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a b s t r a c t

The certificateless encryption (CLE) scheme proposed by Baek, Safavi-Naini and Susilo
is computation-friendly since it does not require any pairing operation. Unfortunately,
an error was later discovered in their security proof and so far the provable security
of the scheme remains unknown. Recently, Fiore, Gennaro and Smart showed a generic
way (referred to as the FGS transformation) to transform identity-based key agreement
protocols to certificateless key encapsulationmechanisms (CL-KEMs). As a typical example,
they showed that the pairing-free CL-KEM underlying Baek et al.’s CLE can be ‘‘generated’’
by applying their transformation to the Fiore–Gennaro (FG) identity-based key agreement
(IB-KA) protocol.

In this paper, we show that directly applying the Fiore–Gennaro–Smart (FGS) trans-
formation to the original FG IB-KA protocol in fact results in an insecure CL-KEM scheme
against strong adversaries, we also give a way to fix the problemwithout adding any com-
putational cost. The reason behind our attack is that the FGS transformation requires the
underlying IB-KA protocol to be secure in amodel that is stronger than the conventional se-
curity models where existing IB-KA protocols are proved secure, and the FG IB-KA protocol
is in fact insecure in the newmodel. This motivates us to construct a new generic transfor-
mation from IB-KAprotocols to CLE schemes. In the paperwepresent such a transformation
which only requires the underlying IB-KA protocol to be secure in a security model that is
weaker than the existing security models for IB-KA protocols. We illustrate our transfor-
mation by generating a new pairing-free CLE scheme that is obtained by directly applying
our transformation to the original FG IB-KA protocol.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Certificateless Cryptography, introduced by Al-Riyami and Paterson [2], aims to avoid the drawbacks of both traditional
public key cryptography which requires a public key infrastructure (PKI), and identity-based cryptography [17] which has
the inherent key escrow problem. In this paper, we focus on certificateless encryption (CLE) schemes.

In a certificateless encryption scheme, in order to encrypt a message, a sender needs both the receiver’s identity and a
public key produced by the receiver, and to decrypt a ciphertext, the receiver needs both a partial private key corresponding
to his/her identity, which is generated by a Key Generation Center (KGC), and the secret value corresponding to the public
key produced by him/herself.

Two types of adversaries are considered for certificateless encryption [1,2]. A Type-I adversary (or AI ) captures attacks
lunched by outsiders. Since in certificateless cryptography, there is no authentication information (such as a X.509 certificate
in PKI) for the user public keys, so an adversary can replace them with public keys of its choice. In contrast, A Type-II
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adversary (or AII ) is an honest-but-curious KGC who controls the generation of user partial private keys and wants to break
user confidentiality.

Due to the nature of certificateless cryptography, a lot of certificateless encryption constructions make use of identity-
based encryption (IBE) as a building block (e.g., [16,9,13,14,8,6]), which result in pairing based schemes. In [4], Baek et al.
proposed the first certificateless encryption scheme without pairing in the random oracle model. Unfortunately, an error
was later discovered in their security proof. Though no concrete attack so far has been discovered against the scheme, a
formal proof of security remains unknown [3].

Recently, Fiore et al. [10] showed a generic way to transform identity-based key agreement (IB-KA) protocols to cer-
tificateless key encapsulation mechanisms (CL-KEMs). Interestingly, they showed that the CL-KEM underlying Baek et al.’s
certificateless encryption can be ‘‘generated’’ by applying their transform to the Fiore–Gennaro (FG) identity-based key
agreement protocol [11]. And from the proven security of the FG IB-KA protocol, a security proof for the corresponding
pairing-free CL-KEM can be obtained ‘‘for free’’.
Our contributions. In this paper, we revisit the CL-KEM scheme in [10] and show that it is insecure against strong Type-I
or Type-II adversaries. We analyze the reason behind the insecurity of this pairing-free CL-KEM scheme, and present a new
variant of it which is provably secure against strong Type-I and Type-II adversaries.

We then present a new generic transformation from IB-KA protocols to certificateless encryption schemes in the random
oracle model. The new transformation is more convenient to use than the FGS transformation since the latter requires the
underlying IB-KA protocol to be secure in a model which is stronger than the conventional security models where existing
IB-KA protocols are proved secure, so before applying the transformation, a new proof for the IB-KA protocol in the stronger
model is required, while the new transformation can be directly applied to existing proven secure IB-KA protocols without
re-proving them. We also illustrate our transformation by presenting a new pairing-free CLE scheme from the original FG
IB-KA protocol.
Paper organization. In the next section, we first introduce some notations and assumptions used throughout the whole
paper. In Section 3, we review the definitions and security models for certificateless key encapsulation mechanisms and
identity-based key agreement protocols. Then in Section 4, we review the Fiore–Gennaro–Smart transformation and a
pairing-free CL-KEM scheme from the Fiore–Gennaro IB-KA protocol. We show the insecurity of the FG CL-KEM and the
underlying IB-KA protocol in Section 5, and present a way to fix the problem in Section 6. We then present our new generic
construction of CLE schemes in Section 7. We compare all the existing pairing-free CL-KEM/CLE schemes in Section 8 and
conclude the paper in Section 9.

2. Preliminaries

2.1. Notations

We denote by a1‖ · · · ‖an the concatenation of a1, . . . , an. If A is a randomized algorithm then y← A(x1, . . . ; r) denotes
the operation of running Awith random coins r on inputs x1, . . . and letting y denote the output. If r is not directly specified,
then A(x1, . . .) denotes the operation of running A with fresh random coins. If S is a (finite) set, then s ← S denotes the
operation of picking s uniformly at random from S.

2.2. Computational problems

Let G denote a cyclic group of prime order q, and g a generator of G. Below we review some computational problems
that will be used in the rest of the paper.
Computational Diffie–Hellman (CDH) Problem: given g, ga, gb

∈ G3 as input where a, b are randomly selected from Zq,
compute gab.
Decisional Diffie–Hellman (DDH) Problem: For randomly selected a, b, c ∈ Z3

q , distinguish the tuple (ga, gb, gab) from the
tuple (ga, gb, gc).
Strong Diffie–Hellman (SDH) Problem: solve the CDH problem when having access to an oracle DH(ga, ·, ·) such that on
input gb′ , gc′ , DH(ga, gb′ , gc′) returns 1 if and only if c ′ = ab′.
Gap Diffie–Hellman (Gap-DH) Problem: solve the CDH problem when having access to an oracle DH(·, ·, ·) such that on
input ga′ , gb′ , gc′ , DH(ga′ , gb′ , gc′) returns 1 if and only if c ′ = a′b′.

3. Security models and definitions

3.1. Certificateless public key encryption

In this section we define Certificateless Encryption (CLE) schemes and its security against Type-I and Type-II adversaries.
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Definition 1. A certificateless encryption scheme CLE consists of the following algorithms.

– Setup(1k) takes 1k as input where k is the security parameter, and returns the master public key mpk and master secret
keymsk.

