
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

9-2011

Certificateless cryptography with KGC trust level 3 Certificateless cryptography with KGC trust level 3

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Chik How TAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
YANG, Guomin and TAN, Chik How. Certificateless cryptography with KGC trust level 3. (2011). Theoretical
Computer Science. 412, (39), 5446-5457.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7441

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7441&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7441&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Theoretical Computer Science 412 (2011) 5446–5457

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Certificateless cryptography with KGC trust level 3
Guomin Yang ∗, Chik How Tan
Temasek Laboratories, National University of Singapore, Singapore

a r t i c l e i n f o

Article history:
Received 25 January 2011
Received in revised form 9 May 2011
Accepted 9 June 2011
Communicated by X. Deng

Keywords:
Certificateless cryptography
Public key encryption
Digital signature
Trust hierarchy

a b s t r a c t

A normal certificateless cryptosystem can only achieve KGC trust level 2 according to the
trust hierarchy defined byGirault. Although in the seminal paper introducing certificateless
cryptography, Al-Riyami and Paterson introduced a binding technique to lift the KGC trust
level of their certificateless schemes to level 3, many subsequent work on certificateless
cryptography just focused on the constructions of normal certificateless schemes, and a
formal study on the general applicability of the binding technique to these existing schemes
is still missing. In this paper, to address the KGC trust level issue, we introduce the notion
of Key Dependent Certificateless Cryptography (KD-CLC). Compared with conventional
certificateless cryptography, KD-CLC can achieve stronger security, and more importantly,
KGC trust level 3. We then study generic techniques for transforming conventional CLC to
KD-CLC. We start with the binding technique by Al-Riyami and Paterson, and show that
there are some technical difficulties in proving that the binding technique is generally
applicable. However, we show that a slightly modified version of the binding technique
indeed can be proved to work under the random oracle assumption. Finally, we show
how to perform the transformation using a standard cryptographic primitive instead of
a random oracle.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Certificateless Cryptography (CLC), introduced by Al-Riyami and Paterson [1], aims to avoid the drawbacks of both
traditional public key cryptography which requires a public key infrastructure (PKI), and identity-based cryptography [17]
which has the inherent key escrow problem. In a normal certificateless cryptosystem, a user secret key usk is derived from
two partial secrets: one is an identity-based secret key (also known as partial secret key) psk generated by a Key Generation
Center (KGC) based on the user’s identity ID, and the other is a user self-generated secret key sk which corresponds to an
uncertified public key pk. In many existing certificateless cryptosystems (e.g. [4,10,11,5,12]), the user secret key is simply
set as usk = (psk, sk).

Since there is no authentication information (such as an X.509 certificate in a PKI) for the user public key pk, an adversary
can replace the public key either in the transmission or in a public directory with another public key. If a key replacement
attack happens, then the security of a certificateless cryptosystem would just rely on its identity-based component. On
the other hand, if the partial secret key psk of a user is leaked, then an adversary can always launch the key replacement
attack to break a conventional type certificateless cryptosystem. Because of this reason, inmost of the existing certificateless
cryptosystems, the KGC can only be trusted by all the users. Recall the trust hierarchy by Girault [8] for public key
cryptography.

Level 1. The ‘‘trusted’’ authority (e.g. the CA in a PKI, the KGC in an identity-based or certificateless cryptosystem) knows
the secret key of any user.

∗ Corresponding author. Tel.: +65 65161147.
E-mail addresses: tslyg@nus.edu.sg (G. Yang), tsltch@nus.edu.sg (C.H. Tan).

0304-3975/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2011.06.015

http://dx.doi.org/10.1016/j.tcs.2011.06.015
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:tslyg@nus.edu.sg
mailto:tsltch@nus.edu.sg
http://dx.doi.org/10.1016/j.tcs.2011.06.015

G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457 5447

KGC

DecryptorEncryptor

❄
psk

✛pk

AP Formulation

KGC

DecryptorEncryptor

❄
psk

✛pk

BSS Formulation

KGC

DecryptorEncryptor

✻
❄

pk and psk
generation
protocol

✛pk

LK Formulation

Fig. 1. The existing CLE architectures.

Level 2. The authority cannot compute users’ secret keys. However, it can still impersonate a user by generating false
guarantees (e.g. false certificates in a PKI, false public keys in a certificateless cryptosystem).

Level 3. The authority cannot compute users’ secret keys, and it can be proven that it generates false guarantees of users if
it does so.

We can see that identity-based cryptosystems [17] fall into Level 1, conventional certificateless cryptosystems fall into level
2, and a traditional PKI can achieve level 3.

In order to achieve the same trust level as that of a traditional PKI, Al-Riyami and Paterson proposed in their seminal
paper [1] a simple binding technique for their certificateless cryptosystems without formal security proofs. However, most
of the subsequent research work on certificateless cryptography ignored this important issue and just focused on designing
certificateless schemes with KGC trust level 2, and it is unknown if there exist general and provably secure techniques to lift
the KGC trust level of these existing schemes to level 3 — the same level as is enjoyed in a traditional PKI.
Our work. In this paper, to address the KGC trust level issue, we formalize the notion of Key Dependent Certificateless
Cryptography (KD-CLC). In a key dependent certificateless cryptosystem, the user partial secret key is generated in the
following way: a user with identity ID first generates a public/private key pair (pk, sk), and sends pk to the KGC, who then
generates the partial secret key psk based on both pk and ID. The advantage of this approach is that even if psk is exposed,
an outside adversary cannot break the system by launching a key replacement attack. The reason is that for a replaced pk′,
the adversary needs to know the (new) partial secret key psk′ corresponding to ID and pk′, which can only be generated by
the KGC. Now, the same statement as in [1] can be made here:

‘‘A KGC who replaces an entity’s public key will be implicated in the event of a dispute: the existence of two working
public keys for an identity can only result from the existence of two partial secret keys binding that identity to two
different public keys; only the KGC could have created these two partial secret keys.’’

Then we propose a formal security model for key dependent certificateless cryptography, and study the problem of
transforming conventional type certificateless cryptosystems into their key dependent counterparts. A good starting point is
to consider the binding technique byAl-Riyami and Paterson. The idea is very simple: after a userwith identity IDhas created
a public key pk, it simply uses ID‖pk (‖ denotes string concatenation) as the ‘‘identity’’ for partial secret key generation.
Although the idea looks reasonable, we show that some difficulties arise when one wants to formally prove this technique
works. On the other hand, we show that a slightly modified binding can be proved to work: instead of using ID‖pk, we use
H(ID‖pk) where H is a cryptographic hash function. We prove that in the random oracle model, this simple (but useful)
binding technique can transform any conventional certificateless encryption or signature scheme (with KGC trust level 2)
into a keydependent scheme (with trust level 3). Finally,we showhow toperform the transformationusing another standard
cryptographic primitive – a Trapdoor Hash Function, instead of a random oracle.
Paper organization. In the next section, we review some related work on certificateless cryptography. In Section 3, we
formally define key dependent certificateless encryption (KD-CLE) and two generic constructions (with andwithout random
oracle, respectively) of KD-CLE schemes from conventional CLE schemes. Then in Section 4, we show that our generic
transformations can also be applied to construct key dependent certificateless signature schemes. The paper is concluded
in Section 5.

