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Designing Payment Models for the Poor

Bhavani Shanker Uppari
Singapore Management University, 50 Stamford Road, 178899 Singapore, bhavaniu@smu.edu.sg

Saša Zorc
Darden School of Business, University of Virginia, Charlottesville, Virginia 22903, zorcs@darden.virginia.edu

Several basic services, such as energy, clean water and cooking gas, are currently out of reach for millions of people
living in poverty. There has been an emergence of private firms that offer these services by, for example, selling
solar home systems or clean cooking packages with remote lockout capabilities. These firms deploy a pay-as-you-go
(PAYGo) model in which consumers are given the flexibility to manage the amount and frequency of their payments
based on their own erratic cash flows. However, because a firm under this model cannot observe how much money the
consumers have, they can pay less to the firm and turn their income to other needs. We employ an optimal contracting
approach to investigate the incentives that can mitigate such misuse of payment flexibility.

The optimal contract summarizes a consumer’s payment history with a single score, which we call the v-score.
The contract allows the consumer to flexibly pay small (resp., large) amount when her disposable income is low
(resp., high), and accordingly adjusts the v-score to incentivize payments. The v-score over time rises with relatively
high payments and drops with relatively low payments. The v-score also determines the level of technology access
granted to the consumer and whether the contract is terminated or continued. The contract proposes an inclusive
downpayment scheme that allows consumers to purchase their initial v-score. We discuss how the optimal contract can
be implemented in the field and how it can solve some of the practical problems currently faced by the PAYGo firms.

1. Introduction
A significant proportion of the world’s population lives on less than $2 (US) per day, with no access to

facilities such as energy, clean water, and cooking gas, services the rest of us take for granted. This part of

the world’s population is often referred to as the bottom of the pyramid (BoP). Providing access to basic

services is necessary to lift people out of poverty. Government-driven supply of such services (e.g., through

connections to the national electrical grid and water supply network) requires substantial capital investment,

and in many cases, it may neither be technically feasible nor economically viable to extend the network to

remote impoverished regions. Consequently, we are seeing private organizations stepping in, for example by

selling solar home systems and operating local water purification and distribution systems.

Often, purchasing technologies such as a solar home system or a prepaid meter for a piped water connection

is costly for BoP consumers because their incomes are low, irregular, and unpredictable, and a near-total lack

of access to efficient mechanisms for saving and borrowing makes matters even worse. But a new payment

model called pay-as-you-go (PAYGo) is becoming prominent in the BoP markets. It aims to alleviate the

liquidity constraints of these consumers by allowing them to make a downpayment to gain access to a

technology, and thereafter make payments to maintain access. At the end of the process, a consumer may

come to own the technology.

PAYGo models are extant in the off-grid solar industry. Players include Azuri, BBOXX, d.Light, M-Kopa,

Simpa Networks, Sun King, and Zola, operating in sub-Saharan Africa and South Asia. They use the PAYGo

model to sell a variety of solar products, ranging from small solar lanterns with a mobile-recharging facility

that cost tens of dollars, to large solar home systems with multiple bulbs, fans, and televisions that cost
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hundreds to even a thousand dollars. Under PAYGo a low-income consumer can sign up for a solar loan

without a bank account or a credit history. She does not have to pledge collateral, and can repay flexibly

at a speed that matches her repayment capability (within some limits). The PAYGo firms leverage Internet

of Things (IoT) technology to remotely lock or unlock their solar devices based on consumers’ payment

histories, thereby controlling consumer access to devices. The PAYGo firms also adopt a flexible product

ownership model, whereby payments are spread out over a longer period of time, reducing the upfront cost

burden on the borrower. The freedom to decide how much and when to pay is more attractive than a straight-

jacket fixed installment plan for most households (Winiecki 2019). The underlying assets sold to consumers

represent collateral that can be repossessed or returned if the borrower is not able to continue with the

payments. The firms enable the use of mobile phones for repayments through mobile money or scratch cards,

thereby reducing travel costs and time spent in making repayments. The combination of digital payments

and remote lockout has given PAYGo solar firms the confidence to extend financing to millions of people

who would otherwise go unserved.

Following the trend in the off-grid solar sector, several other industries have also adopted the PAYGo

model. Companies such as M-Gas and PayGo Energy provide clean cooking packages, consisting of a cylinder

filled with liquefied petroleum gas (LPG), a gas cooker, and a smart meter that tracks usage and locks when

the consumers’ purchased credits expire. Consumers pay flexibly for gas over time, and the companies change

cylinders in a timely manner. Safe Water Network builds and operates small water enterprises which consist of

pumping and purification stations that distribute water to private households equipped with prepaid meters

that lock the water supply automatically when the purchased credits expire. PayJoy enables the purchase

of costly smartphones through their patented lock technology that limits app and call functionalities when

consumers are late on their payments. With similar locking technologies, Angaza (in collaboration with

Endless Solutions) and Kenyan Green Supply (with PaygOps) have deployed PAYGo computers.

Payment flexibility is at the core of any PAYGo business model, but as we argue next, it is a double-edged

sword. Our objective in this paper is to design mechanisms to manage it efficiently.

On the one hand, payment flexibility helps the poor manage payments based on their erratic cash flows,

thereby giving them access to a life-improving product or service which would otherwise have been out

of reach. Moreover, the ability to flexibly pay allows consumers to invest in other projects (e.g., purchase

livestock, furniture, and motorbikes), where flexible payments might not be an option (Zollmann et al. 2017).

Thus, given the uncertain and constrained environments that these consumers live in, offering flexibility is

almost an essential feature of any payment contract designed to serve the poor. Indeed, consumers make use

of this feature: they sometimes opt to make no payments at all in a given payment period, and at other times

bundle their payments and pay in advance for future access (Guajardo 2021, Bonan et al. 2023). Research

has shown that flexibility in payment schemes reduces financial stress and enables consumers to manage

their income better (Field et al. 2012, Barboni 2017). They can also skip payments without feeling ashamed

about their short-term cash flow problems (Zollmann et al. 2017). It therefore comes as no surprise that

PAYGo technologies have spread widely in developing countries (Lighting Global 2022).

On the other hand, payment flexibility comes with its own operational challenges. Given that a consumer

has the flexibility to pay but the firm has no way of observing exactly how much money she has, the consumer
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can choose to redirect her income to other needs and pay less to the firm. In fact, surveys conducted on

low-income consumers reveal that when they have payment flexibility, consumers can deprioritize making

payments to the firm (Zollmann et al. 2017). This can lead to payment delays and defaults that reduce

the firm’s revenue from the contract, and hurt its sustenance in the long run. Even worse, bad payment

histories can result in inefficient contract terminations and device confiscations, which can be difficult because

consumers are usually located in remote rural areas, complicating the logistics of repossessing the devices.

Irregular payments and defaults remain an issue in the PAYGo industry, and even led to the bankruptcy of

off-grid solar firms Mobisol and Solarkiosk (Wiemann and Lecoque 2019).

Moreover, in practice, the offer of flexibility is oftentimes implicit. The consumers are given a reference

payment schedule (e.g., a fixed installment plan) from which they are allowed to deviate as they wish, and

they are generally not aware of the consequences of their deviations. On top of it, the flexibility—in terms

of both the amount that the consumers pay and the time at which they pay—makes the communication

of payment performance difficult. This can create a disconnect between consumers’ and firm’s perceptions

of good versus bad repayment behavior (Zollmann et al. 2017, Bonan et al. 2023). Such issues exacerbate

payment problems and necessitate the design of a formal framework that effectively communicates to a

consumer her current standing in terms of payments, and based on her current standing, gives her optimal

payment incentives to prevent the misuse of flexibility, grants her access to the device, and calls for either

the confiscation of the device or the transfer of its ownership in a timely manner. Our efforts in this paper

are targeted towards creating such a framework—using the optimal contracting approach—and providing

actionable insights into efficiently designing and managing a pay-as-you-go model.

Methodological approach. In our analytical model, the timeline is split into multiple payment periods

(e.g., weeks or months) over a repayment term. If the consumer takes up the contract, then in each period,

her ability to pay the firm is determined by the disposable income that is available to her after accounting

for all her essential needs. We assume that the disposable income is a random variable whose distribution

is known to the firm, while its realizations are privately observed by the consumer. In every period, the

disposable income is used both to make the payment to the firm for access to the device (e.g., a solar home

system) and to satisfy any alternative needs. The firm’s objective is to incentivize the consumer to split her

money between consumption and payment in an optimal manner such that its own payoff is maximized,

even though the firm does not observe consumer’s disposable income. This is a moral hazard problem, and

we examine the contractual mechanisms that can solve it. Rather than imposing any particular structure

on the contract between the firm (principal) and the consumer (agent), we solve for an optimal mechanism

given certain incentive constraints.

In addition to the revenue made from payments, the firm might gain some payoff upon contract termina-

tion. If the contract terminates with device confiscation, the firm could sell the device in a secondary market

or refurbish it and transfer it to another consumer. Conversely, if the device ownership is transferred to the

consumer, the firm might earn a government subsidy or more funding from investors.

In any period, the firm can influence the consumer’s behavior using three nonmonetary levers: (i) restrict

the consumer’s access to the device using the remote lockout technology, (ii) confiscate the device, and



4 Uppari and Zorc: Designing Payment Models for the Poor

(iii) transfer the ownership of the device to the consumer. In addition, the firm recommends a payment

scheme to the consumer that is incentive-compatible given her preferences. Based on the incentive structure

laid out by the firm, the consumer makes her payment decisions by maximizing her own long-term value

derived from accessing the device and satisfying her alternative needs.

Thus, an optimal mechanism consists of a sequence of contractual policies that determine for each period

the amount of access that must be granted, whether the device must be confiscated or the ownership trans-

ferred, and the payment scheme recommended to the consumer, which together maximize firm’s long-term

payoff. The firm’s sequential decision problem involves solving for these policies as functions of all the pos-

sible payment histories; hence, the state space of the problem in each period is the entire payment history

until that point. There are no trivial reductions of the problem’s state space, and we naturally expect the

policies and recommendations to depend on a consumer’s entire history of payments. The problem is there-

fore complex. We simplify it by using the work of Green (1987) and Spear and Srivastava (1987), who show

that there exists a recursive formulation that is equivalent to the firm’s sequential maximization problem,

in which after any history of payments by the consumer, the value promised to the consumer in the future

effectively summarizes all the information provided by the history itself. Therefore, the promised future value

can be used as a state variable, instead of the entire payment history, in the recursive version of the problem.

Results. The aforementioned problem simplification has an important practical implication. The better

the consumer’s payment history, the higher the value of the problem’s state variable (the future value

promised to the consumer). In other words, the optimal contract uses this state variable as a score to evaluate

a consumer’s performance; we refer to it as the v-score. This v-score acts as a simple and transparent way

to communicate to the consumer how well she is doing in terms of payments, so we could also interpret it as

a credit score. The v-score also plays a central role in shaping consumer incentives in the optimal contract.

To initiate the contract, the firm in our model proposes a menu of downpayments (i.e., a flexible downpay-

ment scheme), through which consumers with different levels of liquid wealth can purchase their positions

in the contract and can start the contract at different values of v-scores. The higher the downpayment, the

higher the initial v-score will be. The menu could include the extreme of a large downpayment to obtain

ownership of the device right away. In contrast to the rigid initiation methods with just two options that

are adopted currently—wherein firms sell the devices to consumers who can afford to purchase, and to those

who cannot, firms charge a single value of downpayment to all consumers—our menu is more inclusive, and

beneficial for consumers with low levels of liquid wealth.