– ExtractPartialKey(msk, ID) takesmsk and a user identity ID as input and returns a user partial private key DID.
– SetSecretValue(mpk, ID) takesmpk and a user identity ID as input and returns a user secret value SID.
– SetPublicKey(mpk, SID, [DID]) takes mpk, SID and possibly DID as input and returns a user public key pkID.
– SetPrivateKey(mpk,DID, SID) takesmpk, DID, and SID as input and returns a user private key skID.
– Enc(mpk, ID, pkID,m) takes mpk, a user identity ID, a user public key pkID, and a message m as input and returns a

ciphertext c.
– Dec(mpk, skID, c) takes mpk, a user private key skID, and a ciphertext c as input and returns a plaintext m or a failure

symbol⊥.

In the original definition by Al-Riyami and Paterson [2], the SetPublicKey algorithm only takes themaster public keympk
and a user secret value SID as input. In the definition given by Beak et al. [4], the SetPublicKey algorithm additionally takes
DID as part of the input. In [10], Fiore et al. named certificateless schemes which follow the original definition as pure, and
those following Baek et al.’s formulation as non-pure. It is worth noting that, for non-pure schemes, we can combine the
SetSecretValue, SetPrivateKey,SetPublicKey algorithms into a single SetUserKeys algorithm

– SetUserKeys(mpk, ID,DID) takesmpk, a user identity ID and a partial private keyDID as input and returns a public/private
key pair (pkID, skID).

CLE securitymodel. There are two types of adversaries, AI and AII . A Type-I adversary (or AI ) is able to replace the user public
key pkID, since in certificateless cryptosystems, there is no authentication information (such as a X.509 certificate in PKI) for
the user public key. In contrast, a Type-II adversary (or AII ) is an honest-but-curious KGC who controls msk and hence the
user partial private key.

Below we present the adversarial game [6,8,10] for defining the security of a CLE scheme. X can be instantiated with I or
II in the description below, st is some state information, andm0 and m1 are messages of equal length.

Type-X Adversarial Game
1 (mpk,msk)← Setup(1k)
2 (ID∗, st,m0,m1)← A1

O(mpk, [msk])
3 b← {0, 1}
4 c∗ ← Enc(mpk, ID∗, pkID∗ ,mb)
5 b′ ← A2

O(c∗, st).

In line 2 of the game, msk is only passed to the adversary in the Type-II game. And in line 4 of the game, pkID∗ refers to
the current public key of ID∗. The advantage of the adversary is defined to be

AdvType-X
CLE,A(k) = |2Pr[b

′
= b] − 1|.

We now turn to the oracles O available to the adversaries in each game.

– RequestPublicKey(ID): Given an identity ID this oracle returns to the adversary pkID. If the identity has no associated
public key, then a public key is generated by running the ExtractPartialKey (only needed in the non-pure case),
SetSecretValue, and SetPublicKey algorithms.

– ReplacePublicKey(ID, pk′): Given an identity ID and a public key pk′ in the public key space, this oracle allows the
adversary to replace ID’s public key with pk′.

– ExtractPartialPrivateKey(ID): Given an identity ID, this oracle returns the partial private key DID.
– ExtractFullPrivateKey(ID): Given an identity ID, this oracle returns the full private key skID.
– StrongDecrypt(ID, c): Given an identity ID and a ciphertext c , this oracle returns the decryption of c . If the adversary has

replaced the public key of ID, then the decryption is performed using the private key corresponding to the current public
key.

Strong Type-I Security: The adversary has the following restrictions in accessing the oracles

1. A cannot extract the full private key for ID∗.
2. A cannot extract the full private key for any identity if the corresponding public key has been replaced.
3. A cannot replace the public key for ID∗ before c∗ has been issued and extract the partial private key for ID∗ (at any point).
4. A2 cannot make the StrongDecrypt query on (ID∗, c∗) unless ID∗’s public key used to create c∗ has been replaced.

Strong Type-II Security: In the Type-II game, the adversary is given the master secret key msk, and has the following
restrictions in accessing the oracles
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1. A cannot extract the full private key for ID∗.
2. A cannot extract the full private key for any identity if the corresponding public key has been replaced.
3. A cannot make any partial private key extraction query.
4. A1 cannot output an identity ID∗ for which it has replaced the public key.
5. A2 cannot make the StrongDecrypt query on (ID∗, c∗) unless ID∗’s public key used to create c∗ has been replaced.

A certificateless encryption scheme CLE is said to be CCA secure in the Type-X model if for any PPT adversary A,
AdvType-X

CLE,A(k) is a negligible function of the security parameter k.
Remark. Similar to [10], we put a special restriction on a Type-II adversary, that is a Type-II adversary cannotmake any partial
private key extraction query. The reason is that since a Type-II adversary is an honest-but-curious KGC who generates user
partial private keys, so he already knows all the user partial private keys.

In the StrongDecrypt query, we require the decryption to be performed using the private key corresponding to the current
public key of a user even if the adversary has replaced the public key of that user. This is a very strong oracle. Alternatively,
one can defineweaker decryption oracles where the decryption is performed using the original private key, or the adversary
additionally provides a secret value S ′ID in a decryption query and a private key sk′ID ← SetPrivateKey(mpk,DID, S ′ID) is
computed and used to perform the decryption. See [6,8,10] for details and discussions on these variants.
CPA Security. The above definition captures security under chosen-ciphertext attacks (or CCA security). The weaker chosen
plaintext attack (or CPA) security notion is formalized by a similar game where attackers have no decryption oracles.

3.2. Certificateless key encapsulation mechanism

Similar to thenotion of key encapsulationmechanisms (KEMs) in the public-key setting [18], one candefine certificateless
key encapsulation mechanisms (CL-KEMs) [6,10].

Definition 2. A certificateless key encapsulation mechanism CL-KEM consists of the following algorithms.

– Setup(1k) takes 1k as input where k is the security parameter, and returns the master public key mpk and master secret
keymsk.

– ExtractPartialKey(msk, ID) takesmsk and a user identity ID as input and returns a partial private key DID.
– SetSecretValue(mpk, ID) takesmpk and a user identity ID as input and returns a user secret value SID.
– SetPublicKey(mpk, SID, [DID]) takes mpk, SID and possibly DID as input and returns a user public key pkID.
– SetPrivateKey(mpk,DID, SID) takesmpk,DID, and SID as input and returns a user private key skID.
– Encap(mpk, ID, pkID) takes mpk, a user identity ID, and a user public key pkID as input and returns a pair (C, K) where K

is a symmetric key for a data encapsulation mechanism (DEM), and C is the encapsulation of the key K .
– Decap(mpk, skID, C) takes mpk, a user private key skID, and an encapsulation C as input and returns the corresponding

key K or a failure symbol⊥.

CL-KEM security model. To define the security model for CL-KEMs we simply adapt the security model for certificateless
encryption in Section 3.1 into the KEM framework. Again there are two types of adversary against a CL-KEM: Type-I and
Type-II. Each adversary is trying to win the following games, where the various oracle accesses allowed are identical (except
that we replace the word ‘‘decryption’’ with ‘‘decapsulation’’) to those defined in Section 3.1.

