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Abstract

Recent studies have shown that strong Natural Language Un-
derstanding (NLU) models are prone to relying on annota-
tion biases of the datasets as a shortcut, which goes against
the underlying mechanisms of the task of interest. To re-
duce such biases, several recent works introduce debiasing
methods to regularize the training process of targeted NLU
models. In this paper, we provide a new perspective with
causal inference to find out the bias. On the one hand, we
show that there is an unobserved confounder for the natu-
ral language utterances and their respective classes, leading
to spurious correlations from training data. To remove such
confounder, the backdoor adjustment with causal interven-
tion is utilized to find the true causal effect, which makes
the training process fundamentally different from the tradi-
tional likelihood estimation. On the other hand, in inference
process, we formulate the bias as the direct causal effect and
remove it by pursuing the indirect causal effect with coun-
terfactual reasoning. We conduct experiments on large-scale
natural language inference and fact verification benchmarks,
evaluating on bias sensitive datasets that are specifically de-
signed to assess the robustness of models against known bi-
ases in the training data. Experimental results show that our
proposed debiasing framework outperforms previous state-
of-the-art debiasing methods while maintaining the original
in-distribution performance.

Introduction
Despite the impressive performance on many NLU bench-
marks (Wang et al. 2019), recent studies have demonstrated
that neural models tend to rely heavily on existing annota-
tion biases, without learning the underlying task (Gururan-
gan et al. 2018; Poliak et al. 2018; Schuster et al. 2019;
McCoy, Pavlick, and Linzen 2019; Shah, Schwartz, and
Hovy 2020; Zhang et al. 2021). These biases are commonly
characterized as surface features of input examples that are
strongly associated with the target labels in the datasets.
For instance, natural language inference (NLI) is a task to
conduct combined feature reasoning to determine whether
a hypothesis sentence can be inferred from a premise sen-
tence (Dagan, Glickman, and Magnini 2005). However, re-
cent work has demonstrated that large-scale NLI bench-

*corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

marks contain annotation artifacts: e.g., the entailed hy-
potheses tend to replace exact numbers/gender with approx-
imates/generic words (some, at least, human, people etc.),
purpose clauses are a sign of neutral hypotheses, and nega-
tion is correlated with contradiction label (Gururangan et al.
2018). Table 1 shows the examples from the widely used
SNLI dataset that demonstrate these phenomena. With only
processing the hypothesis, models can reach accuracy scores
as high as twice the majority baseline (67% vs.34%) when
predict the class within the SNLI dataset (Tsuchiya 2018;
Gururangan et al. 2018). Fact verification (FEVER), an-
other NLU task suffers from similar issue: a claim-only
BERT (Devlin et al. 2019) model that classifies each claim
on its own, without associated evidence achieves 61.7%, far
above the majority baseline (33.3%) (Schuster et al. 2019).
As a result, models will fail to generalize well if they sim-
ply memorize the statistical shortcuts during training, and
suffer from a huge drop in performance when evaluated on
the datasets that are carefully designed to limit the spurious
cues.

Premise and Hypothesis Label
P: A woman is talking to two men. entailmentH: There are at least three people.

P: Two dogs are running through a field. neutralH: Dogs are running to catch a stick.
P: The woman is awake. contradictionH: The woman is not awake.

Table 1: Examples from SNLI that illustrate the annotation
artifacts.

Recent popular solution to such issue is to develop de-
biasing mehods that overcome these biases at the train-
ing stage (Belinkov et al. 2019; He, Zha, and Wang 2019;
Stacey et al. 2020; Mahabadi, Belinkov, and Henderson
2020; Utama, Moosavi, and Gurevych 2020; Ghaddar et al.
2021). Namely, they first use a bias model 1 to identify bi-
ased samples. And then adversarial learning or ensemble
training are utilized to either remove the bias from sentence
encoder or control the training loss by discouraging learn-
ing from the bias samples. However, we argue that biased

1We follow the terminology used by (He, Zha, and Wang 2019)

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

11376



Premise: The women in black
listens to music as she drives to
work.

NLI
model

Hypothesis: The woman in 
black is not walking to work.

