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Abstract

Distributionally robust optimization (DRO) has shown lot of promise in providing
robustness in learning as well as sample based optimization problems. We endeavor
to provide DRO solutions for a class of sum of fractionals, non-convex optimization
which is used for decision making in prominent areas such as facility location and
security games. In contrast to previous work, we find it more tractable to optimize
the equivalent variance regularized form of DRO rather than the minimax form.
We transform the variance regularized form to a mixed-integer second order cone
program (MISOCP), which, while guaranteeing near global optimality, does not
scale enough to solve problems with real world data-sets. We further propose
two abstraction approaches based on clustering and stratified sampling to increase
scalability, which we then use for real world data-sets. Importantly, we provide near
global optimality guarantees for our approach and show experimentally that our
solution quality is better than the locally optimal ones achieved by state-of-the-art
gradient-based methods. We experimentally compare our different approaches and
baselines, and reveal nuanced properties of a DRO solution.

1 Introduction

Distributionally robust optimization (DRO) is a popular approach employed in robust machine
learning. Mostly, if not always, these works have focussed on the task of classification or regression.
However, often in practical applications the end goal of learning is a decision output z, which requires
yet another complex optimization that uses the output x̂1, . . . , x̂N of a regressor f(·). For example,
in facility location problem the learning of facility values is followed by an optimization using the
values predicted to decide where to locate facilities and in security games adversary behavior model
is learned and then an optimal defense allocation computed based on the learned model. Often the
learning output is provided as public datasets with no access to the underlying private dataset used for
such learning. In this set-up, we aim to provide robustness at the decision making level with access to
only the non-robust learning output x̂1, . . . , x̂N .

However, often the objective F (z, x) of decision optimization is non-convex in the learning system
output x unlike the convex objective of classification or regression, presenting significant scalability
challenges. In general, for decision making and specifically for the problem domains we consider,
global optimality is important as sub-optimal decisions can lead to large revenue loss or loss of life;
thus, the local optimality provided by gradient based methods is not sufficient. As a consequence, in
this paper, we study the scenario of calculating DRO decisions using the given multi-dimensional
real valued outputs x̂1, . . . , x̂N of a non-robust learned f . A first result (Theorem 1) characterizes the
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quality of DRO decision output compared to the scenario where we know the true f∗. Our main focus
is on addressing the scalability issue for the DRO decision making problem for a particular, but widely
used, class of sum of fractionals non-convex objective. This objective arises from the well-known
discrete choice models [Train, 2003] of human behavior, which is known to not have scalable globally
optimal solutions [Schaible, 1995, Li et al., 2019]; we use this for tackling two different decision
optimization problem in facility location and a robust version of Bayesian Stackelberg security games
problem with quantal response. As far as we know, this is a first attempt to solve the aforementioned
non-convex problems in a DRO setting to near global optimality.

Our first contribution is a modelling construct, where we reformualate the variance regularized
form [Duchi and Namkoong, 2019] of our non-convex sum of fractionals objective as a mixed integer
second order cone program (MISOCP). While the MISOCP form provides more scalability than
the original formulation and guaranteed solution quality (Theorem 2), it still does not scale to real
world sized datasets. Our second contribution is a pair of approaches that achieves further scalability
by splitting the problem space into sub-regions and solving a smaller MISOCP over representative
samples from the sub-regions. Under mild conditions, both approaches provide global optimality
guarantees (Theorem 3, 4).

Our final contribution is detailed experiments validating the scalability of our approaches on a simu-
lated security game problem as well as two variants of facility location using park and ride data-sets
from New York [Holguin-Veras et al., 2012]. We compare with two gradient-based approaches [Lin
et al., 2020] and show the superior solution quality achieved by our approach, which also reveals the
need for global optimality. We further show a nuanced property of the DRO solution in providing
better decisions for low probability scenarios over non-robust versions. Overall, our work provides
desired robustness with globally optimal solution guarantees.

Related work: Our work is built on a recent line of research that connects the concepts of DRO and
variance regularization [Duchi and Namkoong, 2019, Duchi et al., 2021, Lam, 2016, Maurer and
Pontil, 2009, Staib et al., 2019]. While most the previous studies along this research line focus on
convex and continuous problems or problems with submodular objectives, our work concerns a class
of DRO problems with fractional structures, which are highly non-convex and requires new technical
developments for globally optimal solution. Recent work Yan et al. [2020], Qi et al. [2021] has
addressed non-convex objectives in DRO using gradient based methods that converge to stationary
points, which is insufficient for decision making as we experimentally show that stationary points
and globally optimal points can yield very different decision utilities.

The literature on DRO is vast and we refer the reader to Rahimian and Mehrotra [2019] for a
review. DRO methods can be classified by different ways to define ambiguity sets of distributions,
for instance, ambiguity sets based on φ-divergences [Ben-Tal et al., 2013, Duchi and Namkoong,
2019, Staib et al., 2019] or Wasserstein distances [Pflug and Wozabal, 2007, Esfahani and Kuhn,
2018, Shafieezadeh-Abadeh et al., 2015, Blanchet and Murthy, 2019]. In this work, we focus on
φ-divergence based models, motivated by their interesting connections with variance regularization
and the tractability of the resulting non-convex DRO models.

We show that our DRO methods can be used in some popular decision-making problems such as
Stackelberg security game (SSG) with Quantal Response [Tambe, 2011, Xu, 2016, Fang et al., 2017,
Sinha et al., 2018, Yang et al., 2012, Haghtalab et al., 2016] or competitive facility location under
random utilities [Benati and Hansen, 2002, Freire et al., 2016, Mai and Lodi, 2020, Dam et al., 2021].
To the best of our knowledge, a DRO Bayesian model has not been studied in existing SSG works. In
the context of competitive facility location under random utilities, we seem to be the first to bring
DRO as a consideration. We handle a DRO version of a facility cost optimization problem, which has
also never been studied in prior work.

2 Background, Preliminary Notation and Result

We use bold fonts for vectors and non-bold font for vector components and scalars, e.g., xj is a
component of x. [N ] denotes {1, . . . , N}. A d-dimensional vector is written as x = (xj)j∈[d] or
as (x1, . . . , xd). The positive part of a vector x is x+ = (max(0, xj))j∈[d], and the negative part is
x− = (min(0, xj))j∈[d]. 0, 1 represent the all zero and all one vector.
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Distributionally Robust Optimization: Consider a function F with inputs being a decision variable
z and parameter x ∈ X . Both z and x lie in an Euclidean space and both are constrained by
linear constraints; for notational ease we skip writing the constraints in the general formulation.
We seek to maximize the following objective function maxz EP [F (z, x)], where x is distributed
according to P . The details of how P arises from an underlying regression problem is stated later
in the text just before Theorem 1. For many classes of distributions the above is generally not
tractable and one needs to sample x from P . Let x̂1, . . . , x̂N be N samples, we can solve the
sample average approximation (SAA) problem instead maxz

1
N

∑
n∈[N ] F (z, x̂n). Let P̂N be the

empirical distribution induced by the samples. The SAA above is same as maxz EP̂N [F (z, x)]. A
distributionally robust version of the SAA problem is maxz minP̃∈Pξ,N

{
EP̃ [F (z, x)]

}
, where the

ambiguity set Pξ,N =
{
P̃ | Dφ(P̃ ||P̂N ) ≤ ξ/N

}
, andDφ(P ||Q) is the χ2 divergence: Dφ(P ||Q) =

1
2

∫
(dP/dQ− 1)2dQ. The above optimization can be written equivalently as (∆ξ,N defined below)

max
z

min
p∈∆ξ,n

{ ∑
i∈[N ]

piF (z, x̂i)
}

(DRO)

where ∆ξ,N =
{

p ∈ RN+
∣∣∣ ∑i pi = 1; ||p − 1/N ||22 ≤ 2 ξ

N2

}
. We have earlier stated that x̂i is

output by a regressor, say f ∈ F for some function class F trained using loss L with NT datapoints,
but this implies that x̂i = f(bi) might not exactly same as x∗i = f∗(bi) for some underlying feature
values bi and best function f∗ ∈ F . We assume f∗ is deterministic and has zero Bayes risk.

Let D be the probability distribution from which the feature values bi are sampled. Then, let P ∗ be
the true distribution on X induced by f∗ acting on the feature values that are distributed according to
D (i.e., the pushforward measure). Similarly, P is the distribution on X induced by f acting on the
feature values that are distributed according to D. Thus, the (unknown) samples x∗’s are obtained
from P ∗; hence, the true utility of any decision z is EP∗ [F (z, x)]. We prove an end to end guarantee
about the output decision ẑ∗∗ using x̂i’s, which reveals that ẑ∗∗ is not much worse than the decision
z∗∗ that would be learned if x∗i ’s would be available and used. The result shows that larger training
data NT helps.

Theorem 1. As described above, let x∗i = f∗(bi) for true function f∗ and let x̂i = f(bi) for the
learned empirical risk minimizer f . Suppose the optimal decision when solving DRO is z∗∗ using
x∗i ’s and ẑ∗∗ using x̂i’s. Also, let F be τ -Lipschitz in x, X be bounded, and a scaled L upper
bound || · ||2 (i.e., ||x− x′||2 ≤ max(kL(x, x′), ε) for constants k, ε) then, the following holds with
probability 1− 2δ − 2δ1: EP∗ [F (̂z∗∗, x)] ≥ EP∗ [F (z∗∗, x)]−C/

√
N − (1 + 2

√
ξ)τε− εN − εNT ,

where εK = C1RK(L ◦ F) + C2/
√
K andRK is the Rademacher complexity with K samples and

C,C1, C2 are constants dependent on δ, δ1, ξ, k, τ .

Variance Regularizer: As a large number of samples are needed for a low variance approximation
of the true distribution, another proposed robust version of the SAA [Maurer and Pontil, 2009, Duchi
and Namkoong, 2019] is to optimize the following variance-regularized (VR) objective function

max
z

{
EP̂N [F (z, x)]− C

√
VarP̂N (F (z, x))

N

}
. (VR)

The above allows to directly optimize the trade-off between bias and variance. In a fundamental
result, Duchi and Namkoong [2019, Theorem 1] show that, with high probability, problem (VR) is
equivalent to the problem (DRO). Further, Duchi and Namkoong [2019] argue for solving the DRO
version of the problem for concave F (note we are solving a maximization SAA problem) since
concave F results in concavity of minp∈∆ξ,n

∑
i∈[N ] piF (z, x̂i), thus, the overall DRO problem is a

concave maximization problem. In contrast, the objective in (VR) is not concave.