Type-X Adversarial Game
1 (mpk,msk)← Setup(1k)
2 (ID∗, st)← A1

O(mpk, [msk])
3 (K0, C∗)← Encap(mpk, ID∗, pkID∗)
4 K1 ← KeySpace(mpk)
5 b← {0, 1}
6 b′ ← A2

O(C∗, st, Kb).

In line 2 of the game, msk is only passed to the adversary in the Type-II game. And in line 3 of the game, pkID∗ refers to
the current public key of ID∗. The advantage of the adversary is defined to be

AdvType-X
CL-KEM,A(k) = |2Pr[b

′
= b] − 1|.

A CL-KEM scheme CL-KEM is said to be CCA secure in the Type-X model if, for any PPT adversary A, AdvType-X
CL-KEM,A(k) is a

negligible function of the security parameter k.
For the Strong Type-I Security, we can define a slightly weaker variant denoted by Strong Type-I∗ Security in which the

adversary cannot extract partial private key of the target identity ID∗ at any point. And the following Theorem says that full
Strong Type-I Security is implied by Strong Type-I∗ Security and Strong Type-II Security.

Theorem 1 (Theorem 3 of [10]). If a CL-KEM is Strong Type-I∗ and Strong Type-II secure, then it is Strong Type-I secure.

In [6], Bentahar et al. showed that the KEM/DEM (DEM stands for Data Encapsulation Mechanism) paradigm [18] can be
extended to the certificateless setting, that is, we can construct a hybrid certificateless encryption scheme by combining a
CL-KEM scheme with a DEM scheme.
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3.3. Identity-based key agreement protocol

A two-pass one-way Identity-Based Key Agreement (IB-KA) protocol P consists of the following algorithms.

– KASetup(1k) takes a security parameter 1k as input, and returns a master public/secret key pair (mpkKA,mskKA).
– KeyDer(mskKA, ID) takes the master secret keymskKA and an identity ID as input and returns user private key dID.
– Initiate(mpkKA, [dI ]) is an algorithmrunby theprotocol initiator. It takes as input themaster public keympkKA andpossibly

also the user private key dI of the initiator I , and returns a pair of ephemeral public/private keys (epkI , eskI). The identity
I of the initiator and the ephemeral public key epkI are sent to the responder R of the protocol.

– Response(mpkKA) is an algorithm run by the protocol responder R. It takesmpkKA as input and returns a pair of ephemeral
public/private keys (epkR, eskR). The ephemeral public key epkR is sent to the initiator I .

– DeriveI(mpkKA, dI , eskI , epkR) is a key derivation algorithm run by the initiator I . It returns a session key KI .
– DeriveR(mpkKA, eskR, epkI , I) is a key derivation algorithm run by the responder R. It returns a session key KR.

In the above definition, we explicitly assume that the responder is the one who is anonymous and not authenticated. In
[10], Fiore et al. also separate two-pass IB-KA protocols into two categories: pure and non-pure. Pure IB-KA protocols refer
to those do not take the user private key dI as part of the input to the Initiate algorithm, while non-pure protocols do take dI
as part of the input to the Initiate algorithm.
IB-KA security model. Security of a two-pass one-way IB-KA protocol is defined by a game between an adversary A and a
challenger C . At the beginning of the game, C generates amaster public/private key pair (mpkKA,mskKA) and givesmpkKA to A.
Each party U created in the game holds a private key dU that is generated by the challenger C by running KeyDer(mskKA,U).
A party may run many instances concurrently, we denote instance i of party U by Π i

U . Instances of parties are modeled as
oracles available to the adversary. In the game, A can make the following oracle queries:

– CreateUser(U): By this query, the adversary creates a user with identity U . Upon receiving the query, C executes
KeyDer(mskKA,U) to generate a user private key dU .

– NewSession(U, i): By this query, the adversary activates an instance Π i
U of U to start a session (i.e., Π i

U has a roleiU =
initiator) where i is the instance ID which uniquely identifies the instance within U . Upon receiving the query, C executes
Initiate(mpkKA, [dU ]) to create a pair of ephemeral public/private keys (epkiU , eskiU) and returns epkiU to the adversary.

– Send(U, i, V , epk): By this query, the adversary sends amessage (V , epk) to instanceΠ i
U . There are two cases to consider:

1. If Π i
U has appeared in a NewSession query (which means Π i

U is an initiator who has generated a ephemeral key pair
(epkU , eskU) before), then the challenger executes DeriveI(mpkKA, dU , eskU , epk) to generate a session key skiU . The
identity V is ignored by the challenger in this case.

2. IfΠ i
U has not appeared in aNewSession query before, then the challenger sets roleiU = responder andV as the partner-

id ofΠ i
U (denoted by pidi

U ). The challenger then executesResponse(mpkKA) to generate (epkR, eskR), and then executes
DeriveR(mpkKA, eskR, epk, V ) to generate a session key skiU . The challenger returns epkR to the adversary.

– Reveal(U, i): By making this query to an instance Π i
U that has accepted, A learns the session key skiU that has been

generated by Π i
U .

– Corrupt(U): By this query, the adversary learns the private key dU of party U .
– Test(U∗, i∗): This query is only made once by the adversary during the game, and the instance Π i∗

U∗ must have rolei
∗

U∗ =

responder, have accepted the conversation, and is fresh (defined below). Upon receiving the query, a random coin b is
flipped by the challenger C . If the coin b = 1, then ski

∗

U∗ is returned to the adversary. Otherwise, if b = 0, then a random
session key is drawn from the session key space and returned to the adversary.

At the end of the game the adversary A outputs a bit b′ as its guess to the bit b. We say the adversary wins the game if
b′ = b. We define the advantage of the adversary by

AdvIB-KA
P ,A (k) = |2Pr[b′ = b] − 1|.

We say two instances have a matching conversation if their communication transcripts, defined as CommTrans =
(Initiator-id, epkI , epkR), are equivalent. We say an instance Π i∗

U∗ with rolei
∗

U∗ = responder and pidi∗
U∗ = V ∗ is fresh if

1. A does not make a Reveal query to the instance Π i∗
U∗ .

2. A does not make a Corrupt query to V ∗.
3. A does not make a Reveal query to an instance Π

j
V∗ which has a matching conversation with Π i∗

U∗ (if such a Π
j
V∗ exists

within V ∗).

IB-KA Security.We say a protocol P is a secure two-pass one-way IB-KA protocol if

1. In the presence of a benign adversary who faithfully conveys messages, then two instances having a matching
conversation output the same session key;

2. For any polynomial time adversary A, AdvIB-KA
P ,A (k) is negligible.
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Forward Secrecy. The conventional notion of perfect forward secrecy means corrupting two parties U and V should not
allow the adversary to compromise any session key that has already been established between U and V . We consider two
levels of forward secrecy for two-pass one-way IB-KA protocols,

1. Forward Secrecy: the adversary is allowed to corrupt the user private key of the protocol initiator in the Test session;
2. Master-Key Forward Secrecy: the adversary is given themaster secret keymskKA and knows all the user private keys (i.e.,

the adversary is an honest-but-curious KGC).

