
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2022

Data quality matters: A case study on data label correctness for Data quality matters: A case study on data label correctness for

security bug report prediction security bug report prediction

Xiaoxue WU

Wei ZHENG

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Software Engineering Commons

Citation Citation
WU, Xiaoxue; ZHENG, Wei; XIA, Xin; and LO, David. Data quality matters: A case study on data label
correctness for security bug report prediction. (2022). IEEE Transactions on Software Engineering. 48, (7),
2541-2556.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7436

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Data Quality Matters: A Case Study on Data
Label Correctness for Security Bug Report

Prediction
Xiaoxue Wu, Wei Zheng, Xin Xia, and David Lo

Abstract—In the research of mining software repositories, we need to label a large amount of data to construct a predictive model.
The correctness of the labels will affect the performance of a model substantially. However, limited studies have been performed to
investigate the impact of mislabeled instances on a predictive model. To bridge the gap, in this work, we perform a case study on the
security bug report (SBR) prediction. We found five publicly available datasets for SBR prediction contains many mislabeled instances,
which lead to the poor performance of SBR prediction models of recent studies (e.g., the work of Peters et al. and Shu et al.).
Furthermore, it might mislead the research direction of SBR prediction. In this paper, we first improve the label correctness of these five
datasets by manually analyzing each bug report, and we find 749 SBRs, which are originally mislabeled as Non-SBRs (NSBRs). We
then evaluate the impacts of datasets label correctness by comparing the performance of the classification models on both the noisy
(i.e., before our correction) and the clean (i.e., after our correction) datasets. The results show that the cleaned datasets result in
improvement in the performance of classification models. The performance of the approaches proposed by Peters et al. and Shu et al.
on the clean datasets is much better than on the noisy datasets. Furthermore, with the clean datasets, the simple text classification
models could significantly outperform the security keywords-matrix-based approaches applied by Peters et al. and Shu et al.

Index Terms—Security bug report prediction, data quality, label correctness

F

1 INTRODUCTION

Mining software repository (MSR) has become an at-
tractive research area to uncover interesting and actionable
information about software systems and projects [1]. The
basis of MSR is big data of software engineering, and a large
amount of labeled data is required for constructing a pre-
diction model [2]. The label correctness of data is critical for
correctly assessing the effectiveness of a prediction model
[3], [4], [8]. Furthermore, the incorrectly labeled data may
translate to inaccurate results that may in turn mislead the
research direction of the target problem [5], [6], [7], [8], [9],
[10].

Currently, the studies that focus on the impact of inaccu-
rate labels are limited, and the attention paid to label correct-
ness is required when constructing a predictive model. This
paper investigates the impacts of mislabeled instances for
security bug report (SBR) prediction since identifying SBRs
from a large-scale bug repository is critical for reducing
the security risks of a software product. Many machine
learning-based SBR prediction approaches have been pro-
posed in recent years [11], [12], [13], [14], [15], [16], [17].
However, the performance (e.g., F1-score) of the two recent

• Xiaoxue Wu is with the School of Cyberspace Security, Northwestern
Polytechnical University, Xi’an, China. E-mail: wuxiaoxue00@gmail.com

• Wei Zheng is with the School of Software, Northwestern Polytechnical
University, Xi’an, China. E-mail: wzheng@nwpu.edu.cn

• Xin Xia is with Faculty of Information Technology, Monash University,
Melbourne, Australia. E-mail: xin.xia@monash.edu

• David Lo is with the School of Information Systems, Singapore Manage-
ment University, Singapore. E-mail: davidlo@smu.edu.sg

Manuscript received April 19, 2005; revised August 26, 2015.

studies proposed by Peters et al. [11] and Shu et al. [12] is
not ideal. For example, when considering F1-score, the work
of Peters et al. only achieved 0.37 in their best cases. Shu et
al. directly used the datasets processed by Peters et al. and
improved the performance of prediction models by using
a hyperparameter optimization approach. Their experiment
results showed in the best case their approach could reach
0.86 and 0.25 in terms of pd (Recall) and pf (false positive
rate), which means the number of the false positive item
reaches 5,388 in Chromium as the NSBRs in the testing set of
Chromium is 20,855 in their study. Such a high rate of false
alarms is still unacceptable to deploy the tool into practice.

In this paper, we explore the reasons that lead to the
poor performance of their studies and find one reason that
can not be ignored is the quality of labels assigned to the
datasets. The five publicly available datasets used by Peters
et al. and Shu et al. are Chromium, Ambari, Camel, Derby,
and Wicket. The first dataset is publicly shared during
MSR 2011 [18] and contains 40,940 bug reports, while the
remaining four datasets are manually labeled by Ohira et
al. [19]. As mentioned by Peters et al., there are SBRs
mislabeled as NSBRs in these five datasets. For example,
in Chromium, bug reports related to memory leakage and
null pointer problems are marked as NSBRs. However, they
belong to classical vulnerability types since such issues are
frequently exploited by hackers [20], [21], and are listed
in the top 25 most dangerous CWE (Common Weakness
Enumeration) types [22]. Figure 1 shows three examples
of the mislabeled instances in Chromium. We mark the text
that shows that the corresponding bug report is an SBR in
red.

Additionally, the approaches applied by Peters et al. and

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

Published IEEE Transactions on Software Engineering, 2022 July, 48 (7), 2541-2556. DOI: 10.1109/TSE.2021.3063727

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

ID &Title Issue-1643: The memory leak in the root
process

Issue 16036 : Alsa Audio Output leaks on
shutdown

Issue 3795: Check:
CrashForBitmapAllocationfailure()

Description

After several days of usage the root
process allocated 1.6GiB of memory. And

this process could not be restarted or
selectively killed. The root process must

not leak the memory or it should be
easily restartable picking existing page

processes after restart. Fro example page
navigation could be done by the separate

child process. That respawns if it dies.
1.6GiB is allocated.

Audio Output Stream's shutdown code does
not correctly delete the output stream object

after the thread is shutdown. This causes a
resource leak. Because the data source has

been modified to be non-blocking we should
now remove the per-stream output thread

and use a single message loop over all output
streams for writing audio data.

I don't know what we can do other than look
for GDI leaks. This is a common crash in 154.6

albeit with very little data so far.
...

If we run out of GDI objects or some other
error occurs we won't get a // bitmap here.
This will cause us to crash later because the
data pointer is NULL. To make sure that we

can assign blame for those crashes ...

Fig. 1. Examples of mislabeled bug reports in Chromium. The red-colored texts are contents that help us to decide that a bug report is security-
related (i.e., SBR).

Shu et al. are complex and time-consuming. For example,
the hyperparameter tuning for the learner applied by Shu et
al. costs around 5 hours to optimize the parameter of learner
RF on dataset Chromium. According to the suggestions of
Fu et al. [23] and Liu et al. [24], it is a good practice to explore
simple but effective approach. Therefore, we investigate the
effectiveness of simple text classification for SBR prediction.

Our study aims to answer the following two research
questions:

RQ1: To what extent can dataset label correctness
impact the performance of classification models?

We conduct an experimental evaluation of classification
models’ performance on both the clean datasets and the
noisy datasets. We first correct the mislabeled records of
the five datasets with manual annotation and obtain five
clean datasets. As a result, we identified 749 SBRs that are
mislabeled.

Following Peters et al. ’s evaluation [11], we divided each
of the five clean datasets into two equal parts, which are
respectively training set and testing set. Then, we execute
the approaches proposed by Peters et al. and Shu et al.
on the clean datasets and the noisy datasets to obtain
their performance values. Finally, we evaluate the impact
of label correctness by comparing baseline approaches on
the clean datasets with that of the noisy datasets. We find
the performance of three baseline approaches on the clean
datasets consistently outperforms that on the noisy datasets.
On average, Recall, Precision, F1-score, and G-measure are
increased by 191%, 46%, 147%, and 136%, respectively.

RQ2: How does simple text classification perform on
the clean and the noisy datasets for SBR prediction?

We raise RQ2 because the main content of bug reports for
SBR prediction is the Description described with text nature
language [25], [26]. Moreover, much previous work focused
on bug report analysis uses text classification combined
with machine learning as text classification is direct and
straightforward [13], [14], [15], [16], [17], [27].

We run all the five classification algorithms (i.e., Ran-
dom Forest, Naive Bayes, K-Nearest Neighbour, Multilayer
Perceptron, and Logistical Regression) applied by Peters
et al. and Shu et al. with simple text classification on
both the clean and noisy datasets. We find that the overall
performance values (i.e., Recall, Precision, F1-score, and
G-measure) on the clean datasets are much higher than
those on the noisy datasets. Furthermore, on the clean
datasets, the performance values (i.e., Recall, Precision, F1-

score, and G-measure) of Random Forest using the text
classification are much better than the performance of the
security keywords-matrix-based baseline approaches.

Finally, we conduct further analysis of the reason behind
Farsec’s poor performance, the time cost of hyperparameter
tuning approaches, and the implications of our study. We
point out that data label correctness matters much for the
performance of classification models, and the simple text
classification is more effective than the carefully-designed
matrix-based baseline approaches for SBR prediction while
the data label correctness is improved.

This paper makes the following contributions:

• We manually annotate the label correctness of five
publicly available datasets (i.e., Chromium, Ambari,
Camel, Derby, and Wicket). We find there are no
NSBRs mislabeled as SBRs; however, we identify a
total of 749 SBRs that are mislabeled as NSBRs.

• To the best of our knowledge, we are the first to
experimentally evaluate the impact of data label
correctness for SBR prediction.
We find that (1) for the same classifier, the perfor-
mance on the clean datasets is much better than that
of the noisy datasets; (2) simple text classification
performs better when training is performed on the
clean datasets than the noisy datasets; (3) with the
clean datasets, simple text classification outperforms
the three baseline approaches. These findings pro-
vide research clues and guidance for researchers and
practitioners of SBR prediction.