In this paper, our focus is on F that is not concave, thus, the choice of DRO or variance regularized
form is not obvious. For the class of functions F that we analyze, we argue the variance regularized
version is more promising as far as scalability for global optimality is concerned. We work with the
assumption that the variance regularized form is equivalent to DRO, which holds under the mild
condition shown in Equation (9) in Duchi and Namkoong [2019].

3



3 Towards a Globally Optimal Solution

In this section, we present results for a general class of non-concave functions F that has a fractional
form with non-linear numerator and denominator and that can be approximated by a linear fractional
form with binary variables. Then, we show three prominent applications of our approach.
Notation: For ease of notation, we use shorthand to denote F (z, x̂i) by Fi and 2 ξ

N2 by ρ.

3.1 General Recipe to Form a MISOCP

We perform a sequence of variable and constraint transformations of (VR), leading to a MISOCP.

Mixed Integer Concave Program: The variance regularized objective in shorthand notation is:

G(z) =
∑
i

Fi
N
−
√
ρ
∑
i

(∑
i′ Fi′

N
− Fi

)2

(1)

We substitute li =
∑
i′ Fi′
N −Fi and q =

∑
i′ Fi′
N for all i ∈ [N ], such that

∑
i li = 0 and Fi = q− li.

The objective in Equation 1 thus becomes q −
√
ρ
∑
i l

2
i which is concave in the variables q and

{li}. We add the new constraints
∑
i li = 0 and Fi = q − li for all i ∈ [N ]. Note that, while the

objective is now concave with above changes, we have pushed the non-convexity into the constraints
Fi − q + li = 0 for all i ∈ [N ] that are added to the optimization.

If Fi can be written (or approximated) as a fraction with affine numerator and denominator, we
can convert the constraint Fi − q + li = 0 into a convex constraint, giving us an overall con-
cave program. The conversion is explained next. Suppose Fi can be written (or approximated) as
aTi v+bi
a′Ti v+b′i

where v represents binary variables after conversion (v completely replaces z and ai, a′i, bi, b′i
are dependent on x̂i’s). Typically, such a linear fractional form is constructed by discretizing
the arguments of the original non-linear functions in the numerator and denominator of F . As-
sume v is of dimension d; typically d will depend on the number of pieces. Define yi = vti
where ti = 1

a′Ti v+b′i
. Then, we can (re)write the fractional form for Fi as Fi = aTi yi + biti.

This yields the linear constraints below with the non-linearity now restricted to yi = vti.

N∑
i=1

li = 0 (2)
aTi yi + biti = q − li ∀i ∈ [N ] (3)

a
′T
i yi + b′iti − 1 = 0 ∀i ∈ [N ] (4)

We handle yi = vti using McCormick relaxation technique [McCormick, 1976]. Typically, Mc-
Cormick relaxation is applied for bilinear terms that are the product of two continuous variables,
in which case, it is an approximation. However, in our case since v is a binary vector variable, the
McCormick relaxation yields an exact reformulation of the bilinear term. For applying McCormick
technique, we need an upper and lower bound of v and ti. Since v a vector of binary variables, we
have lower bound vL = 0 and upper bound vU = 1. Similarly, tLi = 1

(a′+i )T 1+b′i
and tUi = 1

(a′−i )T 1+b′i
(recall superscript + and − indicate positive and negative part of a vector respectively). Further, it is
assumed tUi and tLi exist. Note that these bounds are not variables but fixed constants that depend on
the fixed parameters ai, a′i, bi, b′i, hence these need to be computed just once. Using the upper and
lower bounds of v and ti in McCormick technique we get:

yi − vtUi ≤ 0; ∀i ∈ [N ] (5)

yi − (1ti + vtLi − 1tLi ) ≤ 0; ∀i ∈ [N ] (6)

− yi + (1ti + vtUi − 1tUi ) ≤ 0; ∀i ∈ [N ] (7)

− yi + vtLi ≤ 0; ∀i ∈ [N ] (8)

v ∈ {0, 1}d (9)

tUi ≤ ti ≤ tLi ; ∀i ∈ [N ] (10)

It is straightforward to check the above set of equations is equivalent to yi = vti. With the changes,
we obtain a mixed integer concave program (with all constraints linear). Next, while the above can be
solved using branch and bound with general purpose convex solvers for intermediate problem, we
show that a further transformation to a MISOCP is possible. Specialized SOCP’s solvers provide
much more scalability than a general purpose convex solvers [Bonami and Tramontani, 2015] and
hence partially address the scalability challenge.
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Mixed Integer SOCP: We transform further by introducing another variable s to stand for
√
ρ
∑
i l

2
i .

We use r = (s, q, (li)i∈[N ], v, (ti)i∈[N ], y1, . . . , yN ) to denote all the variables of the optimization.
Thus, the objective becomes the linear function q − s with an additional constraint that√

ρ
∑
i

l2i ≤ s (11)

The above is same as ||Ar||2 ≤ cT r for the constant matrix A (with entries 0 or
√
ρ) and constant

vector c (with 1 in the s component, rest 0’s) that picks the li’s and s respectively. This is a SOCP
form of constraint, and the linear objective q − s makes the problem after this transformation a
MISOCP. In the above reformulation, the only approximation is introduced in writing Fi as a linear
fractional term. One way of such approximation is via discretization. Suppose the fraction function
F (z, x̂i) has a separable (in z) numerator and denominator of the form

∑
j n(zj ,̂xi)∑
j d(zj ,̂xi) where j ranges

over the components of z, and n(zj , x̂i) and d(zj , x̂i) are non-negative and Lipschitz continuous in zj
with Lipschitz constants Cn, Cd respectively. In this case, a general approximation via discretization
is possible with the following guarantee:

Theorem 2. For F (z, x̂i) =
∑
j n(zj ,̂xi)∑
j d(zj ,̂xi) as stated above and approximated as aTi v+bi

a′Ti v+b′i
, an approxima-

tion via discretization of zj with K pieces yields |G(z∗)− G (̂z∗∗)| ≤ O(max{Cn, Cd}/K), where
G(z∗) and G (̂z∗∗) are the optimal objective values with approximation (MISOCP) and without the
approximation respectively.

Next, we show instantiation of the just presented general recipe for three widely studied problems.

3.2 Applications

Notation: In the SSG (facility location) application m resources (facility) are allocated to M targets
(locations). x maps to type θax of adversary, and type θdx of defender in SSG, and type θx of clients of
facility or directly Vx utility for each client type in facility location.

Bayesian Stackelberg Security Game with Quantal Response: A SSG models a Stackelberg
game where a defender moves first to allocate m security resources for protecting M targets. The
randomized allocation is specified by decision variables z of dimension M with the constraints
that

∑M
i=1 zi ≤ m (zi ∈ [0, 1]); zi is interpreted as the protection probability of the target i.

Past works have used the model of a quantal responding adversary [Sinha et al., 2018]]. We
generalize this to a Bayesian game version where there is a continuum of attackers types with the
type specified by a parameter x and an unknown prior distribution over these types. The attacker’s
utility in attacking the target j is a function of the protection probability of target j and type:
h(zj , θ

a
x ). Similarly, the defender’s utility when target j is attacked is: u(zj , θ

d
x ) for some player-

specific parameters θ that depend on x. Following quantal response model (for attacker only), the
attacker of type x attacks a target j with probability exp(h(zj ,θ

a
x ))∑

j∈[M] exp(h(xj ,θax )) and the defender utility

is F (z, x) =
∑
j∈[M] u(zj ,θ

d
x ) exp(h(zj ,θ

a
x ))∑

j∈[M] exp(h(xj ,θax )) . Note that in case the defender’s utilities u(zj , θ
d
x ) take

negative values and the assumptions of Theorem 2 will be violated. This issue can be simply
fixed by choosing α such that α ≥ maxz,x{−u(zj , θ

d
x )} and replacing F (z, x) by F (z, x) + α =∑

j∈[M](u(zj ,θ
d
x )+α) exp(h(zj ,θ

a
x ))∑

j∈[M] exp(h(xj ,θax )) . This will make all the numerators and enumerators of the objective
function non-negative, while keeping the same optimization problem. We also note that quantal
response is also known as multinomial logit model in the discrete choice model literature [Train,
2003]. Our generalization here to multiple types of adversary makes the problem akin to the mixed
logit model in discrete choice models, which is generally considered intractable. As a consequence,
our solution addresses a basic problem in discrete choice models also.

Following our set-up, we observe N samples of the types of attackers x̂1, . . . , x̂N (which gives
θ̂a1 , . . . , θ̂

a
N , θ̂

d
1 , . . . , θ̂

d
N ) and we solve a robust version of the problem. Further, following our general

recipe for solving the robust problem, we piecewise approximate the numerator and denominator of
F using K pieces, where the dimension of v is d = MK. For this approximation, we require two
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additional linear constraints over the constraints in Equations (2-35). The optimization then is:

max
r

q − s (SSG)

subject to Constraints (2-35),
∑
j∈[M ]

∑
k∈[K]

vjk −mK ≤ 0, vj,k ≥ vj,k+1; ∀k ∈ [K]

The overall additive solution bound of O(1/K) can be readily inferred from Theorem 2.

Max-Capture Competitive Facility Location (MC-FLP): In this problem [Mai and Lodi, 2020], a
firm has M locations ([M ]) to set up at most m < M facilities. The aim is to maximize the number
of clients using this firm’s facilities. The competitor(s) already have facilities running at locations
Y ⊂ [M ]. There are different types of clients, where types are denoted by x. The number of clients
of type x is known and equal to sx. However, the distribution over types is unknown. The firm’s
decision of which location to choose is given by binary variables zj ∈ {0, 1} for j ∈ [M ]. A utility
of any client of type x for visiting location j is Vx,j . The choice probability of a client of type x

choosing any of this firm’s location is given as a quantal response model
∑
j∈[M] zje

Vx,j∑
j∈[M] zje

Vx,j+
∑
j∈Y e

Vx,j .

For shorthand, we abuse notation and use Vx,j to replace eVx,j and Ux,Y to replace
∑
j∈Y e

Vx,j . This

gives F (z, x) =
sx

∑
j∈[M] zjVx,j∑

j∈[M] zjVx,j+Ux,Y
, which is interpreted as the expected number of clients of type x

choosing this firm’s facilities.