Factual NLI

Combined feature

Counterfactual NLI

Counterfactual
NLI modelNegation words in the hypothesis are often 

highly correlated with the contradiction label.

dataset biases 

Combined
feature (imaginary)Premise (imaginary)

neutral

entailment
contradiction

neutral

entailment
contradiction

					 =

Debiasing

Figure 1: An illustration of factual and counterfactual NLI, as well as the debiasing strategy. Factual NLI depicts the fact where
model sees the hypothesis and extracts the combined feature of premise and hypothesis. Counterfactual NLI means that model
sees the hypothesis but the combined feature and premise are coming from the imagined world.

samples can include some information necessary to perform
the NLU tasks and learning from these examples helps the
model maintain the original in-distribution accuracy. Unlike
previous works, in this paper, we hand over the debiasing
to the inference stage, and focus on how to disentangle the
learned general features and memorized dataset bias.

Specifically, motivated by causal inference (Didelez and
Pigeot 2001; Pearl 2013), we propose a novel bias mitiga-
tion strategy from a causal-effect look. We first formulate
the procedure of NLU tasks from the causal view with a
Structural Causal Model (SCM) (Pearl et al. 2000). In the
training process, we believe that there exists an unobserved
confounder representing the annotation preference between
natural language utterances and their respective labels, lead-
ing to the spurious correlation. Recall the process of the cor-
pus generation of NLI, crowd workers are presented with
a premise p and are required to generate three new sen-
tences (hypotheses) that entails, contradicts, or is logically
neutral with respect to the premise. This protocol makes the
preference of annotators inevitably affect both the hypoth-
esis and the label (Gururangan et al. 2018). Figure 2 illus-
trates how such annotation preference confounds the gen-
eration process of hypothesis sentences. On the Structural
Causal Model (SCM), the confounder appears in the un-
desired causal path (a.k.a., backdoor (Pearl et al. 2009)),
which is an indirect causal link from input H to output
L: H ← U → L. Considering such issue, we apply de-
confounded training with causal intervention and use the do-
calculus P (L|do(H)) (Pearl, Glymour, and Jewell 2016) to
calculate the causal effect, which is fundamentally different
from the conventional likelihood P (L|H).

Then in the inference stage, we further formulate the hy-
pothesis/claim only bias as the direct causal effect of hy-
pothesis/claim on labels, and conduct the debiasing by sub-
tracting the direct causal effect from the total causal effect.
To reach this goal, one question needs to be answered: How
could we estimate the causal effects in NLU tasks?

For this question, inspired by recent counterfactual rea-
soning works (Qian et al. 2021; Niu et al. 2020), we intro-
duce two situations of inference process: factual NLI and

P: The woman is awake. P: Two dogs are running through a field.

H: The woman is not awake. H: Dogs are running to catch a stick.

Purpose clauses are a sign of 
neutral hypotheses.

I prefer using negation to
generate contradiction hypotheses.

Figure 2: Illustration of the annotation preference.

counterfactual NLI, to obtain the total causal effects and the
direct causal effect respectively. Figure 1 2 illustrates these
two situations. Intuitively, factual NLI depicts the situation
where both P and H are available. In this case, we can es-
timate the total causal effect of P and H on L. However,
factual NLI cannot disentangle the annotation bias and the
needed combined feature reasoning. Therefore, we consider
the following counterfactual question: “What will the pre-
diction be if seeing the hypothesis sentence only and had
not seen the premise and the combined feature?” Under this
imaginary situation, since the effects of P and mediator C
are both blocked, NLI models can only make decisions rely
on the hypothesis-only impact. Therefore, the bias can be
identified by estimating the direct causal effect of H on L
under the situation of counterfactual NLI.

We conduct experiments on large-scale NLI and fact ver-
ification benchmarks, evaluating on bias sensitive datasets
SNLI-hard and fact verification symmetric test set (Gururan-
gan et al. 2018; Schuster et al. 2019) that are specifically de-
signed to assess the robustness of models against known bi-
ases in the training data. Experimental results show that our
Causal Intervention and Counterfactual Reasoning (CICR)
based framework outperforms existing debiasing methods
by large margins on the bias sensitive datasets, and remains
stable on the original SNLI and FEVER datasets.