2. Related work

Certificateless cryptography, introduced by Al-Riyami and Paterson [1] with the purpose of avoiding the drawbacks of
both traditional public key cryptography and identity-based cryptography [17], has drawn a lot of attentions in recent years.
A detailed survey on certificateless encryption schemes can be found in [5].

According to the categorization by Dent [6], we can separate existing certificateless cryptosystems into three categories:
AP Formulation [1], BSS Formulation [3], and LK Formulation [14], which are demonstrated in Fig. 1. The dotted arrow
denotes the fact that the public key can be published before the partial secret key psk is obtained. Most of the existing
certificateless cryptosystems (e.g. [15,7,10,11,5,4,12]) follow the AP formulation.

In [16], Liu et al. introduced the notion of self-generated-certificate public key cryptography which can prevent the
Denial-of-Decryption attacks. They also proposed a generic construction of self-generated-certificate encryption scheme
based on a certificateless encryption scheme and a certificateless signature scheme. It is observed by Dent [6] that the
minimumrequirement for a certificateless encryption scheme to achieveDenial-of-Decryption security is that it is expressed

5448 G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457

KGC

DecryptorEncryptor

✻
❄
(2)psk(1)pk

✛pk

Fig. 2. Our KD-CLE architecture.

in the BSS or LK formulation (i.e. a user can only publish his/her public key after receiving the partial secret key from the
KGC).

In this paper, we present a different CLE architecture which is shown in Fig. 2. The KD-CLE architecture differs from the
conventional AP architecture in the essence that each partial secret key is tied with a user public key. As described earlier,
in this way if an adversary replaces a user public key, then the adversary needs to compute the new partial secret key
corresponding to the new public key, and by designing the KD-CLE system properly we can make sure that only the KGC
can do so. So compared with the AP (and BSS) formulation, the KD-CLE architecture allows us to construct certificateless
systems with KGC trust level 3. Notice that the KD-CLE architecture is different from a PKI, since the KGC only uses the user
public key in the computation of the partial secret key, instead of issuing a certificate to the user. One additional remark is
that although the LK formulation [14] also supports KGC trust level 3, it does not allow messages to be encrypted ‘‘into the
future’’ (since in the LK formulation the user public key is available only after obtaining the partial secret key).

In [2], Au et al. defined certificateless security against a malicious-but-honest KGC who may generate its master public
and private keys dishonestly but would not actively replace user public keys. Au et al.’s definition still falls in the AP
architecture (Fig. 1), and hence does not support KGC trust level 3. On the other hand, in the security models given in
this paper, we assume the master public and private keys are honestly generated by running the master key generation
algorithm. So in general the two models (Au et al.’s and ours) are incomparable. However, an interesting point is that the
specific malicious KGC attack presented in [2] cannot be directly applied to a key dependent certificateless cryptosystem,
since at the time of master key generation, the KGC has no idea on the user public key that a user would choose.

It is worth noting that in [9], Hu et al. also attempted to define certificateless signature with KGC trust level 3. They
defined the KGC trust level 3 security separately from the existential unforgeability under adaptive chosen message and
chosen identity attacks (EUF-CMIA). Their definition basically requires that an adversary who has seen partial secret keys
corresponding to (ID, pk1), (ID, pk2), . . . , (ID, pkn) cannot comeupwith a valid partial secret key for the pair (ID, pk∗)where
pk∗ ≠ pki (1 ≤ i ≤ n). Compared with Hu et al.’s work, we directly define KGC trust level 3 security inside the Type-I and
Type-II EUF-CMIA security models, rather than using a separate definition.

3. Key dependent certificateless encryption

Definition 1. A Key Dependent Certificateless Encryption scheme KD-CLE consists of the following algorithms.

– Setup(1k) takes 1k as input where k is the security parameter, and returns a master public/secret key pair (mpk,msk).
– SetSecretValue(mpk) takesmpk as input and returns a user secret value s.
– SetPublicKey(mpk, s) takesmpk and s as input and returns a user public key pk.
– ExtractPartialKey(msk, ID, pk) takes the master secret key msk, a user identity ID and a user public key pk as input and

returns a user partial secret key psk.
– SetPrivateKey(mpk, s, psk) takesmpk, s and psk as input and returns a user private key usk. This algorithm is deterministic.
– Enc(mpk, ID, pk,m) takesmpk, a user identity ID, a user public key pk, and a messagem as input and returns a ciphertext

c.
– Dec(mpk, usk, c) takes mpk, a user private key usk, and a ciphertext c as input and returns a plaintext m or a decryption

failure symbol⊥.

As usual, we assume the partial key generation process, which includes the submission of the user identity ID and the
user public key pk to the KGC and the issuing of the partial secret key psk to the user, is done in a secure and authenticated
manner.

3.1. KD-CLE Security Model

There are two types of adversaries, AI and AII . A Type-I adversary (or AI) is allowed to perform key replacement attacks,
while a Type-II adversary (or AII) is a KGC who controlsmsk and also the generation of user partial secret keys.

Below we present the adversarial game. X can be instantiated with I or II in the description below, st denotes some state
information, andm0 and m1 are two messages of equal length.

G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457 5449

KD-Type-X-ATK Adversarial Game

1 (mpk,msk)← Setup(1k)
2 (ID∗, st,m0,m1)← A1

O(mpk, [msk])
3 b← {0, 1}
4 c∗ ← Enc(mpk, ID∗, pk∗ID∗ ,mb)

5 b′ ← A2
O(c∗, st)

In line 2 of the game, msk is only passed to the adversary in the KD-Type-II game. And in line 4 of the game, pk∗ID∗ refers
to the current public key of ID∗. We say the adversary wins the game if b′ = b. The advantage of the adversary is defined to
be

AdvKD-Type-X-ATK
KD-CLE,A (k) =

Pr[b′ = b] −
1
2


where ATK can be CPA or CCA. We now turn to the oracles O available to the adversary:

– RequestPublicKey(ID): Given an identity ID, this oracle returns to the adversary pkID. If the identity has no associated
public key, then a public key is generated by running the SetSecretValue, and SetPublicKey algorithms.

– ReplacePublicKey(ID, pk′): Given an identity ID and a public key pk′ in the public key space, this oracle allows the
adversary to replace ID’s public key with pk′.

– ExtractPartialPrivateKey(ID, pk): Given an identity ID and a public key pk, this oracle returns the partial secret key psk
corresponding to identity ID and public key pk.

– ExtractFullPrivateKey(ID): Given an identity ID, this oracle returns the full user private key uskID.
– StrongDecrypt(ID, c): Given an user identity ID and a ciphertext c , this oracle returns the decryption of c , where the

decryption is performed using the user private key corresponding to the current public key.

