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ABSTRACT

Self-supervised entity alignment (EA) aims to link equivalent en-
tities across different knowledge graphs (KGs) without the use of
pre-aligned entity pairs. The current state-of-the-art (SOTA) self-
supervised EA approach draws inspiration from contrastive learn-
ing, originally designed in computer vision based on instance dis-
crimination and contrastive loss, and suffers from two shortcomings.
Firstly, it puts unidirectional emphasis on pushing sampled negative
entities far away rather than pulling positively aligned pairs close,
as is done in the well-established supervised EA. Secondly, it ad-
vocates the minimum information requirement for self-supervised
EA, while we argue that self-described KG’s side information (e.g.,
entity name, relation name, entity description) shall preferably be
explored to the maximum extent for the self-supervised EA task. In
this work, we propose an interactive contrastive learning model for
self-supervised EA. It conducts bidirectional contrastive learning
via building pseudo-aligned entity pairs as pivots to achieve direct
cross-KG information interaction. It further exploits the integration
of entity textual and structural information and elaborately designs
encoders for better utilization in the self-supervised setting. Exper-
imental results show that our approach outperforms the previous
best self-supervised method by a large margin (over 9% Hits@1
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absolute improvement on average) and performs on par with previ-
ous SOTA supervised counterparts, demonstrating the effectiveness
of the interactive contrastive learning for self-supervised EA. The
code and data are available at https://github.com/THU-KEG/ICLEA.
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1 INTRODUCTION

Knowledge Graphs (KGs) (e.g., DBpedia [19], YAGO [28], and Wiki-
data [43]) provide structural knowledge about the entities and rela-
tions in the real world. These separately constructed KGs contain
heterogeneous but complementary knowledge [36]. Entity Align-
ment (EA) integrates the complementary knowledge in these KGs
via identifying equivalent entities [39] and thus benefits various
knowledge-driven applications such as information extraction [14],
question answering [7], and recommendation system [3, 4, 11].
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The mainstream solutions in the literature are based on deep rep-
resentation learning, which embeds entities into a latent space, and
then calculates the distance between embeddings as the evidence
for EA. These approaches [5, 27, 41, 46] utilize seed alignments to
guide the representation learning of entity and relation and propa-
gate those seed alignments to the entire KG. Despite the excellent
performance, they rely on some pre-aligned entity pairs provided
by humans during the training process. As the acquisition of seed
alignments is usually time-consuming, labor-intensive, and error-
prone, it is hard to apply them to real EA-related scenarios [21].

Hence, self-supervised EA under the unsupervised setting (i.e.,
matching entities without any pre-aligned label) starts to attract re-
search attention. One pioneer work is EVA [24], which used visual
semantic representations of entities to align entities in heteroge-
neous KGs in a fully unsupervised setting. Very recently, SelfKG [25]
drew inspiration from contrastive learning approaches, which orig-
inally targeted at computer vision tasks by leveraging instance
discrimination and contrastive loss (e.g., MoCo [16], SImCLR [6]),
and provided a contrastive learning framework for self-supervised
entity alignment. Although SelfKG achieved a promising perfor-
mance, it suffers from two shortcomings.

First, it struggles with the dilemma of precise entity alignment
situation, because it puts unidirectional emphasis on pushing sam-
pled negative entities far away for the uniformity of the whole
representation space rather than pulling positively aligned pairs
close to enhance the alignment. Its self-negative sampling strategy
can only sample entities from the same source KG to avoid conflict,
which blocks the direct cross-KG information interaction. EA is es-
sentially building inter-KG links, and thus the cross-KG information
interaction is critical. Existing methods achieve such interaction
via explicit supervision (seed alignments [41]) or implicit signals
(images as visual pivots [24]). We argue that pushing sampled neg-
ative entities away and pulling possibly aligned entities close are
equally important. The latter is actually the core in well-established
supervised EA approaches.

Second, it follows the minimum information requirement for
self-supervised EA and only focuses on entity names, which ignores
rich entity semantics in KGs. As shown in Figure 1, the entity rela-
tionship and description provide rich information, while sometimes
relying only on entity names can introduce ambiguity problems.
Entity name ambiguity problem [15] brings severe challenges to
self-supervised EA; as shown in Figure 1, entity names can be de-
ceptive to EA while KG’s side information containing extensive
entity semantics may bring great benefit. So we argue that self-
described KG’s side information (e.g., entity name, relation name,
entity description) shall preferably be explored to the maximum
extent for the self-supervised EA task.

To validate the above two hypotheses, we propose a model named
Interactive Contrastive Learning for self-supervised Entity Align-
ment (ICLEA). We design a novel interactive contrastive learning
mechanism in a self-supervised EA framework by constructing
pseudo-aligned entity pairs as virtual pivots to establish a direct
information interaction channel for the two KGs. Inspired by pre-
vious supervised approaches, we introduce more important side
information into self-supervised EA. Specifically, we separately
encode entity name labels and descriptions by different pre-trained
models, then organically combine them to provide powerful initial
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Figure 1: Examples of KG’s side information (e.g., entity de-
scription) enhancing EA when entities’ names are deceptive.

embeddings for entities. We also propose a relation-aware neigh-
borhood aggregator to better leverage the structural and semantic
information brought by the KGs’ relations.

