeking a higher Sharpe ratio, which 
shows the effectiveness of the BO-based search strategy in finding the global 

optimum as more input parameters are considered. In addition, optimizing over 
more parameters generally leads to a higher Sharpe ratio, as shown by the scale of 

the y-axis in Exhibit 2. 

The optimal trading parameters identified by BO also tend to lead to a higher wealth 
curve, as shown in Exhibit 3. Although a single BO strategy is not guaranteed to 

deliver a higher cumulative wealth at each time point, in practice we could adopt a 

portfolio of BO strategies and ensemble individual models to achieve a higher gain 
at the group level, similar to the approach proposed in Hoffman, Brochu, and De 

Freitas (2011). Note that two wealth curves in Exhibit 3 will overlap given the same 

trading parameters. 

EXHIBIT 3 

Comparing the Cumulative Wealth Curve for each Search Strategy across Three 

Experiment Groups 

NOTE: BO strategies generally lead to a better-performing wealth curve than 

random search. 

https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#F2
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#F3
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib5
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#bib5
https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#F3
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We also conducted the same experiments four times, each with a different training 
set, to strengthen our findings. Exhibit 4 presents the mean and standard deviation 

(in brackets) of the terminal Sharpe ratio achieved by various search policies after 
20 iterations. The qEI acquisition function achieved the highest Sharpe ratio 

(highlighted in bold) in groups one and three, and UCB was the best in group two. All 
BO-based policies consistently outperformed the random policy, indicating the 

superiority of model-based BO search strategies in solving global optimization 

problems. 

EXHIBIT 4 

The Mean and Standard Deviation (in brackets) of the Terminal Sharpe Ratio 

Using Different Search Policies 

NOTES: This exhibit shows the mean and standard deviation (in brackets) of the 
terminal Sharpe ratio of the pairs-trading strategy identified by different search 

https://www.pm-research.com/content/iijpormgmt/early/2023/05/15/jpm20231497?implicit-login=true#F4
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policies after 20 iterations across three experimental groups, with the highest 
Sharpe ratio in boldface for each group. All BO-based polices consistently report a 

higher Sharpe ratio than the random policy, thus showing the advantage of BO in 

locating a better parameter configuration for a given trading strategy. 

 

CONCLUSION 

This article has demonstrated the efficacy of employing BO as a robust and efficient 
mechanism for enhancing trading strategies by targeting a high Sharpe ratio. 
Utilizing GP models and optimizing carefully crafted acquisition functions enables 

traders, analysts, and researchers to effectively navigate the extensive parameter 
landscape of trading strategies and pinpoint the most advantageous parameter 

setups. Our empirical analysis using the pairs-trading strategy revealed substantial 
improvements in trading performance, encompassing both profitability and risk 

management aspects. In addition, BO can be applied to a diverse array of trading 
strategies, including those based on technical analysis or machine learning models. 
Ultimately, the adoption of BO in the trading domain offers a promising avenue for 

future investigation and implementation within the financial sector. 
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