We say an instance Π i∗
U∗ with rolei

∗

U∗ = responder, pidi∗
U∗ = V ∗ and communication transcript (pidi∗

U∗ , epkV∗ , epkU∗) is
fresh in the forward-secrecy (or master-key-forward-secrecy) model if

1. A does not make a Reveal query to the instance Π i∗
U∗ .

2. The ephemeral public key epkV∗ must have been generated by an instance Π
j
V∗ within the party pidi∗

U∗ .
3. A does not make a Reveal query to an instance Π

j
V∗ which has a matching conversation with Π i∗

U∗ (if such a Π
j
V∗ exists).

Note that in the forward-secrecy (FS) model and the master-key-forward-secrecy (MKFS) model, we require that the
ephemeral public key epkV∗ must be honestly generated by the user V ∗ = pidi∗

U∗ . Such a requirement is necessary for two-
pass key agreement protocols [15,7] when considering forward secrecy.
The Reveal∗ Model. In [10], the authors proposed a stronger security model called Reveal∗ model in which a new oracle
query, named Reveal∗ query, is introduced.

– Reveal∗(I, epkI , epkR): By making this query, the adversary A learns the associated session key assuming a conversation
(I, epkI , epkR) between party I and a responder had taken place.

The Reveal∗ query is a very strong query in the sense that it is not associated to any instance, and the conversation can
never take place during the game. This query is introduced in [10] in order to handle the Strong Decapsulation query when
transforming IB-KA protocols to CL-KEM schemes using the FGS transformation. An obvious restriction in the Reveal∗model
is that the adversary cannot make a Reveal∗ query to the Test session.

4. The Fiore–Gennaro–Smart transformation

In [10], Fiore et al. presented a generic way to transform two-pass one-way Identity-Based Key Agreement (IB-KA)
protocols to Certificateless Key Encapsulation Mechanisms.

4.1. The FGS transformation

Suppose we are given a two-pass one-way authenticated IB-KA protocol. We construct a CL-KEM scheme as follows.

– Setup: run KASetup(1k) to generatempkKA and mskKA, set mpk = mpkKA and msk = mskKA.
– ExtractPartialKey: run KeyDer(msk, ID) to generate dID, set DID = dID.
– SetSecretValue,SetPublicKey: run Initiate(mpk, [DID]) to generate (epk, esk), set SID = esk and pkID = epk.
– SetPrivateKey: set skID = (DID, SID).
– Encap: compute (epk′, esk′)← Response(mpk), K ← DeriveR(mpk, esk′, pkID, ID), and C ← epk′. Return (C, K ).
– Decap: compute K ← DeriveI(mpk,DID, SID, C) and return K .

The following results regarding the transformation have been obtained in [10].

Theorem 2 (Theorem 4 of [10]). If IB-KA is a secure two-pass one-way identity-based key agreement protocol in the Reveal∗
model, then the corresponding CL-KEM obtained via the FGS transform is Strong Type-I∗ secure.

Theorem 3 (Theorem 6 of [10]). If IB-KA is a secure two-pass one-way authenticated identity-based key agreement protocol in
the (MKFS, Reveal∗) model, then the corresponding CL-KEM obtained via the FGS transform is Strong Type-II secure.

Below we will look at a concrete example illustrating the transform.

4.2. A pairing-free CL-KEM scheme from the Fiore–Gennaro IB-KA protocol

In Fig. 1, we present the non-pure Fiore–Gennaro (FG) IB-KA protocol [11] and the corresponding CL-KEM scheme derived
by applying the FGS transformation. In [10], the following results are obtained.

Theorem 4 (Theorem 2 of [10]). The FG Protocol is secure in the Reveal∗ model, and (MKFS, Reveal∗) model, assuming Gap-DH
problem is hard.

Corollary 1 (Corollary 1 of [10]). The FG CL-KEM is Strong Type-I∗ and Strong Type-II (and hence Strong Type-I) secure assuming
the Gap-DH problem is hard.
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Fiore–Gennaro IB-KA Protocol:

KASetup(1k) :
x← Zq, y← gx,mskKA ← x,mpkKA ← y.

KeyDer(1k) :
α← Zq, rID ← gα, zID ← α + H1(ID‖rID)x,
dID ← (rID, zID).

Initiate(mpkKA, dID) :
eskID ← Zq, epkID ← (rID, geskID).

Response(mpkKA) :
esk′ ← Zq, epk′ ← gesk′ .

DeriveI(mpkKA, dID, eskID, epk′) :
c1 ← epk′zID+eskID , c2 ← epk′eskID ,
KI ← H2(c1, c2).

DeriveR(mpkKA, esk′, epkID, ID) :

c1 ← (geskID · rID ·mpkH1(ID‖rID))esk
′

,

c2 ← (geskID)esk
′

,
KR ← H2(c1, c2).

The corresponding FG CL-KEM:

Setup(1k) :
x← Zq, y← gx,msk← x,mpk← y.

ExtractPartialKey(msk, ID) :
α← Zq, rID ← gα,
zID ← α + H1(ID‖rID)x,
DID ← (rID, zID).

SetSecretValue(mpk, ID) :
SID ← Zq.

SetPublicKey(mpk, SID,DID) :
UID ← gSID , pkID ← (rID,UID).

SetPrivateKey :
skID ← (DID, SID).

Encap(mpk, pkID, ID) :
t ← Zq, C ← g t ,
c1 ← (UID · rID ·mpkH1(ID‖rID))t ,
c2 ← U t

ID,
K ← H2(c1, c2).

Decap(mpk, skID, C) :
c1 ← CSID+zID , c2 ← CSID

K ← H2(c1, c2).

Fig. 1. A pairing-free CL-KEM scheme from the non-pure Fiore–Gennaro IB-KA protocol.

5. Analysis of the FG CL-KEM scheme

In this section, we show that the CL-KEM scheme in Fig. 1 is neither Strong Type-I nor Strong Type-II secure, whichmeans
Corollary 1 of [10] is incorrect.

A Strong Type-I adversary AI
– The adversary AI first issues two Request Public Key queries for two identity ID∗ and ID. Denote the corresponding keys

by {DID∗ = (rID∗ , zID∗), SID∗ ,UID∗ = gSID∗ } and {DID = (rID, zID), SID,UID = gSID}, respectively.
– The adversary AI then selects ID∗ as the challenge identity, and gets back a challenge (C∗, K).
– AI issues two Extract Partial Private Key queries to learn DID∗ and DID.

– AI issues a Replace Public Key query with input (ID, pk′ID = (rID,U
zID
zID∗
ID∗ )).

– AI then issues a Strong Decapsulation query with input (ID, C∗
zID∗
zID ). Denote K ′ the value returned by the Strong

Decapsulation oracle.
– AI compares K ′ with K . If they are equal, return 0; otherwise, return 1.

We can see that AI does not violate the rules for a Strong Type-I adversary defined in Section 3. In the following we
analyze the winning probability of the adversary.

1. Let K ∗ denotes the real key encapsulated in C∗. Then we have K ∗ = H2(c∗1 , c
∗

2 ) where c∗1 = C∗SID∗+zID∗ and c∗2 = C∗SID∗ .

2. After AI replaces the public key of ID with (rID,U
zID
zID∗
ID∗ ), DID remains unchanged, and SID now becomes SID∗

zID
zID∗

.