The remainder of this paper is organized as follows.
Section 2 introduces the related work of this study. Section
3 gives the background. Section 4 describes our data anno-
tation method and results. Section 5 describes our experi-
mental settings. Section 6 details our experimental results
of each research question respectively. Section 7 discusses
if the hyperparameter tuning method proposed by Shu
et al. works for simple text classification, the patterns of
mislabeled SBRs in noisy datasets, the performance levels
of annotators, the implications of our study, and threats to
the validity of our study. Section 8 summarizes the paper.

2 RELATED WORK

2.1 SBR Prediction
The two recent works focused on SBR prediction are pro-
posed by Peters et al. [11] and Shu et al. [12]. These two

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

work uses the same datasets and classification algorithms
in their studies. Shu et al. improve the work of Peters et
al. by applying the hyperparameter tuning to the learner
(classifier) and oversampling approach SMOTE.

Before this, Wijayasekara et al. [28] analyzed bug reports
of two well known open-source projects - Linux kernel and
MySQL. They showed that 32% and 62% vulnerabilities of
Linux kernel and MySQL in the time period of 2006 to
2011 were hidden vulnerabilities, which were reported in
the bug tracking system without being identified as SBRs
until disclosed to the public [29]. Their study also showed
an increasing trend in the distribution of the hidden vul-
nerabilities in the following two years. Besides, the authors
presented a method of identifying hidden vulnerabilities by
using the long description (i.e., the field Description) and
the short description (i.e., the field Title) of bug reports to
generate features before applying a classification approach.

An earlier work focused on SBR prediction was pro-
posed by Michael et al. [13] in 2010. The authors developed
an automatic approach that uses text mining on bug report
descriptions to train a statistical model with manually-
labeled bug reports. This model is then used to identify SBRs
that are manually-mislabeled as NSBRs in the bug tracking
system. Their approach is evaluated on a Cisco software
system.

2.2 The impact of data label correctness

In recent years, researchers have raised concerns about the
quality of the dataset employed by machine learning-based
classification models in the area of software engineering [4],
[8], [30], [31], [32], [33], [34].

Tantithamthavorn et al. [4] investigates whether misla-
beling is random in production. The authors conducted an
analysis of 3,931 issue reports from Apache Jackrabbit and
Lucene systems and summarized several findings. Such as
the issue report mislabeling is not random; mislabeled issue
reports rarely impact precision. Especially, their experiments
showed the models trained on noisy data achieve 56%-68%
of the Recall of models trained on clean data.

Kim et al. [8] experimentally evaluate the impact of
noise for source code defect prediction. They conduct their
study on both file-level and change-level by intentionally
and randomly injecting false positives and false negatives
into their datasets. Their results show that the performance
of the defect prediction models are decreased significantly
when 25% to 35% changes in the datasets are mislabeled.

Fan et al. [31] investigate the impact of the mislabeled
changes on the performance and interpretation of just-in-
time defect prediction models. The authors analyzed four
SZZ [35] variants and then built prediction models with
the labeled data by these four variants. Their experimental
study on 126,526 changes from ten Apache projects showed
the mislabeled changes by AG-SZZ cause a significant per-
formance reduction. Considering the developers’ inspection
effort, the mislabeled changes of B-SZZ and AG-SZZ lead to
9% to 10% and 1% to 5% more wasted inspection effort.

Herzig et al. [33] observed that tangled changes impact
the number of associated bugs for 16.6% of all source files.
Since such a considerable number of files are affected with
respect to the number of associated bugs, the noise induced

by tangled changes significantly impacts the models which
predict the number of bugs in source files.

Kochhar et al. [32] noted issue report mislabeling;
namely, the reports labeled as bugs but actually referred
to non-bug issues. The authors extract different feature
values from bug reports and predict whether a bug report
needs to be reclassified. They evaluated their approach with
bug reports of projects HTTPClient, Jackrabbit, Lucene-Java,
Rhino, and Tomcat5. The results show the performance of
their approach ranges from 0.58 to 0.71, 0.61 to 0.72, and
0.57 to 0.71 for Precision, Recall, and F1-score, respectively.

Our study is orthogonal to the above studies. First,
we improve the label correctness of five publicly-available
datasets applied by two recent SBR prediction work pro-
posed by Peters et al. and Shu et al. Second, we use the
approaches proposed by Peters et al. and Shu et al. as
baselines of this study. Third, we evaluate the impact of
data label correctness by comparing baselines’ performance
on noisy datasets with that of clean datasets. We conduct
an experimental evaluation of the impact of data label
correctness by using the three baseline approaches. Finally,
we apply the commonly used text classification approach
to both the clean datasets and noisy datasets, and show the
text classification is a simple but effective approach while
the data labels are reliable.

3 BACKGROUND

In this section, we recall the two recent SBR prediction work
that inspired our study.

Farsec framework. Peters et al. [11] point out the misla-
bel problem of the five publicly available SBR prediction
datasets: Chromium, Ambari, Camel, Derby, and Wicket.
They design a framework named Farsec to improve SBR
prediction by filtering out noisy data from NSBRs and
extending the text mining approach with the security key-
words matrix. The process of Farsec contains three major
steps: (1) Identifying security keywords and making data matri-
ces. They first tokenize SBRs of a dataset to terms. Then, each
term’s tf-idf value is calculated, and the top 100 terms with
the highest tf-idf values are kept as security keywords. After
that, they calculate the frequency of each security keyword
in the Description of each bug report for both training set and
testing set, and security-keywords matrices of the training
set and testing set are generated respectively. (2) Filtering
NSBRs with security-related keywords. The purpose of filtering
in Farsec is to remove NSBRs with security related key-
words. To achieve this, they designed seven different filters:
farsec, farsecsq, farsectwo, clni, clnifarsec, clnifarsecssq, and
clnifarsectwo. Table 1 provides a brief description of these
filters. They apply each of these filters to the training set
of each dataset. Therefore, seven new training sets are
generated, and each of them is applied to fit the model
independently. (3) Ranking bug reports. After predicting the
SBRs, a list of ranked bug reports was generated based on
ensemble learning. The actual SBRs in the prediction results
appear closer to the top of the list.

Hyperparameter tuning. In machine learning, model
parameters indicate the properties of training data. Hyper-
parameter optimization is the process of searching the most
optimal values of the hyperparameters in the model [38].

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE 1
The seven filters applied by Peters et al. [11]

Filter Description
farsec Apply no support function.

farsecsq Apply the support function proposed by Jalali
et al. [36] to the frequency of words found in
SBRs.

farsectwo Apply the Graham version [37] of multiplying
the frequency by two.

clni Apply noise filter CLNI (Closet List Noise Iden-
tification).

clnifarsec Apply CLNI to the farsec filtered data.
clnifarsecsq Apply CLNI filter to the farsecsq filtered data.

clnifarsectwo Apply CLNI filter to farsectwo filtered data.

Shu et al. [12] improve the performance of SBR prediction
by applying a hyperparameter optimization approach. They
conduct their study on the basis of Peters et al.’s work.
A differential evolution algorithm is used to optimize the
control parameters of a learner (i.e., classification algo-
rithm) and the data pre-processing approach SMOTE [39],
respectively. For example, they improve Random Forest by
tuning the number of trees in the forest (i.e., the parameter
n estimators); the default value of it is ten, and the tuning
range is set as 10 to 150. They tune the number of neighbors
(i.e., the parameter k) in SMOTE, the default value is 5, and
the tuning range is set as 1 to 20. Table 2 gives hyperparam-
eters and the setting of tuning classifier Random Forest and
oversampling approach SMOTE in their study.

4 METHODOLOGY OF SBR DATA ANNOTATION

Data annotation is an extremely time-consuming work [24],
[40], [41]. It is never trivial to correctly label SBRs due to the
demand of qualified expertise [42], [43], [44].

The five datasets applied by Peters et al. and Shu et
al. are Chromium, Ambari, Camel, Derby, and Wicket. In
this section, we introduce the annotation process of noisy
datasets as well as our clean datasets.

4.1 Annotation on the noisy datasets
Here, we briefly introduce how the SBRs are identified
in the five datasets we used in this paper. Moreover, we
also analyze the reason why the original datasets contain
mislabeled instances.

Chromium: Chromium1 is an open-source browser
project. The dataset of Chromium is shared by the 2011 min-
ing challenge of the MSR conference [18], which contains
40,940 bug reports. The SBR labels are initially marked by
the reporters, and many of them are correlated with CVE
(Common Vulnerabilities and Exposures) entries [45]. For
example, the records with identities Issue 34495 and Issue
34498 are correlated with CVE-2010-0048 and CVE-2010-
0052, respectively. Therefore, these labels of SBRs in the
dataset are reliable.

However, as Peters et al. [11] noted, there are still many
hidden SBRs that are mislabeled as NSBRs in this dataset.
This is common for open-source projects as many bug
reports of such projects are submitted by end-users, who
are rarely professional software security personnel.

1. https://www.chromium.org/Home, Jun. 2020.

Four Apache Datasets: The datasets of the four Apache
projects Ambari2, Camel 3, Derby 4, and Wicket 5 were
initially collected by Ohira et al. [19] from JIRA, which
is a widely applied issue tracking system [46]. There are
a variety of types for an issue in JIRA, such as Bug,
Improvement, Documentation, and Task. Ohira et al. ran-
domly selected one thousand issues with types Bug or
Improvement for each project. They manually reviewed and
labeled these 4,000 issues by graduated students and faculty.
They marked six high impact types for these issues (i.e.,
Blocking, Security, Performance, and Breakage bugs) with
the following steps:

1) Given a project, one student and one faculty member
manually label the bug reports independently.

2) And then they discuss their disagreements to reach a
common decision.

As mentioned by Ohira et al. [19], some issues were
judged differently for security, performance, and breakage
categories because there were no established definitions of
these categories. This should be a reason why there are SBRs
mislabeled as NSBRs in these datasets. Another possible rea-
son that leads to the mislabels should be the lack of software
security knowledge of annotators. For example, if a software
product throws an exception due to nullpointer reference,
a bug reporter without sufficient security knowledge may
report this bug as an NSBR. However, the nullpointer could
be exploited by hackers, and the nullpointer dereference is one
of the CWE top 25, which is a demonstrative list of the most
widespread and critical weaknesses that can lead to serious
vulnerabilities in software products [22].