KD-Type-I-CCA Security: The adversary has the following restrictions in accessing the oracles

1. A cannot extract the full private key for any identity if the corresponding public key has been replaced.
2. A cannot extract the full private key for ID∗.
3. A cannot replace the public key for ID∗ before c∗ has been issued and make a ExtractPartialSecretKey(ID∗, pk∗ID∗) query

(at any point).
4. A2 cannot make the StrongDecrypt query on (ID∗, c∗) unless at the time of this query user ID∗’s public key is not pk∗ID∗ .

KD-Type-II-CCA security: In the KD-Type-II-CCA game, the adversary is given the master secret key msk, and has the
following restrictions in accessing the oracles

1. A cannot extract the full private key for any identity if the corresponding public key has been replaced.
2. A cannot extract the full private key for ID∗.
3. A cannot make any partial secret key extraction query.1
4. A1 cannot output an identity ID∗ for which it has replaced the public key.
5. A2 cannot make the StrongDecrypt query on (ID∗, c∗) unless at the time of this query user ID∗’s public key is not pk∗ID∗ .

Definition 2. A key dependent certificateless encryption scheme KD-CLE is said to be secure in the KD-Type-X-CCA
model if for any PPT adversary A, AdvKD-Type-X-CCA

KD-CLE,A (k) is a negligible function of the security parameter k.

Comparison with conventional CLE security model. In our KD-CLE security model, we define ExtractPartialSecretKey
query differently from that in the conventional CLE security model [1,4,5]. Besides the user identity, the query also takes a
public key as input, and in the definition of KD-Type-I security, we disallow the adversary to extract the partial secret key
with respect to ID∗ and pk∗ID∗ if the public key pk∗ID∗ used to generate the challenge ciphertext is a replaced key, but allow
the adversary to extract partial secret keys with respect to ID∗ and any other pkID∗ such that pkID∗ ≠ pk∗ID∗ . This captures
the following key replacement attack carried out by an adversary: after the adversary learns a partial secret key of the user
ID∗, the adversary replaces the original public key of ID∗ with another key pk∗ID∗ , and request a challenge ciphertext under
ID∗ and pk∗ID∗ . We require a secure KD-CLE to be able to defend against such an attack. Notice that in the conventional Type-
I game, such an adversarial behavior is not allowed since in this way an adversary can always break a conventional type
certificateless encryption scheme.
Strong and weak decryption oracles. For the StrongDecrypt oracle defined in our model (and in the models of [1,7]), it is
required that the decryption is performed using the user private key corresponding to the current public key of a user even
if that public key is a replaced key provided by the adversary. This is a very strong oracle. Alternatively, one can define a
weaker decryption oracle where the decryption is performed using the original user private key. This approach has been
adopted in [10,11]. Also, in [4], Bentahar et al. defined another (intermediate) decryption oracle where if an adversary has
replaced a public key and it subsequently requires a decryption query that involves a decryption with the corresponding
secret value, it must supply this secret value to the decryption oracle.

1 The partial secret key extraction query is unnecessary as a Type-II adversary can compute the partial secret keys.

5450 G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457

3.2. A generic construction of KD-CLE from conventional CLE in ROM

The binding technique. A good starting point to construct KD-CLE is to apply the binding technique due to Al-Riyami
and Paterson [1]. The binding technique works as follows: given a conventional certificateless encryption scheme
CLE = (Setup,SetSecretValue, SetPublicKey, ExtractPartialKey,SetPrivateKey, Enc,Dec), we construct a KD-CLE scheme
KD-CLE = (Setup′,SetSecretValue′,SetPublicKey′, ExtractPartialKey′,SetPrivateKey′, Enc′, Dec′) as follows:

– Setup′(1k): same as Setup(1k).
– SetSecretValue′(mpk): same as SetSecretValue(mpk).
– SetPublicKey′(mpk, s): same as SetPublicKey(mpk, s).
– ExtractPartialKey′(msk, ID, pk): let ˜ID← ID‖pk, run

psk← ExtractPartialKey(msk, ˜ID)

and return psk.
– SetPrivateKey′(mpk, s, psk): same as SetPrivateKey(mpk, s, psk).
– Enc′(mpk, ID, pk,m): let ˜ID← ID‖pk, run

c ← Enc(mpk, ˜ID, pk,m)

and return c.
– Dec′(mpk, usk, c): same as Dec(mpk, usk, c).

Difficulties in giving a generic proof.Although it is possible to give individual security proofs for concrete KD-CLE schemes
which are generated by applying the binding technique to conventional CLE schemes, there are some difficulties in giving
a generic proof. One may try to prove that the above generic transformation would generate secure KD-CLE schemes based
on the assumption that the underlying CLE is secure. By following a normal proof strategy, assume there exists an adversary
A that can break the transformed scheme in the KD-Type-X-ATK game, we try to construct another adversary B that breaks
the original CLE in the Type-X-ATK game. B would simulate the KD-Type-X-ATK game for A, and hopefully can relay his
challenging ciphertext C∗ encrypted using identity ID∗ and public key pk∗ to A and let A find out the solution for him.
However, the following problem would occur in the simulation: when A requests a public key for the user ID∗, B needs
to reply a public key pk∗ to A, and in order to make B’s own game consistent with the game simulated for A (i.e. A and B have
the same challenging identity ID∗ and the same challenging public key pk∗), B needs to supply ˜ID

∗

= ID∗‖pk∗ to his own
challenger via a RequestPublicKey query, but the problem is that with overwhelming probability the public key returned by
B’s challenger would not be the same as the public key pk∗ in ˜ID

∗

. To solve this problem, below we show a modified version
of the binding technique.

A Hash-Binding Variant. We do a slight modification to the binding technique: instead of using ˜ID ← ID‖pk, we use
˜ID ← H(ID‖pk) where H : {0, 1}∗ → {0, 1}k denotes a cryptographic hash function. In the following we prove that this
slightly modified version works if we assume H to be a random oracle.

Theorem 1. If CLE is secure in the conventional Type-I-CCA security model, then KD-CLE is secure in the KD-Type-I-CCA
security model assuming H is a random oracle.

Proof. The proof is by contradiction. Assume there exists an adversary A (against KD-CLE) that has a non-negligible
advantage in the KD-Type-I-CCA game, we construct another adversary B (against CLE) which has a non-negligible
advantage in the conventional Type-I-CCA game.

B simulates the KD-Type-I-CCA game for A. In the simulation, if a hash collision happens, B aborts with failure. B first
passesmpk to A and answers A’s queries as follows.

– H queries: this oracle is simulated by consistently returning random strings in {0, 1}k. That is, Bmaintains a table Twhich
records the inputs to the hash oracle and their corresponding hash values.