3. When AI issues the Strong Decapsulation query with (ID, C∗
zID∗
zID ), the following steps are performed according to the

decapsulation algorithm
(a) Compute

c1 = (C∗
zID∗
zID )

SID∗
zID
zID∗
+zID
= C∗SID∗+zID∗

c2 = (C∗
zID∗
zID )

SID∗
zID
zID∗ = C∗SID∗ .

(b) Compute K ′ = H2(c1, c2)

Now we can see that K ′ = K ∗, so AI can win the game with a probability almost equal to 1.
Similarly, we can also construct a Type-II adversary AII to win the game. Notice that since AII is an honest-but-curious

KGC, it does not need to make any partial private key query.
Errors in [10]. Our attack disproves some claims in [10], in particular, Corollary 1. So something must be wrong in the
security analysis in [10].



G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 662–674 669

Modified Fiore–Gennaro IB-KA Protocol:

KASetup(1k) :
x← Zq, y← gx,mskKA ← x,mpkKA ← y.

KeyDer(1k) :
α← Zq, rID ← gα, zID ← α + H1(ID‖rID)x,
dID ← (rID, zID).

Initiate(mpkKA, dID) :
eskID ← Zq, epkID ← (rID, geskID).

Response(mpkKA) :
esk′ ← Zq, epk′ ← gesk′ .

DeriveI(mpkKA, dID, eskID, epk′) :
c1 ← epk′zID+eskID , c2 ← epk′eskID ,
KI ← H2(ID, epkID, epk′, c1, c2).

DeriveR(mpkKA, esk′, epkID, ID) :

c1 ← (geskID · rID ·mpkH1(ID‖rID))esk
′

,

c2 ← (geskID)esk
′

,
KR ← H2(ID, epkID, epk′, c1, c2).

The corresponding FG-1 CL-KEM:

Setup(1k) :
x← Zq, y← gx,msk← x,mpk← y.

ExtractPartialKey(msk, ID) :
α← Zq, rID ← gα,
zID ← α + H1(ID‖rID)x,
DID ← (rID, zID).

SetSecretValue(mpk, ID) :
SID ← Zq.

SetPublicKey(mpk, SID,DID) :
UID ← gSID , pkID ← (rID,UID).

SetPrivateKey :
skID ← (DID, SID).

Encap(mpk, pkID, ID) :
t ← Zq, C ← g t ,
c1 ← (UID · rID ·mpkH1(ID‖rID))t ,
c2 ← U t

ID,
K ← H2(ID, pkID, C, c1, c2).

Decap(mpk, skID, C) :
c1 ← CSID+zID , c2 ← CSID

K ← H2(ID, pkID, C, c1, c2).

Fig. 2. The FG-1 pairing-free CL-KEM scheme from the modified FG IB-KA protocol.

The problem lies in the security analysis for Fiore–Gennaro IB-KA protocol, we can see that our attack above can be
transformed to an attack against the FG IB-KA protocol in the (forward-secrecy, Reveal∗) model. Given a key agreement
session S = (I, epkI = (rI , geskI ), epkR = geskR), the adversary can construct another communication transcript

S′ = (I ′, epkI ′ = (rI ′ , (geskI )
zI′
zI ), epkR′ = epk

zI
zI′
R )

which would have the same session key H2(epk
eskI+zI
R , epkeskIR ) as that of session S. So Theorem 2 of [10] is incorrect.

6. A new pairing-free CL-KEM scheme

From the analysis in the previous section, we can see that the insecurity of the FG CL-KEM is due to the insecurity of the
underlying IB-KA protocol. In this section, we do a slight modification on the FG IB-KA protocol, and show a new CL-KEM
(denoted by FG-1) which can achieve Strong Type-I and Type-II security, based on this modified protocol (Fig. 2).

Our modification is very simple, we only change the way to derive the final key K . In the context of key agreement
protocols, in fact we add the communication transcript in the derivation of the final session key. The idea is that now even
the keying materials (namely c1 and c2) are the same, as far as the communication transcripts are different, the session keys
would be different. In this way, we can answer the Reveal∗ query using the random oracle even if the adversary fabricates a
sessionwhich is different from the Test session (i.e., has a different communication transcript), but has the same c1 and c2. In
the following, we show that such a modification is already sufficient in order to provide Strong Type-I and Type-II security.

Theorem 5. The modified FG IB-KA protocol is secure in the Reveal∗ model assuming H1 and H2 are random oracles and the
Gap-DH problem is hard.

Proof. The proof essentially follows that in [11]. Themajor change is that nowwe need to additionally simulate the Reveal∗
oracle. Let A denotes an adversarywho can break themodified FG IB-KA protocol in the Reveal∗model, we construct another
PPT algorithm B, and a Gap-DH problem solver SB associated with B as follows.

B receives a tuple (g,U = gu, V = gv) as input where u, v are randomly selected from Zq. B simulates the Reveal∗ game
for A by answering theHashOracle (H1 andH2) queries, Party Corruption queries, Reveal and Reveal∗ queries, and simulating
protocol sessions including the Test session.

B first sets themaster public keympkKA = U . TheH1 and Corruption queries are simulated in the sameway as in [11]. The
H1 oracle is simulated by consistently returning random elements of Zq, and the user secret keys are simulated by running
the Honest Verifier Zero Knowledge (HVZK) proof simulator of the Schnorr identification protocol. There is one exceptional
case: for a particular party (say Carol), B randomly selects kC ← Zq and sets skC ← (rC ← gkC ,⊤)where⊤means the value
is unknown to B. B guesses that Carol will be the protocol initiator in the Test session. Notice that since we do not consider
forward secrecy here, if B’s guess is correct, the adversary would never ask for the secret key skC .

To simulate the H2 queries, B maintains a table T2. On input a tuple (ID, epkID, epkR, c1, c2), a random string Z in the
session key space is returned, and an entry (ID, epkID, epkR, c1, c2, Z) is added into T2. When later the same input is asked to
the H2 oracle, the same string Z is returned.
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Since B knows all the private keys except skC , B can simulate all the sessions except those of Carol. To simulate a
session of Carol, when Carol is a responder, B can simulate the session perfectly since we are in the one-way authentication
setting. When Carol is an initiator, and the responders message is injected by the adversary, B uses its DH oracle to answer
session-key Reveal queries. Let C, rC , uC (=g tC ) denote the message sent by B to the adversary. Recall that the session key
is H2(C, rC , uC , epkR = g tR , c1, c2) (tR is selected by the adversary and unknown to B) where c1 = epkzC+tCR and c2 = epktCR .
B searches the table T2 for a tuple (C, rC , uC , epkR, ·, c2, ·). If there is a tuple (C, rC , uC , epkR,⊤, c2, Z), B returns Z to the
adversary. If a tuple (C, rC , uC , epkR, c ′1, c2, Z) is found, B computes X = uC rCUH1(C‖rC ). B asks its DH oracle with input
(X, epkR, c ′1). If the DH oracle returns 1 (which indicates c ′1 = c1), B returns Z to the adversary. Otherwise, B searches
for the next entry. If there is no entry in T2 which makes the DH oracle return 1, B selects a random Z in the session key
space, adds (C, rC , uC , epkR,⊤, c2, Z) into T2 and returns Z . Later, when the adversary makes a H2 query with a new input
(C, rC , uC , epkR, λ, c2), and there exists a tuple (C, rC , uC , epkR,⊤, c2, Z) in T2, B performs the test as above using the DH
oracle. If the DH oracle returns 1, B updates the⊤ filed of the entry with λ and returns Z . Otherwise, B answers the H2 query
as usual.