The main contributions of our work are threefold:

e We propose an interactive contrastive learning to achieve the
direct cross-KG information interaction via building pseudo-
aligned entity pairs in a self-supervised EA.

e We propose to better utilize and integrate the structural
and semantic entity information for a self-supervised EA
framework with the help of pre-trained language models.

o Experimental results show that ICLEA outperforms the best
self-supervised baseline by a large margin (over 9% Hits@1
absolute improvement on average), and performs on par with
previous SOTA supervised methods while maintaining more
stable model training. Our work significantly narrows the
gap between supervised and self-supervised EA approaches.

2 RELATED WORK

We discuss two lines of work that are relevant to ours according to
their usage of pre-aligned entity pairs during the model’s training
process: (semi-)supervised and self/un-supervised approaches.

2.1 (Semi-)Supervised EA Approaches

In (semi-)supervised approaches, pre-aligned entity pairs are pro-
vided during the training process. Early EA methods focused on
Bayesian-based probability estimation [40] and hand-crafted rel-
evant similarity factors [21]. Before the wave of representation
learning arrived, most EA approaches either relied on extra re-
sources [45] or human efforts [28] to discover identical entity pairs.

The deep embedding-based EA approaches seek to encode a KG
into a low-dimensional latent space. Earlier approaches focus on
how to handle this task using only the structure of KG [39, 54].
MTransE [5] uses TransE to learn the vector space of a single KG
and then learns a linear transformation to align two vector spaces.
IPTransE [35] models relational paths by inferring the equivalence
between direct relationships and multi-hop paths. DAT [58] offers
a framework for EA with emphasis on long-tail entities. GNNs [1,
8, 42] are well suited for modeling graph structure, and have been
widely used for modeling the multifaceted information in KGs to
assist embedding-based EA recently [2, 20, 27, 30, 38, 47, 53, 55, 61,
63]. The emergence of pre-trained language models (PLMs) [18]
has recently brought natural language processing to a new era.
Some PLMs can bring high-quality multilingual initial embeddings,
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which is crucial for the EA task. HMAN [50] uses multilingual
BERT to initialize the embedding of entities by its side information
which bridges multilingual gaps. BERT-INT [41] proposes an EA
strategy based on directly fine-tuned multilingual BERT. Besides
the high performance achieved by these (semi-) supervised models,
researchers begin to consider the efficiency and practicality with
new methods such as adversarial learning, active learning, etc [23,
29, 33, 56]. Despite the success of these approaches, the imperative
need for labeled data still bridges the gap between these models
and real-world applications. The acquisition of pre-aligned seeds is
naturally time-consuming and labor-intensive [26]. To address this
problem, self-supervised or unsupervised EA has gained increasing
attention from the academic community.

2.2 Self-Supervised or Unsupervised EA
Approaches

In self-supervised or unsupervised! [17, 26] approaches, none of
the pre-aligned entity pairs is provided during the training process.
MultiKE [59] designs some cross-KG inference methods to enhance
the alignment between two KGs. EVA [24] uses images as pivots
for aligning entities in different KGs in an unsupervised setting.

Self-supervised learning methods are proposed to learn data
co-occurrence relationships from unlabeled data without using
any human-annotated labels [17]. Self-supervised image feature
learning in the computer vision (CV) community has obtained great
success. The margin between self-supervised methods’ performance
and supervised methods’ performance on some downstream tasks
becomes very small [6, 16]. Strikingly, the success of self-supervised
training in computer vision community provides new directions for
unsupervised EA models. As there are few attempts that launch self-
supervised training in this task, such as SelfKG [25], we recognize
that it is urgent and purposeful to set up a paradigm so that the
experience of existing EA methods can be adapted to this new
direction. Specifically, SelfKG designs a unidirectional contrastive
learning strategy between two KGs for self-supervised EA and uses
self-negative sampling to sample entities from the same source
KG to avoid conflict, which blocks the direct cross-KG information
interaction. Therefore, we propose ICLEA, which jointly considers
the structural and semantic information in the self-training process
and constructs pseudo-aligned entity pairs as virtual pivots to guide
the direct bidirectional cross-KG information interaction, and calls
for more efforts in self-supervised EA.

3 PROBLEM DEFINITION

DEFINITION 1 (KNOWLEDGE GRAPH). A knowledge graph is repre-
sented as G=(E,R, T, S), whereeache € E,r € R, t = (ej,1,¢j) €
T (ei,ej € & ) represent an entity, a relation and a fact triple re-
spectively, and s(e) = {ne,de, ac} € S denotes the side information
of entity e, i.e., entity name label, textual description and attribute
value. We denote the set of one-hop neighbors of entity e as N of size
| Nel, namely, the entities that are directly connected to e in knowledge
graph G via fact triples, where Ne = {e’ | (e,r,e’) € T A (e, e’ €
E)u{e’ | (e/,r,e) €T A(e e’ € E)}.

1Self-supervised learning is a form of unsupervised learning. Their distinction is
informal in the existing literature. In this work, we do not distinguish between them
in a strict sense.
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Knowledge graphs are often separately constructed for various
goals, and thus contain heterogeneous but complementary knowl-
edge. Entity alignment is to identify entities from different knowl-
edge graphs (different languages or sources) that describe the same
real-world object, and can be formally defined as follows.

DEFINITION 2 (ENTITY ALIGNMENT). Given two different KGs
G1 and Ga, EA is to learn a ranking function f : &1 X E2 — R to
calculate the similarity score between two entities, based on which
we rank the correctly aligned entity ey as high as possible among all
entities of & with a queried entity ey € E1. Pre-aligned entity pairs
or named seed alignments I = {(e1,e2) | e1 € E1,e2 € Eg,e1 & €3}
are provided, where <> means that the entity ey from Gi and the
entity ey from G, are equivalent.