– RequestPublicKey(ID): upon receiving this query, if the user ID has already been created, then the current public key
is returned. Otherwise, B randomly selects a string ˜ID ← {0, 1}k, and makes a RequestPublicKey(˜ID) query to its own
oracle. After receiving the public key pk from the challenger, B sets H(ID‖pk) = ˜ID by putting (ID‖pk, ˜ID) into table T,
and returns pk to A.

– ReplacePublicKey(ID, pk′): B first simulates an H query with input ID‖pk′ to get a hash value ˜ID
′

= H(ID‖pk′). B then
makes a RequestPublicKey(˜ID

′

) query and a ReplacePublicKey(˜ID
′

, pk′) query to its own oracles.
– ExtractPartialSecretKey(ID, pk): upon receiving this query, B first simulates an H query with input ID‖pk to get a hash

value ˜ID = H(ID‖pk). B then makes a ExtractPartialSecretKey(˜ID) query to its own oracle and returns to A the answer
B gets from its oracle.

G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457 5451

– ExtractFullPrivateKey(ID): upon receiving this query, B first simulates an H query with input ID‖pk where pk is the
public key of ID and get a hash value ˜ID = H(ID‖pk). B then makes a ExtractFullPrivateKey(˜ID) query to its own oracle
and returns to A the answer B gets from its oracle.

– StrongDecrypt(ID, c): let pkID denotes the public key of ID at the time of the query, and let ˜ID = H(ID‖pkID). B makes a
StrongDecrypt(˜ID, c) query to its own oracle and returns to A the answer B gets from its oracle.

When A outputs (ID∗,m0,m1) as the challenge identity and messages, B outputs (˜ID
∗

,m0,m1) to its own challenger
where ˜ID

∗

= H(ID∗, pk∗ID∗). After receiving the challenging ciphertext c∗ from the challenger, B returns c∗ to A as the
challenging ciphertext. B then simulates the oracle queries as before. Finally, when A outputs a bit b′ and halts, B outputs b′
as well and halts.
Analysis. If no hash collision occurs (denote this event by¬col), then the simulated KD-Type-I-CCA game is perfect, and also
if A obeys all the restrictions in the KD-Type-I-CCA game, B obeys all the restrictions in the conventional Type-I-CCA game.
Lastly, if A guesses the value of b correctly, so does B. So we have

Pr[B wins in Type-I-CCA game|¬col] = Pr[A wins in KD-Type-I-CCA game|¬col]

and hence

|Pr[Awins in KD-Type-I-CCA game] − Pr[B wins in Type-I-CCA game]| ≤ Pr[col].

Therefore, we have

AdvKD-Type-I-CCA
KD-CLE,A (k) ≤ AdvType-I-CCA

CLE,B (k)+ Pr[col]

≤ AdvType-I-CCA
CLE,B (k)+

Q 2

2k

where Q denotes the total number of queries A has made in the game. �

Theorem 2. If CLE is secure in the conventional Type-II-CCA security model, then KD-CLE is secure in the KD-Type-II-CCA
security model assuming H is a random oracle.

Proof. The proof is similar to that of Theorem 1. Assume there exists an adversary A (against KD-CLE) that has a non-
negligible advantage in the KD-Type-II-CCA game, we construct another adversary B (against CLE) which has a non-
negligible advantage in the conventional Type-II-CCA game.

Compared with the proof of Theorem 1, the only difference is in the setup of the simulation for the adversary A. In the
conventional Type-II-CCA game, B’s challenger would first run the Setup algorithm to generate a master public/secret key
pair (mpk,msk) and passes themaster key pair to B. To setup the simulation of the KD-Type-II-CCA game forA, after receiving
(mpk,msk) from his challenger, B simply passes (mpk,msk) to A.

The rest of the proof is just the same as in the proof of Theorem1. B simulates the KD-Type-II-CCA game forA by answering
the RequestPublicKey, ReplacePublicKey, ExtractFullPrivateKey, StrongDecrypt, and H queries in the sameway as in the
proof of Theorem 1. By programming the random oracle H , B can make the simulated game for A consistent with its own
game, so B can answer A’s queries successfully by querying its own oracles, and relay his challenge to A. Finally, B outputs
whatever A outputs.

Following the same analysis as in the proof of Theorem 1, if no hash collision occurs, B’s simulation for A is perfect and
if A has a non-negligible winning advantage in the simulated KD-Type-II-CCA game, B also has a non-negligible winning
advantage in the Type-II-CCA game. Finally, since we model H as a random oracle, the probability of a hash collision event
is negligible. �

3.3. A new generic transformation without random oracle

In this section, we study the (more challenging) problem of transforming conventional CLE to KD-CLE without random
oracle. We show that the random oracle can be replaced by a standard cryptographic primitive – Trapdoor Hash Functions
(THFs) [18] (also known as Chameleon Hash Functions [13]).

Definition 3 (Trapdoor Hash Family [18]). A trapdoor hash function family consists of a pair (I, H) such that:

– I is a probabilistic polynomial-time key generation algorithm that on input 1k outputs a hash/trapdoor key pair (HK , TK),
such that the sizes of HK and TK are polynomially related to k.

– H is a family of randomized hash functions. Every hash function in H is associated with a hash key HK , and is applied
to a message from a space M and a random element from a finite space R. The output of the hash function hHK does not
depend on TK .

A trapdoor hash family (I, H) has the following properties:

1. Efficiency: Given a hash key HK and a pair (m, r) ∈M×R, the hash value hHK (m; r) is computable in polynomial time.

5452 G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457

2. Collision resistance: there is no probabilistic polynomial-time algorithm A that on input HK outputs, with a probability
which is not negligible, two pairs (m1, r1), (m2, r2) ∈ M ×R that satisfy m1 ≠ m2 and hHK (m1; r1) = hHK (m2; r2) (the
probability is over HK, where (HK , TK)←I(1k), and over the random coin tosses of algorithm A).

3. Trapdoor collisions: There exists a probabilistic polynomial-time algorithm that given a pair (HK , TK)←I(1k), a pair
(m1, r1) ∈M ×R, and an additional messagem2 ∈M, outputs a value r2 ∈ R such that:
(a) hHK (m1; r1) = hHK (m2; r2).
(b) If r1 is uniformly distributed in R then the distribution of r2 is computationally indistinguishable from uniform in R.

A trapdoor hash family based on DLP [18]

– The key generation algorithm I. Choose at random a safe prime p (i.e., a prime p such that q = (p − 1)/2 is prime) and
an element g ∈ Z∗p of order q. Choose a random element α ∈ Z∗q and compute y = gα (mod p). The public hash key is
(p, g, y) and the private trapdoor key is α.

– The hash family H . For HK = (p, g, y), hHK : Zq × Zq → Z∗p is defined as follows: hHK (m; r) = gmyr (mod p).