Following our set-up, we observe N samples of the types of clients samples
(V̂1,j)j∈[M ], . . . , (V̂N,j)j∈[M ] and we solve a robust version of the problem. Here, we get

Fi =
si

∑
j∈[M] zj V̂i,j∑

j∈[M] zj V̂i,j+Ûi,Y
. Next, following our general recipe for solving the robust problem, we note

that Fi is already in the form aTi v+bi
a′Ti v+b′i

where z plays the role of v. Thus, the dimension of v is M and
no approximation is needed here for Fi; by Theorem 2, we achieve the global optimal solution by
solving MISOCP optimally. The full MISOCP with an additional number of location constraint is:

max
r

q − s subject to Constraints (2-35),
∑
j∈[M ]

vj −m ≤ 0.

Max-Capture Facility Cost Optimization (MC-FCP): In the previous MC-FLP problem, the
budget was specified as a constraint on the number of facilities. However, often a more realistic set-up
is where there is a monetary constraint and the attractiveness of a facility depends on the investment
into the facility. Thus, modifying the previous problem slightly, zj takes a different meaning of
the amount of investment into facility at location j (zero investment indicates no facility). Given
this investment, the attractiveness of a facility j for the client of type x is given as h(zj , θx,j) for
some parameter θ dependent on x and j. And the choice probability of a client of type x choosing

any of this firm’s location is given as a quantal response model
∑
j∈[M] e

h(zj,θx,j)∑
j∈[M] e

h(zj,θx,j)+Ux,Y
. This gives

F (z, x) =
sx

∑
j∈[M] e

h(zj,θx,j)∑
j∈[M] e

h(zj,θx,j)+Ux,Y
, which is interpreted similar to MC-FLP. As stated, we observe

N samples of the types of clients which gives (θ̂1,j)j∈[M ], . . . , (θ̂N,j)j∈[M ] and we solve a robust

version of the problem. Here, we get Fi =
si

∑
j∈[M] e

h(zj,θ̂i,j)∑
j∈[M] e

h(zj,θ̂i,j)+Ûi,Y
. Next, as can be seen from the

form, this is similar to the SSG problem and, following our general recipe, with two additional linear
constraints the optimization formulation is exactly same as Equation (SSG).

4 Scaling up in Number of Samples

The transformation to a MISOCP helps in scalability over a general mixed integer concave program,
but for real world dataset sizes (e.g., 80, 000 data points in our experiments) we need further scalability.
We explore two related techniques towards this end: clustering and stratified sampling. For both
approaches, we obtain a representative subset of S data points (S << N ) and a modified weighted
objective, which converts to a much smaller tractable MISOCP compared to the original problem.
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For solution guarantees, we need mild assumptions: in particular, for the rest of this section we
assume a bounded F , i.e., for some fixed ψ maxz{F (z, x)} −minz{F (z, x)} ≤ ψ2 ∀x̂1, . . . , x̂N
and τ -lipschitzness of F in the argument x: |F (z, x′)− F (z, x)| ≤ τ ||x′ − x||2 ∀z.

Clustering Approach: We cluster the N points x1, ...xN into S groups and for each group s we
have ||xi− xs|| ≤ ε, where xs is the cluster center of cluster s. We call ε the clustering radius. Let Cs
be the number of points in the cluster s, hence

∑
s∈[S] Cs = N . We use a shorthand for the original

objective function of the MISOCP G(z):

∑
i

F (z, x̂i)
N

−
√
ρ
∑
i

(∑
i

F (z, x̂i)
N

− F (z, x̂i)
)2

= M̂ean(F (z, x))−
√
ρV̂ar(F (z, x))

where M̂ean is empirical mean and V̂ar is unnormalized variance. After clustering, we solve for the
same problem but only with cluster centers and appropriate weighing, to get modified objective Ĝ(z):

∑
s

Cs
F (z, xs)
N

−
√
ρ
∑
s

Cs

(∑
s

Cs
F (z, xs)
N

− F (z, xs)
)2

= M̂ean
S

(F (z, x))−
√
ρV̂ar

S
(F (z, x))

The conversion to MISOCP is exactly the same, except for Fi’s being weighted as shown above;
details of conversion are in the appendix. We bound the approximation incurred by the two terms
above (weighted mean and unnormalized weighted variance) separately below

Lemma 1. Under assumptions stated above, we have
∣∣∣M̂ean(F (z, x))− M̂ean

S
(F (z, x))

∣∣∣ ≤ τε and∣∣∣∣√ρV̂ar(F (z, x))−
√
ρV̂ar

S
(F (z, x))

∣∣∣∣ ≤ (ψ +
√

2τε)
√

2τεξ
N .

The next result is obtained by using the lemma above

Theorem 3. Given the assumptions stated above, and ẑ an optimal solution for maxz Ĝ(z) and z∗

optimal for MISOCP maxz G(z), the following holds: |G (̂z)− G(z∗)| ≤ 2(τε+ ψ
√

2τεξ
N + 2τεξ√

N
).

Stratified Sampling: Similar in spirit to clustering, the space of x space is divided into T strata.
Each strata has Ct samples, such that

∑
t∈[T ] Ct = N . Next, distinct from the clustering approach,

we draw Nt samples randomly from the tth stratum with a total of
∑
tNt = S samples (note same

number of total samples S as in clustering). For each stratum t we have ||xi − xj || ≤ dt for any
xi, xj in stratum t. We denote a random sample in stratum t as x̂j where j ∈ [Nt] (note superscript is
to distinguish from the subscript used to index all the x̂’s). This approach is the preferred one if the
clustering approach results in cluster centers that are not allowed as parameter values (e.g., cluster
center may be fractional where x’s can only be integral).

Let lt = Ct
Nt

. Use M̂ean
T

(F (z, x)) to stand for 1
N

∑
t∈[T ] lt

∑
j∈[Nt]

F (z, x̂j) and V̂ ar
T

(z, x̂) for∑
t∈[T ] lt

∑
j∈[Nt]

(
M̂ean(F (z, x))− F (z, x̂j)

)
. After stratified sampling our modified weighted

objective Ĝ(z) is M̂ean
T

(F (z, x))−
√
ρV̂ ar

T
(z, x̂). Next, similar to clustering, bounds for M̂ean

T

and V̂ ar
T

but with high probability (Lemma 2,3 in appendix) lead to the main result:

Theorem 4. Let D = maxz,x |F (z, x)| for bounded function F . Given the assumptions stated above,
and ẑ an optimal solution for maxz Ĝ(z) and z∗ optimal for MISOCP maxz G(z), and N∗ = mintNt,

the following statement holds with probability ≥ 1− 2
∑
t exp

−2
√
N∗ε2

τ2d2t −4
∑
t exp

−2
√
N∗ε2

4τ2d2tD
2 :

|G (̂z)− G(z∗)| ≤ 2ε

(N∗)1/4

(
1 + 2

√
ξ

V̂ ar(F (z, x))

)
.

Thus, with increasing samples in all strata, optimality gap approaches 0 with prob. approaching 1.
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Figure 1: (Left) % gap between the utility of decisions using true and learned regressor with varying
training data size NT . (Middle) Objective value achieved using clustering approach as a % of OPT.
(Right) Time to solve each optimization to optimality. Middle and right results are shown for varying
alternatives number M . Underlying parameters are N = 500,m = 1, ξ =1E6.

Table 1: We use clustering/stratified sampling to approximately solve a problem (Approx-OPT). The
table shows the mean percentage: 100×Approx-OPT

OPT and standard deviation over 10 different synthetic
SSG datasets with underlying parameters N = 500,M = 6,m = 1,K = 10.

Method Total no. of samples (S)
8 16 24

Clustering 80.17 ± 2.14 90.74 ± 1.20 94.03 ± 0.57
1 per strata 85.49 ± 1.94 94.59 ± 0.76 99.25 ± 0.39
2 per strata 91.78 ± 1.33 94.55 ± 0.64 99.54 ± 0.25
4 per strata 78.89 ± 1.73 94.86 ± 0.94 98.77 ± 0.39
8 per strata 92.19 ± 0.67 95.85 ± 0.80 99.37 ± 0.25

Uniform sampling (no cluster/strata) 73.92 ± 33.71 78.08 ± 28.62 79.86 ± 26.81

Table 2: Objective values as a % of OPT across various methods repeated over 5 synthetic SSG
datasets with parameters N = 500,M = 10,m = 1 for varying regularization (ξ, on left) and
N = 500,m = 1, ξ = 1E6 for varying no. of targets (M, on right). The no. of clusters/strata is 50.

Method Regularization (ξ) No. of Alternatives (M)

1E3 1E4 1E5 1E6 10 25 50

TT-GAD 99.8±0.1 99.4±0.1 92.7±0.3 82.6±0.4 82.6 ± 0.4 90.2 ± 0.5 92.2 ± 0.3
PGA 98.9±0.1 98.1±0.2 87.7±0.5 49.2±0.9 49.2 ± 0.9 90.9 ± 0.7 93.5 ± 0.4

Clustering 99.9±0.1 99.9± 0.1 99.8±0.1 99.6±0.1 99.6 ± 0.1 99.5 ± 0.2 99.4 ± 0.1
Sampling 100.0±0.0 99.9± 0.1 99.9±0.1 99.8±0.1 99.8 ± 0.1 99.6 ± 0.1 99.5 ± 0.2

5 Experiments

We evaluate our methods on (a) Stackleberg Security Games (SSG) with Quantal Response (synthetic
data), (b) Maximum capture Facility Location Planning (MC-FLP) and (c) Maximum capture Facility
Cost Planning (MC-FCP). Empirically we demonstrate (i) better solution quality of our method
compared to baselines, (ii) practical scalability of our method, and (iii) improvement over non-
robust optimization on those data points that contribute least to the objective (akin to rare classes
in classification) while not sacrificing average performance. We fix K = 10 in approximation via
discretization as we find that objective increase saturates for this K (see Appendix K). We use a 2.1
GHz CPU with 128GB RAM.

Baselines: We use the following two methods as baselines: (i) Projected Gradient Ascent (PGA) on
the formulation (VR), (ii) Two Time Scale Gradient Ascent Descent (TT-GAD) [Lin et al., 2020] on
the formulation (DRO) where the inner minimization is convex and the outer maximization is non-
concave. The numbers reported for our baselines are the best values over 10 random initializations.