Contributions of this paper are summarized as following:

2Here, we take natural language inference as an example. Other
NLU tasks such as fact verification can be analogous in a similar
way.
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• We formulate biases in tasks of NLI and fact verification
from the new causal view with a SCM.

• Based on the causal framework, we conduct causal in-
terventions via backdoor adjustment to remove spurious
correlations introduced by the annotation preference con-
founder. For mitigating the bias, we propose a counter-
factual reasoning framework to pursue the indirect causal
effect as the inference logits.

• We conduct extensive experiments on large-scale NLI
and fact verification benchmarks, and achieve state-of-
the-art debiasing results while maintaining the original
in-distribution performance.

Related Work
Debiasing NLU Models
Recent solutions to reduce the dataset biases in NLU
tasks can be grouped into three categories: data augmenta-
tion (Gururangan et al. 2018; Schuster et al. 2019; Kaushik,
Hovy, and Lipton 2020; Nie et al. 2020), adversarial train-
ing (Belinkov et al. 2019; Stacey et al. 2020) and model
ensembles (Clark, Yatskar, and Zettlemoyer 2019; He, Zha,
and Wang 2019; Mahabadi, Belinkov, and Henderson 2020;
Utama, Moosavi, and Gurevych 2020; Ghaddar et al. 2021).
First, Nie et al. (2020) proposed an iterative human-and-
model-in-the-loop solution for NLU dataset collection tar-
geting at addressing robustness issues in existing datasets.
Kaushik et al. (2020) designed a new dataset creation pro-
cedure in which humans counterfactually provided labels
and intervened upon the data. To allow proper evaluation,
recent studies have tried to create new evaluation datasets
that do not contain idiosyncratic biases (Gururangan et al.
2018; Schuster et al. 2019; McCoy, Pavlick, and Linzen
2019). Second, adversarial learning is utilized to remove the
hypothesis-only bias from models trained on SNLI. Specif-
ically, Belinkov et al. (2019) and Stacey et al. (2020) dis-
couraged the hypothesis encoder from learning the biases
by designing a classifier trained to learn the bias from sen-
tence representations, which in turn update to reduce the
performance of the bias classifier in an adversarial manner.
Third, ensemble-based methods (Clark, Yatskar, and Zettle-
moyer 2019; He, Zha, and Wang 2019; Mahabadi, Belinkov,
and Henderson 2020; Utama, Moosavi, and Gurevych 2020;
Ghaddar et al. 2021) proposed to use a separated biased
model, which is a weak classifier that is trained using only
features that are known to be insufficient to perform the task
but work well due to biases. The output of this pre-trained
biased model is then used to adjust the loss function such
that it down-weights the importance of examples that the bi-
ased model can solve.

Our work falls into the model ensemble category and the
most related work to ours in terms of approach is (Ma-
habadi, Belinkov, and Henderson 2020). The authors pro-
posed a learning strategy to overcome dataset biases in NLU
tasks. They firstly utilized a bias-only branch to leverage
biases and shortcuts in the datasets during training. Debi-
asing strategies then worked by adjusting the cross-entropy
loss based on the performance of these bias-only models to
down-weight the importance of the biased examples. At the

end of the training, they simply removed the bias-only clas-
sifier and used the predictions of the base model. In contrast,
our learning strategy is designed based on the causal infer-
ence. On the one hand, we utilized backdoor adjustments to
remove the spurious correlation caused by the confounder.
On the other hand, the debiasing is carried out in the infer-
ence stage, which can make unbiased decisions with biased
observations by removing the direct bias effect.