Strong collision resistance. In this paper, we need a trapdoor hash family with strong collision resistance: There is no
probabilistic polynomial-time algorithm A that on input HK outputs, with a probability which is not negligible, two pairs
(m1, r1), (m2, r2) ∈ M × R that satisfy (m1, r1) ≠ (m2, r2) and hHK (m1; r1) = hHK (m2; r2) (the probability is over HK,
where (HK , TK)←I(1k), and over the random coin tosses of algorithm A). It is easy to verify that the trapdoor hash family
based on DLP also satisfies the strong collision resistance.
The transformation. Given a conventional certificateless encryption scheme CLE = (Setup,SetSecretValue,
SetPublicKey, ExtractPartialKey,SetPrivateKey, Enc,Dec), and a trapdoor hash function family (I, H), we construct a
KD-CLE scheme KD-CLE = (Setup′, SetSecretValue′,SetPublicKey′, ExtractPartialKey′,SetPrivateKey′, Enc′,Dec′) as
follows:

– Setup′(1k): compute (mpk,msk)← Setup(1k) and (HK , TK)← I(1k). Setmpk′ = (mpk,HK) and msk′ = msk.
– SetSecretValue′(mpk′): compute s← SetSecretValue(mpk) , set the secret value as s′ = s.
– SetPublicKey′(mpk′, s′): compute pk ← SetPublicKey(mpk, s′), randomly select r ← R, and set the public key as

pk′ ← (pk, r).
– ExtractPartialKey′(msk′, ID, pk′): compute ˜ID← hHK (ID‖pk; r), run

psk′ ← ExtractPartialKey(msk′, ˜ID)

and return psk′.
– SetPrivateKey′(mpk′, s′, psk′): compute usk′ ← SetPrivateKey(mpk, s′, psk′), and return usk′.
– Enc′(mpk′, ID, pk′,m): let ˜ID← hHK (ID‖pk; r), run

c ← Enc(mpk, ˜ID, pk,m)

and return c.
– Dec′(mpk′, usk′, c): return Dec(mpk, usk′, c).

Theorem 3. IfCLE is secure in the conventional Type-I-CCA securitymodel, and (I, H) is a secure trapdoor hash function family
with strong collision resistance, then KD-CLE is secure in the KD-Type-I-CCA security model.

Proof. Similar to the proof for Theorem 1, assume there exists an adversary A (against KD-CLE) that has a non-negligible
advantage in the KD-Type-I-CCA game, we construct another adversary B (against CLE) which has a non-negligible
advantage in the conventional Type-I-CCA game.

After B gets a master public key mpk, which is generated by running Setup(1k), from his challenger, B runs I(1k) to
generate (HK , TK). B then passes (mpk,HK) to A and simulates the KD-Type-I-CCA game for A as follows.

– RequestPublicKey(ID): upon receiving this query, if the user ID has already been created, then the current public key is
returned. Otherwise, B first generates a public key pk0 by executing the SetSecretValue and SetPublicKey algorithms, B
then randomly selects r0 ← R, and computes ˜ID← hHK (ID‖pk0; r0). After that B makes a RequestPublicKey(˜ID) query
to its own oracle and receives a public key pk from his challenger. B then uses TK to find r such that hHK (ID‖pk; r) =
hHK (ID‖pk0; r0) = ˜ID, and returns pk′ = (pk, r) to A.

– ReplacePublicKey(ID, (p̂k, r̂)): B first computes ˜ID
′

= hHK (ID‖p̂k; r̂), and then makes a RequestPublicKey(˜ID
′

) query
and a ReplacePublicKey (˜ID

′

, p̂k) query to its own oracles.
– ExtractFullPrivateKey(ID): upon receiving this query, B first computes ˜ID ← hHK (ID‖pk; r) where (pk, r) is the public

key of ID. B then makes a ExtractFullPrivateKey(˜ID) query to its own oracle and returns to A the answer B gets from its
oracle.

– ExtractPartialSecretKey(ID, (pk, r)): upon receiving this query, B first computes ˜ID = hHK (ID‖pk; r). B then makes a
ExtractPartialSecretKey(˜ID) query to its own oracle and returns to A the answer B gets from its oracle.

G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457 5453

– StrongDecrypt(ID, c): let (pk, r) denotes the public key of ID at the time of the query, and let ˜ID = hHK (ID‖pk; r). B
makes a StrongDecrypt(˜ID, c) query to its own oracle and returns to A the answer B gets from its oracle.

When A outputs (ID∗,m0,m1) (denote (pk∗ID∗ , r
∗

ID∗) the current public key of ID∗) as the challenge identity and messages,
B outputs (˜ID

∗

,m0,m1) to its own challenger where ˜ID
∗

= hHK (ID∗‖pk∗ID∗; r
∗

ID∗). After receiving the challenging ciphertext
c∗ from the challenger, B returns c∗ to A as the challenging ciphertext. B then simulates the oracle queries as before. Finally,
when A outputs a bit b′ and halts, B outputs b′ as well and halts.
Analysis. Since the trapdoor hash function family is strong collision resistant, a collision event

hHK (ID‖pk; r) = hHK (ID′‖pk′; r ′) ∧ (ID‖pk, r) ≠ (ID′‖pk′, r ′)

only happenswith negligible probability ϵcol in the simulated KD-Type-I-CCA game. If no collision occurs, then the simulated
KD-Type-I-CCA game is perfect, and also if A obeys all the restrictions in the KD-Type-I-CCA game, B obeys all the restrictions
in the conventional Type-I-CCA game. Lastly, if A guesses the value of b correctly, so does B. So we have

AdvKD-Type-I-CCA
KD-CLE,A (k) ≤ AdvType-I-CCA

CLE,B (k)+ ϵcol. �

Remark. In our transformation, we require the trapdoor hash family to be strong collision resistant. The reason is that if an
adversary can find a collision hHK (ID‖pk; r1) = hHK (ID‖pk; r2) such that r1 ≠ r2, then to win the game, the adversary A can
ask a challenging ciphertext c∗ under ID and (pk, r1), then replace the public key of ID with (pk, r2), and then ask a strong
decryption query for c∗.

Theorem 4. If CLE is secure in the conventional Type-II-CCA security model, and (I, H) is a secure trapdoor hash function
family with strong collision resistance, then KD-CLE is secure in the KD-Type-II-CCA security model.

Proof. The proof is similar to that of Theorem 3. Suppose there exists an adversary A (against KD-CLE) that has a non-
negligible advantage in the KD-Type-II-CCA game, we construct another adversary B (against CLE) which has a non-
negligible advantage in the conventional Type-II-CCA game.

Compared with the proof of Theorem 3, the only difference is in the setup of the simulation for the adversary A. In the
Type-II-CCA game, B first receives a pair of master public and secret keys (mpk,msk), which are generated by running the
Setup algorithm, from his challenger. After that, B runs I(1k) to generate (HK , TK), and passes mpk′ = (mpk,HK) and
msk′ = msk to A. Notice that TK is not passed to A.