After the contract starts, the v-score evolves based on the consumer’s payments through time. In every

period, the optimal contract implements payment flexibility explicitly by offering a payment scheme that

recommends a payment amount to the consumer as a function of the most she could possibly pay (i.e., her

disposable income). The contract balances this flexibility with appropriate payment incentives by offering a

reward scheme that informs the consumer how her v-score will be updated upon paying a certain amount.

Thus, the contract incentivizes payments through updates to v-scores.

The suggested payment scheme recommends consumer pay a small (resp., large) amount when her dis-

posable income is low (resp., high); this flexibility in payment respects consumer’s liquidity constraints and
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accommodates uncertainty in her income. Interestingly, flexibility as a feature disappears—i.e., the contract

asks for a fixed installment to be paid every period, which is commonplace in the top-of-the-pyramid (ToP)

market—if consumers in the market have sufficiently high incomes and v-scores (analogous to credit scores),

which are also the characteristics of the ToP market consumers. Thus, payment flexibility as a contractual

feature is specific and essential to the BoP market.

The higher the payment made by the consumer, the higher the updated v-score will be, and hence the

higher the ensuing reward will be (in the form of more access to the device, lower probability of confiscation,

and higher probability of ownership transfer). But it is not the case that small payments will result in small

increments to the v-score, because small payments could either indicate low disposable income realizations

or large income diversions (which is the core of the agency issue in our setting). The contract moderates

the latter issue by dropping the v-score for small payments. As a result, the v-score over time rises with

relatively high payments and drops with relatively low payments. Furthermore, the optimal contract offers

stronger payment incentives (i.e., asks for a higher amount and also rewards at a higher rate) to consumers

with intermediate values of v-scores, and weaker payment incentives to those with relatively low and high

v-scores. The consumers at the extremes are closer to termination and that itself is incentive enough for

them, but those in the middle might require an extra push.

The optimal contract offers threshold-based guidance for termination and access provision. If the v-score in

a period falls below a confiscation threshold, the firm’s cost of continuing the contract overrides the benefit,

making it optimal to initiate the confiscation process. Similarly, if the v-score goes above an ownership

threshold, indicating that the consumer has paid sufficient to gain complete control of the device, it is optimal

to initiate ownership transfer. If the score is somewhere in between, the contract continues to the next period.

Moreover, the device is disabled (resp., enabled) for the entire duration of the period if the v-score is below

(resp., above) a threshold, and partial access is granted for intermediate values of v-score. The contract

rewards good payment histories with grace periods, during which the consumer can access the device even

if she does not make any payment.

In addition to shedding light on the structure of the optimal contract, we discuss how it can be implemented

in practice using simple (digital) lookup tables on devices. We also compare its key features with those of

contracts that are usually seen in the ToP markets. The features suggested by the optimal contract are both

insightful and implementable, and they can form the basis for experimentation in the field. In the appendix,

we show that the three prominent business models in the BoP market—sales model, rent-to-own model, and

rental model—emerge as special cases of our contracting framework. Overall, we believe that the results in

our paper can help PAYGo firms offer efficient contracts that ensure their long-term survival, which is also

key to delivering life-improving goods and services to low-income consumers.

2. Related Literature
We broadly relate to the growing body of research that studies the operational issues in the BoP markets.

For example: Balasubramanian et al. (2023) study the inventory issues arising in the context of mobile

money agents; Calmon et al. (2022) examine distribution strategies for durable goods in the BoP market;
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Gernert et al. (2023) evaluate different business models for emergency transportation systems in low-income

countries; de Zegher et al. (2018) propose payment strategies to curb illegal deforestation by smallholder

farmers; Kundu and Ramdas (2022) discuss the importance of timely after-sales service in increasing the

adoption of PAYGo solar home systems; and Ramdas and Sungu (2022) show that giving BoP consumers

too much flexibility in mobile data usage can result in their information isolation.

Particularly relevant are the papers that discuss the importance of offering payment flexibility to BoP

consumers. Uppari et al. (2019) study why some consumers may prefer using kerosene to rechargeable lamps

even when the latter cost less. They find that the quantity flexibility—in terms of how much one pays to

purchase—offered by kerosene plays an important role in shaping such a preference. Using the recharge

data from Rwanda, Uppari et al. (2023) show that simple strategies that offer payment timing flexibility

(e.g., allowing consumers to prepay for recharge or recharge on credit) help consumers manage their income

uncertainties better, and can attain half the benefit arising from eliminating liquidity constraints altogether.

Interestingly, a PAYGo model brings together both quantity and timing flexibility (i.e., it gives the freedom to

decide how much and when to pay). As we argued earlier, offering flexibility without appropriate incentives

to counter it can be detrimental, and how to balance the two is the topic of our paper. Additionally, Guajardo

(2021) examines the repayment performance for PAYGo solar lamps in six different countries and finds that

consumers make extensive use of payment flexibility: they tend to bundle their payments, and the bundles

constitute both the payments that were skipped in the past weeks as well as the advance payments for the

upcoming weeks. Guajardo (2021) also emphasizes the importance of PAYGo model design for the adoption

of off-grid energy products, the focus of our paper.

Payment flexibility also features in the literature on Microfinance Institutions (MFIs), see e.g., Jain and

Mansuri (2003), Tedeschi (2006), Field et al. (2012) and Barboni (2017). MFIs offer savings, credit, and

insurance products, all of which require consumers to make payments regularly. Thus, in this case too,

consumers can benefit from the flexibility to adapt financial transactions to their cash flows. A key difference

between MFI and our setting is that device usage in a PAYGo model can be controlled remotely. If a

consumer misses payments, the device can be automatically locked—an important mechanism to encourage

more disciplined payment behavior. By contrast, if a consumer misses payments with an MFI, there is

nothing much that an MFI can do remotely, which is why there is a strong emphasis on various alternative

discipline mechanisms in MFI literature. Specifically, discipline mechanisms in this context are designed to

encourage clients to fulfill their financial commitments. The common reasons cited for commitment breaches

(see, e.g., Laureti 2012, Labie et al. 2017) are lack of self-control, inattention to planning, intra-household

disagreements, and the payment-related moral hazard problem discussed in our paper. To counter these

issues, MFIs deploy a variety of discipline mechanisms such as asking consumers to make (small) payments

every week, sending them SMS reminders, requiring financial collateral, exploiting their social collateral, and

sending deposit collectors frequently to their homes. Interestingly, the ability to control devices remotely in

a PAYGo model mitigates the necessity for such strong discipline mechanisms. Our paper focuses closely on

the moral hazard problem—with a particular type of discipline mechanism in place—and the incentives that

solve this problem. Inattention and self-control problems are perhaps relevant in the PAYGo context as well

(see e.g., Bonan et al. 2023), and we leave their theoretical examination to future research.
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In terms of methodology, we make use of the techniques developed by Green (1987) and Spear and Srivas-

tava (1987) to solve the dynamic principal-agent problems. In full generality, optimal dynamic mechanisms

can be extremely complex in their structure. The primary cause of this complexity is that the mechanism can

depend on the entire history of events up to a specific point. The techniques from the aforementioned papers

help us reduce a sequential history-dependent contracting problem into a recursive contracting problem, in

which the sole state variable is the agent’s “promised future utility.” Applications of this methodology in

economics are vast; an overview of advances in this field is given by Acemoglu et al. (2013), pp. 89–178. This

methodology has also been extensively applied in the finance literature to present theories on firm’s invest-

ment dynamics (Clementi and Hopenhayn 2006, DeMarzo and Fishman 2007a), to design optimal securities

(DeMarzo and Fishman 2007b), and to analyze mortgage contracts (Piskorski and Tchistyi 2010, 2011).

Use of this methodology in the management science literature is more recent: it has been applied to study

incentives for environmental disclosures (Wang et al. 2016), dynamic resource allocation problems (Balseiro

et al. 2019), and repair and maintenance contracts (Tian et al. 2021).

The modeling of the agency problem in our paper is particularly inspired by the work of DeMarzo and

Fishman (2007b), who design a financial contract that induces an agent managing a project to make payments

to investors rather than diverting cash flows to herself. That said, there are some crucial differences that

set our work apart. In most financing papers, both the payments (from the agent to the principal) and the

rewards (from the principal to the agent) are monetary. This literature often deploys the revelation principle,

under which it is optimal for the agent to pay all the cash flow from the project to the principal, and the

principal thereafter pays cash rewards back to the agent (either now or later). The bidirectional flow of

cash between the principal and the agent allows truthful revelation to be optimal, which also trivializes the

agent’s payment policy. By contrast, the principal in our setting uses nonmonetary levers (remote lockout,

confiscation, and ownership transfer) to incentivize the agent, with also a limit on the maximum that the

principal can promise the agent, which is ownership. Because of resultant constraints on what the principal

can offer the agent and vice versa, the technique of the revelation principle does not extend to our setting.

We solve for a payment policy that is incentive-compatible for the agent, in addition to a reward policy that

is optimal for the principal—a harder problem.

Another source of complexity arises because the consumer in our model derives utility from two sources:

from access to the device, and from satisfying her alternative needs (called consumption utility). The two

need not be perfect substitutes, so we incorporate convex consumer preferences by making the consumption

utility function concave. This feature disables many commonly-used solution techniques that rely on the

linearity of utility functions (as in, e.g., DeMarzo and Fishman 2007b, Biais et al. 2010, Tian et al. 2021).

Although a concave utility is not rare in dynamic moral hazard problems, the commonly-used information

structure differs from ours. In a typical moral hazard problem, the agent takes an unobservable and costly

action, and that action determines an observable output (e.g., Hopenhayn and Nicolini 1997, Balke and

Lamadon 2022). The agent’s preferences generally include a concave utility from an output-based reward

and a convex cost incurred for action. The reward and action policies remain additively separable in such

models. By contrast, the unobservable in our case is the disposable income, while the observable is the
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action, i.e., payment. The payment determines both the reward as well as the cost (reflected as a reduction in

consumption utility). So, we lose the additive separability of the reward and payment policies in our model,

which further complicates the analysis.

Specifically, the methodological complexities manifest in Section 4.3, and require novel solution techniques

to solve the problem: we use a piecewise linear approximation of the consumption utility, we extend the

standard stochastic dominance results so that they can be established via one-sided slopes (Lemma 1 in

Appendix C), and we deploy a change-of-variable technique and smoothing approximations to prove Propo-

sition 4—the key result for backward induction to work in the recursive contracting problem. We believe

that the solution techniques that we have developed will generalize to models that share similar features.

3. The Contracting Problem
The consumer in our model lives on a low and uncertain income, with no access to efficient saving and

borrowing mechanisms. She also lacks access to basic services such as energy, clean water, and cooking gas.

The firm owns a device that provides one of these services when accessed. Depending on the technology that

is offered, the access to a device could translate to accessing (i) light from the bulbs, (ii) a port that allows

the recharge of other devices, (iii) information from the television, (iv) water from the piped connection,

(v) gas from the cylinder, and (vi) apps on a smartphone or a computer. Owing to consumer’s liquidity

constraints, the firm creates a long-term payment contract for the consumer to give her access to the device.