According to the use of seed alignments 7, the EA task is clas-
sified into (semi-) supervised and self-supervised or unsupervised
settings. The (semi-) supervised setting leverages part of I as su-
pervision signals for learning, while the self-supervised or unsu-
pervised setting does not require any supervision.

4 THE PROPOSED APPROACH

Although supervised EA methods achieve SOTA performance, their
dependence on supervision signals limits real-world EA applica-
tions. In contrast, self-supervised methods show the ability to obtain
competitive performance without any supervision, and have much
better scalability. To fully exploit the potential of self-supervised
EA approaches, three crucial issues remain to be addressed.

e How to obtain the entity initial representation embedding
efficiently and effectively by KG’s side information?

e How to fully utilize and integrate the structural and semantic
KG information in a self-supervised EA framework?

e How to establish a direct cross-KG information interaction
channel for a self-supervised EA framework instead of only
performing unidirectional intra-KG contrastive learning?

To address the above issues, we introduce the interactive con-
trastive learning for self-supervised EA framework, which contains
three parts: 1. A KG semantic encoder is utilized to encode the
names, descriptions of entities and relations for providing efficient
initial entity embeddings. 2. A relation-aware neighborhood
aggregator is introduced to fully exploit relations’ structural and
semantic information so as to update entity representation embed-
dings. 3. An interactive contrastive learning mechanism is
proposed to construct pseudo-aligned entity pairs as virtual pivots
for guiding contrastive learning between two KGs, thus promoting
the direct learning of cross-KG interactions. Figure 2 shows the
overall framework of our proposed approach ICLEA.

4.1 KG Semantic Encoder

KG semantic encoder aims to fully capture the semantics of entities
and relations by leveraging their names and descriptions. Since
pre-trained language models (PLMs) have achieved remarkable
progress in Natural Language Processing (NLP), we decide to lever-
age LaBSE [9], a language-agnostic pre-trained sentence model, for

encoding the name. Besides, we choose SentenceTransformers2, a

Zhttps://github.com/UKPLab/sentence-transformers
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Figure 2: The overall framework of ICLEA. It consists of three main parts: (1) KG semantic encoder; (2) The relation-aware
neighborhood aggregator; (3) Interactive contrastive learning mechanism.

transformer-based sentence embedding framework, to obtain en-
tity description embeddings. LaBSE is a SOTA language-agnostic
sentence embedding PLM which is trained on 109 different lan-
guages. SentenceTransformers is a Python framework for SOTA
sentence, text and image embeddings. We choose them due to their
outstanding empirical performance in capturing precise seman-
tics for phrases and long sentences while helping us to cross the
multilingual barrier.

KG Name Encoder. The names of each entity e and relation r are
usually composed of phrases. We utilize the tokenizer of LaBSE
to obtain the tokens of the entity name n, and relation name n,,
and get corresponding embeddings through LaBSE model fy, ...
Next, a mean pooling operation is applied to the embedding of each
token, followed by an Ly normalization.

hn, = [Mean(fy, sy (n))|,, - € (e} 1)

Entity Description Encoder. Moreover, entity description con-
tains rich semantics that allows PLMs to encode with more context
information. The entity description is usually composed of one
or more sentences and contains multifaceted features related to
the entity. For each description, we select the first Ly,4 charac-
ters to feed into the SentenceTransformers model fy . and get the
representation of entity description de,

ha, = fosr (do)lly, - @

Finally, we get the entity e’s representation embedding I;e by
concatenating entity name embedding hy,, and entity description
embedding hy,, and more processing details are available in Sec-
tion 5.1,

Ee = Concat(ﬁne, Ede)- (3)

4.2 Relation-Aware Neighborhood Aggregator

Relation-aware neighborhood aggregator aims to update entity
embeddings by performing message passing with the help of KG’s

relation information which can aggregate neighborhood entities’
helpful information for EA to the center node entity. Refer to Sec-
tion 4.3, our self-supervised EA framework has the online and
momentum parts as shown in Figure 2. These two parts have the
same model structure, and they have different parameter updating
strategies. We take the online part as an example to introduce this
module. The KG’s relations can bring us two aspects of crucial in-
formation: structural — neighbor entities, which provide valuable
context information for understanding the center node entity, and
semantic — neighbor relations, which capture rich semantic infor-
mation of edges adjacent to the given center node entity. In this
work, we apply GAT [42] and its variants as the backbone networks
due to its effectiveness.

Structural Aggregator. The aggregation of neighbor entities is
performed by considering both entities’ importance and their rela-
tions to the center node. One vanilla GAT aggregates all neighbor
entity embeddings for the center node to model the importance of
different entities, which treats all relations equally, formally,

ren _ K
hi _”kzl o Z

JEN;U{e; }
exp (0' (T;’T [W};i||Wﬁj] ))

ZkEMU{ei} exp (O' (TI)T [W];l”Wﬁk] ))

kxrkz
O(ijW hj 5

aij =

>

where W is the learnable linear transformation’s weight matrix. The
attention mechanism is a single-layer feedforward neural network
parametrized by a weight vector q. K is the multi-head attention
number. o is a nonlinear activation function such as LeakyReLU.
ajj is the normalized attention coefficient. T represents matrix
transposition and || is vector concatenation operation.