4.2 Annotation on the clean datasets
Our data review aims to identify SBRs which are mislabeled
as NSBRs from the five datasets (i.e., Chromium, Ambari,
Camel, Derby, and Wicket). An SBR is a bug report de-
scribing one or more vulnerabilities of a software system
[13]. A security vulnerability is a mistake in software that
can be directly used by a hacker to gain access to a system
or network [47]. The occurrence of vulnerability may cause
some unsafe consequences, such as information leakage and
illegal privilege escalation.

To guarantee the quality of our manual annotation re-
sults, we not only arrange experienced software security
experts but also develop a specific manual review process.
We use software vulnerability types defined by CWE [48]
as a basis and generate a codebook as guidelines of judging
whether a bug report is an SBR.

4.2.1 Annotators
We have six annotators. Two of them are Ph.D. students, and
the other four are employees of Huawei corporation. They
have at least four years of software security-related work
experience and are familiar with the projects from which
the bug reports originated.

Table 3 provides the background of the six annotators
from four dimensions: (1) their roles in the organization (i.e.,

2. http://ambari.apache.org/, Jun. 2020.
3. http://camel.apache.org/, Jun. 2020.
4. http://db.apache.org/derby/, Jun. 2020.
5. https://wicket.apache.org/, Jun. 2020.

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

https://www.chromium.org/Home
http://ambari.apache.org/
http://camel.apache.org/
http://db.apache.org/derby/
https://wicket.apache.org/

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE 2
The setting of hyperparameter tuning for Random Forest and SMOTE. (Note: DE is short for differential evolution.)

Target
Parameters of Target Parameters of DE

Parameters Default Tuning Range NP F CR ITER

Random Forest

n estimators 10 [10,150]

60 0.8 0.9 3,10

min samples leaf 1 [1,20]
min samples split 2 [2,20]
max leaf nodes None [2,50]
max features auto [0.01,1]
max depth None [1,10]

k 5 [1,20]
30 0.8 0.9 10SMOTE m 50% [50,400]

r 2 [1,6]

column Role); (2) their experience with practical software
development and testing (i.e., column Software develop); (3)
experience with the projects or similar projects (i.e., column
Projects); (4) and experience with security bug analysis, such
as source code vulnerability analysis, security bug reports
analysis (i.e., column Security bug). To be objective, we
use year (number of years of experience) to quantitatively
measure the annotators’ experience in each dimension. In
addition, the last column (i.e., Note) of the table provides
key supplementary information of annotators.

4.2.2 Software vulnerability categories

Software security researchers have created taxonomies of
vulnerability types. According to Landwehr et al. [49], se-
curity vulnerabilities in software systems range from local
implementation errors (e.g., use of the gets() function call in
C/C++), through interprocedural interface errors (such as
a race condition between an access-control check and a file
operation), to much higher design-level mistakes (e.g., error
handling and recovery systems that fail in insecure fashions
or object-sharing systems that mistakenly include transitive
trust issues).

CWE is a community-developed list of common soft-
ware weaknesses that might result in systems being vul-
nerable to attack if left unaddressed [48]. It lists representa-
tive vulnerabilities from major operating systems vendors,
commercial information security tool vendors, academia,
government agencies, and research institutions. According
to CWE definition, vulnerabilities that share a common
characteristic are grouped as one category, and there are 40
top-level CWE categories and 417 subcategories for software
product up to now [50]. For example, one of the top-level
categories is CWE-1228, described as API/function errors.
It is related to the use of built-in functions or external
APIs. It includes seven subcategories like CWE-242 (Use of
inherently dangerous function), CWE-477 (Use of obsolete
function), and CWE-479 (Exposed dangerous method or
function) [51].

To clarify the attributes of SBRs, annotators were asked
to map each SBR to specific CWE categories (or subcategory)
during the annotation process. CWE involves a broad and
intensive knowledge base. However, for a given software
system, its domain area and development languages in-
volved are typically fixed, which dramatically reduces the
number of CWE categories involved, thereby reducing the

difficulty involved in manually matching SBRs to CWE
categories.

4.2.3 Codebook generation
Like Viviani et al. [52], we develop a codebook to guide
the annotation process before starting the manual review.
This codebook is developed by reviewing the 351 origi-
nally labeled SBRs of the five noisy datasets. Each of the
six annotators reviews these SBRs and creates a codebook
independently. The codebook includes two elements:

a) Reason of being an SBR: annotators need to write
down why the bug report is an SBR according to their
experience and expertise knowledge. They are suggested to
describe the possible security risks or consequences that SBR
may cause once it occurs.

b) Evidence words or phrases: instead of copying all the
content of the bug report description, annotators select the
words or phrases that best show that the bug report is an
SBR and record them.

After that, the same annotators merged the six code-
books and removed the duplicates. Figure 2 provides an
example snippet of the codebook. The entire content of the
codebook is available at https://github.com/NWPU-IST/
sbrbench/tree/master/Codebook.

4.2.4 Manual annotation and card sorting
On the basis of CWE software vulnerability categories and
the codebook, we conduct the manual review with the help
of card sorting [53], [54] approach, namely, each dataset is
reviewed and labeled by two corporation employees and
one Ph.D. student independently. According to their expe-
rience, annotators A1, A4, and A6 work on the four small-
sized datasets (i.e, Ambari, Camel, Derby, and Wicket) and
A2, A3, and A5 work on Chromium. As a result, there are
three cards for each bug report, and we get a total of 137,820
cards for all the five datasets. We compute the Fleiss’s Kappa
Coefficient [52], [55] to measure the agreement among the
three annotators of each dataset.

4.3 Our data annotation results
Based on our manual annotation results, there are totally 118
inconsistent label results in the five datasets. Fleiss kappa
is a group statistic that calculates the average agreement
between the multiple annotators. The agreement level of
Fleiss kappa for all the five datasets are Substantial or Almost

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NWPU-IST/sbrbench/tree/master/Codebook
https://github.com/NWPU-IST/sbrbench/tree/master/Codebook

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE 3
Background of the six annotators. (Note: four of them are software engineerings of Huawei corporation, and the other two are Ph.D. students that

focus on software security analysis.

Annotator Role Experience (Year) NoteSoftware
develop

Projects Security
bug

A1 Senior Developer 15 3 3 worked as Hadoop-related products developer. is familar with
Apache products Ambari, Camel, Derby and Wicket.

A2 Senior Developer 8 4 1 is familar with web browser devemlpment; volunteer of
Chromium project.

A3 Test Manager 11 5 6 worked as a security tester for around 5 years; in charge of bug
reports analysis, and CVE and CWE data tracking and analysis.

A4 Security Tester 4 3 4 conducts security testing through fuzzing, penetration, etc.
A5 Ph.D. student 3 2 4 worked 3 years as a security tester of web application; current

research is focused on security bug report analysis.
A6 Ph.D. student 0 2 4 focuses on vulnerability mining; received more $30,000 in prize

money from security testing competition in recent 3 years.

Reason of being an SBR Evidence words or phrases Bug ID

sensitive data leakage or
exposure

• OWASP has some suggestion on how to make it harder for an attacker to
crack hashed passwords, service doesn't follow all the suggestions. It
doesn't add a random salt and it only performs the hash operation once

Derby-5539

• password leakage; a problem with the display password Chromium-1758
• you can consider adding the master password Chromium-1785

... ...

might cause system crash
or denial of service attack

• memory corruption vulnerability in Chrome,track down the root cause as
this seems to be exploitable

Chromium-11308

• memory corruption on dragging file to a new tab Chromium-12027
• wrong cache causes no storage damage Chromium-27509

... ...

...

Fig. 2. A snippet of codebook list after merging.

perfect (the values of Fleiss kappa ranges from 0.73 to 0.87
across the five datasets) 6, which indicates a high agreement
level among annotators [52]. The details of manual an-
notation results are shared at https://github.com/NWPU-
IST/sbrbench/tree/master/ManualAnnotation.

For bug reports that have obtained three consistent la-
bels, we directly use the labels of annotators as final results.
However, for bug reports with inconsistent label results, the
annotators organize a face-to-face review meeting to discuss
until a consistent result is reached for each item. As a result,
there are 749 NSBRs of noisy datasets confirmed as SBRs by
our manual annotation. Specific to each dataset, there are
616, 27, 42, 91, and 37 newly identified SBRs for Chromium,
Ambari, Camel, Derby, and Wicket, respectively. It is worth
noting that no SBRs in noisy datasets have been confirmed
as NSBRs, which indicates strong reliability of the SBRs in
the noisy datasets. A possible reason is that the SBRs in
bug tracking systems were usually reported by experienced
security testers, who focused on or paid special attention to
system security.

Most of the identified SBRs are obvious security issues
that can be matched to a specific CWE category. Figure 3 lists
four identified SBRs that belong to well-known vulnerability
types (null pointer, improper memory handling, privacy

6. Mapping of agreement level and the value of Fleiss kappa (Kp).
Poor: Kp <0; Slight: 0.01 ≤ Kp ≤ 0.20; Fair: 0.20 <Kp ≤ 0.40;
Moderate: 0.40 <Kp ≤ 0.60; Substantial: 0.60 <Kp ≤ 0.80;
Almost perfect: 0.80 <Kp ≤ 1.

ID Snippets of Title & Description

Camel
-286

NullPointerException in CXF routes when there
 is an endpoint between router and service CXF endpoints.

When an endpoint is added between a cxf router ...

Ambari-
3135

Number of ExecutionCommandEntity objects keep
growing and result in Out of memory on large cluster (100

nodes).Script to re-create the issue...

Chromium
-8388

Privacy leak from using non-incognito history database
to ... are likely outweighed by concern over sites' ability

to use this information to track the user's history.

Chromium
-29824

Heap stack and more contain read write executable
permissions under linux ...These permissions allow for

much easier memory corruption exploitation especially a
rwx HEAP. An attacker can simply use javascript to

perform a heap spray to defeat ...