Even if the consumer is located in a remote rural area, the following two important features of our setting

make regular interactions between the consumer and firm possible. First, the consumer makes payments to

the firm using mobile money. Such mobile transfers have become fairly common in low-income regions of

Africa and Asia. This feature allows the consumer to make payments without incurring any inconvenience of

travel. Second, the device can be remotely turned on and off by the firm using IoT technologies. This feature

enables the firm to nudge the consumer when she is lagging on her payments.

It is important for any payment contract that is designed for the poor to incorporate payment flexibility

so that it can accommodate uncertainties in their lives. We investigate the incentives that can mitigate the

misuse of payment flexibility. To that end, we formulate the corresponding optimal contracting problem

in this section. We focus primarily on a version of the PAYGo model that includes the option of device

ownership (e.g., model for solar home systems). In Appendix B, we discuss a version of the model without

an ownership option (e.g., for services such as water and gas).

3.1. Firm’s Model

The firm interacts with the consumer for a maximum of θ payment periods. The length of a payment period

is exogenously given (e.g., a week, a fortnight, or a month), and the total duration of θ periods represents

the repayment term of the contract—the maximum duration for which the contract lasts. The device has a

lifetime of T periods, beyond which it does not generate any value for either the firm or the consumer and

must be scrapped. Therefore, the repayment term satisfies θ ≤ T . For ease of exposition, we assume that

θ = T ; in Appendix A, we discuss the case where the repayment term could be less than T . At t = 0, the
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firm offers a contract, which the consumer either accepts or rejects. The first payment period is t= 1 and

the last payment period (also the end of the device’s lifetime) is t= T .

In any period t > 0, the firm has the following three levers to influence consumer behavior: based on

the consumer’s payment history, the firm can (i) restrict access to the device, (ii) confiscate the device, or

(iii) transfer the device ownership. Levers (ii) and (iii) result in the termination of the contract.

Given a contractual arrangement that is in place in period t, the consumer chooses a payment pt to

maximize her value subject to her liquidity constraints (see Section 3.2). In addition to consumer payments,

the firm gains some payoff upon termination. On the one hand, if the firm confiscates the technology in

period t, then either by selling the device in a secondary market, or by refurbishing and transferring it to

another consumer, the firm gains payoff Ct. (CT is the scrap value of the device at the end of its lifetime.)

On the other hand, if the firm transfers the ownership in period t, then it gains payoff Ot, which could be a

monetary incentive in the form of a government subsidy or more funding from investors and donors. (It is

not necessary in our model for Ot to be strictly greater than zero.) We denote by K the cost that the firm

incurs to place the technology in the consumer’s hands (e.g., cost to build or source the technology, custom

tariffs, marketing and installation costs).

The firm is forward-looking with a discount factor γ. It designs a contract to maximize its discounted

payoff from the consumer payments {ps}τs=1, from termination (either Cτ or Oτ ), and from a downpayment d

that the firm might charge to initiate the contract, minus the cost K. Here, τ is the period in which the

contract terminates—endogenously determined by the contract terms.

3.2. Consumer’s Model

In period t, yt is the consumer’s disposable income that characterizes her ability to pay the firm in that

period. In other words, yt imposes a constraint on the consumer’s payment pt in period t: 0≤ pt ≤ yt. Her

ability to pay may vary over time (e.g., low if one of the household members has lost employment and high

if the consumer has harvested crop recently), could be seasonal (e.g., because of rain cycles and rotating

saving accounts), and may not be easily observable. Therefore, we assume that yt is a realization of a non-

stationary continuous random variable Yt. We denote the cumulative distribution function (cdf) of Yt by Gt,

its probability density function (pdf) by gt, and support by Yt.

Although the consumer is able to pay yt, she may not be willing to pay it all because some of that

money could be spent on her alternative needs. For example, she may need to pay children’s school fees,

purchase farming equipment, deal with the death of a cow, accommodate the visits of relatives, and buy new

clothes, alcohol, or cigarettes. (See Zollmann et al. 2017 for a survey-based discussion on trade-offs faced by

consumers while making payments to a PAYGo firm.) Need-management can therefore be a quite complex

undertaking, involving prioritizing different needs and allotting money across those needs. We refrain from

modeling such specific details, and instead model the (aggregate) utility that the consumer derives from

satisfying her needs. By consuming an amount xt to satisfy alternative needs in period t, the consumer derives

a consumption utility u(xt), where the function u is increasing and concave. To simplify exposition, we make

the following functional-form assumption: u(x) = λ1x+(λ2−λ1)[x−κ]+, where λ1 >λ2 and [k]+ =max{k,0}
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(analogously, we denote [k]− =min{k,0} which is used later). In Section 4.3, we discuss the implications of

more general formulations for u(x).

The consumer also derives an access utility from the technology. If provided access for a fraction ft of

period t, the resultant utility to the consumer is ua(ft). The value of ft is determined by the contract

depending on the consumer’s payment history. We assume that ua(ft) = ftA. (A more general formulation

is discussed in Section 4.2.) We interpret A as the maximum utility that the consumer derives in a period

from having access to the technology and ft as the fraction of that maximum utility that is provided to the

consumer. For example, A is the utility derived from having access to light in the nighttime of every day in

a period for a sufficient number of hours (e.g., 6 hours) so that the consumer can finish all of her desired

activities, and ft = 0 indicates turning the device off for the entire period.

We assume that the consumer’s preferences over the set of bundles {(xt, ft) | xt ∈ R+, ft ∈ [0,1]} are

additive and model the value from bundle (xt, ft) as U(xt, ft) = u(xt) + ua(ft). The function U has convex

indifference curves in the space of xt and ft. In other words, the consumer prefers a bundle that incorporates

to some extent both consumption and device access over a bundle that solely incorporates one of these two.

If the contract terminates with confiscation in period t, then the consumer spends her disposable income as

she wants (including any expenditures on alternative ways to satisfy the core need, e.g., by using flashlights

or kerosene), thereby deriving a value Us = Eu(Ys) perpetually in every period s > t. In contrast, if the

ownership is transferred in period t, then on top of consuming all of her disposable income perpetually,

the consumer can access the technology free of cost for its remaining lifetime and scrap it for a value of R

thereafter. Denoting the former value by vt and the latter by vt, we have

vt = δ

∞∑
s=t+1

δs−t−1Us and vt = δ

[
∞∑

s=t+1

δs−t−1Us+
A(1− δT−t)

1− δ
+ δT−tR

]
, (1)

where δ is the consumer’s discount factor, such that δ < γ. We assume that the consumer is forward-

looking, and given a contract, she makes her payment decisions by maximizing her discounted value from the

sequence of bundles {(xs, fs)}τs=1 and from termination (either vτ or vτ ), subject to her liquidity constraints.

(Interestingly, although we assume the consumer to be forward-looking, as we will see later in Sections 4

and 5, the optimal contract requires the consumer to make only single-period decisions.)

The consumer can enter the contract only if her ability to make a downpayment, which we denote by w, is

greater than the downpayment d charged by the firm. We interpret w as the liquid wealth that a consumer

usually has access to, which she can use to take up the technology. The ability w could vary across consumers

in the market, so we model this heterogeneity as a random variable W .

3.3. Information Structure, Contract, and Timing

We assume that the firm knows the distribution Gt of the consumer’s disposable income Yt but does not

know its realization yt. It is well known that the portfolios of the poor are quite complex, consisting of

multiple monetary instruments that are deployed to manage money and satisfy daily needs (Collins et al.

2009). The consumer’s essential spending and possibly her total income, and hence yt, are therefore too

costly or even impossible to monitor regularly over time. But it is a common practice among several PAYGo
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firms to vet consumers before onboarding them. The vetting process—usually conducted by firms’ sales

agents—includes surveys that help determine a consumer’s type, represented here by Gt, by asking questions

on the occupations of the working members and the usual incomes and expenditures in the household. We

also assume that the parameters of the utility functions u and ua (i.e., λ1, λ2, and A) are known to the firm.

These could be elicited in the surveys using procedures described in the decision sciences literature (for a

summary on the procedures to elicit multiattribute utility functions, see Fischer 1975, 1976).

Given this information structure, the source of the agency problem is that the consumer’s payment pt is

constrained by her income yt, which the firm cannot observe. Consequently, when the consumer makes a low

payment, the firm does not know whether the consumer diverted more of her income toward consumption or

her income realization itself was low. The firm must therefore incentivize the consumer to split her income

optimally between payment and consumption. The firm must solve this moral hazard problem through a

contract that does not condition its terms on the realizations of the consumer’s income.

In solving for an optimal contract, we will not restrict the contract form but instead solve for an optimal

mechanism that can depend on all the observable variables in our model. The firm in our model observes

(a) the payments that it receives from the consumer, (b) the compensations (in the form of access to the

device) given to the consumer, and (c) the outcomes of possible public randomizations. As a function of

the history of these observables, a contract specifies (i) fractional access to the device that is granted to the

consumer in each period; and (ii) circumstances under which the contract is terminated. Given a contract,

the consumer chooses her actions (i.e., payments) optimally.

The timing is as follows. At time t= 0, the firm offers a technology on contract to the consumer. The firm

charges a downpayment d to initiate the contract and install the device. If the consumer finds the contract

sufficiently valuable and can afford the downpayment (w ≥ d), then she pays d, takes up the contract, and

the contract dynamics begin. In a period t > 0, the consumer’s disposable income yt realizes. The consumer

makes a payment pt, consuming yt−pt. Given the history ht of observables up to t (including pt), the contract

specifies the fractional access granted to the consumer, denoted by the function ft(h
t). Before proceeding

to the next period, the contract may call for termination. We let ct(h
t) denote the contractually-specified

probability of confiscation in period t and ot(h
t) the probability of ownership transfer. (We discuss the

analytical importance of probabilistic termination and related practicalities in Section 4.1.) The consumer

may also terminate the contract by quitting (the firm repossesses the device in that case). If not terminated

early, the contract reaches its natural termination in period T . If the consumer owns the technology at the

end of its lifespan, she scraps it at value R, whereas if the firm still owns it, then the firm scraps it at CT .

Our focus in the remaining part of this section will be on contract dynamics after the initiation; we will

return to the problem of initiation in Section 4.5.

Although the history observed by the firm contains (a)–(c) mentioned above, it can be reduced to contain

only the payments without any loss of generality. Because the randomizations in our model determine whether

the contract continues or terminates, the history that is relevant for a continuation contract can only contain

the randomization outcomes that did not result in a termination, thus making (c) redundant. Moreover,

the access given in any previous period can be solved recursively in terms of past payments alone, thereby
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rendering (b) redundant. (For example, say the fractional access in period 2, as a function of past access

f1, past payment p1, and current payment p2, is F2(p1, f1(p1), p2). It can be equivalently written as another

function f2(p1, p2).) Hence, the history ht in our model hereafter is simply the payment history, so ht ∈Rt+.
(The contract begins in period 0 with an empty history h0 = {∅} ∈R0

+ = {{∅}}.)
A contract in place at the end of period t is a triplet (f t, ct, ot), consisting of sequences of functions

f t = {fs}Ts=t+1, c
t = {cs}Ts=t+1, and ot = {os}Ts=t+1, where fs(h

s), cs(h
s), and os(h

s) are all functions that

map payment histories (Rs+) to [0,1]. Given the contract, the consumer chooses payment ps strategically—

depending both on her privately-observed income realization ys and the history hs−1—to maximize her value,

for s > t. We denote the resultant consumer’s payment strategy by pt = {ps(ys, hs−1)}Ts=t+1. We say that a

contract-strategy pair (f t, ct, ot, pt) is feasible if it satisfies the following two conditions: (i) 0≤ ps(ys, h
s−1)≤

ys, and (ii) cs(h
s−1, p̌s) + os(h

s−1, p̌s) ≤ 1, for all s ∈ {t + 1, . . . , T}, p̌s ∈ R+, ys ∈ Ys, and hs−1 ∈ Rs−1
+ .