Another extended GAT is proposed to model the importance of
different adjacent relations. It uses relation specific attention heads
as relation-wise gates to control information flow from neighbor
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entities and obtains updated entity embedding th

B =K o Z BEWER; |,
JEN;
_ e (ry) (5)
Yken; exp (yik)’

ij=—o|0o F“Wl +Bi1 |W2 +B2 |,
Yij ( (U rij i i i

)Bij

where 7;; is trainable relation specific embedding between entity e;
and entity e;. Wy, and B,,; are relation’s transformation and bias
weight matrix.

Semantic Aggregator. Relation’s name label in KGs usually con-
tains certain semantic information. For example, the “sisters™ rela-
tion in DBpedia describes a kinship relation between the head and
tail entities, we argue that information is helpful for obtaining bet-
ter entity representation embeddings for self-supervised EA. The
semantic aggregator aims to aggregate and fuse neighbor relations’
semantic information into the center node entity representation
embedding. In this work, we apply a one-hop GAT that is the same
as Equation 4 to fuse neighbor relation name label embeddings
into corresponding center entity embeddings. Specifically, for each
h ; in Equation 4, we replace it with a average neighbor relation
embedding Ej = KL,, ZI;ZO Enrx’ where n,_ is the x-th relation’s
name label between entity e; and entity ej, Kj; is the total number
of relations between entity e; and entity e;, and Enrx is the corre-
sponding relation name label embedding, which can be calculated
from Equation 1. For i_{k in Equation 4, we replace it with Ek using
a similar method. This way, we can obtain Els.e of entity e; based on
its neighbor relation name labels.

Finally, we use a fully-connected layer to fuse three aspects of
embeddings }_{f” Eft , and ﬁfe to obtain the final entity representa-
tion embedding 7;,

3; = MLP(Concat(K¢™, bt h3€)). 6)

1

4.3 Interactive Contrastive Learning

Interactive contrastive learning mechanism is designed to learn
direct cross-KG interactions for self-supervised EA. It mainly con-
sists of three parts: (1) Momentum contrastive learning mecha-
nism performs intra-KG contrastive learning for self-supervised
EA, which samples negative entities and pushes them far away from
the positive one in the same source KG, thus the aligned entity pairs
in different KGs are relatively drawn close. (2) Negative sample
queues store previously processed batches as negative samples for
the positive batch, which can provide a large number of negative
samples for the training process. (3) Interactive contrastive learn-
ing mechanism constructs pseudo-aligned pairs as virtual pivots
during training and establishes cross-KG direct information inter-
action for self-supervised EA. It pulls the positive samples and
pseudo-aligned entities closer, while pushing them far away from
the negative samples in different KGs.

Momentum Contrastive Learning Mechanism. Given a train-

ing KG Gi’s initial entity embeddings Hy = {fll,flz, . ..,fl|gl|}

3https://dbpedia.org/property/sisters
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which can be calculated from Equation 3, self-supervised EA rep-
resentation learning aims to learn an online embedding tranfor-
mation function f that maps Hy to V1 = {31, 3,,.. STlg, |} with
Ux = fp (flx) such that 7, best describes ﬁx, Instance-wise con-
trastive learning achieves this objective by optimizing a contrastive
loss. Following SelfKG [25], we use the Noise Contrastive Estima-
tion (NCE) loss[13]. In practice, we jointly optimize the NCE loss
on both source KG G; and target KG Gz, taking G1 as example, the
NCE loss can be defined as,

1&1]

exp (Ox - Ty /7)
anegl = Z - log

x=1 exp (Ix - Uy /7) + Xp_; exp (va . 5;(/'[)
1E1] 1. . o r o (7)
:Z—; s - O +log(exp (Ox - T /7) + ) exp (U - T /7)),
x=1 k=1
Alignment . .
Uniformity

where, the “Alignment” part pulls the positive pair closer while the
“Uniformity” part pushes the negative pairs away, U, and U}, are
positive embeddings for entity ex which can be obtained from the
online encoder fy and momentum encoder fp, and z_)']'< includes r
negative samples’ embeddings, and 7 is a temperature hyperparam-
eter. The online encoder’s parameter 6 is instantly updated with the
backpropagation. The negative sample’s embedding is obtained by
feeding corresponding Hx to the momentum encoder parameterized
by 0/, = fgr(ﬁx), where 0’ is a moving average of 6,

0 —mx0 +(1-m)x0,me[0,1). 8)

Negative Sample Queues. While performing contrastive learn-
ing for self-supervised EA, we need to sample a large number of
negative entities from the same source KG to avoid the conflict
by simply excluding the positive one. We maintain two negative
queues for both KGs that store previously processed batches as
negative samples. As shown in the middle part of Figure 2, when
a new data batch Batch’ arrives, we add it to the corresponding
negative queue tail, and the head Batchy in the same negative queue
is dequeued as a positive sample batch Batch,,. In the early stage of
training, we do not perform any parameter update until one of the
negative queues reaches the predefined length L + 1, where L for
the number of previous processed batches used as negative samples
and “1” for the dequeued positive batch. Let the numbers of the
entities in KGs |&1], |E2|, the batch size B and L is constraint by,

(L+1) xB < min (|&1],1E2]) . ©)

Finally, the real number of negative samples used for each positive
batch’s entity is (L +1) X B — 1.

Interactive Contrastive Learning Mechanism. The interactive
contrastive learning mechanism aims to build a direct informa-
tion interaction channel for two KGs during training. We construct
pseudo-aligned entity sets Sg, and Sg, for each source KG to the
corresponding target KG at the beginning of each training epoch.
Given initial embeddings of source and target KGs G1 and G, Hy
and Hy, we feed them into the online encoder fy to obtain the cor-
responding entity embeddings V1 and V3. For each entity e, in G1

and ezq in G2, we match the most similar entities N and ey from
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Algorithm 1: Interactive Contrastive Learning Process.