Suppose B asks a Reveal∗ query with input (ID, r ′ID, u
′

ID, epkR). Notice that here r ′ID may not be equal to rID that is created
by B. If (ID, r ′ID, u

′

ID, epkR) is a really executed session, then it is answered as in a Reveal query.
Now suppose the session (ID, r ′ID, u

′

ID, epkR) has never appeared in a real execution before. Upon receiving the query, B
searches the table T2 for an entry (ID, r ′ID, u

′

ID, epkR, ·, ·, ·).

1. If there is an entry (ID, r ′ID, u
′

ID, epkR,⊤,⊤, Z) then the value Z is returned.
2. If there is an entry (ID, r ′ID, u

′

ID, epkR, c1, c2, Z), B first asks the DH oracle on input (u′ID, epkR, c2). If the DH oracle returns
1, B computes X = u′IDr

′

IDU
H1(ID‖r ′ID), and asks its DH oracle again with input (X, epkR, c1). If the DH oracle returns 1, B

returns Z to the adversary. Otherwise, B searches for the next entry.
3. If no valid entry is found in the above steps, B selects a random Z in the session key space, adds (ID, r ′ID, u

′

ID, epkR,⊤,⊤, Z)
into T2 and returns Z .

4. Later, when the adversary makes a H2 query with a new input (ID, r ′ID, u′ID, epkR, λ1, λ2), and there exists a tuple
(ID, r ′ID, u

′

ID, epkR,⊤,⊤, Z) in T2, B performs the test as above using the DH oracle. If the test is successful, B updates
the two⊤ fields of the entry with (λ1, λ2) and returns Z . Otherwise, B answers the H2 query as usual.

Now let’s consider a Test session (C, r∗C , u∗C , epkR) where the simulator B sets epkR = V . Notice that the adversary must
choose a responding instance in the Test query, so B can setV as the ephemeral public key of that instance. Also, the adversary
cannot issue a Reveal or Reveal∗ query to the Test session. B returns a random string in the session key space to A upon
receiving the Test query.

Let E denote the event that the adversary A asks a H2 query with input (C, r∗C , u∗C , V , c∗1 , c
∗

2 ) where DH(u∗C , V , c∗2 ) = 1
and DH(u∗C r

∗

CU
H1(C‖r∗C ), V , c∗1 ) = 1. If event E does not occur, the adversary has no advantage in winning the game. So if A

can win the game with a non-negligible advantage, event E must occur with a non-negligible probability. If event E occurs,
B can derive a value τ = c∗1/c

∗

2 = (r∗CU
H1(C‖r∗C ))v .

Now similar to [11], given such an algorithm B, we can construct a Gap-DH problem solver SB which rewinds B. By the
General Forking Lemma, with a non-negligible probability, SB can obtain two values τ = (rUh)v and τ ′ = (r ′Uh′)v where

r = r ′ but h ≠ h′. Then SB can computeW = (τ/τ ′)
1

h−h′ = guv and solve the Gap-DH problem. �

Theorem 6. The modified FG IB-KA protocol is secure in the (MKFS, Reveal∗) model assuming H1 and H2 are random oracles and
the Gap-DH problem is hard.

Proof. Let A denote an adversary who can break themodified FG IB-KA protocol in the (MKFS, Reveal∗) model, we construct
another PPT algorithm Bwhich solves the Gap-DH problem.

B receives a tuple (g,U = gu, V = gv) as input where u, v are randomly selected from Zq. B simulates the game for A
as follows. B first generates the master public/private key pairs by running the KASetup algorithm, and returns (mpk,msk)
to A. B simulates the random oracles (H1 and H2) as in the previous proof, and generates the user private keys honestly
and returns all the user private keys to the adversary. B also simulates those non-test sessions and answers the session key
Reveal queries honestly. The Reveal∗ queries are answered in the same way as in the previous proof.

Now let’s consider a Test session (C, rC , uC , epkR). Since in the MKFS model, uC and epkR are required to be honestly
generated by the two communicating instances, B sets uC = U and epkR = V , and returns a random string in the session
key space to A upon receiving the Test query.

Let E denote the event that the adversary A asks a H2 query with input (C, rC ,U, V , c∗1 , c
∗

2 ) such that DH(U, V , c∗2 ) = 1. If
event E does not occur, the adversary has no advantage in winning the game. So if A can win the gamewith a non-negligible
advantage, event Emust occur with a non-negligible probability. If event E occurs, B outputs c∗2 = guv which is the solution
for the Gap-DH problem. �

So by Theorems 1, 5 and 6 we have the following corollary,

Corollary 2. The FG-1 CL-KEM is Strong Type-I and Strong Type-II secure in the random oracle model assuming the Gap-DH
problem is hard.
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7. A new generic construction of CLE schemes

The generic transformation givenby Fiore et al. is indeed an excellentwork. However, one drawback of the transformation
is that in order to prove the security of a CL-KEM scheme, a security proof of the underlying IB-KA protocol in the Reveal∗
model is required, but all the existing IB-KA protocols are only proven in security models where the Reveal∗ query is
not considered. So before applying the transformation to any existing IB-KA protocol, a new security proof for the IB-KA
protocol in the Reveal∗ model is required, otherwise, insecure CL-KEM schemes may be generated via the transformation
(as illustrated by our attack against the FG CL-KEM scheme in Section 5). The requirement of re-proving an existing IB-KA
protocol in the Reveal∗ model reduces the usability of the FGS transformation.

7.1. A new generic construction

In this section, we present a new generic construction of CLE schemes from IB-KA protocols. Different from the FGS
transformation, we derive provably secure CLE schemes from IB-KA protocols that are only required to be proven secure in
amodel that isweaker than the existing IB-KA securitymodels. Our idea is to first construct CPA secure CLE schemes from IB-
KA protocols, and then convert the CPA secure scheme to a CCA secure one. To do so, we will make use of the Certificateless
Fujisaki–Okamoto Transformation due to Libert and Quisquater [16].
From CPA security to CCA security. In [16], Libert and Quisquater presented a modified Fujisaki–Okamoto transformation
[12] to construct CCA secure CLE schemes from CPA secure ones. Given a CLE scheme CLE , a new scheme CLE ′ can be
constructed via the certificateless Fujisaki–Okamoto transformation as follows,

– CLE ′.Setup, CLE ′.ExtractPartialKey, CLE ′.SetSecretValue, CLE ′.SetPublicKey, CLE ′.SetPrivateKey: the same as that
of CLE .