Condition (i) reflects the consumer’s liquidity constraint, and condition (ii) ensures that the probabilities

of ownership and confiscation sum up to no more than 1. The history is updated as hs = (hs−1, p̌s), where

p̌s is the amount that the consumer actually pays in period s. We denote by Γt the set of all feasible

contract-strategy pairs.

For a (f t, ct, ot, pt) ∈ Γt, the firm’s payoff Πt and the consumer’s value Vt at the end of period t (i.e., in

the subgame starting from ht) are given by:

Πt(f
t, ct, ot, pt) =E

[ ∑
t<s≤τ

γs−tps+ γτ−t(ρCτ +(1− ρ)Oτ )
∣∣∣ f t, ct, ot, pt] , (2)

Vt(f
t, ct, ot, pt) =E

[ ∑
t<s≤τ

δs−tU(Ys− ps, fs)+ δτ−t(ρvτ +(1− ρ)vτ )
∣∣∣ f t, ct, ot, pt] , (3)

where τ is the termination time and ρ is the binary variable describing whether the termination results in

confiscation. Both τ and ρ are endogenously determined by the contract and the consumer’s actions.

For a contract-strategy pair (f t, ct, ot, pt) to be incentive-compatible, the consumer’s strategy choice pt

must be optimal. Formally,

Vt(f
t, ct, ot, pt)≥ Vt(f

t, ct, ot, p̌t) for all p̌t such that (f t, ct, ot, p̌t)∈ Γt. (4)

Finally, we say that a contract-strategy pair (f t, ct, ot, pt) is optimal if it is incentive-compatible and there

is no other incentive-compatible pair that provides the same value to the consumer and a higher payoff to

the firm. A contract is optimal if it is part of an optimal contract-strategy pair.

As we can see, a contract-strategy pair is a sequential game between the firm and consumer, in which

the firm pre-specifies game rules for all possible histories of the consumer’s actions, and given those rules,

the consumer plays the game optimally. This sequential formulation of the problem is difficult to analyze:

for all the possible payment histories, we must find the optimal ft, ct, ot, and pt, which are functions

of these histories. Moreover, the problem is neither memoryless nor Markovian in payments because we

naturally expect the consumer’s rewards to depend on the entire payment history, and so there are no trivial

reductions of state space. Fortunately, the works of Green (1987) and Spear and Srivastava (1987) show how

we can reformulate this complex sequential decision problem as a simpler Markovian decision problem, but

Markovian in the future value promised to the consumer. Before we proceed to this recursive formulation,

we make two remarks regarding our modeling assumptions.



Uppari and Zorc: Designing Payment Models for the Poor 13

Remark 1. Equation (3) assumes that in any period, the part of the consumer’s disposable income that

remains after the payment is fully consumed within that period. This is not an unreasonable assumption in

our context: the consumer usually has more than enough needs in her life to absorb the remaining amount.

Even if the consumer saves a part of it, our model requires that those savings are redirected elsewhere and

they do not characterize her ability to pay the firm (her disposable income) in the future.

Remark 2. We have assumed that the technology is not income-generating for the consumer: the disposable

income Yt does not depend on the usage of the technology. This reflects our focus in the paper on the

technologies whose primary function is to improve the living standards of the poor, as opposed to the ones

whose primary benefit is to generate income, such as irrigation systems, e-rickshaws, and tractors. More

importantly, the remote lockout—a critical feature in our model—is less appropriate for income-generating

technologies, because the consumer depends on the device for revenue to service her loan, and turning it off

might be counter-productive if the goal is to recover capital.

3.4. Recursive Formulation

We solve for an optimal contract using dynamic programming. Because the disposable income in our model

is independent over time and we assumed that there are no private cash flows that affect the consumer’s

future disposable income, the functions Πt and Vt are common knowledge in period t and independent of

the prior history. (For a more detailed argument, see Spear and Srivastava 1987.) Consequently, an optimal

contract must be optimal after any history. Otherwise, we could find an alternative contract that leaves the

consumer’s value and incentives unchanged but raises the firm’s payoff. Therefore, for a given continuation

value vet promised to the consumer at the end of period t, we can write the continuation payoff πet of the

firm at the end of period t as follows:

πet (v
e
t ) = max

(ft,ct,ot,pt)∈Γt

Πt(f
t, ct, ot, pt)

s.t. Vt(f
t, ct, ot, pt) = vet =max

p̌t
Vt(f

t, ct, ot, p̌t) for all p̌t such that (f t, ct, ot, p̌t)∈ Γt.

For any given vet for the consumer, the continuation function πet gives the highest possible payoff attainable

by the firm. This continuation function fully characterizes the payoff-relevant attributes of the contractual

relationship beyond period t. As a result, the payment history can be summarized by the current continuation

value vet promised to the consumer. An optimal contract provides incentives by effectively specifying how

this continuation value varies with the consumer’s payment history.

Figure 1 Timeline of events within period t (w.p. stands for with probability).
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As illustrated in Figure 1, πet is the continuation function at the end of period t. To set up the recursive

version of the contracting problem, we define continuation functions at earlier stages in period t: πat is the

continuation function just after the firm gives fractional access ft to the consumer, πpt is the continuation

function just after the consumer makes payment pt to the firm, and πbt is the continuation function at the

beginning of period t before the consumer’s income Yt is realized. We also accordingly define the values

that are promised to the consumer at different stages in a period, respectively, as vet , v
a
t , v

p
t , and v

b
t . These

continuation values satisfy the following accounting identity over time, which follows from (3):

vbt︷ ︸︸ ︷
Vt−1

δ
=E

[
u(Yt− pt)+ ftA+

vat︷ ︸︸ ︷
ctvt+ otvt+(1− ct− ot) Vt︸︷︷︸

vet︸ ︷︷ ︸
v
p
t

]
. (5)

The first four terms on the right-hand side of (5) correspond to the value that is given to the consumer in

period t (in terms of consumption, access, and termination payoffs) and the last term to the expected future

value that is promised at the end of period t. These current and future values must add up to the term on

the left-hand side, the promise made to the consumer at the end of the previous period appreciated by the

consumer’s discount factor δ. Thus, equation (5), which we refer to hereafter as the flow equation, ensures

that the promises made to the consumer over time are always met, either now or later. The flow equation

also suggests an important trade-off that is critical to creating optimal dynamic incentives: the firm can give

a higher value to the consumer in the current period and promise a lower value in the future, or vice versa.

We solve for the continuation functions by recursively assigning the current and future values to the

consumer over time, working from the end of period t to its beginning. Going from period t to t− 1, the

intertemporal linkage is as follows:

πet−1(v
e
t−1) = γπbt (v

e
t−1/δ). (6)

From (5), by definition vbt = vet−1/δ. The promised future value at the end of period t− 1, when postponed

to the next period, appreciates by δ, and the firm discounts this future payoff by γ.

4. Solving for the Optimal Contract
In the following subsections, we characterize the firm’s payoff functions πat , π

p
t , and πbt using backward

induction. A critical step in the analysis is to show that all these functions are concave. The analysis

proceeds as follows. We begin with the inductive assumption that πet is a concave function and then show in

Sections 4.1, 4.2, and 4.3 that πat , π
p
t , and π

b
t are also concave functions, implying that πet−1 is also concave

because of (6). Section 4.4 solves the contracting problem in the last period and shows that πbT is also concave,

which forms the basis of our inductive argument. It then follows by mathematical induction that all the

payoff functions are concave. Thereafter, in Section 4.5 we discuss the contract initiation problem.

In the analysis, we denote by vjt and vjt , for j ∈ {e, a, p, b}, the maximum and minimum values of the

variable vjt . At the end of any period, the minimum value is delivered to the consumer by confiscating the

device, and the maximum by transferring the ownership; therefore, vet = vt and v
e
t = vt, where vt and vt are

the termination payoffs specified in (1). Figure 5(a) in the next section summarizes the findings from this

section. An interested reader could refer to that figure while going through the results in this section.
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4.1. Optimal Termination and Continuation

We first compute πat (v
a
t ) from πet (v

e
t ). The firm’s problem is to decide whether to terminate or continue the

contract while maximizing its own payoff, subject to the constraint that the consumer is delivered a value of

vat (in expectation) that is promised to her at the beginning of the problem. This involves determining the

optimal probabilities of termination (ct and ot), and the optimal value promised to the consumer at the end

of the period (vet ) if the contract continues,1 by solving the following problem:

πat (v
a
t ) = max

ct∈[0,1], ot∈[0,1−ct], vet∈[vet ,vet ]
ctCt+ otOt+(1− ct− ot)π

e
t (v

e
t ) (7)

s.t. vat = ctv
e
t + otv

e
t +(1− ct− ot)v

e
t . (8)

The first two terms in (7) capture the firm’s payoffs from termination and the last term captures its

payoff from continuation. This objective is maximized subject to (8), the promise-keeping constraint, evident

from the flow equation (5). From (8), vat = vet and vat = vet . The following result characterizes the optimal

termination and continuation decisions. Throughout the paper, for a concave function π, we interpret the

statement “π′(v) = k” as “k is a super-derivative of π at v.” This allows us to maintain the derivative notation

for the functions in the model which possess kinks. For more details on this notation, see Appendix C.

Proposition 1. If the following inequality is satisfied:

πet (v
a
t )≤ (Ct(vat − vat )+Ot(v

a
t − vat ))/(v

a
t − vat ), ∀vat ∈ [vat , v

a
t ] , (9)

then it is optimal to terminate in period t by transferring ownership with probability o∗t (v
a
t ) = (vat −vat )/(vat −

vat ), and confiscating the device with probability c∗t (v
a
t ) = 1− o∗t (v

a
t ). If the condition in (9) is not satisfied,

then the optimal confiscation and ownership probabilities and the optimal continuation value are given by

c∗t (v
a
t ) =

[
v̂Ct − vat

]+
/
(
v̂Ct − vat

)
if Ct >πet (vat ), and 0 otherwise, (10)

o∗t (v
a
t ) =

[
vat − v̂Ot

]+
/
(
vat − v̂Ot

)
if Ot >π

e
t (v

a
t ), and 0 otherwise, (11)

ve∗t (vat ) = vat +
[
v̂Ct − vat

]+
+
[
v̂Ot − vat

]−
, (12)

and the contract continues with probability 1− c∗t (v
a
t )− o∗t (v

a
t ). Here, the thresholds v̂Ct and v̂Ot are

v̂Ct = inf
{
v ∈ (vet , v

e
t )
∣∣ πe′t (v)≤ (πet (v)−Ct)/ (v− vet )

}
, and (13)

v̂Ot = sup
{
v ∈ (vet , v

e
t )
∣∣ πe′t (v)≥ (Ot−πet (v))/ (v

e
t − v)

}
. (14)

Moreover, the payoff function πat (v
a
t ) is concave in vat .