Input: Online encoder fp, momentum encoder fy, training
datasets X1, Xy of KGs G, G», distance threshold A, momentum m.

9, = 9 // initialize momentum encoder as the online encoder

H;, H; = KG_Semantic_Encoder (X7, X3)
embeddings for source KG Gy and target KG Gy

NQ1,NQ, =0

while not MaxEpoch do

/% Get pseudo-aligned entities %/

Vi = fo(Hi), V2 = fo (Hz)

Pairy_,, = Faiss.search(Vy,V3,1, 1)

Pairy—,1 = Faiss.search(V2,Vy,1, 1)
// Find the top 1 nearest neighbor with L2 distance less than A for each entity

Pairgy; = Merge(Pairi—2, Pairy—1)

// get the initial entity

// initialize negative sample queues for G and Go

// get features for all data

/% Training %/
for Batch’ in Dataloader(X; + X3) do  // 10ad a minibatch Batch’
if Batch’ belongs to X1 then
| NOQj.add_tail(Batch’), NQ=NQ1, G = G1
else
| NQ.add_tail(Batch’), NQ=NQ;, G = G>
if NQ.Length == L + 1 then
Batchy = NQ.dequeue_head()
corresponding negative sample queue dequeues as the positive batch
Ox = fo(Batchy), v}, = for (Batchy)
0} = for (Pairay [Batchy])
online encoder and momentum encoder, Bat(:hp as positive samples
NVg, = for (NQ1), NVg, = for (NQ>)
Loss =
Luceg (Tx, T, NVg) + Lictg (3x, 3¢, NVg,, NV, )
// calculate loss with Equations 7 and 10
6 = Adam(Loss, 0)
0" =mx60’ + (1—m) X0 update momentum encoder’s parameters

// the head batch of

// forward pass through the

// update online encoder’s parameters

the corresponding G, and G;. We predefine an Ly distance thresh-
old A, if Dis(e1p, eEE) or Dis(ezq, eﬁ) is less than A, we add the

pair of entities <elp, e§;> or <ezq, eﬁ> to the corresponding pseudo-
aligned set Sg, or Sg,. We use these pseudo-aligned entity pairs as
virtual pivots to guide the entire contrastive learning process, thus
establishing the cross-KG direct information interaction for self-
supervised EA. We apply Faiss* for obtaining pseudo-aligned sets
efficiently. It is worth noting that distinct from the previous iterative
bootstrapping strategy [37] that maintains high-confidence aligned
entity pairs iteratively, our approach focuses on generating larger
pseudo-aligned sets automatically, which liberates us from the cau-
tion of introducing additional noises. Although the pseudo-aligned
sets we construct also contain some noises, our experimental re-
sults in the next section demonstrate that our model is less sensitive
to those noises, and the advantages of the pseudo-aligned sets on
self-supervised EA far outweigh the disadvantages of noises. To in-
corporate pseudo-aligned entity pairs into the contrastive learning
process we introduce an additional NCE loss L] into the training
process, and in Equation 10 we take the example of the KG G,
where Uy = fg(ﬁlp), Uy = fgz(l%;), le and ZEE are the embeddings
of the corresponding positve entity and its pseudo-aligned entity.
The hyperparameter § balances the sensitiveness of the model to

*https://github.com/facebookresearch/faiss
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the negative sample 3] and 4, from different KGs,
k k

1&1]

Liclgl = Z )8 . —lOg
x=1

exp (O - U /7)

exp (D - Ty /T) + XJ_; exp (5x . 5{]( /T)
(10)
exp (O - U /7)

+(1-p) - |-log

exp (B - /1) + L, exp (B 3, /7)
Based on the above discussion, we can get the overall optimiza-

tion goal £ of ICLEA in Equation 11. A pseudo-code of our proposed
algorithm is given in Algorithm 1,

L= Z anegi +-£iclgl.~ (11)
ie{1,2}

5 EXPERIMENTS

In this section, we evaluate our proposed approach on DBP15K, a
widely used benchmark for EA. We first introduce the experimental
settings, then report the overall results, and finally conduct ablation
studies as well as parameter sensitivity analyses.

5.1 Experimental Settings

Dataset. The DBP15K dataset is originally built by [36], which in-
cludes three cross-lingual datasets extracted from DBpedia®. Each
contains 15,000 reference alignments between English (EN) and
one of the other languages, i.e., Chinese (ZH), Japanese (JA) and
French (FR). Table 1 presents the detailed statistics about DBP15K.
To make wide comparisons, we report the results on both orig-
nal [36] and translated version [51], corresponding to two different
experimental settings: multilingual setting and monolingual set-
ting. In the multilingual setting, all the used data are extracted
from original multilingual DBpedia without using any translation
tools. Moreover, to make the comparisons fair, following previous
works [48, 51], we use Google Translate to translate all non-English
entity descriptions into English when using translated DBP15K in
the monolingual setting.

Table 1: Statistics of the simplified DBP15K datasets.

Datasets ‘ Ent. Rel. R-Tri. Ent Alignments.
s | | 0 1w i
ey || B i e e
mon || Do uhr verm e

Evaluation Metrics. We use Hits@N as the evaluation metric.
Hits@N means the proportion of correct entities that rank no
larger than N (N is 1 and 10), and higher Hits@N indicates better
performance. We further calculate the average Hits@1 of three
subtasks to measure the overall performance.