The rest of the proof is the same as in the proof of Theorem 3. B simulates the KD-Type-II-CCA game for A by answering
the RequestPublicKey, ReplacePublicKey, ExtractFullPrivateKey, and StrongDecrypt queries in the same way as in the
proof of Theorem 3. Since B has the trapdoor key TK , B can make the simulated game for A consistent with its own game. In
this way B can answer A’s queries successfully by querying its own oracles, and relay his challenge to A. Finally, B outputs
whatever A outputs.

Then Following the same analysis as in the proof of Theorem 3, since the trapdoor hash function family is strong collision
resistant, a collision event happens only with negligible probability in the simulated KD-Type-II-CCA game. Also, if no
collision event happens, then B’s simulation for A is perfect, and if A has a non-negligible advantage in the simulated KD-
Type-II-CCA game, B also has a non-negligible advantage in the conventional Type-II-CCA game. �

One important point in our transformation in the standard model is that the trapdoor key TK is not part of the master
secret key. As a result, in the proof of Theorem 4, when simulating the KD-Type-II-CCA game, B does not need to pass TK
to the adversary A, so we can guarantee that no collision would occur in the simulated KD-Type-II-CCA game. In the real
practice, a collision event can be used as an evidence showing that the KGC must have cheated (the trapdoor key TK must
have been used).

3.4. A concrete KD-CLE scheme in the standard model

To give a clearer picture of our generic construction of KD-CLE schemes from conventional CLE schemes in the standard
model, below we present a concrete KD-CLE scheme constructed from the Dent–Libert–Paterson CLE [7].

The construction uses bilinear map groups. Let G1, G2 denote two groups of prime order q, and e : G1 × G1 → G2 a
bilinear map between them. The map satisfies the following properties:

1. Bilinear: For any U, V ∈ G1, and a, b ∈ Zq, we have e(Ua, V b) = e(U, V)ab;
2. Non-degenerate: If g is a generator of G1, then e(g, g) is a generator of G2;
3. Computable: there exists an efficient algorithm to compute e(U, V) for any U, V ∈ G1.

The KD-CLE scheme works as follows:

– Setup(1k) : Let e denote a bilinear map as described above and g a generator of G1. Set g1 = gγ for a random γ ← Z∗q .
Without loss of generality, let θI denote the bit-length of a user identity and θG the bit-length of a G1 group element. Pick

5454 G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457

a random g2 ← G1, and vectors u = (u′, u1, . . . , un) ∈ Gn+1
1 , v = (v′, v1, . . . , vn) ∈ Gn+1

1 where n = θI + 2θG + 2.
Define the Waters Hash Functions

Fu(S) = u′
n∏

i=1

usi
i and Fv(W) = v′

n∏
i=1

v
wi
i

where S = s1s2...sn ∈ {0, 1}n and W = w1w2...wn ∈ {0, 1}n. Choose an n-bit safe prime p′ = 2q′ + 1, a generator
g ′ ∈ Z∗p′ of order q

′, a random element α′ ∈ Z∗q′ , and compute y′ = g ′α
′

mod p′. Define the trapdoor hash function

hp′,g ′,y′(A‖B‖C; r) = g ′0‖A‖B‖Cy′r mod p′

for A ∈ {0, 1}θI , B ∈ G1, C ∈ G1, r ∈ Z∗q′ (notice that |q′| = θI + 2θG + 1, so we append a ‘‘0’’ bit before the bit-string
‘‘A‖B‖C ’’). Also select a collision resistant hash function H ′ : {0, 1}∗ → {0, 1}n. The master public key is

mpk = (g, g1, g2,u, v, p′, q′, g ′, y′, hp′,g ′,y′ ,H ′)

and the master secret ismsk = gγ

2 .
– SetSecretValue(mpk): Randomly choose the secret value s← Z∗q .
– SetPublicKey(mpk, s): Compute (X, Y) = (g s, g s

1), randomly select r ← R, and set the public key as pk = (X, Y , r).
– ExtractPartialKey(msk, ID, pk): Compute ˜ID← hp′,g ′,y′(ID‖X‖Y ; r), randomly pick λ← Z∗q , and return psk← (d1, d2) =

(gγ

2 · Fu(˜ID)λ, gλ).
– SetPrivateKey(mpk, s, psk): Parse psk into (d1, d2), randomly choose λ′ ← Z∗q and set the full user private key as

usk← (χ1, χ2) = (ds1 · Fu(˜ID)λ
′

, ds2 · g
λ′) = (gγ s

2 · Fu(˜ID)t , g t)

where t = λs+ λ′.
– Enc(mpk, ID, pk,m): To encrypt m ∈ G2, parse pk into (X, Y , r), then check that e(X, g1)/e(g, Y) = 1. If so, compute
˜ID← hp′,g ′,y′(ID‖X‖Y ; r), randomly choose ℓ← Z∗q and compute

C = (C0, C1, C2, C3) = (m · e(Y , g2)ℓ, gℓ, Fu(˜ID)ℓ, Fv(ρ)ℓ)

where ρ = H ′(C0, C1, C2, ˜ID, X, Y).
– Dec(mpk, usk, C): Parse usk into (χ1, χ2) and C into (C0, C1, C2, C3). Check that

e(C1, Fu(˜ID) · Fv(ρ)) = e(g, C2 · C3)

where ˜ID = hp′,g ′,y′(ID‖X‖Y ; r) and ρ = H ′(C0, C1, C2, ˜ID, X, Y). If the condition does not hold, return ⊥. Otherwise,
return

m← C0 ·
e(C2, χ2)

e(C1, χ1)
.

Based on Theorems 3 and 4, and the results of [18,7], we can directly obtain the following corollary.

Corollary 1. The concrete KD-CLE scheme presented above is both KD-Type-I-CCA and KD-Type-II-CCA secure under the 3-DDH
assumption in the groupG1, the Discrete Log assumption in the group defined by (p′, q′, g ′), and the Collision Resistant assumption
on the hash function H ′.

4. Key dependent certificateless signature

In this section, we define Key Dependent Certificateless Signature (KD-CLS) schemes and investigate the applicability of
our generic transformations to CLS schemes.

Definition 4. A Key Dependent Certificateless Signature scheme KD-CLS consists of the following algorithms.

– Setup(1k) takes 1k as input where k is the security parameter, and returns a master public/secret key pair (mpk,msk).
– SetSecretValue(mpk) takesmpk as input and returns a user secret value s.
– SetPublicKey(mpk, s) takesmpk and s as input and returns a user public key pk.
– ExtractPartialKey(msk, ID, pk) takes the master secret key msk, a user identity ID and a user public key pk as input and

returns a user partial secret key psk.
– SetPrivateKey(mpk, s, psk) takesmpk, s and psk as input and returns a user private key usk. This algorithm is deterministic.
– Sig(mpk, usk,m) takes themaster public keympk, a user private key usk and amessagem as input and returns a signature

σ .
– Ver(mpk, ID, pk,m, σ) takesmpk, a user identity ID, a user public key pk, amessage and a signature σ as input and returns

a decision bit b← {0, 1}. This algorithm is deterministic.