Causal Inference
Causal inference is the process of determining the indepen-
dent, actual effect of a particular phenomenon (Pearl et al.
2009), which has been explored for years in psychology,
politics and epidemiology (Richiardi, Bellocco, and Zugna
2013; Keele 2015). By removing confounding bias in data,
causal inference can provide more reliable explanations and
also provide debiasing solutions by learning causal effect
rather than correlation effect. Recently, some works (Singh
and Sun 2019; Mahajan, Tan, and Sharma 2019; Bengio
et al. 2020; Wang et al. 2020) introduced causal inference
into machine learning with counterfactual reasoning, try-
ing to endow models the abilities of pursuing the cause-
effect. Especially, it has inspired several studies in Natu-
ral Language Processing (NLP), including language mod-
els (Huang et al. 2020), named entity recognition (Zhang
et al. 2021), text classification (Choi et al. 2020; Qian et al.
2021), reading comprehension (Ye, Nair, and Durrett 2021)
and vision-language tasks (Teney, Abbasnejad, and van den
Hengel 2020; Niu et al. 2020). More recently, a survey intro-
duced the details about causal inference in natural language
processing (Feder et al. 2021). Besides, some works focused
on data augmentation via generating counterfactual samples
to alleviate the spurious correlation issue in sentiment anal-
ysis and NLI tasks (Huang, Liu, and Bowman 2020; Yang
et al. 2021; Wang and Culotta 2021). Differently, our causal-
effect look focuses on counterfactual inference with even bi-
ased training data without extra data augmentation. To the
best of our knowledge, we are the first to formulate dataset
biases in NLI and fact verification as causal effects and de-
bias it based on counterfactual reasoning framework.

Preliminaries
Causal Graph
Causal graph (Pearl, Glymour, and Jewell 2016) is a highly
general roadmap specifying the causal dependencies among
variables. As shown in Figure 3, it describes how variables
interact with each other, expressed by a directed acyclic
Bayesian graphical model, G = {N , E} consisting of nodes
N and directed edges E (i.e., arrows). N denotes the set
of variables, and E (arrows) represent the causality between
two nodes, i.e., X → Y denotes that X is the cause and Y
is the effect, meaning the outcome of Y is caused by X .

Counterfactual
Counterfactual means “counter to the facts” (Roese 1997),
which assigns the “clash of worlds” combination of values to
variables. It provides the framework for many statistical pro-
cedures intended to estimate causal effects. Take Figure 3(c)
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Figure 3: An example of causal graph and counterfactual
notations. The dotted line indicates cutting the original in-
coming arrow.

as an example, in the factual scenario, we have m = Mx =
M(X = x). In the counterfactual scenario (Figure 3(d) and
(e)), X is set as different values for M and Y . For example,
Yx∗,Mx

in Figure 3(d) describes the situation where X is set
to x∗ and M is set to the value when X had still been x, i.e.,
Yx∗,Mx

= Y (X = x∗,m = M(X = x)).

Causal Effects
Causal effects are the comparisons between two potential
outcomes of the same individual given two different treat-
ments (Rubin 1978). Take Figure 3(c) and (f) as an example,
supposed that X = x means we see the X and X = x∗

means X is not available. The total effect (TE) of treatment
X = x on Y compares these two situations X = x and
X = x∗ , which is denoted as:

TE = Yx,Mx − Yx∗,Mx∗ (1)

Total effect can be regarded as the sum of natural direct
effect (NDE) and total indirect effect (TIE). NDE represents
the effect of X on Y when the mediator M is blocked. It
expresses the increase in the outcome Y with X changing
from x∗ to x under the pure environment Mx∗ :

NDE = Yx,Mx∗ − Yx∗,Mx∗ (2)

TIE is the difference between TE and NDE, denoted as:

TIE = TE −NDE = Yx,Mx − Yx,Mx∗ (3)

In this paper, we use TIE as our unbiased inference results.

Causal Intervention
Causal intervention is utilized to seek the true causal ef-
fect of one variable on another when there exists con-
founders. Figure 3(b) is an example, in which the variable
U is the confounder for A and B. In this graph, A does
not have causal effect on B because if we only change A
and keep U , B will not change. In this case, the confounder
makes us cannot use P (B|A) to represent the causal effect,
since P (B|A) − P (B) is not always zero. Thanks for the
book (Pearl, Glymour, and Jewell 2016), the backdoor ad-
justments with do-calculus can be used for causal interven-
tion. Specifically, do is a type of intervention, which means

that we assign a value to the variable instead of that its parent
nodes cause it. When we do a variable, we cut off all the ar-
rows ending to the variable, so that its parents do not cause it
any more. For example, in Figure 3(b) , do(A) is that we set
variable A as value a while ignoring its caused function (i.e.,
arrow A ← U ). In this way, no confounder will simultane-
ously cause A and B when calculating P (B|do(A)), which
means we have de-confounded U .