Fig. 3. Examples of obvious SBRs that are identified in our data anno-
tation. The red-colored texts are contents that help us to decide that a
bug report is security-related (i.e., SBR).

leakage, improper permission, etc.). For example, the record
Camel-286 is a null pointer related SBR. It belongs to CWE-
465 (Pointer Issues), which occurs when the application
dereferences a pointer that it expects to be valid, but is
NULL, typically causing a crash or exit. Identifying the null
pointer issue is critical to software safety [56], [57] because
the null pointer dereference is just one step before crashing
an application (best case scenario) or gaining privileged
access to the computer by an attacker [58].

In comparison, our labeled datasets are cleaner than the

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NWPU-IST/sbrbench/tree/master/ManualAnnotation
https://github.com/NWPU-IST/sbrbench/tree/master/ManualAnnotation

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

original ones. Therefore, we call our labeled datasets as
clean datasets and the original ones as noisy datasets.

Table 4 shows the distribution of the noisy datasets as
well as our clean datasets. There is only a small group of
bug reports labeled as SBRs in the five datasets for the
noisy datasets. The percentages of SBRs range from 0.45%
to 8.80%. The percentage of SBRs for clean datasets ranges
from 1.93% to 17.90%. Especially for the large-scale dataset
Chromium, we identified 616 SBRs, which were labeled as
NSBRs in the noisy dataset, and the percentage of SBRs is
increased by 320%.

5 EXPERIMENTAL SETUP

In this section, we introduce the baseline approaches pro-
posed by previous studies (i.e., the work of Peters et al. and
Shu et al.). After that, we describe the setting of simple text
classification, which is used for investigating RQ2. Finally,
the classifiers, as well as the performance evaluation metrics
of our study, are introduced.

5.1 Baseline approaches

We use the approaches proposed by Peters et al. and Shu
et al., which we have introduced in Section 3, as baselines
for validating the impact of data label correctness. We call
the work of Peters et al. as Farsec by following the name of
their work. For the work of Shu et al. [12], we obtained two
baseline approaches from their work as they tune the hy-
perparameters of learner and SMOTE, respectively, in their
study. Due to the fact that they directly use the keywords-
matrix files of the training set and testing set built by
Farsec in their study, we name the approach that tunes the
parameters of learner as FarsecTuned

Learner , and the approach
that tunes the parameters of SMOTE as FarsecTuned

Smote .
We describe the setting of these three baselines as fol-

lows:

• Farsec: a framework for filtering and ranking bug
reports for reducing the presence of security-related
keywords. Before fitting the prediction models,
Farsec generates security keywords matrices and
removes non-security bug reports with security re-
lated keywords with different filters (shown in Table
1). We use filter farsectwo in our study as 80% of
the best results across the five datasets are obtained
with farsectwo in Peters et al.’s study. Farsec is a
ranking approach. It first generates a keywords ma-
trix based on the top X security-related keywords
for each dataset. To select an optimal value for X,
we conducted experiments (the inner-project experi-
ments of Peters et al.’s work) with X = 50, 100, and
200. The results showed the average F1-score of the
three settings is the same (0.15) while the G-measure
achieved with setting 100 is the best (0.29). Therefore,
in our study we use top 100, which is in line with the
setting of Peters et al.’s study [11].

• FarsecTuned
Learner: using the processed security key-

words matrix files as input (i.e., the training set and
testing set), and tuning key parameters of learner
with differential evolution algorithm [59].

• FarsecTuned
Smote : using the processed security keywords

matrix files as input (i.e., the training set and testing
set), and tuning the key parameters of SMOTE with
differential evolution.

To be objective, we directly use the sourcecode shared by
Shu et al. and keep all the settings of the parameters (i.e., key
parameters, the default values, and the tuning range of each
key parameter) as they are in their work. The three baselines
apply the same classification algorithms (Random Forest,
Naive Bayes, K-Nearest Neighbour, Multilayer Perceptron,
and Logistical Regression) and datasets (Chromium, Ambar,
Camel, Derby, and Wicket) in their studies.

5.2 Simple text classification
The three baseline approaches use the top 100 security
keywords matrix to construct classification models. This is
different from normal text classification. In this paper, we
also use the simple text classification as another approach
for our experimental evaluation as it is popular and applied
by most bug report analysis [13], [14], [16], [17], [27]. We
simply preprocess the text of bug report Description with
basic text preprocess approach CountVectorizer and Select-
FromMode integrated in machine learning package scikit-
learn [60] for text tokenization and dimension reduction.

CountVectorizer converts the text of bug report Descrip-
tion to a matrix of token counts. Stop words like a, the, and,
which are presumed to be uninformative in representing
the content of a text, are removed to avoid them being
constructed as a signal for prediction. After that, a sparse
representation matrix of the token counts is produced. Se-
lectFromModel is a feature selection approach. It evaluates
feature importance and selects features based on importance
weights. It is a meta-transformer that can be used along with
any estimator that has a coef or feature importances attribute,
which denotes the weights assigned to the features. The
features are considered unimportant and removed if the cor-
responding coef or feature importances values are below the
provided threshold value. Apart from specifying the thresh-
old numerically, there are built-in heuristics for finding a
threshold using a string argument. Available heuristics are
mean, median and float multiples of these like 0.1*mean. We
use the default values for the parameters of CountVectorizer
and SelectFromModel.

Although the pre-processing result of simple text classi-
fication (using CountVectorizer and SelectFromModel) is a
matrix, this matrix is different from the security keywords-
matrix generated in Farsec. The column of the security
keywords-matrix of Farsec is the top 100 terms extracted
from SBRs of the training set, while the row of matrix
produced by simple text classification is generated with
terms of all bug reports in the training set.

5.3 Classifiers and performance metrics
To make the evaluation results be objective, we use the
classifiers and performance metrics applied by Peters et al.
and Shu et al. in our study.

Classifiers. To be objective, we directly use the five
classifiers applied by Peters et al. and Shu et al. in this
study. Namely, Random Forest (RF), Naive Bayes (NB), K-
Nearest Neighbor (KNN), Multilayer Perceptron (MLP), and

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 4
Distribution of the five datasets on both the noisy and the clean version.

Dataset # BR SBR NSBR
Noisy (%) # Clean (%) # Noisy (%) # Clean (%)

Chromium 41,940 192 (0.46%) 808 (1.93%) 41,748 (99.54%) 41,132 (98.07%)
Ambari 1,000 29 (2.90%) 56 (5.60%) 971 (97.10%) 944 (94.40%)
Camel 1,000 32 (3.20%) 74 (7.40%) 968 (96.80%) 926 (92.60%)
Derby 1,000 88 (8.80%) 179 (17.90%) 912 (91.20%) 821 (82.10%)
Wicket 1,000 10 (1.00%) 47 (4.70%) 990 (99.00%) 953 (95.30%)

Logistical Regression (LR). These classifiers are also widely
applied in software data repository mining [61], [62]. How-
ever, to make the comparison clearer and easier, we only use
classifier RF, combining with baseline approaches to answer
RQ1. We choose RF [63] as the primary classifier because
(1) RF is one of the best classifiers in experiment results
of baseline Farsec; (2) RF is one of the most commonly
used classification techniques and performs well for text
classification of software engineering [52], [54].

Performance metrics. To avoid bias and give a compre-
hensive evaluation, we use all the performance evaluation
metrics applied by the work of Peters et al. and Shu et al.
These metrics include Recall (i.e., pd in their work), pf (prob-
ability of false alarm), Precision, F1-score, and G-measure.
The first four are commonly used metrics in the area of
empirical software engineering [61], [64], while G-measure
is introduced as a major metric in Peters et al.’s study [11].
F1-score and G-measure are both harmonic means and G-
measure considers the Recalls of both the majority and the
minority classes [11].

As for each bug report, there are four possible outcomes
of the prediction result:

• True Positive (TP): an SBR is predicted as SBR;
• False Negative (FN): an SBR is predicted as NSBR;
• True Negative (TN): an NSBR is predicted as NSBR;
• False Positive (FP): an NSBR is predicted as SBR.

Based on these outcomes, the performance metrics Recall,
pf, Precision, F1-score, and G-measure can be calculated as
below.

Recall = pd =
TP

TP + FN
(1)

pf = FPR =
FP

FP + TN
(2)

Precision =
TP

TP + FP
(3)

F1− score =
2 ∗Recall ∗ Precision

Recall + Precision
(4)

G−measure =
2 ∗Recall ∗ (1− pf)

Recall + (1− pf)
(5)

Among these five performance metrics, Recall, Precision,
F1-score, and G-measure are the higher, the better, while pf
is the lower, the better.

ApproachesClean labels

Noisy labels
50%

50%

Train

Test

Clean labels
 of test set

Perf.

Fig. 4. Data setting and basic process of experiments.

5.4 Data setting
To ensure the fairness of comparison, we follow the way of
baseline Farsec for the division of training set and testing
set. That is, each dataset is sorted chronologically, and then
it is divided into two equal parts (i.e., 50% and 50%). The
first part is used as the training set, and the latter is used as
the testing set, which is in line with the actual application
scenario in production. The two baselines of Shu et al.
(i.e., FarsecTuned

Learner and FarsecTuned
Smote) also follow this dataset

division method since they directly use the matrix files
processed by Peters et al.

Figure 4 illustrates our experiment setting. We per-
form different classification approaches (i.e., Farsec,
FarsecTuned

Learner, FarsecTuned
Smote , Text, TextTuned

Learner and TextTuned
Smote

) either on the noisy data or the clean data. However, we
measure the performance of each approach with clean labels
of the test set - including the model trained with noisy
data. We do this because what really matters is whether the
prediction results are correct or not in the sense of the truth,
i.e., clean data.

6 EXPERIMENT RESULTS

In the section, we present our experiment results by answer-
ing the two research questions.

6.1 Response to RQ1
RQ1: To what extent can dataset label correctness impact
the performance of classification models?

To answer RQ1, we perform the three baseline ap-
proaches (i.e., Farsec, FarsecTuned

Learner, and FarsecTuned
Smote) with

classifier RF on both the noisy datasets and the clean
datasets.