We first discuss the geometric construction of the above result and interpret it later. The firm in our

model has the ability to terminate probabilistically. By randomizing between confiscation (resp., transferring

ownership) and continuation, the firm can obtain all payoffs that lie on any line segment between (vat ,Ct)

(resp., (vat ,Ot)) and any point on the graph of πet (·), and by randomizing between confiscation and ownership

1 The consumer has the option to quit and receive vet . It is easy to show that any contract that induces the consumer
to quit in period t could be replaced with a contract that terminates in period t. Thus, we restrict attention to
contracts where the consumer does not quit before termination.
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transfer, the payoffs on the line between (vat ,Ct) and (vat ,Ot) can be obtained. To illustrate how such a payoff

function can be constructed, pick a point v̂t ∈ [vat , v
a
t ], see Figure 2(a). Then, for any v

a
t ∈ (vat , v̂t), confiscating

the device with probability c̃t(v
a
t ) = (v̂t − vat )/(v̂t − vat ) and promising the consumer a continuation value

of ṽet (v
a
t ) = v̂t ensures that the promise-keeping constraint vat = c̃t(v

a
t )v

a
t + (1− c̃t(v

a
t )) v̂t is satisfied, while

giving the firm a payoff of π̃at (v
a
t ) = c̃t(v

a
t )Ct+ (1− c̃t(v

a
t ))π

e
t (v̂t). Thus, given a v̂t, the firm can obtain any

payoff on the line segment between (vat ,Ct) and (v̂t, π
e
t (v̂t)). The question then becomes, which of the lines

constructed in this way gives the highest payoff to the firm. In the case where the line between (vat ,Ct) and
(vat ,Ot) is entirely above the graph of πet (as reflected by condition (9), and illustrated in Figure 2(b)), the

firm sees no value in continuing the contract, and it is optimal to simply randomize between confiscation and

ownership transfer. Otherwise, the highest such lines are the tangents to the graph of πet which pass through

Ct and Ot. The intersection points of such tangents and the graph are the v̂Ct and v̂Ot from Proposition 1,

as illustrated in Figure 2(a). In both cases, the optimal payoff function πat (·) constructed in this manner

forms the upper hull of (vat ,Ct), (vat ,Ot) and the graph of πet (·). Simple inspection of Figure 2(a) also reveals

that this payoff for the firm, by construction, is higher than max{Ct, πet (·)} and max{Ot, π
e
t (·)}, the payoffs

implied by the optimal deterministic confiscation and ownership transfer rules respectively.

Figure 2 Construction of πa
t is shown in (a) when (9) is not satisfied, and in (b) when (9) is satisfied; and

construction of πp
t is shown in (c).

It is noteworthy that in (10)–(12), we have changed the notation from Section 3.3 by writing c∗t and o∗t ,

along with ve∗t , as functions of the state variable vat alone, rather than the entire payment history ht. This

is because the consumer’s continuation value captures the payoff-relevant information regarding the history.

The contract offers threshold-based guidance for termination in Proposition 1. If the promised future value vat

falls below the confiscation threshold v̂Ct , it is optimal for the firm to confiscate the device with probability c∗t .

Analogously, if vat is above the ownership threshold v̂Ot , it is optimal to grant ownership with probability o∗t .

Otherwise, the contractual relationship should continue. Moreover, c∗t is decreasing in vat , and o∗t and ve∗t

are increasing in vat : the higher the value promised to the consumer, the lower (resp., higher) the chance of

confiscation (resp., ownership transfer), and the higher the value promised upon continuation. The concavity

of the payoff function πat in vat follows by construction.

Finally, we emphasize that the probabilistic termination deployed in our model is more of an analytical

convenience, and it need not be implemented exactly. If c∗t is below (resp., above) a threshold, e.g., 0.5, then

the firm can discretize c∗t as 0 (resp., 1) and continue the contract with a promised value v̂Ct (resp., confiscate

the device), which would be a deterministic approximation of the truly optimal policy. The discretization
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threshold can depend on any context-specific information that is not accounted for in the model. We can

similarly interpret randomization between confiscation and ownership transfer in Figure 2(b).

4.2. Optimal Technology Access

We now compute πpt (v
p
t ) from πat (v

a
t ). In this problem, the firm decides the fractional access ft that must be

granted to the consumer in period t, along with the continuation value vat after granting access, subject to

the constraint to deliver a total value of vpt :

πpt (v
p
t ) = max

ft∈[0,1], vat ∈[vat ,vat ]
πat (v

a
t ) (15)

s.t. vpt = ftA+ vat . (16)

The firm’s objective in (15) is to maximize its payoff by providing optimal access. The promise-keeping

constraint (16) follows from (5) and reflects the trade-off faced by the firm: either give too much access now

and promise too little later, or vice versa. From (16), vpt = vat and vpt =A+ vat . We have the following result.

Proposition 2. The following fractional access and the continuation value are optimal:

f∗
t (v

p
t ) =min

{[
vpt − v̂At

]+
/A,1

}
, and (17)

va∗t (vpt ) = vpt −min
{[
vpt − v̂At

]+
,A

}
, (18)

where v̂At ∈ argmax
v∈[vat ,vat ]

πat (v). Moreover, πpt (v
p
t ) is concave in vpt .

As shown in Figure 2(c), we obtain πpt by laterally shifting πat by A units starting from its maximum

value (achieved at v̂At ). The concavity of πpt (v
p
t ) follows by construction. Proposition 2 states that if the

consumer’s promised future value vpt is below the threshold v̂At (reflecting a bad payment history), then it

is optimal for the firm to turn the device off (f∗
t = 0) in period t. If vpt is above the threshold v̂At +A, then

the consumer’s payment history is good enough and the device is turned on (f∗
t = 1). Otherwise, providing

partial access is optimal (0< f∗
t < 1). In practice, partial access could translate to, for example, providing

light only for a certain number of hours in a day, or for a certain number of days in a week. Both f∗
t and va∗t ,

in (17) and (18), are increasing in vpt : the higher the value promised to the consumer, the higher the access

granted to her, and her value-to-go thereafter is also higher. Extending Proposition 2 to accommodate more

general formulations of device-access utility is straightforward. For example, if ua(f) = ũa(f)A, where ũa is

an increasing and concave function, then (17) gives us ũa(f
∗
t ), instead of f∗

t .

Two additional features are suggested by the optimal contract. First, after providing access to the device,

the consumer’s promised future value must be lowered (by f∗
t A) to incentivize her to pay in the future; it

will go up again after the consumer makes her next payment (see next subsection). Second, notice that if vat

is sufficiently high, f∗
t will be equal to 1, not only in the current period, but perhaps also in the next few

periods. These are the grace periods in which the consumer is provided full access to the device even if she

does not make any payment. Thus, the contract rewards a good payment history with grace periods.
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4.3. Optimal Payment Incentives and Flexibility

This brings us to the most challenging part of solving for the optimal contract: determining πbt (v
b
t ) from

πpt (v
p
t ). The firm in this problem decides the optimal payment policy that it would like to suggest to the

consumer, and the optimal reward policy, in the form of promised future value, that it would like to offer in

return for the consumer’s payment. The technical challenge in this problem is that the payment policy pt is

contingent on the consumer’s realized income yt, and the reward policy vpt is contingent on the consumer’s

payment pt. Unlike in Sections 4.1 and 4.2, where the firm solves for the parameters that are optimal, the

firm here solves for the functions pt(y) and v
p
t (p) that are optimal. We restrict the space of these functions

to Pt ×Vt, where Pt is the set of all functions pt : Yt → R+ that are absolutely continuous, left- and right-

differentiable, and satisfy pt(y)≤ y; and Vt is the set of all functions vpt : R+ → [vpt , v
p
t ] that are absolutely

continuous and left- and right-differentiable. Formally, the firm solves:

πbt (v
b
t ) = max

pt(·)∈Pt, v
p
t (·)∈Vt

E
[
pt(Yt)+πpt (v

p
t (pt(Yt)))

]
(19)

s.t. pt(yt)∈ argmax
0≤p≤yt

u(yt− p)+ vpt (p), ∀yt ∈Yt, and (20)

vbt =E
[
u(Yt− pt(Yt))+ vpt (pt(Yt))]. (21)

The firm’s objective in (19) consists of two components: the payment pt that it gets now, and the contin-

uation payoff πpt that it gets later from promising reward vpt . The incentive compatibility constraint in (20)

states that the suggested payment function pt(·) is consistent with the consumer’s preference maximization.

Notice in (20) that the firm shapes the consumer’s preferences by determining an appropriate vpt (·) function
that aligns her preferences with its own. In other words, the payment and reward policies together incentivize

the consumer to optimally split her income between consumption and payment. This payment problem, from

the consumer’s viewpoint in (20), is always a single-period problem—an intrinsic feature of the promised

future utility framework. We will see later that there could be multiple payment functions that maximize

the consumer’s preferences; we therefore follow the convention in the contract theory literature that out

of all these payment functions, the firm picks the one that maximizes its own payoff. The promise-keeping

constraint (21) follows from (5), and ensures that the consumer is delivered vbt promised at the beginning.

From (21), vbt = vpt and vbt =Ut+ vpt .

We solve the above problem in two steps. First, we determine the shapes of the optimal payment and

reward functions, which convert the optimization problem over a space of functions into one over a space of

parameters. Second, with this reformulation, we show that πbt (v
b
t ) is concave in v

b
t . In the analysis, we assume

that Yt =R+. Admittedly, assuming that the domain of income yt spans till ∞ is unrealistic. However, this

assumption simplifies exposition, and more importantly, imposing an arbitrary lower bound and a sufficiently

high upper bound on Yt does not qualitatively affect the features of the optimal contract.

Shapes of optimal incentive functions. The following result states that the optimal payment and

reward functions can be written simply as functions of two parameters αt and κ
v
t .

Proposition 3. It is optimal to choose the following reward function:

vp∗t (p ; αt, κ
v
t ) =

{
αt+λ1p+(λ2 −λ1)[p−κvt ]

+ for 0≤ p < p̂0,t(αt, κ
v
t ),

vpt for p≥ p̂0,t(αt, κ
v
t ),

(22)
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where (a) αt ≥ vpt , and (b) p̂0,t(αt, κ
v
t ) solves the equation λ1p+(λ2−λ1)[p−κvt ]+ = vpt −αt. Given the reward

function vp∗t (p ; αt, κ
v
t ), the following payment function p∗t (·) is optimal:

p∗t (y ; αt, κ
v
t ) =


y for 0≤ y < p̂1,t(αt, κ

v
t ),

p̂1,t(αt, κ
v
t ) for p̂1,t(αt, κ

v
t )≤ y < p̂1,t(αt, κ

v
t )+κ,

y−κ for p̂1,t(αt, κ
v
t )+κ≤ y < p̂2,t(αt, κ

v
t )+κ,

p̂2,t(αt, κ
v
t ) for y≥ p̂2,t(αt, κ

v
t )+κ,

(23)

where the thresholds are

p̂1,t(αt, κ
v
t ) =min

{
[Λ1,t−αt]

+/λ1, κ
v
t , p̂0,t(αt, κ

v
t )
}
, (24)

p̂2,t(αt, κ
v
t ) =max

{
(Λ2,t−αt− (λ1 −λ2)κ

v
t )/λ2,min

{
κvt , p̂0,t(αt, κ

v
t )
}}
, (25)

and Λj,t =max
{
vpt , sup

{
v ∈ [vpt , v

p
t ] | πp

′

t (v)≥−1/λj
}}

, for j ∈ {1,2}.