5.1 SSG with Quantal Response (Synthetic Data)

We generate attacker and defender utilities following Yang et al. [2012]; a complete description of
data generation and choice of f∗ is in Appendix I. We generate five datasets of size N = 500 each in
order to observe the variance of every result reported in this sub-section; this is also the largest size
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Table 3: Average client choice probabilities for availing the facility across various settings. H denotes
average over those 5% of the clients in test data with the lowest choice probabilities, A denotes
average over all the samples in the test set.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
H A H A H A H A H A H A

ERM 0.069 0.692 0.150 0.719 0.420 0.758 0.175 0.741 0.426 0.769 0.469 0.772
1E2 0.069 0.692 0.417 0.751 0.4170 0.751 0.418 0.763 0.426 0.769 0.469 0.772
1E3 0.093 0.697 0.416 0.747 0.417 0.757 0.418 0.763 0.425 0.768 0.533 0.777
1E4 0.093 0.697 0.416 0.747 0.446 0.750 0.417 0.759 0.531 0.767 0.539 0.769

(A) MC-FCP (B) MC-FLP

Figure 2: The bar plots show the percentage improvement of choice probabilities of our clustering
approach over ERM over cumulative buckets of choice probabilities (see text) in ascending order
with varying regularization ξ with fixed m=10.

that we could solve exactly optimally within an hour using all the data points. First, we empirically
validate Theorem 1 by plotting in Figure 1(left) the relative gap between the true utility EP∗ [F (·, x)]
of the decisions output by running DRO on the output (x∗)i∈[N ] of the true f∗ (assumed fixed linear
function) versus on (x̂)i∈[N ] from learned f , as the training data size NT for learning f is varied.

Next, we focus on only using (x̂)i∈[N ] and the optimal solution for (x̂)i∈[N ] is named as OPT.
Figure 1 (middle) demonstrates empirically that the solution of the optimization problem on cluster
centers converges to OPT with only a few number of clusters and the time for the optimization shown
in Figure 1 (right) is reasonable. Next, the results in Table 1 show a comparison of the clustering and
stratified sampling approach using the metric of how close they get to OPT. We find stratified sampling
to be better than clustering in almost all cases and a simple uniform sampling (no cluster/strata) fails
to return a solution close to OPT. Table 2 (left) demonstrates that the baselines struggle to reach the
optimal value objective as the magnitude of regularization (ξ) increases. Intuitively, as ξ increases
the variance term (which is highly non-convex) contributes more to the objective and stationary
points reached by the baselines are quite sub-optimal compared to the global optimal. In addition,
with increasing ξ the ambiguity set becomes larger possibly containing more local optimal solutions.
We also study varying the parameter M (m fixed) and Table 2 (right) shows that our approaches
outperform the gradient-based baselines across different values of M .

5.2 MC-FLP and MC-FCP (Real Data)

P&R-NYC Dataset : We use a large and challenging Park-and-ride (P&R) dataset collected in New
York City, which provides utilities for 82341 clients (N ) for 59 park and ride locations (M ), along
with their incumbent utilities for competing facilities [Holguin-Veras et al., 2012]; this data was
directly used for MC-FLP. For MC-FCP we additionally use generated costs, which are not present
in the P&R data. A complete description of data generation is in Appendix I. Both these problems
could not be solved at all with our MISOCP alone (no clustering) as the optimization did not finish in
24 hours. Hence, we use our clustering approach with 50 clusters.

We compare to a baseline solution of the non-robust empirical risk minimization (ERM) (also called
the sample average approximation or SAA). We split the data (randomly) into training and test (80:20)
and then obtain the decision ẑ using the training data. Then, we obtain the choice probability (recall
this as probability of a client choosing any of the firm’s facility) for every client in the test data for the
decision ẑ. We compare the performance of ERM and our method for clients (in test set) bucketed by
choice probabilities in Figure 2 and Table 3. The buckets are made by sorting all the clients in the test
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set by ascending choice probabilities and then considering cumulative buckets as the first 5%, the first
10% and so on. In Fig. 2, we show that the average percentage improvement in choice probabilities
of our robust approach over ERM is considerably higher for clients with lower choice probability
(these clients contribute least to the objective) and the over all average over all clients (rightmost on
x-axis) is slightly better than ERM. In Table 3, note the significantly increased probabilities for low
choice probability clients (low choice prob. using ẑ) without compromising the average performance
across all clients for varying M . Additional results are in Appendix J.

6 Conclusion

We presented an approach for a distributionally robust solution to a class of non-convex sum of
fractional solutions, with guaranteed near global optimality. We presented application to three
prominent practical problems and the connection to discrete choice models opens up possibilities of
applying our approach to even more problems. Further investigation on how to cluster or stratify more
effectively (than k-means) to achieve even more scalability is a possible future research direction.
Further, we used a χ2-divergence based ambiguity set, which only covers nearby distributions with
same support as the given data samples; exploring Wasserstein ambiguity sets is a possible future
research direction. We hope that our work inspires tackling robust formulation of more classes of
non-convex problems, with guarantees for global optimality.
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A Approximation via Discretization (AD)

Recall the general functional form

F (z, x̂i) =

∑
j n(zj , x̂i)∑
j d(zj , x̂i)

and note that both the numerator and denominator are separable in the components of the decision
variables z. Let assume each variable zj can vary in the interval [Lj , Uj ], the idea here is to divide
each interval [Lj , Uj ] into K equal sub-intervals of size (Uj − Lj)/K and approximate zj by K
binary variables vjk ∈ {0, 1} as

zj = Lj
Uj − Lj
K

∑
k∈[K]

vjk,

where vjk ∈ {0, 1} satisfying vik ≥ vj,k+1 for k = 1, 2, . . . ,K − 1. We then approximate n(zj , x̂i)
and d(zj , x̂i) as

n(zj , x̂i) ≈ n̂(zj , x̂i) = n

(
Lj + bzjK/(Uj − Lj)c

Uj − Lj
K

, x̂i
)

= n(Lj , x̂i) +
Uj − Lj
K

∑
k∈[K]

γnijkvjk,

d(zj , x̂i) ≈ d̂(zj , x̂i) = d

(
Lj + bzjK/(Uj − Lj)c

Uj − Lj
K

, x̂i
)

= d(Lj , x̂i) +
Uj − Lj
K

∑
k∈[K]

γdijkvjk

where γnijk and γdijk are the slopes of the approximate linear functions in [Lj + (Uj − Lj)(k −
1)/K;Lj + (Uj − Lj)(k)/K], ∀k = 1, . . . ,K, computed as

γnij,k+1 =
K

Uj − Lj

(
n

(
Lj +

(Uj − Lj)(k + 1)

K
, x̂i
)
− n

(
Lj +

(Uj − Lj)(k)

K
, x̂i
))

, k = 0, . . . ,K − 1

γdij,k+1 =
K

Uj − Lj

(
d

(
Lj +

(Uj − Lj)(k + 1)

K
, x̂i
)
− d

(
Lj +

(Uj − Lj)(k)

K
, x̂i
))

, k = 0, . . . ,K − 1.

We can then approximate F (z, x̂i) as

F (z, x̂i) ≈
∑
j(n(Lj , x̂i) +

Uj−Lj
K

∑
k∈[K] γ

ni
jkvjk)∑

j(d(Lj , x̂i) +
Uj−Lj
K

∑
k∈[K] γ

di
jkvjk)

.

The transformed/approximated problem will have the following parameters and variables

• ai =

[
γnijk

∣∣∣ j ∈ [M ], k ∈ [K]

]
• a′i =

[
γdijk

∣∣∣ j ∈ [M ], k ∈ [K]

]
• bi =

∑
j∈[M ] n(Lj , x̂i)

• b′i =
∑
j∈[M ] d(Lj , x̂i)

• v ∈ V def
=

{
vjk

∣∣∣ vjk ∈ {0, 1}, vjk ≥ vj,k+1, j ∈ [M ], k ∈ [K]

}
.

B Proof of Theorem 1

Theorem. As described above, let x∗i = f∗(bi) for true function f∗ and let x̂i = f(bi) for the
learned empirical risk minimizer f . Suppose the optimal decision when solving DRO is z∗∗ using
x∗i ’s and ẑ∗∗ using x̂i’s. Also, let F be τ -Lipschitz in x, X be bounded, and a scaled L upper
bound || · ||2 (i.e., ||x− x′||2 ≤ max(kL(x, x′), ε) for constants k, ε) then, the following holds with
probability 1− 2δ − 2δ1: EP∗ [F (̂z∗∗, x)] ≥ EP∗ [F (z∗∗, x)]−C/

√
N − (1 + 2

√
ξ)τε− εN − εNT ,

where εK = C1RK(L ◦ F) + C2/
√
K andRK is the Rademacher complexity with K samples and

C,C1, C2 are constants dependent on δ, δ1, ξ, k, τ .
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Proof. We first list the mild assumptions: (1) ||x′ − x||2 ≤ max(kL(x′, x), ε) for some constant k
and a small constant ε and (2) space X (that contains x̂, x∗) is bounded with a diameter dX . The k
in the first assumption can be found since the space X is bounded, and for close x′, x, if needed, ε
provides an upper bound. With this, it is easy to check that

(1/N)
∑
i

||x∗i − x̂i||2 ≤ (1/N)
∑
i

max(kL(x∗i , x̂i), ε) ≤ ε+ (1/N)
∑
i

kL(x∗i , x̂i)).

We also have (1/N)
∑
i L(x̂i, x∗i ) ≤ E[Lf ] + εN , where εN is of the form C1RN (L ◦ F) + C2√

N
for

constants C1, C2 that depend on the probability term δ, E[Lf ] is the expected risk of function f ,RN
is the Rademacher complexity with N samples, and RN (L ◦ F) is well-defined for vector valued
output of functions in F using each component of the output (see Proposition 1 in Reeve and Kaban
[2020]). Next, the true risk of f∗ is assumed zero (text above the theorem in main paper): E[Lf∗ ] = 0.
Then, the ERM training using NT training data provides a high probability 1− δ guarantee which
can be stated as E[Lf ] ≤ εNT , where εNT is defined is same way as εN with NT replacing N .

With this, we further have with probability 1− 2δ

(1/N)
∑
i

||x∗i − x̂i||2 ≤ ε+ k(εN + εNT ).