Table 5 presents the performance results of the three
baselines trained with both the noisy and the clean datasets.
Training with the noisy datasets, average scores of Recall,
Precision, F1-score, and G-measure across the five datasets
are 0.15, 0.35, 0.16, and 0.22 in Farsec; 0.18, 0.25, 0.18,
and 0.26 in FarsecTuned

Learner; and 0.23, 0.12, 0.14, and 0.32 in
FarsecTuned

Smote . Trainning with the clean datasets, the average

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE 5
Performance results of the three baseline approaches with classifier RF on both the Noisy and Clean datasets. All labels of testing set are from the

the Clean datasets. The value of Clean datasets is bold-faced if it is better than that of the Noisy dataset (Note: the higher the better for Recall,
Precision, F1-score, and G-measure; the lower the better for pf).

Dataname Approach
Recall pf Precision F1-score G-measure

Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean

Farsec 0.01 0.66 0.00 0.00 0.83 0.95 0.02 0.78 0.02 0.79

Chromium FarsecTuned
Learner 0.03 0.67 0.00 0.00 0.39 0.94 0.05 0.78 0.05 0.80

FarsecTuned
Smote 0.30 0.80 0.17 0.07 0.04 0.22 0.07 0.35 0.45 0.86

Farsec 0.44 0.50 0.02 0.07 0.39 0.19 0.41 0.28 0.60 0.65

Ambari FarsecTuned
Learner 0.38 0.56 0.02 0.06 0.35 0.23 0.36 0.33 0.54 0.70

FarsecTuned
Smote 0.44 0.44 0.05 0.06 0.22 0.19 0.29 0.26 0.60 0.60

Farsec 0.07 0.33 0.02 0.12 0.27 0.21 0.11 0.26 0.12 0.48

Camel FarsecTuned
Learner 0.11 0.24 0.04 0.05 0.21 0.33 0.14 0.28 0.20 0.38

FarsecTuned
Smote 0.07 0.33 0.06 0.13 0.11 0.20 0.08 0.25 0.12 0.47

Farsec 0.24 0.84 0.18 0.54 0.25 0.27 0.25 0.41 0.38 0.60

Derby FarsecTuned
Learner 0.38 0.69 0.22 0.44 0.30 0.27 0.33 0.39 0.51 0.62

FarsecTuned
Smote 0.33 0.60 0.28 0.25 0.22 0.37 0.27 0.45 0.45 0.67

Farsec 0.00 0.52 0.00 0.05 0.00 0.34 0.00 0.41 0.00 0.67

Wicket FarsecTuned
Learner 0.00 0.52 0.00 0.08 0.00 0.24 0.00 0.33 0.00 0.67

FarsecTuned
Smote 0.00 0.39 0.00 0.05 0.00 0.26 0.00 0.32 0.00 0.55

Farsec 0.15 0.57 0.04 0.16 0.35 0.40 0.16 0.43 0.22 0.64

Average FarsecTuned
Learner 0.18 0.54 0.06 0.13 0.25 0.40 0.18 0.42 0.26 0.63

FarsecTuned
Smote 0.23 0.51 0.11 0.11 0.12 0.25 0.14 0.33 0.32 0.63

All 0.19 0.54 0.07 0.13 0.24 0.35 0.16 0.39 0.27 0.63

values of Recall, Precision, F1-score, and G-measure across
the five datasets reach 0.57, 0.40, 0.43, and 0.64 in Farsec;
0.54, 0.40, 0.42, and 0.63 in FarsecTuned

Learner; and 0.51, 0.25,
0.33, and 0.63 in FarsecTuned

Smote . Comparing the performance
after training with clean and noisy datasets, we have the
following observations:

(1) The maximum values of Recall, Precision, F1-score,
and G-measure of the baselines on the clean datasets are
higher than that on the noisy dataset.

(2) The average values of Recall, Precision, F1-score, and
G-measure are increased by 191%, 46%, 147%, and 136%,
respectively.

Finding I

For the same classifier, the performance on the clean datasets
is much higher than that of the noisy datasets.

6.2 Response to RQ2
RQ2: How does simple text classification perform on the
clean datasets for SBR prediction?

To answer RQ2, we perform the five classification algo-
rithms (i.e., RF, NB, MLP, LR, and KNN) with simple text
classification. We first train each of the five classification
models with a noisy dataset and its corresponding clean
dataset respectively. Then, we use the model to predict the
testing set of the project. The performance metrics of the
model are then calculated with the clean data labels.

Table 6 presents the performance results of the three
baselines trained with both the noisy and the clean datasets.
The performance scores corresponding to the clean dataset
is highlighted in boldface if it is better than that of the noisy
dataset. Note that the overall values of Recall, Precision,
F1-score, and G-measure on the clean version of the five
datasets are much higher than that of the noisy version. The
average values of performance metrics Recall, Precision, F1-
score, and G-measure are 0.08, 0.29, 0.11, and 0.14 for models
trained on the noisy datasets, and 0.37, 0.54, 0.42, and 0.51
for models trained on the clean datasets, which are 362%,
86%, 281%, and 264% higher than that of the noisy datasets.
In particular, the improvement on the large-scale dataset
Chromium is substantial. The average F1-score with the five
classifiers trained on the clean Chromium dataset is 654%
higher than the average F1-score on the noisy Chromium
dataset.

Finding II

Simple text classification performs better on the clean
datasets than the noisy datasets.

For Precision, our experiment results for the simple text
classification contradicts Tantithamthavorn et al.’s conclu-
sion as in their work, the mislabeling rarely impacts the
Precision of prediction models [4]. We further explored the
reasons and found that in Tantithamthavorn’s work, they re-
balanced the training data to combat class imbalance, which

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 6
Performance results of the five classifiers with simple text classification on both the Noisy and Clean datasets. All labels of testing set are from the
the Clean datasets. The value of Clean datasets is bold-faced if it is better than that of the Noisy datasets (Note: the higher the better for Recall,

Precision, F1-score, and G-measure; the lower the better for pf).

Dataname Learner Recall pf Precision F1-score G-measure
Noisy Clean Noisy Clean Noisy Clean Noisy Clean Noisy Clean

RF 0.01 0.72 0.00 0.00 0.99 0.92 0.02 0.81 0.02 0.84
NB 0.15 0.66 0.02 0.04 0.17 0.29 0.16 0.40 0.26 0.79

Chromium MLP 0.06 0.49 0.00 0.00 0.33 0.71 0.10 0.58 0.11 0.66
LR 0.04 0.58 0.00 0.00 0.37 0.84 0.07 0.69 0.08 0.73

KNN 0.04 0.58 0.00 0.00 0.37 0.84 0.07 0.69 0.08 0.73
RF 0.13 0.25 0.02 0.02 0.20 0.31 0.15 0.28 0.22 0.40
NB 0.13 0.44 0.02 0.02 0.15 0.39 0.14 0.41 0.22 0.60

Ambari MLP 0.31 0.38 0.03 0.02 0.28 0.38 0.29 0.38 0.47 0.54
LR 0.19 0.25 0.01 0.01 0.38 0.40 0.25 0.31 0.32 0.40

KNN 0.19 0.25 0.01 0.01 0.38 0.40 0.25 0.31 0.32 0.40
RF 0.00 0.37 0.00 0.00 0.00 0.89 0.00 0.52 0.00 0.54
NB 0.04 0.30 0.05 0.05 0.09 0.37 0.06 0.33 0.08 0.46

Camel MLP 0.00 0.20 0.02 0.03 0.00 0.43 0.00 0.27 0.00 0.33
LR 0.02 0.15 0.00 0.02 0.33 0.39 0.04 0.22 0.04 0.26

KNN 0.02 0.15 0.00 0.02 0.33 0.39 0.04 0.22 0.04 0.26
RF 0.10 0.46 0.02 0.01 0.59 0.90 0.18 0.61 0.19 0.63
NB 0.16 0.53 0.06 0.13 0.39 0.50 0.23 0.51 0.28 0.66

Derby MLP 0.14 0.39 0.03 0.07 0.50 0.56 0.22 0.46 0.25 0.55
LR 0.12 0.39 0.01 0.06 0.67 0.60 0.21 0.48 0.22 0.55

KNN 0.12 0.39 0.01 0.06 0.67 0.60 0.21 0.48 0.22 0.55
RF 0.00 0.48 0.00 0.00 0.00 0.92 0.00 0.63 0.00 0.65
NB 0.00 0.30 0.00 0.03 0.00 0.30 0.00 0.30 0.00 0.46

Wicket MLP 0.00 0.22 0.00 0.02 0.00 0.36 0.00 0.27 0.00 0.36
LR 0.00 0.13 0.00 0.01 0.00 0.38 0.00 0.19 0.00 0.23

KNN 0.00 0.13 0.00 0.01 0.00 0.38 0.00 0.19 0.00 0.23
RF 0.05 0.46 0.01 0.01 0.36 0.79 0.07 0.57 0.09 0.61
NB 0.10 0.45 0.03 0.05 0.16 0.37 0.12 0.39 0.17 0.59

Average MLP 0.10 0.33 0.02 0.03 0.22 0.49 0.12 0.39 0.17 0.49
LR 0.07 0.30 0.01 0.02 0.35 0.52 0.11 0.38 0.13 0.44

KNN 0.07 0.30 0.01 0.02 0.35 0.52 0.11 0.38 0.13 0.44
All 0.08 0.37 0.01 0.03 0.29 0.54 0.11 0.42 0.14 0.51

will impact the Precision of prediction models [65], [66]. In
fact, their conclusion is close to the results of our baseline
approaches (i.e., Farsec, FarsecTuned

Learner, and FarsecTuned
Smote),

and these baselines alleviate class imbalance by filtering out
noise from the majority category or applying SMOTE.

Figure 5 shows the boxplots of Recall, Precision,
F1-score, and G-measure of approaches Text, Farsec,
FarsecTuned

Learner, and FarsecTuned
Smote trained on the clean and

noisy datasets. The scores for the clean datasets are shown as
red boxes, while the scores for the noisy datasets are shown
as blue boxes. From the plots of Precision, we can observe
the Precision of the three baseline approaches on the clean
data and noisy data are similar, which is in line with the
conclusion of Tantithamthavorn et al. ’s work [4].