– CLE ′.Enc(mpk, ID, pkID,m): randomly choose δ ∈ {0, 1}k, compute r ← H(m, δ, pkID, ID), m′ ← m‖δ, and c ←
CLE .Enc(mpk, ID, pkID,m′; r). Return c.

– CLE ′.Dec(mpk, skID, c): compute m‖δ ← CLE .Dec(mpk, skID, c), r ′ ← H(m, δ, pkID, ID), c ′ ← CLE .Enc(mpk, ID,
pkID,m‖δ; r ′). If c ′ = c , return m. Otherwise, return⊥.

where H : {0, 1}∗ → {0, 1}ℓ is a cryptographic hash function and CLE .Enc(·, ·, ·, ·; r) means running the encryption
algorithm CLE .Enc with randomness r ∈ {0, 1}ℓ.

Theorem 7 (Theorem 1 of [16]). If CLE is a CPA secure CLE scheme in Type-I (resp. Type-II) model, then CLE ′ is a CCA secure
CLE scheme in Strong Type-I (resp. Strong Type-II) model assuming H is a random oracle.

Constructing CLE from CL-KEM. Belowwe show that following the CL-KEM/DEM paradigm [6], we can obtain a CPA secure
CLE scheme from a CPA secure CL-KEM scheme and a secure data encapsulation mechanism.

The security of a Data Encapsulation Mechanism DEM = (DEM.Enc, DEM.Dec) with key space K is defined via a
find-then-guess game [5,12] as follows.

AdvfgDEM,A(k) =
2Pr [K ← K; (m0,m1, s)← A(find); b← {0, 1};

y← DEM.Enc(K ,mb) : A(guess, s, y) = b

]
− 1

 .
We say a Data Encapsulation Mechanism DEM is fg-secure if for any polynomial time adversary A, AdvfgDEM,A(k) is a

negligible function of k.
In the following we show that combining a CPA secure CL-KEM scheme CL-KEM with a fg-secure DEM scheme DEM,

we can obtain a CPA secure CLE scheme CLE .

– CLE .Setup, CLE .ExtractPartialKey, CLE .SetSecretValue, CLE .SetPublicKey, CLE .SetPrivateKey: the same as that of
CL-KEM.

– CLE .Enc(mpk, ID, pkID,m):
1. compute (C1, K)← CL-KEM.Encap(mpk, ID, pkID);
2. compute C2 ←DEM.Enc(K ,m);
3. set the ciphertext c ← (C1, C2).

– CLE .Dec(mpk, skID, c):
1. parse c into C1 and C2;
2. compute K ′ ← CL-KEM.Decap(mpk, skID, C1), if K ′ = ⊥, return⊥;
3. computem← DEM.Dec(K ′, C2);
4. return m.

Theorem 8. If the CL-KEM scheme is Type-I (Type-II, resp.) CPA secure, and the DEM scheme is fg-secure, then the CLE scheme is
Type-I (Type-II, resp.) CPA secure.
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Proof. Wedefine amodified game denoted by Type’-X-cpa game (X = I, II). Let c∗ = (C∗1 , C∗2 ) denote the challenge ciphertext
generated by the challenger in the Type-X-cpa game, and K ∗ the symmetric key encapsulated in C∗1 . In the Type’-X-cpa game,
we generate C∗2 using a random key K instead of K ∗.

In the following we show that any PPT adversary A has similar advantages in the Type-X-cpa and Type’-X-cpa games,
otherwise, we can construct another adversary A′ which can break the underlying CL-KEM scheme.

A′ simulates the game for A as follows: to answer the RequestPublicKey, ReplacePublicKey, and ExtractPartialPrivateKey,
and ExtractFullPrivateKey queries made by A, A′ makes the same queries to its oracles and returns the answers it gets from
the oracles to A. When A outputs ID∗, m0 and m1 for a challenge, A′ outputs ID∗ to its challenger and gets back (C∗, K ′). A′
then tosses a random bit d and computes C∗2 ← DEM.Enc(K ′,md). A′ then returns c∗ = (C∗, C∗2 ) to A as the challenge
ciphertext. At the end of the simulation, if A outputs a bit d′ such that d′ = d, then A′ outputs 0, otherwise, A′ outputs 1.

Let b denote the bit tossed by the challenger of A′, and b′ the bit output by A′. If b = 0, which means K ′ is indeed the key
encapsulated in C∗, then the game simulated for A is identical to the Type-X-cpa game. So we have

Pr[b′ = 0|b = 0] = Pr[d′ = d|b = 0] = 1/2(AdvType-X-cpa
CLE,A (k)+ 1).

If b = 1, then K ′ is a random key, so A is in the Type’-X-cpa game. So we have

Pr[b′ = 0|b = 1] = Pr[d′ = d|b = 1] = 1/2(AdvType’-X-cpa
CLE,A (k)+ 1).

Then we have

AdvType-X-cpa
CL-KEM,A′(k) = 2(Pr[b′ = 0|b = 0]Pr[b = 0] + Pr[b′ = 1|b = 1]Pr[b = 1])− 1

= (Pr[b′ = 0|b = 0] + 1− Pr[b′ = 0|b = 1])− 1
= Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]

= 1/2(AdvType-X-cpa
CLE,A (k)− AdvType’-X-cpa

CLE,A (k))

and

AdvType-X-cpa
CLE,A (k) = AdvType’-X-cpa

CLE,A (k)+ 2AdvType-X-cpa
CL-KEM,A′(k)

Lemma 1. AdvType’-X-cpa
CLE,A (k) is negligible.

In the next we show that A only has a negligible advantage in the Type’-X-cpa game, otherwise we can construct another
adversary B that breaks the underlying DEM.

B simulates the Type’-X-cpa game for A by performs all the operations honestly. When A outputs ID∗, m0 and m1
for a challenge, B outputs m0 and m1 in the find-then-guess game and gets back a challenge C∗. B then runs
CL-KEM.Encap(mpk, ID∗, pkID∗) to get K , C∗1 . B discards K and sets c∗ = (C∗1 , C∗) as the challenge ciphertext for A, and
continues the game for A. Finally B outputs whatever A outputs.We can see that B simulates the Type’-X-cpa game perfectly,
so we have

AdvfgDEM,B(k) = AdvType’-X-cpa
CLE,A (k).

Combining all the results, we have

AdvType-X-cpa
CLE,A (k) = AdvfgDEM,B(k)+ 2AdvType-X-cpa

CL-KEM,A′(k). �

Constructing CL-KEMs from IB-KA protocols. We reconsider the FGS transformation in this section, and show that we
can construct CPA secure CL-KEMs from IB-KA protocols that are only required to be secure in a model that is weaker than
the existing IB-KA security models. So we can apply our transformation directly to existing proven secure IB-KA protocols
without modifying or re-proving them.
Weak IB-KA Security Model. The weak IB-KA model is similar to the basic IB-KA security model described in Section 3.3
except that in the weak security model the adversary is only allowed to make NewSession, Send,Corrupt and Test queries.

Theorem 9. If IB-KA is a secure two-pass one-way identity-based key agreement protocol in the weak IB-KA security model, then
the corresponding CL-KEM obtained via the FGS transform is Type-I∗-cpa secure.