Let z∗∗ and p∗∗1 , . . . , p
∗∗
N be the optimal solution found for x∗1, . . . , x∗N . Note that z∗∗ and p∗∗1 , . . . , p

∗∗
N

is also a feasible point for the optimization with x̂1, . . . , x̂N . We know that

|
∑
i

p∗∗i F (z∗∗, x̂i)−
∑
i

p∗∗i F (z∗∗, x∗i )| = |
∑
i

p∗∗i (F (z∗∗, x̂i)− F (z∗∗, x∗i ))|

= |
∑
i

(p∗∗i − 1/N)(F (z∗∗, x̂i)− F (z∗∗, x∗i )) +
∑
i

(1/N)(F (z∗∗, x̂i)− F (z∗∗, x∗i ))|

We know that for any feasible p, z

|
∑
i

piF (z, x̂i)−
∑
i

piF (z, x∗i )| = |
∑
i

pi(F (z, x̂i)− F (z, x∗i ))|

= |
∑
i

(pi − 1/N)(F (z, x̂i)− F (z, x∗i )) +
∑
i

(1/N)(F (z, x̂i)− F (z, x∗i ))|

Note that by Lispschitzness,

|
∑
i

(1/N)(F (z, x̂i)− F (z, x∗i ))| ≤
∑
i

(1/N)τ ||x̂i − x∗i ||2 ≤ τ(ε+ k(εN + εNT )). (12)

Also, |
∑
i(pi−1/N)(F (z, x̂i)−F (z, x∗i ))| ≤

∑
i |(pi−1/N)(F (z, x̂i)−F (z, x∗i ))| and by Holder’s

inequality with∞, 1 norm we get∑
i

|(pi − 1/N)(F (z, x̂i)− F (z, x∗i ))| ≤
(

max
i
|(pi − 1/N)|

)∑
i

|F (z, x̂i)− F (z, x∗i )|

Since, ||p− 1/N ||22 ≤ ξ/N2, thus, maxi |(pi − 1/N)| ≤
√
ξ/N . Hence, we get∑

i

|(pi−1/N)(F (z, x̂i)−F (z, x∗i ))| ≤
√
ξ(1/N)

∑
i

|F (z, x̂i)−F (z, x∗i )| ≤
√
ξτ(ε+k(εN+εNT ))

(13)
With this, overall we get for any feasible p, z

|
∑
i

piF (z, x̂i)−
∑
i

piF (z, x∗i )| ≤ (1 +
√
ξ)τ(ε+ k(εN + εNT )) = ψ (14)

14



Note the following inequalities∑
i

p∗∗i F (z∗∗, x∗i ) ≤
∑
i

p̂∗∗i F (z∗∗, x∗i ) (15)

=
(∑

i

p̂∗∗i F (z∗∗, x∗i )−
∑
i

p̂∗∗i F (z∗∗, x̂∗i )
)

+
∑
i

p̂∗∗i F (z∗∗, x̂∗i ) (16)

≤ψ +
∑
i

p̂∗∗i F (z∗∗, x̂∗i ) (17)

≤ψ +
∑
i

p̂∗∗i F (ẑ∗∗, x̂∗i ) (18)

≤ψ +
∑
i

p∗∗i F (ẑ∗∗, x̂∗i ) (19)

=ψ +
(∑

i

p∗∗i F (ẑ∗∗, x̂∗i )−
∑
i

p∗∗i F (ẑ∗∗, x∗i )
)

+
∑
i

p∗∗i F (ẑ∗∗, x∗i ) (20)

≤2ψ +
∑
i

p∗∗i F (ẑ∗∗, x∗i ) (21)

where the first inequality is since p∗∗i is minimizer, Eq. 17 is from Eq. 14, Eq. 18 is since ẑ∗∗ is
maximizer, Eq. 19 is since p̂∗∗i is minimizer, and the last inequality is from Eq. 14.

Next, by writing p∗∗i as (p∗∗i − 1/N) + 1/N , we get from the above that

1/N
∑
i

(F (z∗∗, x∗i ) ≤ 2ψ +
∑
i

(p∗∗i − 1/N)(F (ẑ∗∗, x∗i )− F (z∗∗, x∗i )) + 1/N
∑
i

F (ẑ∗∗, x∗i )

By, Eq. 13 and that ψ = (1 +
√
ξ)τ(ε+ k(εN + εNT )), we get

1/N
∑
i

(F (z∗∗, x∗i ) ≤ (1 + 2
√
ξ)τ(ε+ k(εN + εNT )) + 1/N

∑
i

F (ẑ∗∗, x∗i )

Also we absorb all constants in (1 + 2
√
ξ)τε to call it just ε and likewise, (1 + 2

√
ξ)τk(εN + εNT )

is just εN + εNT . Further, a standard concentration inequality for τ -Lipschitz F (z, ·) and bounded
diameter dX of space X can be invoked with the two decisions to get

P

(
1

N

∑
i∈[N ]

F (z∗∗, x∗i ) ≥ Ex∼P∗ [F (z∗∗, x)]− t

)
≥ 1− exp

−2Nt2

τ2d2
X

P

(
1

N

∑
i∈[N ]

F (ẑ∗∗, x∗i ) ≤ t+ Ex∼P∗ [F (ẑ∗∗, x)]

)
≥ 1− exp

−2Nt2

τ2d2
X

Putting exp
−2Nt2

τ2d2
X as δ1, we get t of the form C/

√
N . Put all these together with a union bound

yields, with probability 1− 2δ − 2δ1:

Ex∼P∗ [F (z∗∗, x)]− C/
√
N − (1 + 2

√
ξ)τε− εN − εNT ≤ Ex∼P∗ [F (ẑ∗∗, x)]

C Proof of Theorem 2

Theorem. For F (z, x̂i) =
∑
j n(zj ,̂xi)∑
j d(zj ,̂xi) as stated above and approximated as aTi v+bi

a′Ti v+b′i
, an approxima-

tion via discretization of zj with K pieces yields |G(z∗)− G (̂z∗∗)| ≤ O(max{Cn, Cd}/K), where
G(z∗) and G (̂z∗∗) are the optimal objective values with approximation (MISOCP) and without the
approximation respectively.

Proof. The proof essentially follows by combining the results of the two lemmas below. We first
prove the following two lemmas.

15



Lemma. If ∣∣∣F (z, x̂i)−
aTi v + bi
a′Ti v + b′i

∣∣∣ ≤ εi
for some εi that is independent of ẑ, then |L∗ − L̂∗| ≤ maxi{εi}, where L∗ and L̂∗ are the optimal
objective values with and without the approximation.

Proof. After the transformation, the decision variable z changes from a continuous domain to v in
a discrete domain. Thus the original function Fi(z) = F (z, x̂i) : z −→ R and the approximate
function F̂i(v) =

aTi v+bi
a′Ti v+b′i

: v −→ R. For ease of notation, given any z, let v = T (z) be the binary

transformation of the continuous variables z, and z = T̃ (v) be the backward transformation from the
binary variables v to z. From our assumption, we have |Fi(z)− F̂i(T (z))| ≤ εi for any z

Let us define (OPT) as the original optimization problem with continuous decision variable z and
(Approx-OPT) as the approximated problem with binary variable v. Let q∗, l∗, z∗ be an optimal
solution to (OPT) and q∗∗, l∗∗, v∗∗ be an optimal solution to (Approx-OPT). Denote ε = maxi{εi},
then we have |Fi(z)− F̂i(T (z))| ≤ ε, ∀i ∈ [N ], for any z, which leads to (i) Fi(z) ≤ F̂i(T (z)) + ε

and (ii) F̂i(T (z)) ≤ Fi(z) + ε, ∀i ∈ [N ]. We also have (iii) Fi(T̃ (v)) ≤ F̂i(v) + ε and (iv)
F̂i(v) ≤ Fi(T̃ (v)) + ε, ∀i ∈ [N ]. We consider the following two cases: L∗ ≥ L̂∗ or L∗ ≤ L̂∗ as
follows

• If L∗ ≥ L̂∗, we first see that
q∗ − l∗i − Fi(z∗) = 0; ∀i ∈ [N ]

From Inequalities (i) and (ii) above, we will have

(q∗ − ε)− l∗i − F̂i(T (z∗)) ≤ 0 ≤ (q∗ + ε)− l∗i − F̂i(T (z∗)).

Thus, there exists δ ∈ [−ε, ε] such that (q∗ + δ) − l∗i − F̂i(T (z∗)) = 0, implying that

q∗ + δ, l∗, T (z∗) is feasible to (Approx-OPT), leading to L̂∗ ≥ q∗ + δ −
√
ρ
∑
i (l∗)

2
i .

Thus,

|L∗ − L̂∗| ≤

∣∣∣∣∣∣L∗ −
q∗ + δ −

√
ρ
∑
i

(l∗)
2
i

∣∣∣∣∣∣
= |δ| ≤ ε. (22)

• If L∗ < L̂∗, in analogy to the first case, we also see that
q∗∗ − l∗∗i − Fi(v∗∗) = 0; ∀i ∈ [N ].

From the above inequalities (iii) and (iv), it can also be seen that there is δ ∈ [−ε, ε] such
that (q∗∗ + δ) − l∗∗i − F̂i(T̂ (v∗∗)) = 0, implying that q∗∗ + δ, l∗∗, T̂ (v∗∗) is feasible to

(OPT), leading to L∗ ≥ q∗∗ + δ −
√
ρ
∑
i (l∗∗)

2
i . We then have the following inequalities

|L̂∗ − L∗| ≤

∣∣∣∣∣∣L̂∗ −
q∗∗ + δ −

√
ρ
∑
i

(l∗∗)
2
i

∣∣∣∣∣∣
= |δ| ≤ ε. (23)

Putting the two cases together, we have |L∗ − L̂∗| ≤ ε, as desired.

Lemma. For F (z, x̂i) =
∑
j n(zj ,̂xi)∑
j d(zj ,̂xi) , an approximation via discretization with K pieces yields∣∣∣F (z, x̂i)−

aTi v + bi
a′Ti v + b′i

∣∣∣ ≤ C max{Cn, Cd}
K

with constant C independent of z.
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Proof. Let Cn, Cd be the Lipschitz constant of n(zj , x̂i) and d(zj , x̂i), respectively. We use the
Lipschitz continuity of these functions to get the following

|n(zj , x̂i)− n̂(zj , x̂i)| ≤
Uj − Lj
K

Cn

|d(zj , x̂i)− d̂(zj , x̂i)| ≤
Uj − Lj
K

Cd

Then, by the above we have∣∣∣∣∣∣
∑
j

n(zj , x̂i)−
∑
j

n̂(zj , x̂i)

∣∣∣∣∣∣ ≤
∑
j Uj −

∑
j Lj

K
Cn

def
= εn

∣∣∣∣∣∣
∑
j

d(zj , x̂i)−
∑
j

d̂(zj , x̂i)

∣∣∣∣∣∣ ≤
∑
j Uj −

∑
j Lj

K
Cd

def
= εd.