Comparing the performance of simple text classification
with the three baselines (i.e., Farsec, FarsecTuned

Learner, and
FarsecTuned

Smote) trained on the clean datasets, the Precision is
significantly improved with an increase of 125% on average.
However, the three baselines perform better in terms of
Recall. In the context of SBR prediction, Recall measures
the percentage of true SBRs identified from total SBRs of
target project, while Precision measures the percentage of
true SBRs of the total identified SBRs. Recall and Precision
are both important metrics for SBR prediction. Therefore,
we use F1-score as the most important evaluation metric
to avoid bias. F1-score is the harmonic mean of Recall and
Precision - it evaluates if an increase in Precision (Recall)

outweighs a reduction in Recall (Precision) [67]. In this
paper, we use F1-score as the most important evaluation
metric to avoid bias. From the boxplots of F1-score, on the
clean datasets (red), the box of simple text classification (txt)
is much higher than those of the three baselines (fsc, ftl, and
fts). On average, Simple text classification is 46% higher than
the three baselines in terms of F1-score.

Finding III

With the clean datasets, simple text classification outper-
forms the three baseline approaches.

7 DISCUSSION

In this section, we discuss if the hyperparameter tuning
method proposed by Shu et al. works while combining
simple text classification, the patterns of mislabeling in the
original datasets, performance levels of different annotators
(engineers versus Ph.D. students), the implications of our
study, and threats to the validity of our study.

7.1 Do the hyperparameter tuning approaches pro-
posed by Shu et al. work on simple text classification?

We investigate whether the hyperparameter tuning ap-
proach proposed by Shu et al. works when combining with
the simple text classification techniques proposed in RQ2.

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

txt fsc ftl fts
Approach

0.0

0.2

0.4

0.6

0.8

1.0
R

ec
al

l
data version

clean
noisy

txt fsc ftl fts
Approach

Pr
ec

is
io

n

data version
clean
noisy

txt fsc ftl fts
Approach

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

data version
clean
noisy

txt fsc ftl fts
Approach

G
-m

ea
su

re

data version
clean
noisy

Fig. 5. Performance comparison between the clean datasets (red) and noisy datasets (blue) for simple text classification and the three baselines
(i.e., Farsec, FarsecTuned

Learner , and FarsecTuned
Smote). (Note that the txt, fsc, ftl, and fts are short for Text, Farsec, FarsecTuned

Learner , and FarsecTuned
Smote ,

respectively).

Here, we apply the two hyperparameter tuning approaches
proposed by Shu et al. with RF. Similar to the naming
rule of our baseline approaches, we use FarsecTuned

Learner and
TextTuned

Smote to indicate the combination of text classification
with the learner tuning (tuning the key parameters of
learner RF) and the combination of text classification with
the Smote tuning (tuning the key parameters of Smote),
respectively.

Table 7 shows the results of combining text classifica-
tion with hyperparameter tuning (i.e., tune the learner and
SMOTE respectively). The best value of Recall, Precision,
F1-score, and G-measure achieves 0.76, 0.94, 0.84, and 0.89
across the five datasets; and the average of Recall, Preci-
sion, F1-score, and G-measure are 0.56, 0.58, 0.52, and 0.68
respectively. FarsecTuned

Learner (combination of simple text clas-
sification and hyperparameter tuning of learner) substan-
tially improves Precision, while FarsecTuned

Smote (combination
of simple text classification and hyperparameter tuning of

SMOTE) is more effective for improving Recall. Considering
the importance of harmonic metric F1-score, FarsecTuned

Learner

outperforms FarsecTuned
Smote on average.

To further compare the effectiveness of FarsecTuned
Learner

and FarsecTuned
Smote with the four approaches involved in

answering RQ1 and RQ2, we use boxplots to show the
performance values of the six approaches across the five
clean datasets, as shown in Figure 6. Paired color is used to
show each group, namely, the blue pair represent two basic
approaches (Farsec and Text), the green pair are approaches
with hyperparameter tuning of learner (FarsecTuned

Learner and
TextTuned

Learner), and the red pair are approaches with hyper-
parameter tuning of SMOTE (FarsecTuned

Smote and TextTuned
Smote).

We can observe that FarsecTuned
Learner (green) is much bet-

ter than FarsecTuned
Learner (light green) in terms of Precision

and F1-score, which is in line with comparing Text (blue)
with Farsec (light blue). However, TextTuned

Smote (red) consis-
tently outperforms FarsecTuned

Smote (light red) for all the four

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

TABLE 7
Effectiveness of hyperparameter optimization approaches proposed by Shu et al. combined with simple text classification.

Dataset Approach Recall pf Precision F1-score G-measure

Chromium
TextTuned

Learner 0.76 0.00 0.94 0.84 0.87

TextTuned
Smote 0.86 0.08 0.17 0.28 0.89

Ambari
TextTuned

Learner 0.25 0.02 0.31 0.28 0.40

TextTuned
Smote 0.50 0.02 0.50 0.50 0.66

Camel
TextTuned

Learner 0.39 0.00 0.95 0.55 0.56

TextTuned
Smote 0.41 0.09 0.32 0.36 0.57

Derby
TextTuned

Learner 0.52 0.01 0.93 0.66 0.68

TextTuned
Smote 0.68 0.25 0.40 0.50 0.71

Wicket
TextTuned

Learner 0.52 0.01 0.71 0.60 0.68

TextTuned
Smote 0.70 0.03 0.57 0.63 0.81

TextTuned
Learner 0.49 0.01 0.77 0.59 0.64

Average TextTuned
Smote 0.63 0.09 0.39 0.45 0.73

All 0.56 0.05 0.58 0.52 0.68

performance indicators (Recall, Precision, F1-score, and G-
measure). When comes to the key performance indicator F1-
score, TextTuned

Learner is slightly higher than Text and becomes
the best of the six approaches.

7.2 Patterns of mislabeling in the original datasets
Manual data annotation is an exhausting task. To shed light
on further automated data cleaning and data labeling work,
this section tries to summarize the patterns of mislabeling
based on analyzing the manual identified SBRs.

7.2.1 Prevalence
There are totally 749 SBRs identified from the mislabeling of
noisy datasets by the manual review. One or multiple CWE
tag(s) are assigned to each record. These tags allowed us to
understand the distribution of mislabeling items.

More than 50 CWE categories are involved in the 749
SBRs. However, to extract the most common characteristics
from these SBRs, we group them from the 40 top-level
CWE categories of software development. Finally, CWE-
1218 (Memory buffer error), CWE-199 (Information man-
agement error), and CWE-465 (Pointer Issues) are the top
three categories with the largest number of SBRs. They take
up about 75% of all SBRs. Amongst this, around 90% records
of CWE-1218 and CWE-199 are contributed by Chromium,
while 95% records of CWE-465 are from the four small-sized
datasets.

7.2.2 Patterns of description
Bug description usually describes the observed behavior
(OB) and/or the expected behavior (EB) with natural lan-
guage. Chaparro et al. [26] summarized the most common
patterns of OB and EB:

• OB: ([subject]) [negative aux. verb] [verb] [complement].
Here, [negative aux. verb] ∈ {are not, can not, does
not, did not, etc. }. For example, [Audio Output
Stream’s shutdown code] [does not] [correctly delete

TABLE 8
Keywords summarized from mislabeling SBRs of the top-3 categories.

Category Keywords
[Subject] [verb]/[complement]

CWE-1218 memory, heap, stack,
cache, buffer, pool, cpu,
loop, size, range, index,
array, file, path, data,
exception, bound, con-
sumption

out, comsume, leak,
handle, corrupt, null,
exceed, overflow, crash,
uncontrol, dereference,
use-after-free, out-of-
bounds

CWE-119 password, cookie, log,
cache, credential, user,
username, session, pro-
file, sandbox, privacy,
security, license, proxy,
host, certificate

leak, exposure, mask,
storage, transfer, log,
sensitive, clear, hash,
permit, allow, invalid,
malicious

CWE-465 pointer dereference, reference,
release, incorrect, im-
proper, null, outside, in-
valid, exception, unini-
tialized, initialize, out-
of-range, expired, han-
dle

the output stream object after the thread is shut-
down...] (from Chromium Issue 16036).

• EB: [subject] should/shall (not) [complement]. For exam-
ple, [It] shouldn’t [bother to call back to the UI thread
since such a call won’t actually do anything at this
point.](from Chromium Issue 41547).

When it comes to the SBRs, there are some security-
related keywords that appear in the [subject] and
[verb]/[complement] of SBRs’ description. Based on analyzing
the 749 identified SBRs, we summarize some high-frequency
words for the top-3 CWE categories (CWE-1218, CWE-199,
and CWE-464), as shown in Table 8. SBRs belonging to each
category always include a combination of words from both
[subject] and [verb]/[complement], or words that are with the
same roots as these words.

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

fsc txt ftl ttl fts tts
Approach

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ec

al
l

fsc txt ftl ttl fts tts
Approach

Pr
ec

is
io

n

fsc txt ftl ttl fts tts
Approach

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

fsc txt ftl ttl fts tts
Approach

G
-m

ea
su

re

Fig. 6. Boxplots with Paired color for the performance of the six involved classification approaches on the clean datasets. The blue pair represent
two basic approaches (Farsec and Text), the green pair are approaches with hyperparameter tuning of learner (FarsecTuned

Learner and TextTuned
Learner),

and the red pair are approaches with hyperparameter tuning of SMOTE (FarsecTuned
Smote and TextTuned

Smote). (Note that the fsc, txt, ftl, ttl, fts, and tts
are short for approaches Farsec, Text, FarsecTuned

Learner , TextTuned
Learner , FarsecTuned

Smote , and TextTuned
Smote , respectively).

7.3 Performance levels of annotators: engineers vs.
Ph.D. students
Our clean datasets annotation involves six annotators, in-
cluding four software engineers from Huawei corporation
and two Ph.D. students. This section discusses the per-
formance levels of annotators from corporation employ-
ees and university students. The annotation results are
shared at https://github.com/NWPU-IST/sbrbench/tree/
master/ManualAnnotation.