Methodology
In this paper, we focus on the two tasks of NLI and fact veri-
fication, which are considered to contain similar bias namely
hypothesis/claim-only bias. In the following introduction,
we take NLI as an example, and the fact verification can be
analogous in a similar way. Following the common formu-
lation, we regard the NLI task as a multi-class classification
problem. NLI models are trained to predict an relationship
label from the candidate set L = l given a premise sentence
P = p and a hypothesis sentence H = h.

De-confounded Training with Causal Intervention
We define the causal graph of NLI in Figure 4(a). Nodes
P , H and C represent the input premise, hypothesis and the
combined feature of P and H respectively. The final predic-
tive logits L takes inputs from the three branches: the direct
effect of the input P and H on L via P → L and H → L,
as well as the indirect effect of the input P and H on L via
the combined feature C, i.e. C → L.

We donate the score a label l (i.e. “entailment”) would
obtain when the P is set to p (i.e. “The women in black
listens to music as she drives to work.”), H is set to h (i.e.
“The woman in black is not walking to work.”) and C is set
to c as:

Sh,p,c(l)
3 = S(H = h, P = p, C = c), (4)

where c = Ch,p = C(H = h, P = p). Then the total effect
(TE) of the input on label l can be written as:

TE = Sh,p,c − Sh∗,p∗,c∗ , (5)

where h∗ and p∗ represent the no-treatment condition where
h and p are not given, and c∗ = Cp∗,h∗ .

Parameterization Each branch of Figure 4(a) can be for-
mulated as a neural model. And the score Sh,p,c is calculated
through model ensemble with a fusion function.

Sh,p,c = F(Sh, Sp, Sc) (6)

where Sh = FH(h) is the hypothesis-only branch (i.e. H →
L), Sp = FP (p) is the premise-only branch (i.e. P → L)
and Sc = FHP (h, p) is the combined feature branch (i.e.
C → L). F is the fusion function to obtain the final score.

In the counterfactual scenery, since the neural models can-
not deal with void input, we define the outcome of void input
as the same constant a which is a learnable parameter for all
the logits. The insight of this setting is that as for human, if
we have no information for NLI task, we would like to make

3We omit l for simplicity later without loss of generality.
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Figure 4: Causal graph of NLI and the comparison between
factual NLI and counterfactual NLI.

inference by random guess, which means that each candi-
date label has the same chance to be picked.

We propose two fusion variants, FC (Eq. 7) and SUM
(Eq. 8) to combine Sh, Sp and Sc:

F(Sh, Sp, Sc) = WcSc +WpSp + Sh (7){
F(Sh, Sp, Sc) = logσ(SSUM )
SSUM = Sh + Sp + Sc

(8)

De-confounder Process with do-calculus As we intro-
duced in previous sections, there exists an unobserved con-
founder U (Figure 4(b)), which is the cause of spurious cor-
relation between the hypotheses and labels. We believe that
such unobserved U should be annotation preference as the
process of dataset construction essentially brings humans
in the loop. To accomplish the de-confounded training in
H → L branch, we exploit the backdoor adjustments (Pearl,
Glymour, and Jewell 2016) with do-calculus to calculate the
corresponding intervention distribution:

Sh = P (L|do(H))

=
∑
u

P (L|H,u)P (u|H)

=
∑
u

P (L|H,u)P (u)

= Eu[P (L|H,u)]

(9)

Since U is unobserved, we propose learning to approxi-
mate it by designing a dictionary Du as N×d. N is manually
set and d is the hidden feature dimension. Here, we set N as
3: the number of labels, so that Du can be modeled as the
annotators’ preference over each labels. Note that the NLI is
a multi label classification problem, so the last layer of this
network is a softmax layer which implements P (L|H,u)
as:

P (L|H,u) = softmax(g(h, u)) (10)
where g(·) is the embedding layer before the softmax.

Since Eq. 9 needs expensive samplings for u, we use
NWGM approximation (Srivastava et al. 2014; Xu et al.
2015) to efficiently absorb the expectation into the softmax.