Now, we write

|F̂i(v)− Fi(z)| =

∣∣∣∣∣
∑
j n(zj , x̂i)∑
j d(zj , x̂i)

−
∑
j n̂(zj , x̂i)∑
j d̂(zj , x̂i)

∣∣∣∣∣
=

∣∣∣∣∣
∑
j n(zj , x̂i)

∑
j d̂(zj , x̂i)−

∑
j n̂(zj , x̂i)

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣ ,
We handle the absolute value by considering the following two cases

• If
∑
j n(zj , x̂i)

∑
j d̂(zj , x̂i) ≥

∑
j n̂(zj , x̂i)

∑
j d(zj , x̂i), then

|F̂i(v)− Fi(z)| ≤

∣∣∣∣∣
∑
j n(zj , x̂i)(

∑
j d(zj , x̂i) + εd)− (

∑
j n(zj , x̂i)− εn)

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
=

∣∣∣∣∣εd
∑
j n(zj , x̂i) + εn

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
≤ max{εn, εd}max

z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}

=

∑
j Uj −

∑
j Lj

K
max{Cn, Cd}max

z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}
.

• If
∑
j n(zj , x̂i)

∑
j d̂(zj , x̂i) ≤

∑
j n̂(zj , x̂i)

∑
j d(zj , x̂i), similarly we have

|F̂i(v)− Fi(z)| ≤

∣∣∣∣∣ (
∑
j n(zj , x̂i) + εn)

∑
j d(zj , x̂i)−

∑
j n(zj , x̂i)(

∑
j d(zj , x̂i)− εd)∑

j d(zj , x̂i)

∣∣∣∣∣
=

∣∣∣∣∣εd
∑
j n(zj , x̂i) + εn

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
≤
∑
j Uj −

∑
j Lj

K
max{Cn, Cd}max

z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}
.

Therefore, if we let

C =

∑
j

Uj −
∑
j

Lj

max
z

{∣∣∣∣∣
∑
j n(zj , x̂i) +

∑
j d(zj , x̂i)∑

j d(zj , x̂i)

∣∣∣∣∣
}
,

which is independent of z, then we obtain the desired inequality |F̂i(v) − Fi(z)| ≤
C max{Cn, Cd}/K.
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and

Taking G(z∗) as L∗, G(ẑ∗∗) as L̂∗, and εi as C max{Cn, Cd}/K we get the desired result for the
theorem.

D Proof of Lemma 1

Lemma. We have
∣∣∣M̂ean(F (z, x))− M̂ean

S
(F (z, x))

∣∣∣ ≤ τε and∣∣∣∣√ρV̂ar(F (z, x))−
√
ρV̂ar

S
(F (z, x))

∣∣∣∣ ≤ (ψ +
√

2τε)
√

2τεξ
N .

Proof. For the first result, By Lipschitzness,

|F (z, x̂i)− F (z, xs)| ≤ τε, ∀z,∀x̂i in cluster s

The result follows by summing over x̂i and averaging.

To get error bound for variance term, let Is be the set of indices that belong to cluster s, thus, {Is}s∈[S]

is a partition of [N ] and Cs = |Is|. Let use define

µ =
1

N

∑
i∈[N ]

F (z, x̂i)

µ̂ =
1

N

∑
s

CsF (z, x̂s) (24)

Let αi = µ − F (z, x̂i) (or F (z, x̂i) = µ + αi), thus,
∑
i αi = 0. As we know from Lipschitzness

assumption that

|F (z, x̂i)− F (z, x̂s)| ≤ τε, ∀z, i ∈ Is, (25)

we always can write F (z, x̂s) as F (z, x̂i) + βi = µ+ αi + βi for any x̂i in cluster s, where βi are
constants chosen such that

−τε ≤ βi ≤ τε, (26)
1

N

∑
i∈[N ]

βi = µ̂− µ. (27)

Then, we note that √√√√√∑
i∈[N ]

 1

N

∑
i∈[N ]

F (z, x̂i)− F (z, x̂i)

2

=

√∑
i∈[N ]

α2
i .

Also, we have√√√√∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

=

√∑
i∈[N ]

(µ̂− µ− αi − βi)2,

as Cs is the number of points in cluster s and µ̂ = 1
N

∑
s CsF (z, x̂s) and F (z, x̂s) = µ + αi + βi

for all i ∈ IS . Now, let us assume that√√√√ρ
∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

≥

√√√√ρ
∑
i

(
1

N

∑
i

F (z, x̂i)− F (z, x̂i)

)2

,

noting that the other case√√√√ρ
∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

<

√√√√ρ
∑
i

(
1

N

∑
i

F (z, x̂i)− F (z, x̂i)

)2
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can be handled similarly by rewriting F (z, x̂i) as µ+ αi + βi and F (z, x̂s) as µ+ αi. We write√√√√∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

=

√∑
i∈[N ]

(µ̂− µ− αi − βi)2

=

√∑
i∈[N ]

(αi + (βi + µ− µ̂))2

=

√∑
i∈[N ]

α2
i + 2

∑
i∈[N ]

αi(βi + µ− µ̂) +
∑
i∈[N ]

(βi + µ− µ̂)2

Using
∑
i αi = 0 and |µ− µ̂| ≤ τε, |βi| ≤ τε we get√√√√∑

s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

=

√∑
i∈[N ]

α2
i + 2

∑
i∈[N ]

αiβi +
∑
i∈[N ]

(βi + µ− µ̂)2

≤
√∑
i∈[N ]

α2
i + 2

∑
i∈[N ]

αiβi +N(2τε)2.

Using FU , FL are upper and lower limits of F and let ψ =
√

(FU − FL), we further expand the
inequalities√√√√∑

s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2

≤
√∑

i

α2
i + 2N(FU − FL)τε+N(2τε)2

(a)

≤
√∑

i

α2
i +

√
2N(FU − FL)τε+N(2τε)2

≤
√∑

i

α2
i + (ψ +

√
2τε)
√

2Nτε

where (a) is due to the fact that
√
a+ b ≤

√
a+
√
b for any non-negative numbers a, b. Thus, after

plugging in ρ = ξ
N2 we get∣∣∣∣∣

√√√√ρ
∑
i∈[N ]

( 1

N

∑
i∈[N ]

F (z, x̂i)− F (z, x̂i)
)2

−

√√√√ρ
∑
s

Cs

(
1

N

∑
s

CsF (z, x̂s)− F (z, x̂s)

)2∣∣∣∣∣
≤ (ψ +

√
2τε)
√
ρ
√

2Nτε

= (ψ +
√

2τε)

√
2τεξ

N
,

as desired.

E Proof of Theorem 3

Theorem. Given the assumptions stated above, and ẑ an optimal solution for maxz Ĝ(z) and z∗
optimal for maxz G(z), the following holds:

|G (̂z)− G(z∗)| ≤ 2(τε+ ψ

√
2τεξ

N
+

2τεξ√
N

).
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Proof. Let ẑ be an optimal solution to maxz Ĝ(z) and z∗ be optimal to maxz G(z), we have

|G(ẑ)− G(z∗)| ≤ |G(ẑ)− Ĝ(ẑ)|+ |Ĝ(ẑ)− G(z∗)|

The later can be further evaluated by considering two cases, Ĝ(ẑ) ≥ G(z∗) and Ĝ(ẑ) < G(z∗). If
Ĝ(ẑ) ≥ G(z∗), then |Ĝ(ẑ) − G(z∗)| = Ĝ(ẑ) − G(z∗) ≤ Ĝ(ẑ) − G(ẑ). The other case can be done
similarly to have

|G(ẑ)− G(z∗)| ≤ 2|G(ẑ)− Ĝ(ẑ)
∣∣∣ ≤ 2|M̂ean

S
(F (ẑ, x))− M̂ean(F (ẑ, x))

∣∣∣
+ 2
∣∣∣√ρV̂ar(F (ẑ, x))−

√
ρV̂ar

S
(F (ẑ, x))

∣∣∣
Then using the two results in Lemma 1, we get the required result.

F Proof of Lemma 2

Lemma 2. ∀z with probability ≥ 1− 2
∑
t exp

−2Ntε
2

τ2d2t ,
∣∣M̂ean(F (z, x))− M̂ean

T
(F (z, x))

∣∣ ≤ ε. In
other words,

P

∣∣∣∣∣∣ 1

N

∑
j∈[M ]

lF (z, x̂j)− 1

N

∑
j∈[N ]

[F (z, xj)]

∣∣∣∣∣∣ ≤ ε
 ≥∏

t

(
1− 2 exp

−2Ntε
2

τ2d2t

)

Proof. We utilize the concentration of Lipchitz functions. In particular, we have x̂1
, . . . , x̂Nt which

are sampled uniformly and independently from strata t and bounded (has diameter dt). Let Ut denote
the uniform probability distribution over the Ct points in strata t. Let It denote a set of indexes that
lie in the strata t. Then, for our function F (z, x) with Lipchitz constant τ we have :

P

(∣∣∣ 1

Nt

∑
j∈[Nt]

F (z, x̂j)− Ex∼Ut [F (z, x)]
∣∣∣ ≤ ε) ≥ 1− 2 exp

−2Ntε
2

τ2d2t ∀t, z.

Observe that by definition

Ex∼Ut [F (z, x)] =
1

Ct

∑
j∈It

[F (z, x̂j)].

Hence,

P

(∣∣∣ 1

Nt

∑
j∈[Nt]

F (z, x̂j)− 1

Ct

∑
j∈It

[F (z, x̂j)]
∣∣∣ ≥ ε) ≤ 2 exp

−2Ntε
2

τ2d2t

⇒ P

(∣∣∣ ∑
j∈[Nt]

ltF (z, x̂j)−
∑
j∈It

[F (z, xj)]
∣∣∣ ≥ Ctε) ≤ 2 exp

−2Ntε
2

τ2d2t .