G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457 5455

4.1. KD-CLS security model

Similar to the securitymodel of KD-CLE, we define two types of adversaries FI and FII against a KD-CLS scheme as follows.
KD-type-I-CMIA game: the existential unforgeability of a KD-CLS scheme under KD-Type-I adaptive chosenmessage and

chosen identity attacks is defined in the following game:

Phase 1: The challenger runs the algorithm generates (mpk,msk)← Setup(1k) and returnsmpk to FI .
Phase 2: In this phase, the adversary FI can adaptively access the RequestPublicKey, ReplacePublicKey, ExtractPartial

SecretKey, and ExtractFullPrivateKey queries as defined before. But FI cannot extract the full private key for any
user if the corresponding public key has been replaced. In addition, FI can adaptively make signing queries defined
below

Sign(ID,m): Given an identity ID and a message m, this oracle returns a signature σ such that
Ver(mpk, ID, pk,m, σ) = 1 where pk is the current public key of user ID at the time the query is performed.

Phase 3: After all the queries, FI outputs a forgery (ID∗,m∗, σ ∗). Let pk∗ID∗ be the current public key of the user ID∗. We say
FI wins the game if:
1. FI has never extracted the full private key for ID∗,
2. FI has never made a ReplacePublicKey(ID∗, pk∗ID∗) query and an ExtractPartialSecretKey(ID∗, pk∗ID∗) query,
3. FI has never submitted (ID∗,m∗) to the signing oracle unless at the time of this query the public key of ID∗ is

not pk∗ID∗ ,
4. 1← Ver(mpk, ID∗, pk∗ID∗ ,m

∗, σ ∗).

KD-type-II-CMIA game: the existential unforgeability of a KD-CLS scheme under KD-Type-II adaptive chosen message and
chosen identity attacks is defined in the following game:

Phase 1: The challenger runs the algorithm generates (mpk,msk)← Setup(1k) and returns (mpk,msk) to FII .
Phase 2: In this phase, the adversary FII can adaptively access the RequestPublicKey, ReplacePublicKey, and Extract

FullPrivateKey queries as defined before. But FII cannot extract the full private key for any user if the corresponding
public key has been replaced. In addition, FII can adaptively make signing queries defined below

Sign(ID,m): Given an identity ID and a message m, this oracle returns a signature σ such that Ver(mpk, ID,
pk,m, σ) = 1 where pk is the current public key of user ID at the time the query is performed.

Phase 3: After all the queries, FII outputs a forgery (ID∗,m∗, σ ∗). Let pk∗ID∗ be the current public key of the user ID∗. We say
FII wins the game if:
1. FII has never extracted the full private key for ID∗,
2. FII has never replaced the public key for ID∗,
3. FII has never submitted (ID∗,m∗) to the signing oracle,
4. 1← Ver(mpk, ID∗, pk∗ID∗ ,m

∗, σ ∗).

The advantage of an adversary F is defined to be

AdvKD-Type-X-CMIA
KD-CLS,F (k) = Pr[F wins in the KD-Type-X-CMIA game].

Definition 5. Akeydependent certificateless signature schemeKD-CLS is said to be secure in theKD-Type-X-CMIAmodel
if for any PPT adversary F , AdvKD-Type-X-CMIA

KD-CLS,F (k) is a negligible function of the security parameter k.

4.2. Generic transformations

It is straightforward to see that the generic transformations we presented in Section 3 for constructing KD-CLE can also
be applied to construct KD-CLS from conventional CLS. For completeness, we present the transformations in Fig. 3.

Theorem 5. If CLS is secure in the conventional Type-X-CMIA security model and H is a random oracle, then KD-CLSROM is
secure in the KD-Type-X-CMIA security model.

Proof (Sketch). The proof is very similar to that of Theorems 1 and 2, given an adversary F that can break the KD-
Type-X-CMIA security of KD-CLSROM, we can construct another adversary E to break the Type-X-CMIA security
of CLS. E simulates the KD-Type-X-CMIA game for F by answering F ’s RequestPublicKey, ReplacePublicKey,
ExtractPartialSecretKey, ExtractFullPrivateKey, and H queries in the same way as in the proof of Theorem 1. To answer
F ’s signing queries Sign(ID,m), E first simulates an H query to get ˜ID = H(ID‖pk) where pk is the public key of ID, and
then makes a signing query to its own signing oracle with input (˜ID,m) and returns the answer from the its oracle to F . By
programming the random oracle, E can make the simulated game for F consistent with its own game, so E can answer F ’s
queries successfully by querying its ownoracles. Finally, if F can successfully produce a forgery in theKD-Type-X-CMIAgame,
E can also produce a valid forgery in the Type-X-CMIA security game and break the underlying conventional certificateless
signature scheme. �

Also, by following the proofs of Theorems 3–5, the following theorem can be proved in a straightforward way.

Theorem 6. If CLS is secure in the conventional Type-X-CMIA security model, and (I, H) is a secure trapdoor hash function
family with strong collision resistance, then KD-CLSTHF is secure in the KD-Type-X-CMIA security model.

5456 G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457

Input: a conventional certificateless signature scheme

CLS = (Setup,SetSecretValue,SetPublicKey, ExtractPartialKey,SetPrivateKey,Sig,Ver)

KD-CLSROM: Key Dependent Certificateless Signature
Based on Random Oracle H

– Setup′(1k): compute (mpk,msk) ← Setup(1k), set
mpk′ = (mpk,H) and msk′ = msk.

– SetSecretValue′(mpk′): compute

s← SetSecretValue(mpk),

set the secret value as s′ = s.
– SetPublicKey′(mpk′, s′): compute

pk← SetPublicKey(mpk, s′),

and set the public key as pk′ = pk.
– ExtractPartialKey′(msk′, ID, pk′): compute

˜ID← H(ID‖pk′),

psk′ ← ExtractPartialKey(msk′, ˜ID),

and return psk′.
– SetPrivateKey′(mpk′, s′, psk′): compute

usk′ ← SetPrivateKey(mpk, s′, psk′),

and return usk′.
– Sig′(mpk′, usk′,m): compute

σ ← Sig(mpk, usk′,m)

and return σ .
– Ver′(mpk′, ID, pk′,m, σ): compute

˜ID← H(ID‖pk′),

return Ver(mpk, ˜ID, pk′,m, σ).

KD-CLSTHF: Key Dependent Certificateless Signature
Based on Trapdoor Hash Family (I, H)

– Setup′(1k): compute (mpk,msk) ← Setup(1k) and
(HK , TK) ← I(1k). Set mpk′ = (mpk,HK) and
msk′ = msk.

– SetSecretValue′(mpk′): compute

s← SetSecretValue(mpk),

set the secret value as s′ = s.
– SetPublicKey′(mpk′, s′): compute

pk← SetPublicKey(mpk, s′),

randomly select r ← R, and set the public key as
pk′ ← (pk, r).