P (L|do(H)) = Eu[P (L|H,u)]

= Eu[softmax(g(h, u))]

≈ softmax(Eu[g(h, u)])

(11)

In this paper, we model g(h, u) = W (f(h) + u). f is
the encoder network to get the embeddings of hypotheses.
Then according to the linear additive property of expecta-
tion calculation, Eu[g(h, u)] can be calculated as W (f(h)+
Eu[Du]). In practice, we use a dot-product attention to com-
pute Eu[Du]. Specifically, Eu[Du] = softmax(LTK) ⊙
Du, where L = W1h,K = W2Du and ⊙ is the element-
wise product, h is the embedding of hypothesis H , and W1

and W2 are mapping matrices.

Unbiased Inference with Counterfactual Reasoning
NLI models suffer from the annotation artifacts between
the hypotheses and labels, and thus fail to conduct effective
combined feature inference. Therefore, we expect NLI mod-
els to exclude the direct impact of hypotheses. To achieve
this goal, we propose counterfactual NLI to estimate the
causal effect of H = h on L = l by blocking the impact of
C and P . Counterfactual NLI describes the scenario where
H is set to h and C would attain the value c∗ when H had
been h∗ and P had been p∗. Since the response of P and
mediator C to inputs is blocked, the model can only rely
on the given hypotheses for decision making. Figure 4(c)
shows the comparison between factual NLI and counterfac-
tual NLI. We obtain the natural direct effect (NDE) of H
on L by comparing counterfactual NLI to the no-treatment
conditions:

NDE = Sh,p∗,c∗ − Sh∗,p∗,c∗ (12)

Since the effects of P and C on the labels are blocked, NDE
explicitly captures the hypothesis-only bias. Furthermore,
the reduction of bias can be realized by subtracting NDE
from TE, which is represented as:

TIE = TE −NDE = Sh,p,c − Sh,p∗,c∗ (13)

We select the answer with the maximum TIE for inference,
which is totally different from traditional strategies that is
based on the posterior probability i.e., P (l|h, p).

Training and Inference
We follow the training strategy used by (Mahabadi, Be-
linkov, and Henderson 2020). Figure 5 is an illustration of
the training process. Specifically, we jointly optimize the pa-
rameters of the base NLI model, the hypothesis-only branch
and the premise-only branch using the gradients computed
from three losses.

LossCE = LossNLI + λHLossH + λPLossP , (14)

where the main loss LossNLI refers to the cross-entropy
loss associated with the predictions of F(Sh, Sp, Sc) from
Equation 6. We back propagate this loss to optimize all
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the parameters ΘHPC which contribute to this loss. ΘHPC

is the union of the parameters of the three branches (i.e.
H → L, P → L, and C → L). In our setup, we share the
parameters of the hypothesis and premise encoder among
the NLI model, the hypothesis and premise-only branches.
The hypothesis and premise-only loss LossH and LossP
are cross-entropy losses associated with the predictions of
Sh and Sp from Equation 6. λH and λP are corresponding
weights of them. We use these losses to only optimize ΘH

and ΘP , union of the parameters of hypothesis-only branch
and premise-only branch. Note that we do not back propa-
gate these two losses to the encoder, preventing it from di-
rectly learning the biases.

premise hypothesis

encoder

CF branch
P-only
branch

H- only
branch

		𝐿𝑜𝑠𝑠!
		𝐿𝑜𝑠𝑠"#$

		𝐿𝑜𝑠𝑠%

Forward pass

Backward pass

Base NLI model

Figure 5: An illustration of the training process.

In the testing stage, we use the debiased effect for infer-
ence, which is implemented as:

TIE = TE −NDE = Sh,p,c − Sh,p∗,c∗

= F(Sh, Sp, Sc)−F(Sh, Sp∗ , Sc∗)
(15)

Evaluation
The experiments are conducted for NLI and fact verification.
To show the generality, we use the off-the-shelf uncased
BERT (Devlin et al. 2019) implementation of (Wolf et al.
2019), fine-tuning for each task as our main base model.