Call the event in the probability above as Et. It is obvious that Et is independent over all different
strata t’s due to the independent sampling of points across strata. Hence ¬Et are also independent.
Next, using product of independent events over all strata we get

P
(
∩t ¬Et

)
≥
∏
t

(
1− 2 exp

−2Ntε
2

τ2d2t

)
.

Note that ∩t¬Et implies∑
t

∣∣∣ ∑
j∈[Nt]

ltF (z, x̂j)−
∑
j∈It

[F (z, xj)]
∣∣∣ ≤∑

t

Ctε.

Noting that |a+ b| ≤ |a|+ |b| and the fact that {It}t∈[T ] is a partition of [N ], the above implies that∣∣∣∑
t

lt
∑
j∈[Nt]

F (z, x̂j)−
∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤∑

t

Ctε
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This gives

P

(∣∣∣∑
t

lt
∑
j∈[Nt]

F (z, x̂j)−
∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤∑

t

Ctε

)
≥
∏
t

(
1− 2 exp

−2Ntε
2

τ2d2t

)
(Then, since N =

∑
t

Ct)

⇒ P

(∣∣∣ 1

N

∑
t

lt
∑
j∈[Nt]

F (z, x̂j)− 1

N

∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤ ε) ≥∏

t

(
1− 2 exp

−2Ntε
2

τ2d2t

)
(Then, since (1− a)(1− b) ≥ 1− a− b))

⇒ P

(∣∣∣ 1

N

∑
t

lt
∑
j∈[Nt]

F (z, x̂j)− 1

N

∑
j∈[N ]

[F (z, xj)]
∣∣∣ ≤ ε) ≥ 1− 2

∑
t

exp
−2Ntε

2

τ2d2t ,

which is the desired inequality.

G Proof of Lemma 3

Lemma 3. Define D = maxz,x |F (z, x)| for bounded function F . Then, ∀z with probability ≥

1− 4
∑
t exp

−2Ntε
2

4τ2d2tD
2 ,
∣∣∣∣√ρV̂ar(F (z, x))−

√
ρV̂ar

T
(F (z, x))

∣∣∣∣ ≤ 2
√
ξε√

V̂ ar(F (z,x))
.

Proof. Fix z. Recall It be the set of index that belong to strata t, thus, {It}t∈[T ] is a partition of
[N ] and Ct = |It|. For sake of simplicity, we use the shorthand for the sample/random variable
Y j = F (z, x̂j). Note that the samples are independent. We use the following notations :

µ =
1

N

∑
i∈[N ]

F (z, x̂i)

µ̂ =
1

N

∑
t

∑
j∈[Nt]

ltY
j

Note that
∑
t

∑
j∈[Nt]

lt = N .

The unnormalized weighted variance is

V̂ ar
T

=
∑
t

∑
j∈[Nt]

lt
(
µ̂− Y j

)2
=
∑
t

∑
j∈[Nt]

lt
(
µ̂2 − 2µ̂Y j + (Y j)2

)
= Nµ̂2 − 2µ̂

∑
t

∑
j∈[Nt]

ltY
j +

∑
t

∑
j∈[Nt]

lt(Y
j)2

= Nµ̂2 − 2Nµ̂2 +
∑
t

∑
j∈[Nt]

lt(Y
j)2

=
∑
t

∑
j∈[Nt]

lt(Y
j)2 −Nµ̂2

We wish to compare this to
V̂ ar =

∑
j∈[N ]

F (z, x̂j)2 −Nµ2

Towards this end, we have

|V̂ ar
T
− V̂ ar| ≤ |

∑
t

∑
j∈[Nt]

lt(Y
j)2 −

∑
j∈[N ]

F (z, x̂j)2|+N |µ̂2 − µ2| (28)
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We know from Lipschitzness assumption that

|F (z, x̂i)− F (z, x̂j)| ≤ τdt, ∀z, i, j ∈ Is (29)

Multiplying both sides by |F (z, x̂i) + F (z, x̂j)| (which is ≤ 2D), we get

|F (z, x̂i)2 − F (z, x̂j)2| ≤ 2τdtD, ∀z, i, j ∈ Is (30)

Let Ut denote the uniform probability distribution over the Ct points in strata t. Observe that by
definition

Ex∼Ut [(Y
j)2] =

1

Ct

∑
j∈It

[F (z, x̂j)2]

Then, by Hoeffding inequality and Equation 30

P

(∣∣∣ 1

Nt

∑
j∈[Nt]

(Y j)2 − Ex∼Ut [F (z, x)2]
∣∣∣ ≤ ε) ≥ 1− 2 exp

−2Ntε
2

4τ2d2tD
2 ∀t, z

Then, using the same sequence of steps as for Lemma 2, we get

P

(∣∣∣ 1

N

∑
t

lt
∑
j∈[Nt]

(Y j)2 − 1

N

∑
j∈[N ]

F (z, xj)2
∣∣∣ ≤ ε) ≥ 1− 2

∑
t

exp
−2Ntε

2

4τ2d2tD
2 ∀z (31)

Also, we know from Lemma 2 that

P

(∣∣∣µ̂− µ∣∣∣ ≤ ε) ≥ 1− 2
∑
t

exp
−2Ntε

2

τ2d2t ∀z

Multiplying both sides of the term inside the probability by |µ̂+ µ| (which is ≤ 2D), we get

P

(∣∣∣µ̂2 − µ2
∣∣∣ ≤ 2εD

)
≥ 1− 2

∑
t

exp
−2Ntε

2

τ2d2t ∀z

Replacing 2εD by ε (slight abuse of notation)

P

(∣∣∣µ̂2 − µ2
∣∣∣ ≤ ε) ≥ 1− 2

∑
t

exp
−2Ntε

2

4τ2d2tD
2 ∀z (32)

Denote the event in Equation 31 asA and Equation 32 asB, using union bound we get P (¬A∨¬B) ≤

4
∑
t exp

−2Ntε
2

4τ2d2tD
2 , or by taking negation P (A ∧ B) ≥ 1 − 4

∑
t exp

−2Ntε
2

4τ2d2tD
2 . A ∧ B together with

Equation 28 implies that with probability 1− 4
∑
t exp

−2Ntε
2

4τ2d2tD
2

|V̂ ar
T
− V̂ ar| ≤ 2Nε (33)

Then, note that∣∣∣√ρV̂ arT −√ρV̂ ar∣∣∣ =
√
ρ
|V̂ ar

T
− V̂ ar|√

V̂ ar
T

+
√
V̂ ar

≤
√
ξ

N

|V̂ ar
T
− V̂ ar|√
V̂ ar

Then, using Equation 33, we get with probability 1− 4
∑
t exp

−2Ntε
2

4τ2d2tD
2

∣∣∣√ρV̂ arT −√ρV̂ ar∣∣∣ ≤ 2
√
ξε√
V̂ ar
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H Proof of Theorem 4

We prove a more general result stated below

Theorem. Given the assumptions stated above, and ẑ an optimal solution for maxz Ĝ(z)
and z∗ optimal for maxz G(z), the following statement holds with probability ≥ 1 −

2
∑
t exp

−2Ntε
2

τ2d2t −4
∑
t exp

−2Ntε
2

4τ2d2tD
2 :

|G (̂z)− G(z∗)| ≤ 2ε

(
1 + 2

√
ξ

V̂ ar

)
.

For N∗ = mintNt, then the above can be written as with probability ≥ 1 −

2
∑
t exp

−2
√
N∗ε2

τ2d2t −4
∑
t exp

−2
√
N∗ε2

4τ2d2tD
2 :

|G (̂z)− G(z∗)| ≤ 2ε

(N∗)1/4

(
1 + 2

√
ξ

V̂ ar(F (z, x))

)
.

Proof. Following style of proof of Theorem 3 using union bound with lemmas 2 and 3 we get the first
claim above. For the second claim set ε′ =

√
N∗

1/4
ε and replace ε by ε′ (note that

√
Nt ≥

√
N∗).

I Data Generation Details

(Synthetic) SSG: Following standard terminology and set-up in SSG, for every target j, under a
type specified by parameters x, if the adversary attacks j and the target is protected then the defender
obtains reward rdx,j and the adversary obtains lax,j . Conversely, if the defender is not protecting target
j, then the defender obtains ldx,j (rdx,j > ldx,j) and the adversary gets rax,j (rax,j > lax,j). Given zj as the
marginal probability of defending target j, the expected utility of the defender and attacker of type x
for an attack on target j is formulated as follows: u(zj , θ

d
x ) = zjr

d
x,j + (1− zj)ldx,j and h(zj , θ

a
x ) =

λx(zj l
a
x,j + (1− zj)rax,j), where parameter λx ≥ 0 governs rationality. λx → 0 means least rational,

as the adversary chooses its attack uniformly at random and λx → ∞ means fully rational (i.e.,
attacks a target with highest utility). We compactly rewrite u(zj , θ

d
x ) = zja

d
x,j + ldx,j and h(zj , θ

d
x ) =

−zjcax,j+lax,j . We add two layers of randomness to our parameters {adx,j , ldx,j , cax,j , lax,j |∀j ∈ [M ],∀x}
by (1) generating i.i.d. samples from a mean shifted beta-distribution : low+(high− low)Beta(α, β),
and (2) then using these samples as means for the Gaussian distribution : N (., σ2) to i.i.d. generate
the final parameters. In our experiments we chose : low = 5, high=8, α = 3, β = 3, σ2 = 3.

(Synthetic) Regressor for SSG utilities: To validate Theorem 1, we first fix a linear regressor f∗ =

〈s∗
adj
, b∗
adj
, s∗
ldj
, b∗
ldj
, s∗caj , b

∗
caj
, s∗laj

, b∗laj
|∀j ∈ [M ]〉 and sample {V ∗,adx , V ∗,ldx , V ∗,cax , V ∗,lax |∀x ∈ [NT ]}

to generate {a∗,dx,j , l∗,dx,j , c∗,ax,j , l∗,ax,j |∀j ∈ [M ],∀x ∈ [NT ]} such that a∗,dx,j = s∗
adj
∗V ∗,adx +b∗

adj
,

l∗,dx,j = s∗
ldj
∗V ∗,ldx +b∗

ldj
, c∗,ax,j = s∗caj ∗V

∗,cax +b∗caj , l∗,ax,j = s∗laj
∗V ∗,lax +b∗laj

. Now a linear regressor

f̂ is learnt on the given dataset of NT samples by minimizing the L-2 loss between outputs of f̂ :
{âdx,j , l̂dx,j , ĉax,j , l̂ax,j |∀j ∈ [M ],∀x ∈ [NT ]} and actual utilities : {a∗,dx,j , l∗,dx,j , c∗,ax,j , l∗,ax,j |∀j ∈
[M ],∀x ∈ [NT ]}. DRO is performed on both true and learnt utilities to get decisions and then
evaluated on held out test set of true utilities.