The proof of Theorem 9 essentially follows that of Theorem 2 except that we don’t need to handle the decapsulation
queries in the CPA game. In the proof of Theorem 2, an IB-KA adversary B is constructed such that B simulates the Type-I∗
game for an CL-KEM adversary A and if A can break the CL-KEM then B can break the underlying IB-KA protocol. Bmakes use
of the Reveal and Reveal∗ queries to answer the decapsulation queries made by A. But in the CPA game, no decapsulation
queries aremade by A, as a result B does not need tomake any Reveal or Reveal∗ queries in order to simulate the Type-I∗-cpa
game for A. Besides this difference, the remaining of the proof is the same as that of Theorem 2.

Theorem 10. If IB-KA is a two-pass one-way identity-based key agreement protocol that achieves master-key forward secrecy in
the weak IB-KA security model, then the corresponding CL-KEM obtained via the FGS transform is Type-II-cpa secure.

The proof of Theorem10 follows that of Theorem3with the samemodificationswemade abovewhenproving Theorem9.
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Theorem 11. If a CL-KEM is Type-I∗-cpa and Type-II-cpa secure, then it is Type-I-cpa secure.

The proof of Theorem 11 follows the same proof as that of Theorem 1.
Combing all together. Now we are ready to present a generic construction of CLE schemes from IB-KA protocols. Given
an IB-KA protocol P that is secure in the weak model, and a fg-secure DEM scheme DEM (e.g., the one-time padding
encryption), we can obtain a CLE scheme CLE as follows.

– CLE .Setup, CLE .ExtractPartialKey, CLE .SetSecretValue, CLE .SetPublicKey, CLE .SetPrivateKey: the same as in the
FGS transformation.

– CLE .Enc(mpk, ID, pkID,m):
1. randomly choose δ ∈ {0, 1}k, compute r ← H(m, δ, pkID, ID);
2. compute (epk, esk)← P .Response(mpk; r);
3. compute K ← P .DeriveR(mpk, esk, pkID, ID), C1 ← epk, and C2 ← DEM.Enc(K ,m‖δ);
4. return c = (C1, C2).

– CLE .Dec(mpk, skID = (DID, SID), c):
1. parse c into (C1, C2);
2. compute K ← DeriveI(mpk,DID, SID, C1);
3. computem‖δ← DEM.Dec(K , C2);
4. compute r ′ ← H(m, δ, pkID, ID), (epk′, esk′)← P .Response(mpk; r ′);
5. compute K ′ ← P .DeriveR(mpk, esk′, pkID, ID), C ′1 ← epk′, and C ′2 ← DEM.Enc(K ′,m‖δ);
6. if (C1, C2) = (C ′1, C

′

2), returnm, otherwise, return⊥.

Combing Theorems 7–11, we have

Theorem 12. The CLE scheme constructed as above is Strong Type-I and Strong Type-II secure in the random oracle model if the
IB-KA protocol is secure in the weak model and the MKFS weak model, and the DEM is fg-secure.

7.2. A new pairing-free CLE scheme

We can now construct a new pairing-free CLE scheme (denoted by FG-2 CLE) directly from the Fiore–Gennaro IB-KA
protocol [11], and from the proven security of the FG IB-KA protocol, we directly obtain the provable security of the CLE
scheme.

– Setup(1k): x← Zq, y← gx,msk← x,mpk← y.
– ExtractPartialKey(msk, ID): α← Zq, rID ← gα, zID ← α + H1(ID‖rID)x, DID ← (rID, zID).
– SetSecretValue(mpk, ID): SID ← Zq.

– SetPublicKey(mpk, SID,DID): UID ← gSID , pkID ← (rID,UID).
– SetPrivateKey: skID ← (DID, SID).
– Enc(mpk, pkID, ID,m):

1. randomly choose δ ∈ {0, 1}k, compute r ← H(m, δ, pkID, ID), C1 ← g r ;
2. compute λ1 ← (UID · rID ·mpkH1(ID‖rID))r , λ2 ← U r

ID;
3. compute K ← H2(λ1, λ2), C2 ← K ⊕m‖δ.
4. return c = (C1, C2).

– Dec(mpk, skID, c):
1. parse c into (C1, C2);
2. compute λ1 ← CSID+zID

1 , λ2 ← CSID
1 , K ← H2(λ1, λ2);

3. computem‖δ← DEM.Dec(K , C2);
4. compute r ′ ← H(m, δ, pkID, ID), C ′1 ← g r ′ ;
5. compute λ′1 ← (UID · rID ·mpkH1(ID‖rID))r

′

, λ′2 ← U r ′
ID;

6. compute K ′ ← H2(λ
′

1, λ
′

2), C
′

2 ← K ′ ⊕m‖δ.
7. if (C1, C2) = (C ′1, C

′

2), returnm, otherwise, return⊥.

Corollary 3. The FG-2 CLE is Strong Type-I and Strong Type-II secure in the random oracle model assuming the SDH problem is
hard.

The corollary is obtained from Theorem 12 in Section 7.1, and Theorems 3 and 4 of [11].

8. Comparisons among pairing-free encryption schemes

We compare our new pairing-free schemes with existing pairing-free CL-KEM/CLE schemes in Table 1. Among all the
proven secure schemes, FG-1 achieves the best efficiency comparing to FG-2 and Sun et al.’s scheme, while the FG-2 scheme
is more efficient in encryption but less efficient in decryption than Sun et al.’s scheme.
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Table 1
Comparisons among pairing-free CL-KEM/CLE schemes.

CL-KEM/CLE Strong type-I Strong type-II Enc cost Dec cost

Beak et al. [4] ?
√

2 exp+ 1 m-exp 3 exp
Sun et al. [19]

√ √
4 exp+ 1 m-exp 3 exp

Fiore et al. [10] × × 2 exp+ 1 m-exp 2 exp
FG-1

√ √
2 exp+ 1 m-exp 2 exp

FG-2
√ √

2 exp+ 1 m-exp 4 exp+ 1 m-exp

√
: Proven Secure; ×: Insecure; ?: unknown; exp: exponentiation; m-exp: multi-

exponentiation (≈1.5 exp).

9. Conclusions and future work

In this paper, we revisited the Fiore–Gennaro–Smart (FGS) transformationwhich converts identity-based key agreement
(IB-KA) protocols to certificateless key encapsulationMechanisms (CL-KEMs), and a pairing-free CL-KEMbased on the Fiore–
Gennaro (FG) IB-KA protocol. We presented an attack against the pairing-free CL-KEM transformed from the FG IB-KA
protocol, and a proven secure variant of it based on a modified FG IB-KA protocol. Our attack shows one drawback of the
FGS transformation: existing proven secure IB-KA protocols must be re-proved in a very strong newmodel before applying
the transformation. Motivated by this, we presented a new generic construction of certificateless encryption schemes from
IB-KA protocols in the random oracle. Our new generic construction is more convenient to use than the FGS transformation
since we can directly apply our transformation to existing proven secure IB-KA protocols. An interesting open problem is to
develop a new convenient and generic construction of certificateless encryption schemes from IB-KA protocols without the
random oracle assumption.
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