We now pictorially demonstrate why the shapes of the optimal reward and payment functions are as stated

in Proposition 3. We can see from (20) that different vpt functions will induce different consumer preferences

over the bundles (x,p), where x is the amount consumed and p is the amount paid, which are subject to the

budget constraint x+ p= y. For now, fix vpt = vp∗t given in (22). Note that this reward function mimics the

shape of the consumption utility function (piecewise linear and concave with only two possible slopes: λ1

and λ2), and is sandwiched between vpt and vpt . Figure 3(a) plots the indifference curves u(x) + vp∗t (p) = kj ,

for k1 < · · ·<k4, where kj is the value derived from the bundle (x,p) that is constant on a given indifference

curve. We know from basic microeconomics that an optimal bundle lies on the highest indifference curve

that is tangential to the budget line (Mas-Colell et al. 1995). Figure 3(a) also plots the tangential budget

lines x+ p = yj for y1 < . . . < y4. These lines have a slope of −1 in the (x,p) plane. Thus, for a given yj ,

every bundle that is on the segment with slope −1 of the corresponding indifference curve is optimal for the

consumer. On such segments, we denote the payment in the leftmost bundle by pt(y) and in the rightmost

bundle by p
t
(y). We plot p

t
(y) and pt(y) as functions of y on the right-hand side of Figure 3(b).2 The space

between these two functions contains all the incentive-compatible payment functions, and the firm must

choose the optimal one (i.e., p∗t (y)) from this space.

To understand the shape of p∗t (y), we focus on the region in Figure 3(b) where 0 ≤ y ≤ κvt + κ. To

obtain the optimal payment function in this region, the firm maximizes its payoff pointwise for each y, i.e.,

p∗t (y) = maxp
t
(y)≤p≤pt(y) p+ πpt (v

p∗
t (p)). Given that πpt is concave and vp∗t (p) = αt + λ1p in this region, the

derivative of the payoff function, 1+πp
′

t (αt+λ1p)λ1, is monotonically decreasing in p (see left-hand side of

Figure 3(b)). Therefore, the optimal p∗t (y), as demonstrated in Figure 3(b), is either at one of the boundaries

pt(y) and pt(y), or is an interior solution p̂1,t that solves π
p′

t (αt+λ1p) =−1/λ1 or equivalently αt+λ1p=Λ1,t.

Proposition 3 defines p̂1,t and Λ1,t more generally such that they do not violate the boundary constraints.

We can similarly interpret the shape of p∗t (y) for y≥ κvt +κ in Figure 3(b).

The above arguments show that p∗t (y) is optimal, given that the reward function is vp∗t (p). We now

demonstrate the optimality of vp∗t itself. As we know, this function has only two possible slopes. Let us

2 The formal definitions of p
t
(y) and pt(y) are as follows: denote by p̂t =min{κvt , p̂0,t}, then (i) p

t
(y) is equal to 0 for

0≤ y < κ; y−κ for κ≤ y < p̂t+κ; and p̂t for y≥ p̂t+κ; and (ii) pt(y) is equal to y for 0≤ y < p̂t; p̂t for p̂t ≤ y < p̂t+κ;
y−κ for p̂t+κ≤ y < p̂0,t+κ; and p̂0,t for y≥ p̂0,t+κ.
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Figure 3 Construction of optimal payment and reward functions: (a) Indifference curves u(x)+ vp∗
t (p) = kj ,

along with the tangential budget lines x+ p= yj , shown in the (x,p) plane for j ∈ {1, . . . ,4}; (b) on the

right-hand side is the space of incentive-compatible payment functions sandwiched between p
t
(y) and pt(y), and

on the left-hand side is πp′

t (vp∗
t (y)); (c) an alternative reward function v̌p

t that has an intermediate slope λ̌; and

(d) v̌p
t (p

∗
t (y)) and vp∗

t (p∗
t (y)) plotted together.

examine what happens under an alternative design of vpt that includes an additional intermediate slope

λ̌ ∈ (λ1, λ2). We call it v̌pt (p), plotted in Figure 3(c). Following the logic that we discussed above, it is easy

to see that both v̌pt and vp∗t induce the same payment function p∗t (y); then by (21), we have Ev̌pt (p∗t (y)) =

Evp∗t (p∗t (y)). Figure 3(d) plots v̌pt (p
∗
t (y)) and v

p∗
t (p∗t (y)), and it is clear that the former is a mean-preserving

spread of the latter. Because πpt is concave, the firm prefers the reward function that results in a lower payoff

variance (see (19)), which in this case is vp∗t . This logic continues to hold more generally, see the proof in

Appendix C. The reward function vp∗t results in the lowest payoff variance when compared to alternative

designs of vpt , and hence it becomes optimal.

Concavity of the firm’s payoff. It is noteworthy that with Proposition 3 in hand, the optimization

problem (19)–(21) reduces to the following with only two parameters αt and κ
v
t :

πbt (v
b
t ) = max

αt∈[vpt ,v
p
t ], κv

t ∈R+

E
[
p∗t (Yt ; αt, κ

v
t )+πpt (v

p∗
t (p∗t (Yt ; αt, κ

v
t ) ; αt, κ

v
t ))

]
(26)

s.t. vbt =E
[
u(Yt− p∗t (Yt ; αt, κ

v
t ))+ vp∗t (p∗t (Yt ; αt, κ

v
t ) ; αt, κ

v
t )]. (27)
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It remains to show that πbt (v
b
t ) is concave in vbt . This continues to be a challenging exercise even with the

reduced problem (26)–(27), because the maximand need not always be jointly concave in (vbt , αt, κ
v
t ). To make

the problem well-behaved, we take the following three steps. First, we assume that the consumer’s income

distribution has a weakly decreasing hazard rate. In our context, this is not an unreasonable assumption,

because decreasing hazard rate implies that (i) the pdf gt is decreasing, and (ii) the distribution has a fatter

tail (compared to exponential distribution). Given that the consumer is cash-constrained, she is more likely

to have low disposable income (as reflected by (i)); but given the consumer’s complex portfolios, she might

have high realizations of income now and then (as reflected by (ii)).

Second, we use a change of variable technique and reformulate (27) without loss of optimality as follows:

vbt = αt+ωt, where (28)

ωt =

∫ κv
t +κ

0

λ1y dGt(y)+

∫ ∞

κv
t +κ

[
(λ1 −λ2)(κ

v
t +κ)+λ2y

]
dGt(y). (29)

Equation (28) splits the promised pie of size vbt into two components: a fixed component αt that is independent

of the consumer’s payment, and an average ωt of the variable component that is contingent on the consumer’s

payment. The minimum value of parameter ωt is ωt =Ut (when κ
v
t = 0) and its maximum is ωt = λ1EYt (as

κvt →∞). Using (28), we can replace αt with v
b
t −ωt. Moreover, the right hand side of (29), as a function of

κvt , is monotonically increasing in κvt . Therefore, one can invert that function to obtain the value of κvt that

satisfies (29) for any given value of ωt. With a slight abuse of notation, we represent this inverted function

as κvt (ωt), which is increasing in ωt. With these changes, the problem (26)–(27) can be written as:

πbt (v
b
t ) = max

ωt∈[ωt,ωt]
π̃bt (v

b
t , ωt), where (30)

π̃bt (v
b
t , ωt) =E

[
p∗t (Yt ; v

b
t −ωt, κ

v
t (ωt))+πpt (v

p∗
t (p∗t (Yt ; v

b
t −ωt, κ

v
t (ωt)) ; v

b
t −ωt, κ

v
t (ωt)))

]
. (31)

Third, we replace the function πpt in (31) with an approximation that is at least twice differentiable. We

do so because πpt , in general, might have kinks. This makes the second-order analysis, which is necessary

to show the concavity of πbt , quite cumbersome. This replacement is not restrictive however because any

univariate concave function on a closed interval can be approximated arbitrarily closely by a smooth concave

function (Azagra 2013). Thus, we will be able to approximate πpt , and hence π̃bt and πbt also, to any desired

level of precision. To reduce the notational burden, we refer to the approximations of π̃bt and πbt as those

functions themselves (we treat them more carefully in Appendix C). Now, we obtain the following result.

Proposition 4. Define ω∗
t (v

b
t ) = argmaxωt∈[ωt,ωt]

π̃bt (v
b
t , ωt). For a given vbt , there exists a unique ω∗

t (v
b
t ).

The following statements hold:

(i) There exists v̂bt ∈ [vbt , v
b
t ] such that for vbt ≥ v̂bt , ω

∗
t (v

b
t ) = ωt. For v

b
t < v̂bt , (v

b
t , ω

∗
t (v

b
t )) lies in the region

R=
{
(vbt , ωt)∈ [vbt , v̂

t
b]× [ωt, ωt]

∣∣ ωt ≤ vbt − vbt , ωt−λ1κ
v
t (ωt)≥ vbt −Λ1,t

}
. The region R is convex.

(ii) πbt (v
b
t ) = π̃bt (v

b
t , ω

∗
t (v

b
t )) is concave in vbt .
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Figure 4 (a) Region R and a plausible ω∗
t (v

b
t ) in the (vb

t , ωt) plane; (b) the shape of the optimal reward

function; and (c) the shapes of the optimal payment functions for different magnitudes of vb
t .

Some comparative statics. We now proceed to understand how the incentives are shaped as a function

of vbt , the current standing of the consumer. To that end, we define the following functions: (i) α∗
t (v

b
t ) =

vbt − ω∗
t (v

b
t ), (ii) κ

v∗
t (vbt ) = κvt (ω

∗
t (v

b
t )), (iii) p̂

∗
j,t(v

b
t ) = p̂j,t(α

∗
t (v

b
t ), κ

v∗
t (vbt )) for j ∈ {0,1,2}, (iv) vp∗∗t (p ; vbt ) =

vp∗t (p ; α∗
t (v

b
t ), κ

v∗
t (vbt )), and (v) p∗∗t (y ; vbt ) = p∗t (y ; α

∗
t (v

b
t ), κ

v∗
t (vbt )).

To characterize any of the above functions of vbt , we must first understand the behavior of ω∗
t (v

b
t ). As per

Proposition 4(i), Figure 4(a) plots the region R and a plausible ω∗
t (v

b
t ) in the (vbt , ωt) plane. For vbt ≥ v̂bt ,

ω∗
t (v

b
t ) is equal to the lowest possible value ωt. For v

b
t < v̂bt , we cannot analytically pin down the shape of

ω∗
t (v

b
t ). Yet, the shape of the region R suggests that ω∗

t (v
b
t ) must first increase for smaller values of vbt (with

ω∗
t (v

b
t) = ωt), and that it must decrease as vbt approaches v̂bt . Accordingly, we say that ω∗

t (v
b
t ) exhibits a

∩-pattern in vbt . By ∩-pattern, we do not mean that ω∗
t (v

b
t ) is unimodal in vbt . Instead, we mean that the

function certainly takes smaller values as we approach both ends of its domain when compared to its values

in the intermediate part of its domain.

Recall from (28) that ωt is the component that incentivizes the consumer to make payment. The ∩–pattern
of ω∗

t (v
b
t ) suggests that it is optimal to offer weaker payment incentives when the consumer’s vbt is either

too low or too high, and stronger incentives for intermediate values of vbt . If a consumer’s payment history

is bad she is pushed closer to the confiscation boundary, and conversely, when it is good she moves closer

to ownership, and that itself is incentive enough. But when a consumer is somewhere in between the two

extremes, she requires stronger payment incentives. We dub this structure “strong-in-the-middle” incentives.