(Semi-Synthetic) Maximum Capture Facility Cost Planning Problem (MC-FCP): The P&R
Aros-Vera et al. [2013] dataset provides fixed utilities for different facility locations which is useful
when considering MC-FCP, where the utilities of each facility is a function of the budget allocated to
it and our goal is to optimally distribute a limited budget across these facilities. Given the utilities of
client x : Vx,j∀j ∈ [M ], we solve for parameters {ax,j |j ∈ [M ]} governed by Vx,j = ax,j +bx, where
bx is chosen as minj Vx,j , so that all ax,j are non negative, and utilities increase on allocating more
budget. Once we have the parameters, we can write the utility function : h(zj , θx,j) = ax,jzj + bx.
Intuitively bx is the bias of the client x and ax,j ≥ 0 is the rate at which the client’s utility can be
raised by allocating more budget to the jth facility.
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Table 4: Objective values of the baselines as a % of the objective obtained by our approach across on
MC-FCP across various settings.

ξ
TTGA PGA

m=7 m=10 m=13 m=7 m=10 m=13
1E2 51.6 50.3 61.2 38.7 45.7 55.3
1E3 49.2 46.2 60.0 18.3 26.2 27.8
1E4 48.2 45.0 30.4 15.0 18.2 19.1

Table 5: Training time (seconds) using our MISOCP formulation across various settings.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
ERM 62.16 182.47 128.54 11.62 28.20 11.98
1E2 271.51 267.50 80.24 11.57 33.42 30.92
1E3 80.94 297.64 900.84 11.66 33.07 33.56
1E4 263.53 558.82 820.54 32.84 33.76 42.28

The MC-FLP problem directly uses the utilities of client x : Vx,j∀j ∈ [M ] from the P&R [Aros-Vera
et al., 2013] dataset, so MC-FLP is based completely on real data.

J Additional Results for Real Data

Baseline Performance on Real Data: Gradient based approaches failed to attain decent performance
on this dataset on MC-FCP as the choice probabilities Fi are near zero almost everywhere in the
space of decisions C, and since the derivative of the objective w.r.t. the decision, ie. ∂Fi∂z = Fi×gi(z),
the baselines run into a vanishing gradient problem and fail to move from the initial point. This also
demonstrates the advantage of an MISOCP solver which can locate good solutions despite the above
issue. Nonetheless we use gradient clipping (clipped away from zero) to train our baselines on the
dataset and the results are reported in Table 4.

Training time (in secs) for our approach: We present the times for convergence for our proposed
method as well as the baselines in Tables 5, 6, 7. As demonstrated in Table 5, even in the worst case
our algorithm takes only about 15 minutes thus reflecting its scalability.

Need for speed up and one time cost: The problem at hand scales exponentially both in memory
and time, so solving on real world datasets such as the Max Capture Facility dataset of 80,000
datapoints is simply infeasible on regular computers as the program does not even load on a machine
with 128GB RAM. It is known that for SSG decisions change monthly as new attack data is received
(Fang et.al) and the tool runs on resource constrained computers. Similarly, facility cost optimization
decisions can also change with changing profile of customers and/or change in type of services or
promotions offered (revealed in newly collected data). Thus, the DRO optimization can run repeatedly
at given frequencies and needs to be be efficient in practice.

K On Choosing Optimal Number of Pieces

We proved in Appendix C that approximation via discretization guarantees improve with increasing
K. To choose a suitable K for our experiments, we varied the number of pieces (K) from 2 to 20
in steps of 2, and report the relevant statistics in Figure 3. We note that across various settings, the
results have saturated by K = 10, and thus use K = 10 for all our experiments.

L Converting Weighted Objective to MISOCP

Let

µ̂ =
1

N

∑
t

∑
j∈[Nt]

ltF (z, xj).
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Table 6: Training time (seconds) using PGA formulation across various settings.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
ERM 82.16 142.47 228.54 71.62 158.27 211.48
1E2 91.24 147.56 280.44 81.37 143.44 230.92
1E3 90.11 197.63 250.54 73.16 153.17 233.56
1E4 83.45 178.12 320.56 82.84 167.66 242.28

Table 7: Training time (seconds) using TTGD formulation across various settings.

ξ
MC-FCP MC-FLP

m=7 m=10 m=13 m=10 m=12 m=14
ERM 44.17 50.31 62.13 40.11 45.64 60.63
1E2 45.12 52.12 60.01 42.34 43.11 63.18
1E3 50.11 43.17 64.32 45.77 46.23 63.66
1E4 43.43 55.82 62.54 42.14 47.76 60.28

Further, let Y j = F (z, x̂j). Consider the stratified sampling objective

µ̂−
√
ρ
∑
t

lt
∑
j∈[Nt]

(µ̂− Y j)2 (34)

It is enough to show the conversion for the above as the clustering is a special case with Nt = 1 for
all t. As before we substitute lt,j = 1

N

∑
t

∑
j∈[Nt]

ltY
j − Y j (notation l is abused, but the constant

lt subscript is t and the variable subscript is t, j) for all i ∈ [N ] and q = 1
N

∑
t

∑
j∈[Nt]

ltY
j . Note

that
∑
j∈Nt lt,j = Nt

N

∑
t lt
∑
j∈[Nt]

Y j −
∑
j∈[Nt]

Y j , and since lt = Ct
Nt

, we have
∑
j∈Nt lt,j =

1
N

∑
t Ct

∑
j∈[Nt]

Y j −
∑
j∈[Nt]

Y j . Also, since
∑
t Ct = N then

∑
t

Ct
∑
j∈[Nt]

lt,j =

∑
t Ct
N

∑
t

Ct
∑
j∈[Nt]

Y j −
∑
t

Ct
∑
j∈[Nt]

Y j = 0

Also, Y j = F (z, x̂j) = q − lt,j . The objective becomes q −
√
ρ
∑
t lt
∑
j∈[Nt]

l2t,j . Thus, like
the original (non-clustered) problem the objective is concave, and the only non-convexity is in the
constraint F (z, x̂j) = q − lt,j , which can be approximated as earlier.

Figure 3: Optimal objective value achieved by varying number of pieces as a % of the Best OPT
- achieved at K=20. Results are shown for varying no. of alternatives M and averaged over 10
generated SSG datasets with underlying parameters are N = 500,m = 1, ξ =1E6.
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For MISOCP, we move the part of the objective becomes the linear function q − s with an additional
constraint that √

ρ
∑
t

lt
∑
j∈[Nt]

l2t,j ≤ s (35)

(Recall r is the vector of all variables). The above is same as ||Ar||2 ≤ cT r for the constant matrix A
(with entries 0 or

√
ρlt at appropriate entries) and constant vector c (with 1 in the s component, rest

0’s) that picks the li’s and s respectively.

M Illustrative Examples for SSG and Facility Location

We first describe the quantal response or multinomial logit model that has been used in SSG and many
other applications. Briefly, given K choices with utility uk for choice k, the quantal response model
states that human choose choice j with probability ∝ exp(λuk), where λ is a rationality parameter.
λ = 0 means the choice is uniformly random and λ =∞ means the highest utility choice is chosen.

SSG: Next, consider a small example SSG where the attacker type denotes its rationality. Let there be
three targets to be protected, only one defender resource, and attacker types x is a scalar given by a real
number in [0, 10] (intuitively higher number type is more rational as explained next). Following typical
SSG style, each target has a reward or penalty for defender and adversary when that target is attacked
and is defended or undefended respectively. The defender has rdx,1 = 0.5, rdx,2 = 1, rdx,3 = 1.5 and
ldx,1 = −0.5, ldx,2 = −1, ldx,2 = −1.5. Similarly, the attacker has rdx,1 = 1, rdx,2 = 2, rdx,3 = 3 and
ldx,1 = −1, ldx,2 = −2, ldx,2 = −3 (for simplicity, these have been chosen independent of x). Given z
(vector of probability of defending each target), the expected utility of the defender for an attack on
target j by an attacker of type x is formulated as follows: u(zj , θ

d
x ) = zjr

d
x,j + (1− zj)ldx,j , similarly

for the attacker of type x its expected utility is ua(zj , θ
a
x ) = zj l

a
x,j + (1− zj)rax,j . Consider a quantal

responding adversary according to Yang et al. [2014] who attacks a target according to probability
proportional to e to the power a λ-scaled version of the utility. Hence h(zj , θ

a
x ) = λxu

a(zj , θ
a
x ), where

λx = x is the rationality parameter and it shows more rationality for higher type (recall h notation
from main paper). Then, the adversary of type x chooses target j with probability ∝ exp(h(zj , θ

a
x )).

The distribution over types is not known but multiple attacks by the same type of adversary can be
used to infer that type of attacker’s λx using maximum likelihood techniques from Yang et al. [2014].
This gives us the N observations of the types of attackers: x̂1, x̂2, . . . , x̂N . The DRO formulation
from this point on follows the same style as shown in Equation (SSG). Note that this can be made
general by considering a vector λx, but we stick with the simpler model as the quantal response and
the Bayesian version we describe aligns with the well-known discrete choice models.

Facility location: Consider a small example facility location problem where there are 5 locations on a
straight line possible to set-up 2 facilities. The competitors already runs two facilities at location 3 and
5. There are types of clients given by [0, 5] which roughly indicates their position on the straight line.
The number of clients of type x is sx = b100xc. The type x client has utility Vx,j = exp(−|x− j|)
of visiting location j, i.e., clients have more utility from visiting location nearer to their position x.
The user will have four total locations after the new facilities open (including two from competitor).
Then, using binary variable zj to denotes if location j is chosen for a facility, the rest of the problem
is set-up as described in the main paper.

In the cost version of the above problem, the variable zj is continuous between [0, 1]. The utility of
an user for a facility run by our firm can then be given as h(zj , x) = zj exp(−|x− j|). Here every
location has a facility (by this firm) but a very low zj can be treated as no facility. Then, again the
user has 7 facilities to choose from where the investment zj of the opponent for its facility at location
3 and 5 is known and fixed. The rest of the problem is set-up as described in the main paper.
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