Baselines. We compare our ICLEA against two groups of base-
lines, i.e., semi-supervised and un/self-supervised EA approaches.
The latter include MultiKE [59], EVA [24] and SelfKG [26], and the
former are further divided into three branches: (1) KG structure

Shttp://downloads.dbpedia.org/2016-04/
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Table 2: Overall results on DBP15K. Methods marked with “*”
use a translated version of DBP15K in the monolingual setting. The
best results in supervised/unsupervised or self-supervised settings
are marked in underline/bold.

| DBP15Kzy pn | DBP15Kja en | DBP15Kpp N | AVG

Model .

| Hits@1 Hits@10 | Hits@1 Hits@10 | Hits@1 Hits@10 | its@1
Supervised

MTransE 30.8 61.4 27.9 57.5 24.4 55.6 27.7
JAPE 41.2 74.5 36.3 68.5 32.4 66.7 36.6
IPTransE | 406 735 | 367 693 | 333 685 | 369
SEA 42.4 79.6 38.5 78.3 40.0 79.7 40.3
KECG | 478 835 | 490 844 | 486 851 | 485
MuGNN 49.4 84.4 50.1 85.7 49.5 87.0 49.7
RSNs | 508 745 | 507 737 | 516 768 | 510
AliNet 53.9 82.6 54.9 83.1 55.2 85.2 54.7
BootEA | 629 848 | 622 854 | 653 874 | 635
NAEA 65.0 86.7 64.1 87.3 67.3 89.4 65.5
MRPEA | 681 867 | 655 89 | 677 80 | 671
PREA 71.5 92.9 71.3 93.3 73.9 94.6 72.2
GM-Align® | 679 785 | 740 872 | 894 952 | 771
RDGCN* 70.8 84.6 76.7 89.5 88.6 95.7 78.7
HGON' | 720 857 | 766 897 | 892 9.1 793
AttrGNN* 79.6 92.9 78.3 92.1 91.9 97.8 83.3
DGMC® | 80.1 875 | 848 87 | 933 9.0 | 861
RNM* | 840 919 | 872 944 | 938 954 | 883
EPEA* 88.5 95.3 92.4 96.9 95.5 98.6 92.1
CEAFF | 795 - 86.0 - 96.4 - 873
HMAN 87.1 98.7 93.5 99.4 97.3 99.8 92.6

BERT-INT | 968 990 | 964 991 | 992 998 | 975

Unsupervised or Self-supervised

MultiKE 50.9 57.6 39.3 48.9 63.9 71.2 514

EVA 75.2 89.5 73.7 89.0 73.1 90.9 74.0
SelfKG 74.5 86.6 81.6 91.3 95.7 99.2 84.0
SelfKG* 82.9 91.9 89.0 95.3 95.9 99.2 89.3

ICLEA 88.4 97.2 91.9 97.5 98.6 99.9 93.0
ICLEA® 92.1 98.1 95.5 98.8 99.2 99.9 95.6

embedding-based methods that only use the KGs’ structure informa-
tion: MTransE [5], JAPE [36], IPTransE [60], SEA [32], KECG [20],
MuGNN [2], RSNs [12], AliNet [38], BootEA [37], NAEA [62],
MRPEA [34] and PREA [31]. (2) Graph-based methods that leverage
GNN:s to utilize various KG information: GM-Align[51], RDGCN [49],
HGCN[50], AttrGNN [27], DGMC [10], RNM [63], EPEA [48] and
CEAFF [57]. (3) BERT-based methods that directly use multilingual
BERT to deal with EA: HMAN [52] and BERT-INT [41].

Data Preprocessing. The name labels of entity and relation in
DBP15K usually have a string with meaningless prefixes, such
as “http://dbpedia.org/resource/Jay_Chou”, we remove the mean-
ingless prefixes and replace the underscores with empty spaces,
producing the final entity and relation name labels. [41] provides
the original multilingual description data of entities in DBP15K,
we directly use these entity description data in the multilingual
setting. In the monolingual setting, we leverage an open source
Google Translate tool ® to translate the non-English entity descrip-
tions into the corresponding English versions. To obtain one-hop
neighbors for each entity, we treat KGs as undirected graphs, that

Shttps://github.com/ssut/py-googletrans
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means we use the relation triples in the datasets to find all entities
connected to a given entity, regardless of the connection’s direction.
Model and Training Details. Our model is implemented with Py-
torch 1.7.0. We employ Adam as our optimizer with a learning rate
le—6 and gradually reduce it to maintain the stability of training.
The number of training epochs is 300, the batch size is 64, momen-
tum m is 0.9999, similarity threshold A is 1.0, temperature 7 is 0.08
and the size of negative queue is 32, the entity description length is
512. We use one-hop GAT in our model for its efficiency, during our
experiments we find that using multi-hop GAT brings some perfor-
mance degradation, which may be caused by the KGs’ heterogeneity
and the amplified neighbor noises in the self-supervised EA setting,
that is consistent with the findings of previous work [26]. We utilize
the data about a center entity and its up to 15 neighboring entities
as the input of GAT. In the relation-aware neighborhood aggregator
layer, the dimension of both input and output embeddings is equal
to LaBSE_DIM + DESC_DIM, and in the fully-connected layer, the
input dimension is LaBSE_DIM X 7 and the output dimension is
LaBSE_DIM X 5, where LaBSE_DIM and DESC_DIM are equal to
768. We choose Ly distance as entity embedding distance metric
for pseudo alignment generation and set f to 0.9 in interactive con-
trastive learning. We randomly select 5% from the original training
set as the validation set in order to early stopping. All experiments
are conducted on a Ubuntu server with eight GPUs (GeForceRTX
3090), each evaluation is repeated five times with the same random
seed (set to 37) and the averaged results are reported.