Datasets
For natural language inference, we train models on the SNLI
dataset (Bowman et al. 2015), which is known to contain sig-
nificant annotation artifacts. The dataset consists of pairs of
premise and hypothesis sentences along with their inference
labels. We evaluate the models on SNLI-hard (Gururangan
et al. 2018), a subset of SNLI test set where a hypothesis-
only model cannot correctly predict the labels.

For fact verification, we use the training dataset provided
by the FEVER challenge (Thorne et al. 2018). The task con-
cerns about assessing the validity of a claim sentence in
the context of a given evidence sentence, which can be la-
beled as either support, refutes, and not enough information.

Schuster et al. (2019) introduced a new evaluation set fever-
symmetric dataset to avoid the idiosyncrasies observed in
the claims of this benchmark, i.e., the occurrence of words
and phrases in the claim that are biased toward certain labels.
The collected dataset is challenging, and the performance of
the models relying on biases evaluated on this dataset drops
significantly. We evaluate the models on the both versions
(version 1 and 2) of their test sets 4.

Implementation
Encoder We consider BERT as the base encoder for both
tasks, which has shown impressive performance on this task.
We fine-tune all models using BERT for 3 epochs and use
the default parameters and default learning rate of 1e− 5.

Combined Feature Branch Following the standard setup
for sentence pair classification tasks, the predictions of com-
bined feature branch are based on the concatenation of the
premise/evidence and the hypothesis/claim with a delimiter
token based on the base BERT model.

Premise/Evidence-only Branch The premise/evidence-
only model predicts the labels using only premises/evi-
dences as input, which is a shallow nonlinear classifier with
768, 384 and 192 hidden units with Tanh nonlinearity, con-
sistent with the baseline (Mahabadi, Belinkov, and Hender-
son 2020).

Hypothesis/Claim-only Branch The hypothesis/claim-
only model predicts the labels using only hypotheses/claims
as input, which is the same shallow nonlinear classifier with
premise/evidence-only branch. Besides, because of the exis-
tence of the confounder, we use the backdoor adjustment cri-
teria to calculate the causal effect of hypothesis/claim-only
branch following Eq. 9 to 11.

Results
We compare our CICR models with state-of-the-art meth-
ods:
• BERT (Devlin et al. 2019) is the off-the-shelf uncased

BERT based model with cross entropy loss.
• RUBi (Cadène et al. 2019) is a recently proposed

language-prior based methods to alleviate uni-modal bi-
ases learned by visual question answering models.

• DFL (debiased focal loss) and PoE (product-of-
experts) (Mahabadi, Belinkov, and Henderson 2020) are
two techniques to reduce biases learned by neural models
with model ensemble.

For fact verification, we further compare against the
Reweight method (Schuster et al. 2019) and Self-debiasing
method (Ghaddar et al. 2021).

• Reweight introduces a regularization method which al-
leviates the effect of bias based on the correlation of the
n-grams within the claim sentences with the target labels.

• Self-debiasing designs a debiasing framework whereby
the shallow representations of the main model are used
to derive a bias model.
4https://github.com/TalSchuster/FeverSymmetric

11381



We omit some other debiasing approaches such as
learned-mixin (Clark, Yatskar, and Zettlemoyer 2019), Be-
linkov et al. (2019), Regularized-conf (Utama, Moosavi,
and Gurevych 2020) and LTGR (Du et al. 2021) here and
only report the state-of-the-art models due to the space lim-
itation.

Table 2 5 shows the experimental results on SNLI test set
and hard set. Our proposed CICRFC and CICRSUM are
highly effective, resulting in 4.11 and 5.3 points gain com-
pared with the BERT-based model in hard set respectively.
Besides, we significantly surpass the prior debiasing works
of RUBi, DFL and PoE, setting a new state-of-the-art.

Loss Test Hard ∆
BERT 90.53 80.53 -
RUBi 90.69 80.62 +0.09
DFL 89.57 83.01 +2.48
PoE 90.11 82.15 +1.62
CICRFC 90.12 84.64 +4.11
CICRSUM 90.14 85.83 +5.3

Table 2: Results on SNLI and hard set.