Based on each annotation result and the final labels
of clean datasets, the overall accuracy of corporation an-
notators is better than that of Ph.D. students. However,
Ph.D. student A5, who has three years of software testing
experience and currently focuses on bug reports analysis,
outperforms corporation annotator A3, who has eight years
of software development experience and is familiar with
project Chromium. That is to say, annotators with practical

development and testing experience are more likely to give
correct labels; however, experience on software security-
related work contributes more to correct labelling.

7.4 Implications

From this work, we distill some general suggestions which
are beyond the specific task and approaches.

Data quality matters. According to the investigation
result of Kim et al. [68], data quality is the first challenge
of data scientists in Microsoft. They point out that the data
quality issue makes it difficult for data scientists to have
high confidence about the correctness of their work.

As shown by our experiment results of SBR prediction,
the effectiveness of SBR prediction models is strongly cor-
related with data label correctness. The performance of a
model fit with clean data is much better than the model fit

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NWPU-IST/sbrbench/tree/master/ManualAnnotation
https://github.com/NWPU-IST/sbrbench/tree/master/ManualAnnotation

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

with noisy data. Researchers have conducted similar valida-
tion in the area source code defect prediction [31], [68], valid
bug prediction [32], clone detection [69] of software engi-
neering. For example, Kim et al. [68] investigated the impact
of data labels on defect prediction. Their evaluation results
show that the prediction model’s performance is clearly
decreased while the mislabels over 25%. Tantithamthavorn
et al. [4] showed the prediction models trained on noisy
data achieve 56%-68% of the Recall of models trained on
clean data.

Collective effort is required. The high-quality dataset
is vital to proper experimental evaluation of approaches for
SBR prediction. For SBR prediction dataset labeling, manual
effort is required because the current automatic approach
can not handle this well. Although manual data labeling is
difficult and expensive, it can still be overcome with collec-
tive effort. There are many successful cases of constructing
high-quality datasets with collective efforts. For example,
Svajlenko et al. [69], [70] built a large-scale benchmark
for clone detection by mining and then manually check-
ing clones of ten common functionalities. The benchmark
contains six million true positive clones of different clone
types: Type-1, Type-2, Type-3, and Type-4. These clones were
found by three judges over 216 hours of manual validation
efforts. These datasets are widely-used by researchers [71],
[72], [73].

In the area of SBR prediction, collective effort is required
for correctly labeling data, and construct high-quality pub-
licly available datasets. Our work is one of the steps towards
achieving that goal. We have released our datasets and
manual annotation files publicly for others to verify and
extend7.

7.5 Threats to validity

Internal Validity. A threat to the internal validity of this
study is the potential mislabels in the clean datasets. We
take several measures to reduce this threat. However, it is
still challenging to guarantee that there are no false positives
and false negatives in the clean datasets.

As Ohira et al. [19] noted, it is hard to judge whether
a bug report is an SBR or NSBR when there is no clear
definition for SBR. We use the definitions of CWE, which
is the most authoritative organization of vulnerability man-
agement, as a basis to judge whether a bug report is an
SBR. Furthermore, all six annotators conducting the manual
review have rich practical experience and a deep under-
standing of different vulnerability types and characteristics.

Besides, Viviani et al. [52] present a good practice of
data annotation; we follow their approach to generate a
codebook by reviewing 351 known SBRs of the five projects.
This codebook record the reasons why a bug report is
labeled as SBR and the exact sentences and phrases that
support this decision. We use the codebook as guidance of
the following review process, and the card sorting approach
is also applied to guarantee the correctness of label results
further.

Another threat to the internal validity is the impact of
tuning for the findings. To mitigate this threat, a set of

7. https://github.com/NWPU-IST/sbrbench.

turning approaches have been considered in our experi-
ments, including selecting optimal values for Farsec (i.e.,
use filter farsectwo and top 100 security-related keywords),
tuning the key parameters of classifiers (i.e., FarsecTuned

Learner

and TextTuned
Learner), and tuning parameters of over-sampling

approach SMOTE (i.e., FarsecTuned
Smote and TextTuned

Smote). Ex-
periment results show these tuning approaches have little
impact on the findings. However, other tuning approaches
like feature selection, under-sampling approaches could be
considered in the future [74].

External Validity. Threats to external validity are con-
cerned with the generality of our findings. In this study, we
evaluate the impact of data label correctness by comparing
the performance of the same SBR prediction models on the
noisy datasets with that of the clean datasets. The three
baseline methods extracted from two recent SBR prediction
work proposed by Peters et al. and Shu et al., and the
simple text classification models are applied. Moreover, a
set of performance indicators (all the performance indicators
involved in their studies), including Recall, pf, Precision, F1-
score, and G-measure, are used for the evaluation.

Another external threat is the generalization of the find-
ings. This study investigates the impact of data quality on
SBR prediction. We do not claim that our findings can be
generalized to all software analytics tasks. However, In the
area of MSR, data annotation is involved in many tasks. For
example, sourcecode defect prediction [4], [8], [31], high-
impact bug report prediction [27], [32], [34], and assessing
software productivity and quality [68]. Data quality is one
of the key factors determining a model’s effectiveness for
prediction model-involved tasks [64]. Most previous studies
show that the label correctness of training data impacts
the performance of classification models [31], [33], [68],
which is in line with our findings. We think the findings
of this paper are possible to be generalized to MSR sce-
narios with similar characteristics as SBR prediction. These
characteristics include but are not limited to: (1) the scenario
involves significant class imbalance; (2) the problem-solving
approach is based on text mining. High-impact defect report
prediction is the closest scenario. For example, performance
bug report prediction [75] and configuration bug report
prediction [76] - these are important tasks that can influence
software quality.

8 SUMMARY

In this paper, we improved the label correctness of five pub-
licly available SBR prediction datasets and conducted an ex-
tensive experimental evaluation of the impacts of data label
correctness for classification algorithms. The results show:
(1) with the same prediction model (e.g., the approaches
proposed by Peters et al. and Shu et al.), the performance
on the clean datasets is much higher than that of the noisy
datasets. (2) Simple text classification performs much better
on the clean datasets than the noisy datasets. (3) With the
clean datasets, simple text classification outperforms the
baseline approaches proposed by Peters et al. and Shu et
al.

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NWPU-IST/sbrbench.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

ACKNOWLEDGMENTS

The authors would like to thank Sensen Guo, Zhong Liu,
Weiqiang Fu, Fengyu Liu, and Manqing Zhang for their
contributions to our datasets annotation. We would also like
to thank the authors of Better Security Bug Report Classifica-
tion via Hyperparameter Optimization and Text Filtering and
Ranking for Security Bug Report Prediction for sharing their
datasets and scripts.

This research is done with support from the Innovation
Foundation for Doctor Dissertation of Northwestern Poly-
technical University (CX202067) and the Key Laboratory of
Advanced Perception and Intelligent Control of High-end
Equipment, Ministry of Education (GDSC202006).

REFERENCES

[1] “Mining software repository,” 2020, http://www.msrconf.org/.
[2] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some

comments on the nasa software defect datasets,” IEEE Transactions
on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013.

[3] Y. Tian, N. Ali, D. Lo, and A. E. Hassan, “On the unreliability of
bug severity data,” Empirical Software Engineering, vol. 21, no. 6,
pp. 2298–2323, 2016.

[4] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto, “The impact of mislabelling on the performance
and interpretation of defect prediction models,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1.
IEEE, 2015, pp. 812–823.

[5] M. Jimenez, R. Rwemalika, M. Papadakis, F. Sarro, Y. Le Traon,
and M. Harman, “The importance of accounting for real-world
labelling when predicting software vulnerabilities,” in Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 695–705.

[6] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction
models,” in In Proceedings of the 37th International Conference on
Software Engineering-Volume 1. IEEE, 2015, pp. 789–800.

[7] J. Debattista, S. Auer, and C. Lange, “Luzzu—a methodology and
framework for linked data quality assessment,” Journal of Data and
Information Quality (JDIQ), vol. 8, no. 1, pp. 1–32, 2016.

[8] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with noise in
defect prediction,” in 2011 33rd International Conference on Software
Engineering (ICSE). IEEE, 2011, pp. 481–490.

[9] O. Alonso, “Challenges with label quality for supervised learn-
ing,” Journal of Data and Information Quality (JDIQ), vol. 6, no. 1,
pp. 1–3, 2015.

[10] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation
of pull request descriptions,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019,
pp. 176–188.

[11] F. Peters, T. Tun, Y. Yu, and B. Nuseibeh, “Text filtering and
ranking for security bug report prediction,” IEEE Transactions on
Software Engineering, vol. PP, no. 99, pp. 1–1, 2017.

[12] R. Shu, T. Xia, L. Williams, and T. Menzies, “Better Security
Bug Report Classification via Hyperparameter Optimization,” in
preprint arXiv:1905.06872, 2019.

[13] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in Proceedings of the
7th International Working Conference on Mining Software Repositories,
Cape Town, South Africa, 2-3 May 2010. IEEE, 2010, pp. 11–20.

[14] D. Behl, S. Handa, and A. Arora, “A bug mining tool to identify
and analyze security bugs using naive bayes and tf-idf,” in Pro-
ceedings of International Conference on Optimization, Reliabilty, and
Information Technology, Faridabad, India, 6-8 Feb. 2014. IEEE, 2014.

[15] S. Zaman, B. Adams, and A. E. Hassan, “Security versus per-
formance bugs: a case study on firefox,” in Proceedings of the 8th
working conference on mining software repositories, 2011, pp. 93–102.

[16] P. Kamongi and K. Kavi, “VULCAN: Vulnerability Assessment
Framework for Cloud Computing,” in Proceedings of the 7th Inter-
national Conference on Software Security and Reliability, Gaithersburg,
MD, USA, 18-20 June 2013. IEEE, 2013.

[17] Z. Thomas, N. Nachiappan, and W. Laurie A., “Searching for
a needle in a haystack: Predicting security vulnerabilities for
windows vista,” in Proceedings of the 3rd International Conference
on Software Testing, Verification and Validation, Paris, France, April
7-9, 2010. IEEE, 2010, pp. 421–428.