5.2 Main Results

Table 2 lists the overall performance. For all baselines, we take the
reported results from the original papers and [25]. From the results,
we have the following key observations:

Comparisons with semi-supervised methods. ICLEA outper-
forms almost all previous supervised models on both original and
translated DBP15K, and achieves results comparable to BERT-INT
(the strongest baseline). They use multilingual BERT directly to help
with entity alignment. ICLEA achieves the same excellent results as
BERT-INT on the FR_EN subtask, where the BERT-INT’s Hits@1 is
0.6% higher than that of ICLEA, while the ICLEA’s Hits@10 is 0.1%
higher than that of BERT-INT. The gap between ICLEA and BERT-
INT is only 4.5% in average Hits@1, and it is further narrowed to
1.9% on the translated dataset (though BERT-INT does not translate
dataset directly, it uses multilingual BERT). It is worth mentioning
that BERT-INT actually fine-tunes the whole multilingual BERT,
whose parameter scale is ten times larger than ICLEA (110M vs.
11M). In a nutshell, ICLEA significantly narrows the gap between
supervised and self-supervised EA approaches.

Comparisons with un/self-supervised methods. In the unsu-
pervised or self-supervised setting, ICLEA notably outperforms
all those baselines with a large margin. Even compared with the
strongest baseline SelfKG, ICLEA improves the average Hits@1
score by 9.0% on the original datasets in the multilingual setting
and 6.3% on the translated datasets in the monolingual setting. Note
that the improvement is more significant in original datasets in the
multilingual setting, especially in ZH_EN subtask, indicating that
ICLEA is less language dependent and suitable for dealing with the
cross-lingual entity alignment tasks.
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Figure 3: Study on negative queue (NQ) size, batch size, description length, temperature 7, momentum m, L, distance threshold
A and hyperparameter  on DBP15Kz gN. (a), (b) present the test Hits@1 curve throughout the training with and without
ICL.

Table 3: Ablation study of ICLEA on DBP15K. “*” means using translated version of DBP15K in the monolingual setting.

Model ‘ DBP15KzH_EN | DBP15KjA_EN ‘ DBP15KFR_EN ‘ DBPISKZHJ.:N* ‘ DBPISK]AiEN* ‘ DBPISKFRiEN*
| Hits@1 Hits@10 | Hits@! Hits@10 | Hits@1 Hits@10 | Hits@l Hits@10 | Hits@l Hits@10 | Hits@1 Hits@10
ICLEA 88.4 97.2 91.9 97.5 98.6 99.9 92.1 98.1 95.5 98.8 99.2 99.9
w/o Nam. 72.0 92.7 74.1 94.1 89.5 99.3 75.8 94.0 82.0 97.0 89.2 99.1
w/o Des. 80.4 91.4 87.3 93.1 973 995 86.5 93.4 92.4 96.6 97.1 99.4
w/o ICL 84.3 94.1 88.8 96.2 97.1 99.8 89.3 963 933 98.1 97.3 99.8
w/o MCL 86.7 9.5 90.2 97.1 97.6 99.7 91.4 97.9 94.2 98.3 97.9 99.8
w/o Rel. 87.0 96.7 90.6 97.2 97.8 99.9 90.5 97.3 94.9 98.5 98.1 99.8
Multilingual bias phenomenon. ICLEA exhibits multilingual each component has a negative impact on the performance. From
bias consistent with most previous methods, i.e., performing best the results, we have the following key observations:
on the FR_EN subtask and worst on the ZH_EN subtask. Early The entity name information has the greatest impact on the
models that rely on only KG’s structure information to handle EA model’s accuracy. Specifically, w/o Nam. has the largest negative
e.g. MTransE, JAPE, IPTransE, SEA, KECG, etc., do not exhibit such impact on Hits@1 value, demonstrating the entity name informa-
multilingual bias phenomenon. This may be due to the fact that tion plays a fundamental role in the model’s accuracy. Intuitively,
as EA evolves, more and more methods incorporate entity-related the entity description information contains richer semantic infor-
semantic information in the model to assist EA, while leading to mation than entity name labels and should play a more critical role
the multilingual bias phenomenon described earlier. Note that EVA in the EA model’s accuracy. However, the experimental results are
has a relatively balanced performance on three datasets due to the inconsistent with the intuition, and we believe this may be due to
introduction of language-independent entity images. This inspires the heterogeneity of entity descriptions in different KGs. There may
us that multi-modal entity information utilization in self-supervised be differences in the focus, order, etc. of different KGs for the same
EA would be a promising future direction. entity’s description, so that noise is introduced along with entity

semantics, which may be the reason for this phenomenon. We be-
lieve how to solve the entity description’s heterogeneity problem
and better incorporate description information in self-supervised
EA would be a valuable open future problem to explore.