Such a strong-in-the-middle structure can be envisaged in several other settings too. If an employee is

close to either getting fired or getting promoted, that itself provides sufficient incentives, but if she is in the

middle of her career progression, she might require stronger incentives to perform. Any task that takes a

long time to finish and can potentially have a slump in the middle also might require strong motivation in

the middle. Such tasks are pervasive: writing a research paper, becoming an expert sportsman or an artist,

climbing a mountain, following through with a diet plan, and finishing a Ph.D. program. With this structure

in mind, we present a few more results in the proposition below.

Proposition 5. The following statements hold:

(i) α∗
t (v

b
t ) is increasing in vbt .

(ii) κv∗t (vbt ) exhibits ∩–pattern in vbt , with κ
v∗
t (vbt) = 0 and κv∗t (vbt ) = 0 for vbt ≥ v̂bt .
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(iii) p̂∗0,t(v
b
t ) is decreasing in vbt , and min{κv∗t (vbt ), p̂

∗
0,t(v

b
t )}= κv∗t (vbt ).

(iv) p̂∗1,t(v
b
t ) = κv∗t (vbt ), and hence p̂∗1,t(v

b
t ) exhibits ∩–pattern in vbt .

(v) p̂∗2,t(v
b
t ) is decreasing in vbt .

(vi) There exists v̀bt ≤ v̂bt such that p̂∗2,t(v
b
t )− p̂∗1,t(v

b
t ) is decreasing in vbt for both vbt ≤ v̀bt and vbt ≥ v̂bt .

Following the above results, we plot vp∗∗t (p ; vbt ) and p∗∗t (y ; vbt ) in Figures 4(b) and 4(c) respectively. As

expected, vp∗∗t is increasing in p; the higher the payment, the higher the promised future reward. When

compared to the promised reward at the beginning (i.e., vbt ), the updated promised reward (i.e., vp∗∗t ) is

not necessarily always an increment. For example, consider the case when the consumer makes no payment:

vp∗∗t (0 ; vbt )− vbt = α∗
t (v

b
t )− vbt =−ω∗

t (v
b
t )< 0. Small payments from the consumer could either indicate low

income realizations or large income diversions (the core of the agency issue). The contract moderates the

latter issue by dropping (resp., raising) the promised future reward for relatively small (resp., large) payments.

α∗
t (v

b
t ) is the fixed, payment-independent, part of the promised reward. Proposition 5(i) states that it is

optimal for the firm to deliver more value through the fixed component as the consumer’s payment history

improves. This can be operationalized by entitling the consumer to a higher number of grace periods—wherein

she can access the device without any payment—as her vbt increases.

Because κv∗t (vbt ) is the kink at which the reward function changes slope from λ1 to λ2, we say that the

incentives become sharper as κv∗t increases (and blunter as it decreases). As per Proposition 5(ii), κv∗t (vbt )

exhibits ∩–pattern: for smaller and larger values of vbt , the consumer is rewarded for her payment at rate λ2,

and the segment with reward rate λ1 is more applicable for the intermediate values of vbt . This is how the

optimal contract operationalizes the strong-in-the-middle incentives; by making the reward function blunter

for the consumers with good and bad histories, and sharper otherwise. Furthermore, p̂∗0,t(v
b
t ) is the threshold

payment beyond which the consumer is promised the highest possible value, i.e., the ownership transfer.

Proposition 5(iii) states that p̂∗0,t(v
b
t ) is decreasing in vbt . A consumer with a relatively good payment history

has already made more (and regular) payments and hence must be closer to ownership entitlement.

The suggested payment function p∗∗t (y ; vbt ) in Figure 4(c) is increasing in y. We call this a flexible payment

scheme; it suggests the consumer pay a smaller amount when income is low, and a larger amount when

it is high. In other words, it entertains no payment in the current period, as well as advance payment for

future periods. The payment function is incentive-compatible, and it also respects the consumer’s liquidity

constraints, thereby not burdening the consumer with borrowing to cover payments. Interestingly, the firm

does not suggest arbitrarily high amounts to be paid in advance, even though we assumed the support of

Yt to be R+, because there is an upper limit on the value that the firm can deliver to the consumer. The

maximum suggested payment p̂∗2,t(v
b
t ) is decreasing in vbt (see Proposition 5(v)) for the same reason p̂∗0,t(v

b
t )

is decreasing in vbt . Interestingly, the highest promised reward vp∗∗t (p̂∗2,t) need not always be equal to vbt . In

some cases the firm will never promise ownership transfer, resulting in a purely rental business model. We

discuss this in more detail in Appendix B.

Notice in Figure 4(c) that the magnitude of p̂∗1,t(v
b
t ) is indicative of the payments that the firm suggests

for relatively low realizations of income. As per Proposition 5(iv), p̂1,t(v
b
t ) exhibits a strong-in-the-middle
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structure. The firm suggests the consumer pay relatively higher amounts even under low realizations of

income (and also rewards those payments at a higher rate) when her vbt takes an intermediate value.

Finally, Proposition 5(vi) states that p̂∗2,t(v
b
t )− p̂∗1,t(vbt ) is decreasing in vbt for both smaller and larger values

of vbt . (We are unable to theoretically pin down the shape of p̂∗2,t(v
b
t )− p̂∗1,t(vbt ) for v̀bt < vbt < v̂bt . But we know

that p̂∗1,t is relatively higher for the intermediate values of vbt and p̂
∗
2,t is decreasing in vbt , so we surmise that

the function is decreasing in this region as well.) We interpret p̂∗2,t(v
b
t )− p̂∗1,t(v

b
t ) as the amount of flexibility

that the contract offers as a function of vbt . If this quantity is zero, then for a large subset of the domain

of Yt, the firm suggests the consumer pay the same amount irrespective of her income realization (see the

function with crosses in Figure 4(c)). However, if this quantity is large, then the firm induces the consumer

to pay different amounts depending on her income realizations for a wide range of Yt values (as in the

function with circles in Figure 4(c)). As the consumer’s payment history improves, it is optimal to offer her

lower flexibility. To understand this result, it is important to recognize that flexibility in a payment scheme

is required in the first place to accommodate consumer’s income uncertainty, and to also take advantage

of her high income realizations in the current period to hedge against plausible low income realizations in

future periods. Consequently, a consumer with low vbt is incentivized to pay higher amounts when the income

realizations are high to move her away from the confiscation boundary. In contrast, for a consumer with high

vbt , there is no longer a strong need to capture her income in the current period because she has already paid

a large amount, possibly to cover for her potential non-payment periods in the future.

Remark 3. We have assumed in our analysis that the consumer’s utility u(·) is piecewise linear and concave

with one kink. By extending the arguments made in this section, it should be evident that if u(·) instead

has k > 1 kinks, it will result in a piecewise linear and concave reward function with k kinks and a suggested

payment function with k + 1 steps (the corresponding optimization problem will have k + 1 parameters).

We can approximate any smooth concave utility function arbitrarily closely by increasing the number of

kinks in a piecewise linear utility function. The resultant reward and payment functions also tend to become

smoother concave functions as the number of kinks increases.

4.4. Last Period

In the last period, as the contract does not continue further, πeT (v
e
T ) = 0 for all veT . This results in a scenario

similar to the one shown in Figure 2(b). So we have:

πaT (v
a
T ) = CT (vaT − vaT )/(v

a
T − vaT )+OT (v

a
T − vaT )/(v

a
T − vaT ). (32)

Proposition 6. πbT (v
b
T ), computed from πaT (v

a
T ) in (32), is concave in vbT .

4.5. Contract Initiation

The problem of initiating the contract involves determining (i) the downpayment d that the firm asks a

consumer to pay in period 0 to start the contract, and (ii) upon initiation, the value vb1 that the firm promises

the consumer at the beginning of period 1.

Recall from Section 3.2 that the consumer’s ability to make the downpayment is w; we refer to it hereafter

as the consumer’s wealth (not the valuation of all the assets that the consumer holds, but only the liquid
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portion that could be used to make the downpayment). The distribution of wealth in the market is charac-

terized by the random variable W . We can think of a market in our model as a set of consumers living in a

village with similar income profiles but some might have better access to liquid assets than others, or some

are ready to partly forego their consumption in the short run to acquire the technology while others are not.

Accordingly, we assume that the random variables {Yt} characterize income profiles of all the consumers

in the market, whereas the wealth of those consumers in period 0 could be different and are realizations of

the random variable W , with support R+. We assume that the firm cannot perfectly observe a consumer’s

wealth, but it knows the distribution of W through market surveys.

To model the consumer’s take-up decision, we denote her period 0 utility function by ũ(x). We say that

the consumer’s value from taking up the contract is ũ(w−d)+ δvb1, whereas the value from not taking it up

is ũ(w)+ δvb1. We can thus interpret the function ũ as the value that the consumer gains from utilizing her

wealth at will, and taking up the contract reduces her wealth by d. We assume ũ to have the same structure

as u but with different parameters. Formally, ũ(x) = λ̃1x+
(
λ̃2 − λ̃1

)
[x− κ̃]+. (In our model, W could be

the same as Y0, and ũ could be the same as u, but we represent them separately because the consumer may

manage her money differently to make the downpayment compared to period-wise payments. The purpose

of the former is different, i.e., to acquire the technology, and it can also be relatively larger in magnitude.)

We compare the firm’s payoff under two methods of initiating the contract: one in which the firm charges

a single value of downpayment d to all its consumers and offers them all a promised value of vb1, and the

other in which the firm offers a menu {(d, vb1)} and a consumer chooses the menu item that is optimal for her.

First method: The firm’s problem in this case is as follows:

π
(1)
0 = max

d∈R+, v
b
1∈[vb1,vb1]

(
d+ γπb1(v

b
1)−K

)
×Pr

{
W ≥ d, ũ(W − d)+ δvb1 ≥ ũ(W )+ δvb1

}
. (33)

The objective in (33) is the firm’s expected payoff, wherein the first term in the product is the revenue that

the firm gains from a consumer who takes up the contract minus the cost of the technology, and the second

term is the probability that a randomly chosen consumer in the market takes up the contract. Upon takeup,

the firm’s payoff is d in period 0, and πb1(v
b
1) in period 1. A consumer in the market takes up the contract

if and only if (i) her ability to pay w exceeds downpayment d, and (ii) she is willing to pay for the contract

because her value from being in the contract exceeds her outside value.

Second method: The firm designs a downpayment scheme that will encourage a consumer with wealth w

to pay d(w) for the initiation of a contract that promises her a value of vb1(d(w)). The firm has the option to

turn away some consumers who cannot afford a minimum downpayment; thus, the firm also chooses d∈ R̄+,

a minimum acceptable downpayment, where R̄+ =R+ ∪ {∞}. (We allow d=∞, which is equivalent to not

serving the market at all.) The firm solves the following problem:

π
(2)
0 = max

d(·)∈D, vb1(·)∈V0, d∈R̄+

E
[
d(W )+ γπb1(v

b
1(d(W )))−K

∣∣ d(W )≥ d ]×Pr
{
d(W )≥ d

}
(34)

s.t. d(w)∈ argmax
0≤d≤w

{
ũ(w− d)+ δvb1(d) if d≥ d,

ũ(w)+ δvb1 otherwise,
∀w ∈R+. (35)
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The term in the brackets in (34) is the firm’s payoff from a consumer with wealth W , and the expectation

is taken over the wealth levels in the market. The objective is maximized over the space of functions D×V0,

where the set D contains functions d :R+ →R+ that are absolutely continuous, left- and right-differentiable,

and satisfy d(w)≤w; and set V0 consists of functions vb1 :R+ → [vb1, v
b
1] that are absolutely continuous, and

left- and right-differentiable. The incentive compatibility constraint in (35) states that the functions d(w) and

vb1(d) must be consistent with the consumer’s preference maximization in period 0. The problem (34)–(35)

is structurally similar to the problem (19)–(21) studied in Section 4.3, except that now we do not have a

promise-keeping constraint, but do have the choice over d. The following proposition shows that the shapes

of the optimal functions in the former problem mimic the shapes of those in the latter.