[18] “Mining Software Repository Challenge,” 2011,
http://2011.msrconf.org/msr-challenge.html.

[19] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda,
N. Limsettho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto, “A
dataset of high impact bugs: Manually-classified issue reports,” in
Mining Software Repositories, 2015.

[20] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie,
and H. Mei, “Safe memory-leak fixing for c programs,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing, vol. 1. IEEE, 2015, pp. 459–470.

[21] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter,
“Thread cluster memory scheduling: Exploiting differences in
memory access behavior,” in 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. IEEE, 2010, pp. 65–76.

[22] “2019 TOP 25 CWEs,” 2019, https://cwe.mitre.org/top25/.
[23] W. Fu and T. Menzies, “Easy over hard: A case study on deep

learning,” in Proceedings of the 2017 11th joint meeting on foundations
of software engineering, 2017, pp. 49–60.

[24] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang,
“Neural-machine-translation-based commit message generation:
how far are we?” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 373–384.

[25] O. Chaparro, C. Bernal-Cárdenas, J. Lu, K. Moran, A. Marcus,
M. Di Penta, D. Poshyvanyk, and V. Ng, “Assessing the quality
of the steps to reproduce in bug reports,” in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2019, pp.
86–96.

[26] O. Chaparro, J. Lu, F. Zampetti, L. Moreno, M. Di Penta, A. Mar-
cus, G. Bavota, and V. Ng, “Detecting missing information in
bug descriptions,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 396–407.

[27] X. L. Yang, D. Lo, X. Xia, Q. Huang, and J.-L. Sun, “High-impact
bug report identification with imbalanced learning strategies,”
Journal of Computer Science and Technology, vol. 32, no. 1, pp. 181–
198, 2017.

[28] W. J. Wijayasekara D, Manic M, “Mining Bug Databases for
Unidentified Software Vulnerabilities,” in Proceedings of the 5th
International Conference on Human System Interactions, erth, WA,
Australia, 6-8 June 2012, 2012, pp. 89–96.

[29] J. Arnold, A. Tim, D. Waseem, P. Gregory, E. Nelson, T. Geoffrey,
and A. Kaseorg, “Security Impact Ratings Considered Harmful,”
in Proceedings of the 12th Conference on Hot Topics in Operating
Systems. Usenix, 2009.

[30] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al., “Automatic
identification of bug-introducing changes,” in 21st IEEE/ACM
international conference on automated software engineering (ASE’06).
IEEE, 2006, pp. 81–90.

[31] Y. Fan, X. Xia, D. A. da Costa, D. Lo, A. E. Hassan, and S. Li,
“The impact of changes mislabeled by szz on just-in-time defect
prediction,” IEEE Transactions on Software Engineering, 2019.

[32] P. S. Kochhar, F. Thung, and D. Lo, “Automatic fine-grained issue
report reclassification,” in 2014 19th International Conference on
Engineering of Complex Computer Systems. IEEE, 2014, pp. 126–
135.

[33] S. J. Herzig Kim and A. Zeller, “It’s not a bug, it’s a feature:
how misclassification impacts bug prediction,” in 2013 35th In-
ternational Conference on Software Engineering (ICSE). IEEE, 2013,
pp. 392–401.

[34] X. Xia, D. Lo, W. Qiu, X. Wang, and B. Zhou, “Automated configu-
ration bug report prediction using text mining,” in 2014 IEEE 38th
Annual Computer Software and Applications Conference. IEEE, 2014,
pp. 107–116.

[35] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes
induce fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4,
pp. 1–5, 2005.

[36] O. Jalali, T. Menzies, and M. Feather, “Optimizing requirements
decisions with keys,” in Proceedings of the 4th international workshop
on Predictor models in software engineering, 2008, pp. 79–86.

[37] Graham and Paul, Hackers and painters : big ideas from the computer
age. O’Reilly, 2004.

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3063727, IEEE
Transactions on Software Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[38] M. Feurer and F. Hutter, “Hyperparameter optimization,” Auto-
mated Machine Learning, pp. 3–33, 2019.

[39] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of
artificial intelligence research, vol. 16, pp. 321–357, 2002.

[40] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial sur-
vey, benchmark system, and empirical study,” IEEE Transactions
on Software Engineering, 2018.

[41] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson et al., “An open-source
benchmark suite for microservices and their hardware-software
implications for cloud & edge systems,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019, pp. 3–18.

[42] B. Liu, G. Meng, W. Zou, Q. Gong, F. Li, M. Lin, D. Sun, W. Huo,
and C. Zhang, “A large-scale empirical study on vulnerability
distribution within projects and the lessons learned,” in 2020 42nd
International Conference on Software Engineering (ICSE). IEEE, 2011.

[43] K. Ku, T. E. Hart, M. Chechik, and D. Lie, “A buffer overflow
benchmark for software model checkers,” in Proceedings of the
twenty-second IEEE/ACM international conference on Automated soft-
ware engineering, 2007, pp. 389–392.

[44] I. Pashchenko, S. Dashevskyi, and F. Massacci, “Delta-bench:
differential benchmark for static analysis security testing tools,”
in 2017 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). IEEE, 2017, pp. 163–168.

[45] “CVE,” 2020, https://www.cvedetails.com/.
[46] “JIRA,” 2018, https://www.atlassian.com/software/jira.
[47] B. Potter and G. McGraw, “Software security testing,” IEEE Secu-

rity & Privacy, vol. 2, no. 5, pp. 81–85, 2004.
[48] “CWE,” 2020, https://cwe.mitre.org/.
[49] C. E. Landwehr, B. Alan R., M. John P., and C. William S.,

“A taxonomy of computer program security,” ACM Computing
Surveys, vol. 26, no. 3, pp. 211–254, 1994.

[50] “Software CWEs,” 2020, https://cwe.mitre.org/data/definitions/699.html.
[51] “CWE 1228,” 2020, https://cwe.mitre.org/data/definitions/1228.html/.
[52] G. Viviani, M. Famelis, X. Xia, C. Janik-Jones, and G. C. Murphy,

“Locating latent design information in developer discussions: A
study on pull requests,” IEEE Transactions on Software Engineering,
2019.

[53] D. Spencer, “Card sorting: Designing usable categories,” Rosenfeld
Media, 2009.

[54] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang, “Per-
ceptions, expectations, and challenges in defect prediction,” IEEE
Transactions on Software Engineering, 2018.

[55] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.” Psychological Bulletin, vol. 76, no. 5, pp. 378–382, 1971.

[56] B. Jack, “Vector rewrite attack: Exploitable null pointer vulnerabili-
ties on arm and xscale architectures,” White paper, Juniper Networks,
2007.

[57] T. Mandt, “Kernel attacks through user-mode callbacks,” BlackHat
USA, Aug, 2011.

[58] A. Kogtenkov, “Void safety,” Ph.D. dissertation, ETH Zurich, 2017.
[59] S. Das and P. N. Suganthan, “Differential evolution: A survey of

the state-of-the-art,” IEEE transactions on evolutionary computation,
vol. 15, no. 1, pp. 4–31, 2010.

[60] “Scikit learn,” 2020, https://scikit-learn.org/stable/index.html.
[61] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural

network-based detection of self-admitted technical debt: From
performance to explainability,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), vol. 28, no. 3, pp. 1–45, 2019.

[62] C. Liu, D. Yang, X. Xia, M. Yan, and X. Zhang, “A two-phase trans-
fer learning model for cross-project defect prediction,” Information
and Software Technology, vol. 107, pp. 125–136, 2019.

[63] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[64] Y. Yang, X. Xia, D. Lo, T. Bi, J. Grundy, and X. Yang, “Predictive
models in software engineering: Challenges and opportunities,”
in preprint arXiv:2008.03656, 2020.

[65] P. Hulot, D. Aloise, and S. D. Jena, “Towards station-level demand
prediction for effective rebalancing in bike-sharing systems,” in
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2018, pp. 378–386.

[66] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, “The
Impact of Class Rebalancing Techniques on the Performance and

Interpretation of Defect Prediction Models,” IEEE Transactions on
Software Engineering, 2018.

[67] X. Xia, D. Lo, E. Shihab, X. Wang, and B. Zhou, “Automatic,
high accuracy prediction of reopened bugs,” Automated Software
Engineering, vol. 22, no. 1, pp. 75–109, 2015.

[68] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists
in software teams: State of the art and challenges,” IEEE Transac-
tions on Software Engineering, vol. 44, no. 11, pp. 1024–1038, 2017.

[69] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia, “To-
wards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 476–480.

[70] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 131–140.

[71] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
2016, pp. 1157–1168.

[72] J. Svajlenko and C. K. Roy, “Bigcloneeval: A clone detection tool
evaluation framework with bigclonebench,” in 2016 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2016, pp. 596–600.

[73] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detec-
tion of semantic code clones via tree-based convolution,” in 2019
IEEE/ACM 27th International Conference on Program Comprehension
(ICPC). IEEE, 2019, pp. 70–80.

[74] Y. Fan, X. Xin, D. Lo, and A. E. Hassan, “Chaff from the wheat:
Characterizing and determining valid bug reports,” IEEE Transac-
tions on Software Engineering, vol. PP, no. 99, pp. 1–1, 2018.

[75] X. Han, T. Yu, and D. Lo, “Perflearner: learning from bug reports to
understand and generate performance test frames,” in Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 17–28.

[76] W. Wen, T. Yu, and J. H. Hayes, “Colua: Automatically predicting
configuration bug reports and extracting configuration options,”
in 2016 IEEE 27Th international symposium on software reliability
engineering (ISSRE). IEEE, 2016, pp. 150–161.

Authorized licensed use limited to: Monash University. Downloaded on March 07,2021 at 06:19:50 UTC from IEEE Xplore. Restrictions apply.

	Data quality matters: A case study on data label correctness for security bug report prediction
	Citation

	Data Quality Matters: A Case Study on Data Label Correctness for Security Bug Report Prediction