Table 3 shows the evaluation results on FEVER devel-
opment and symmetric test sets. From Table 3, we observe
that: 1) Debiasing methods outperform BERT-based model
on symmetric test sets by large margins. Among these meth-
ods, our proposed CICR models achieve the strongest per-
formances on both symmetric test set v1 and v2. 2) Our
CICR minimizes the trade-off between the in-distribution
and out-of-distribution performance compared to the other
methods. For example, RUBi maintains the in-distribution
performance but only improves the average accuracy from
56.49% to 57.6% on symmetric test set v1. Reweight and
DFL gain 5.11 and 7.53 points improvement over the BERT
baseline while reducing the dev accuracy by 1.39 and 2.92
points respectively on symmetric test set v1. Differently, our
method achieves the competitive 13.52 and 14.95 points gain
without dropping the in-distribution performance, indicating
the robustness of counterfactual inference framework.

Loss Dev Symmetric
Test Set V1

Symmetric
Test Set V2

BERT 85.99 56.49 64.4
RUBi 86.23 57.60+1.11 65.38+0.98

Reweight 84.60 61.6+5.11 66.5+2.1

Self-
debiasing 86.90 63.8+7.31 -

DFL 83.07 64.02+7.53 66.57+2.17

PoE 86.46 66.25+9.76 69.10+4.7

CICRFC 86.08 70.01+13.52 73.45+9.05

CICRSUM 86.43 71.44+14.95 72.17+7.77

Table 3: Results on FEVER and symmetric test set.

5∆ column of Table 2 and the + sign of Table 3-4 represent the
absolute improvements compared with baseline BERT model.

Effectiveness of Causal Intervention and
Counterfactual Reasoning
To investigate the effectiveness of our proposed components
of the method, we also perform the ablation experiments.
Specifically, when we discard the causal intervention part
(w/o CI in Table 4) which means using the traditional like-
lihood to compute the hypothesis/claim branch, the perfor-
mance drops, demonstrating the effectiveness of the causal
intervention. Besides, when we remove the counterfactual
reasoning part (w/o CR in Table 4), the performance has
decreased more obviously. The result is reasonable since
causal intervention eliminates the influence of spurious cor-
relations in the training stage, while counterfactual reason-
ing conducts debiasing in the inference stage.

NLI Test Hard ∆
CICRFC 90.12 84.64 +4.11
w/o CI 90.17 83.72 +3.19
w/o CR 90.20 82.80 +2.27

CICRSUM 90.14 85.83 +5.3
w/o CI 90.44 84.33 +3.8
w/o CR 91.12 83.42 +2.89

Fact Verifi-
cation Dev Symmetric

Test Set V1
Symmetric
Test Set V2

CICRFC 86.08 70.01+13.52 73.45+9.05

w/o CI 86.24 69.60+13.11 72.47+8.07

w/o CR 86.58 67.73+12.24 71.65+7.25

CICRSUM 86.43 71.44+14.95 72.17+7.77

w/o CI 86.59 70.43+13.94 70.65+6.25

w/o CR 86.50 67.52+11.03 69.76+5.36

Table 4: Evaluation results on two tasks for ablation study.

Conclusion
In this paper, we propose a novel bias mitigation strategy
to reduce known biases learned by NLU models based on
causal inference. The detailed implementation consists of
de-confounded training with causal intervention and unbi-
ased inference with counterfactual reasoning, which is ef-
fective and agnostic to the base encoder models. Specifi-
cally, the bias is formulated as the direct causal effect and
we extract the unbiased prediction by subtracting the di-
rect bias effect from the total causal effect. Besides, we
used the causal intervention with backdoor adjustments to
remove the confounder which is the cause of spurious cor-
relations. Experimental results on two NLU tasks: natural
language inference and fact verification demonstrate the ef-
fectiveness of our CICR. Future work may include develop-
ing a more complex causal graph with external knowledge
with our counterfactual inference framework.
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guage inference. In Màrquez, L.; Callison-Burch, C.; Su,
J.; Pighin, D.; and Marton, Y., eds., EMNLP, 632–642. The
Association for Computational Linguistics.
Cadène, R.; Dancette, C.; Ben-younes, H.; Cord, M.; and
Parikh, D. 2019. RUBi: Reducing Unimodal Biases for Vi-
sual Question Answering. In Wallach, H. M.; Larochelle,
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