– ExtractPartialKey′(msk′, ID, pk′): compute

˜ID← hHK (ID‖pk; r),

psk′ ← ExtractPartialKey(msk′, ˜ID),

and return psk′.
– SetPrivateKey′(mpk′, s′, psk′): compute

usk′ ← SetPrivateKey(mpk, s′, psk′),

and return usk′.
– Sig′(mpk′, usk′,m): compute

σ ← Sig(mpk, usk′,m)

and return σ .
– Ver′(mpk′, ID, pk′,m, σ): compute

˜ID← hHK (ID‖pk; r),

return Ver(mpk, ˜ID, pk,m, σ).

Fig. 3. Generic Transformations from Conventional CLS to KD-CLS.

4.3. A concrete KD-CLS scheme

By applying our trapdoor hash based generic transformation to the certificateless signature scheme in [16], we can derive
a KD-CLS in the standard model. Interestingly, the Setup, SetSecretValue, SetPublicKey, and ExtractPartialKey algorithms of
this KD-CLS scheme are the same as those of the concrete KD-CLE scheme presented in Section 3.4, so we omit the details
of these algorithms here.

– SetPrivateKey(mpk, s, psk): Parse psk into (d1, d2), and set the full user private key as

usk← (χ1, χ2) = (ds1, d
s
2).

– Sig(mpk, usk,m): To sign a message m ∈ {0, 1}∗, parse usk into (χ1, χ2), randomly selects r1, r2 ← Z∗q , compute
˜ID← hp′,g ′,y′(ID‖X‖Y ; r) (where pk = (X, Y , r)), and generate the signature as

σ ← (V , R1, R2) = (χ1 · Fu(˜ID)r1 · Fv(m̃)r2 , χ2 · g r1 , g r2)

where m̃ = H ′(m).
– Ver(mpk, ID, pk,m, σ): Given a signature σ = (V , R1, R2) for an identity ID and public key pk = (X, Y , r) on a message

m, a verifier first computes ˜ID← hp′,g ′,y′(ID‖X‖Y ; r) and m̃ = H ′(m), and then checks whether

e(X, g1) = e(Y , g) and e(V , g) = e(g2, Y)e(Fu(˜ID), R1)e(Fv(m̃), R2).

G. Yang, C.H. Tan / Theoretical Computer Science 412 (2011) 5446–5457 5457

The verifier accepts the signature if and only if the equations hold.

The following corollary can be obtained directly from Theorems 5 and 6, and the results in [18,16].

Corollary 2. The KD-CLS scheme presented above is KD-Type-I-CMIA and KD-Type-II-CMIA secure under the Non-pairing-based
Generalized Bilinear Diffie–Hellman (NGBDH) assumption in the group G1, the Discrete Log assumption in the group defined by
(p′, q′, g ′), and the Collision Resistant assumption on the hash function H ′.

5. Conclusion

We introduced the concept of Key Dependent Certificateless Cryptography (KD-CLC) in this paper. Compared with
conventional certificateless cryptosystems, KD-CLC can achieve stronger security, and more importantly, KGC trust level 3.
We then showed two generic ways (with andwithout random oracle, respectively) to transform conventional certificateless
encryption and signature schemes into their key dependent counterparts. As a final remark, whether the binding technique
introduced by Al-Riyami and Paterson can be proved to be a secure generic transformation remains an interesting open
problem.

Acknowledgements

We thank the anonymous reviewers for their helpful comments and suggestions.

References

[1] Sattam S. Al-Riyami, Kenneth G. Paterson, Certificateless public key cryptography, in: Advances in Cryptology - ASIACRYPT 2003, pp. 452–473. Full
paper available at: http://eprint.iacr.org/2003/126.

[2] Man Ho Au, Jing Chen, Joseph K. Liu, Yi Mu, Duncan S. Wong, Guomin Yang, Malicious KGC attack in certificateless cryptography, in: ASIACCS 2007.
[3] Joonsang Baek, Reihaneh Safavi-Naini, Willy Susilo, Certificateless public key encryption without pairing, in: Information Security Conference, ISC

2005, pp. 134–148.
[4] Kamel Bentahar, Pooya Farshim, John Malone-Lee, Nigel P. Smart, Generic constructions of identity-based and certificateless KEMs, J. Cryptology 21

(2) (2008) 178–199.
[5] Alexander W. Dent, A survey of certificateless encryption schemes and security models, Int. J. Inf. Sec. 7 (5) (2008) 349–377.
[6] Alexander W. Dent, A brief introduction to certificateless encryption schemes and their infrastructures, in: Proc. EuroPKI, 2009, pp. 1–16.
[7] Alexander W. Dent, Benoît Libert, Kenneth G. Paterson, Certificateless encryption schemes strongly secure in the standard model, in: Public Key

Cryptography 2008, pp. 344–359.
[8] Marc Girault, Self-certified public keys, in: Advances in Cryptology - EUROCRYPT, 1991, pp. 490–497.
[9] Bessie C. Hu, Duncan S. Wong, Zhenfeng Zhang, Xiaotie Deng, Certificateless signature: a new security model and an improved generic construction,

Des. Codes Cryptography 42 (2) (2007) 109–126.
[10] Qiong Huang, Duncan S. Wong, Generic certificateless encryption in the standard model, in: IWSEC 2007, pp. 278–291.
[11] Qiong Huang, Duncan S. Wong, Generic certificateless key encapsulation mechanism, in: ACISP 2007, pp. 215–229.
[12] Xinyi Huang, Yi Mu, Willy Susilo, Duncan S. Wong, Wei Wu, Certificateless signature revisited, in: ACISP 2007, pp. 308–322.
[13] Hugo Krawczyk, Tal Rabin, Chameleon signatures, in: NDSS 2000, pp. 143–154.
[14] Junzuo Lai, Weidong Kou, Self-generated-certificate public key encryption without pairing, in: Public Key Cryptography, 2007, pp 476–489.
[15] Benoît Libert, Jean-Jacques Quisquater, On constructing certificateless cryptosystems from identity based encryption, in: Public Key Cryptography

2006, pp. 474–490.
[16] Joseph K. Liu, Man Ho Au, Willy Susilo, Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the

standard model, in: ASIACCS 2007, pp. 273–283.
[17] Adi Shamir, Identity-based cryptosystems and signature schemes, in CRYPTO 1984, pp. 47–53.
[18] Adi Shamir, Yael Tauman, Improved online/offline signature schemes, in: Advances in Cryptology - CRYPTO, 2001, pp. 355–367.

http://eprint.iacr.org/2003/126

	Certificateless cryptography with KGC trust level 3
	Citation

	Certificateless cryptography with KGC trust level 3
	Introduction
	Related work
	Key dependent certificateless encryption
	KD-CLE Security Model
	A generic construction of KD-CLE from conventional CLE in ROM
	A new generic transformation without random oracle
	A concrete KD-CLE scheme in the standard model

	Key dependent certificateless signature
	KD-CLS security model
	Generic transformations
	A concrete KD-CLS scheme

	Conclusion
	Acknowledgements
	References