5.3 Ablation Study

We perform an ablation study to evaluate the effectiveness of all The entity description information has the greatest impact
model components. Accordingly, we implement five variants of on the model’s Hits@10. As shown in Table 3, in most cases,
ICLEA by removing entity name information (w/o Nam.), entity w/o Des. has the largest negative impact on the Hits@10 value,
description information (w/o Des.), relation-aware neighborhood demonstrating the effectiveness of entity description. The Hits@10
aggregator (w/o Rel), momentum contrastive learning mechanism value responds to a certain extent to the recall ability of the model,

(w/o MCL) and interactive contrastive learning mechanism (w/o
ICL). Table 3 presents the results, which show that the removal of
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Figure 4: Inductive learning of ICLEA in multilingual set-
ting.

which indicates that entity description information plays a crucial
role in improving the model’s recall.

The relation information can also improve the model’s ac-
curacy. w/o Rel. causes relatively more significant decreases in
Hits@1 than Hits@10, indicating the importance of relation and
structure in distinguishing more ambiguous cases.

In addition to the high-performance improvement, the in-
teractive contrastive learning mechanism also brings more
stable model training process. w/o ICL brings a more notable
performance degradation, illustrating the importance of the interac-
tive contrastive learning mechanism for self-supervised EA. Besides,
we further investigate how the performance changes during the
model training epochs with and without ICL. As shown in Figure 3a
and 3b, without ICL, the test Hits@1 score usually reaches the peak
after tens of epochs and then shows a sharp drop, while using ICL
brings a more stable model training process.

5.4 Hyper-parameters Analyses

Negative queue size and batch size. For these two parameters,
we perform a grid search from 8 to 64. Figure 3c shows that the
performance exhibits a fluctuating upward trend when fixing batch
size to 64 and increasing the size of the negative queue. Meanwhile,
Figure 3c also shows the performance increases steadily with larger
batch size when setting queue size to 64. While both expanding
negative queue and batch size can improve the performance, a
larger batch size usually brings more computational cost.

Entity description length. As shown in Figure 3d, a longer de-
scription brings better performance because it can provide more
semantic information. According to our statistical results, the de-
scription length of most entities in original DBP15K is less than
512. Considering the computation cost and the description length
distribution in the datasets, we set the maximal length to 512.
Temperature r and momentum coefficient m. The temperature
hyperparameter 7 regulates the degree of attention to difficult sam-
ples [44] and the momentum coefficient m prevents model’s sensi-
tive update [16]. We empirically choose both parameters from finite
sets and present the results in Figure 3e and Figure 3f, which show
that a relatively larger m (e.g., 0.9999) leads to better performance
and 7 = 0.08 is a good cut-off point.

Distance threshold A and hyperparameter f. Distance thresh-
old A in Equation 10 controls the selection of pseudo alignments. A
larger A means more pseudo alignments for cross-KG interaction,
while possibly introducing more noises. We find in our experiments
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that our model is less sensitive to these noises, and a proper propor-
tion of noise can even bring some help to the model’s performance.
As shown in Figure 3g, it is a good balance point when A = 1.0.
It will be an interesting research problem to design a dynamic ad-
justment mechanism for A to further balance the effect of noise on
the model. The hyperparameter f is the trade-off factor between
the positive and negative samples from different KGs. As shown in
Figure 3h, we find that the sensitivity of the model is more preferred
to the source KG’s negative sample queue, and thus set f to 0.9.

5.5 Inductive Learning

We train ICLEA on one dataset of original DBP15K, then directly
transfer and evaluate them on the other two datasets which can
evaluate our model’s cross-lingual transference ability, and show
the results in Figure 4. When training ICLEA on FR_EN and test-
ing on ZH_EN/JA_EN, the Hits@1 values show a significant de-
crease, with relative reductions of 7.4% and 4.9%, indicating that
the cross-lingual transference from French to Chinese and Japanese
is extremely challenging for the model. When training ICLEA on
ZH_EN/JA_EN and testing on JA_EN/ZH_EN, the Hits@1 values
decrease by 6.3% and 6.9%, respectively, which reveals Chinese and
Japanese are almost the same difficult to be transferred between
each other. No matter training on any dataset, the test performance
on FR_EN is comparable to the normal one (i.e., train and test on
FR_EN), this is very likely due to the fact that French and English
are more similar to each other, making the alignment avoids the
affect of different languages. We also find that no matter training on
ZH_EN, JA_EN, or FR_EN, ICLEA’s test performance on the other
two datasets outperforms SelfKG by a large margin (Hits@1 val-
ues increased by at least 9.9%, 5.5%, and 3.1%, respectively), which
demonstrates ICLEA is better at overcoming the multilingual chal-
lenge in self-supervised entity alignment.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a model named ICLEA for self-supervised
EA. To better utilize the entity’s structural and semantic informa-
tion, we separately encode entity names and descriptions with the
help of PLMs and propose a relation-aware neighborhood aggre-
gator to better leverage the structural and semantic information
brought by KGs’ relations. We design an innovative interactive con-
trastive learning mechanism by constructing pseudo-aligned entity
pairs to establish a direct information interaction channel for the
two KGs. Experimental results show that ICLEA performs on par
with previous SOTA supervised counterparts and outperforms pre-
vious best self-supervised results by a large margin. We also present
two promising directions for self-supervised EA. (1) Aligned entities
usually have similar attribute-value pairs in different KGs. How to
combine entity attributes into a self-supervised EA framework will
be a focus of our future work. (2) PCL [22] introduces prototypes
as latent variables to help find the maximum-likelihood estimation
of model’s parameters in an Expectation-Maximization framework.
KG entities also have potential prototype information, such as peo-
ple, buildings, etc. How to let the model learn this information and
assist in self-supervised EA is also an open challenge.
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