Proposition 7. For a given d, there exist α0, κ
v
0 ∈R+ such that an optimal reward function is given by

vb∗1 (d ; α0, κ
v
0) =

{(
α0 + λ̃1d+

(
λ̃2 − λ̃1

)
[d−κv0]

+
)
/δ for 0≤ d< d̂0(α0, κ

v
0), and

vb1 for d≥ d̂0(α0, κ
v
0),

(36)

where α0 ≥ δvb1, and d̂0(α0, κ
v
0) solves the equation λ̃1d+

(
λ̃2 − λ̃1

)
[d− κv0]

+ = δvb1 − α0. Let w(α0, κ
v
0, d) =

inf
{
w ∈ [d,∞) | ũ(w− d) + δvb∗1 (d ; α0, κ

v
0)≥ ũ(w) + δvb1

}
, which is the lowest wealth at which the consumer

is willing to pay the minimum downpayment. An optimal downpayment function d∗(·) is given by

d∗(w ; α0, κ
v
0, d) =


[w+ d−w(α0, κ

v
0, d)]

+
for 0≤w< d̂1(α0, κ

v
0, d)+w(α0, κ

v
0, d)− d,

d̂1(α0, κ
v
0, d) for d̂1(α0, κ

v
0, d)+w(α0, κ

v
0, d)− d≤w< d̂1(α0, κ

v
0, d)+ κ̃,

w− κ̃ for d̂1(α0, κ
v
0, d)+ κ̃≤w< d̂2(α0, κ

v
0, d)+ κ̃,

d̂2(α0, κ
v
0, d) for w≥ d̂2(α0, κ

v
0, d)+ κ̃,

where d̂1(α0, κ
v
0, d) =max

{
d, min

{
w(α0, κ

v
0, d)+[κv0−d]+, κv0, [δΛ1,0−α0]

+/λ̃1, d̂0(α0, κ
v
0)
}}

, d̂2(α0, κ
v
0, d) =

max
{
d,

(
δΛ2,0−α0−

(
λ̃1− λ̃2

)
κv0

)
/λ̃2, min

{
κv0, d̂0(α0, κ

v
0)
}}

, and Λj,0 =max
{
vb1, sup

{
v ∈ [vb1, v

b
1] | πb

′

1 (v)≥

−δ/
(
γλ̃j

)}}
, for j ∈ {1,2}.

As expected, d∗ is increasing in w and vb∗1 is increasing in d. It is optimal for the firm to suggest a consumer

with relatively high (resp., low) wealth to make a higher (resp., lower) downpayment and in turn be promised

a higher (resp., lower) value at the start of the contract. Proposition 7 reduces the problem (34)–(35) into a

simpler one with three parameters α0, κ
v
0, and d:

π
(2)
0 = max

α0∈[δvb1,δvb1], κv0∈R+, d∈R̄+

E
[
1{W≥d}

(
d∗(W ; α0, κ

v
0, d)+ γπb1(v

b∗
1 (d∗(W ; α0, κ

v
0, d) ; α0, κ

v
0))−K

)]
. (37)

Proposition 8. The following statements hold:

(i) For every d† that is optimal in (33) there exists d∗ ≤ d† that is optimal in (34)–(35); thus, the wealth

needed to acquire the technology in the second method is no larger than in the first.

(ii) The second method is better for the firm: π
(2)
0 ≥ π

(1)
0 .

We can think of downpayment as an admission fee that the firm charges its consumers for entry into the

contract. In the first method, we see from (33) that the firm admits only a part of the market, i.e., the

consumers with enough wealth to afford the fixed downpayment. By contrast, in the second method, the

firm offers flexibility in how much downpayment the consumers can make, but will not admit the ones who

cannot afford the minimum downpayment d∗. As per Proposition 8(i), the minimum downpayment under the
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second method is lower than the optimal fixed method of the first. As a result, more consumers can acquire

the technology if it is distributed using the second method.3 To understand why this happens, notice the

trade-off in (33): setting the downpayment low allows the firm to admit more consumers, but that reduces

the revenue from each consumer; setting it high achieves the opposite. The second method eliminates this

trade-off: admit more consumers, but also charge higher fees to the consumers with relatively higher wealth.

This is why the second method is always better for the firm.

Thus, the flexible downpayment scheme of the second method allows a consumer with relatively low

wealth—who otherwise would not have been able to enter the contract—to take it up by making a smaller

downpayment, resulting in a more inclusionary method of initiation. In other words, a consumer in period 0

under this scheme could purchase her position in the contract by making an appropriate downpayment.

Because a low-wealth consumer starts at a lower position, her time-to-ownership would be longer than a

consumer with higher wealth. In fact, for the latter, the purchased position could be so high that the firm

immediately grants her the ownership in period 0, which is a direct sale of the technology to the consumer.

(We elaborate more on this in Appendix B.) Currently, the PAYGo firms sell the technology to consumers

who can afford to purchase it right away, and the others are charged the same value of downpayment to

initiate the contract. The optimal contract suggests that the initiation method need not be this rigid.

5. Managerial Insights

5.1. Summary and Implementation

A key feature of the optimal contract is that it scores the consumer through the value that is promised

to her in the future, which we refer to hereafter as the v-score. The v-score summarizes the consumer’s

payment history; the higher the v-score, the better the payment history. Figure 5(a) shows the evolution of

v-score under the optimal contract. In period 0, the firm proposes a flexible downpayment scheme d∗∗(w).

The consumer pays d and purchases her position in the contract, which is also her promised future reward

and the initial value of her v-score vb1 = vb∗∗1 (d). (Here vb∗∗1 and d∗∗ are the functions vb∗1 and d∗ evaluated at

the optimal parameter values.) After the contract starts, in a representative period t, the consumer enters

the period with a v-score of vbt . The firm recommends the consumer pay p∗∗t (y ; vbt ) if her disposable income

in period t is y. This payment scheme is flexible, respects the consumer’s liquidity constraint, accommodates

her income uncertainty, and is also incentive-compatible. After the consumer makes a payment p, her v-score

updates to vpt = vp∗∗t (p ; vbt ). Thereafter, based on the updated v-score, the consumer is granted fractional

access to the technology f∗
t (v

p
t ), and the v-score is again updated to vat = va∗t (vpt ). Subsequently, the contract

determines whether to continue or to terminate based on the current v-score vat : the device is confiscated with

probability c∗t (v
a
t ), the ownership is transferred with probability o∗t (v

a
t ), and the contract continues to the

next period with probability 1−c∗t (vat )−o∗t (vat ). Under continuation, the v-score updates to vet = ve∗t (vat ). This

3 An implicit assumption that we have made in our analysis is that the random variable W represents the steady state
distribution of wealth within the market. Period 0, the period in which the consumer makes the take-up decision, is
not a static point in time in reality. A consumer who cannot make the downpayment today might be able to make it
at a later point in time by saving some money in the meantime. Such transitions of consumers across wealth levels
in the market are assumed to be in a steady state, and in that case, the above argument continues to hold.
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end-of-period v-score, when moved to the next period, appreciates by consumer’s discount factor; i.e., the

v-score at the beginning of period t+1 is vet /δ, and the score-update process continues in a similar manner.

If the contract is not already terminated, it is definitely terminated in period T : the device is confiscated

with probability c∗T (v
a
T ) and the ownership is transferred with probability 1− c∗T (v

a
T ).

Figure 5 (a) Summary of the contract dynamics. (b) Three sample paths of v-scores. (c) Implementation of

contract using digital displays D1 and D2.

To sum, a consumer’s v-score starts at a value that increases with her downpayment, and thereafter, as

shown in Figure 5(b), evolves with her payments, dropping with low payments and rising with high payments.

That process summarizes the payment history. In Figure 5(b), all the three sample paths start at the same

value of v-score, but the first path results in ownership transfer, the third in confiscation, and the second

path continues further. We show in Appendix B that the commonly-seen business models in the BoP markets

(sales, rent-to-own, and rental models) emerge as special cases of this optimal contract.
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The ability to effectively summarize a consumer’s payment history in a single score has profound practical

implications. The flexibility given to consumers in terms of both the amount that they pay and the time at

which they pay makes the communication of payment performance difficult. For example, the total amount

paid by the consumer thus far does not sufficiently capture her performance: a consumer who paid 50 USD

in 3 months is not the same as one who paid the same amount but in 9 months (all else equal), because

of the time value of money. By either not communicating anything to consumers or by communicating

ineffective metrics such as cumulative payment (both are seen in practice), a disconnect is created between

the firm’s and the consumer’s perceptions of a consumer’s payment performance. The surveys by Zollmann

et al. (2017) reveal that the consumers who are regularly behind on payments might also think that they

are good payers because “they were trying hard or missed only X days, weeks, or months of payments,”

or even worse, because their device is not yet confiscated (Zollmann et al. 2017, p. 24). Such a disconnect

can be resolved by communicating the v-score—a metric that automatically accounts for the time value of

money—continuously to consumers through a digital display on their devices.

Moreover, in the current implementations of payment flexibility, consumers are given a reference payment

schedule (e.g., pay 1 USD every week for a duration of 3 years), but are allowed to deviate from it as they

wish. The firm too can deviate from the initially-communicated repayment term depending on consumers’

payment performance (Zollmann et al. 2017, Guajardo 2021, Bonan et al. 2023). In such implementations,

a bad performer is provided as much flexibility as a good performer. The consumers are also not offered

recommendations on how much they can deviate from the reference schedule, and they are generally not

aware of the current and future consequences of their deviations (Zollmann et al. 2017, Kocieniewski and

Finch 2022). The flexibility offered in this manner is not only excessive, it is also implicit in nature. Some

consumers may not even need so much flexibility, and providing it without effectively communicating the

consequences of using it might result in severe payment problems. To resolve these issues, the optimal contract

proposes to explicitly communicate payment suggestions and rewards. That way, clear expectations are set

on how much flexibility consumers have and what they get in return for their payments. As we discuss next,

this too can be implemented using a digital display on devices.

The flexible downpayment scheme can be implemented by offering consumer a (discretized) menu of

downpayment suggestions: {w(j), d(j), v
(j)
1 }, where for a discretized set of liquid wealth levels {w(j)}, d(j) =

d∗∗(w(j)) and v
(j)
1 = vb∗∗1 (d(j)). The consumer, with liquid wealth w(j), is advised to pay d(j), and upon

paying d(j) the contract starts with a v-score v(j). The v-score in our model can be normalized to between

0 and 100 at the beginning, with 0 indicating no entry into the contract and 100 indicating immediate

transfer of ownership. After the contract starts, the necessary details can be communicated to the consumer

through two digital displays D1 and D2 on her device, see Figure 5(c). D1 displays the current v-score of

the consumer, indicating her payment performance, while D2 displays payment suggestions and rewards

as a lookup table. For a discretized set of disposable income values {y(j)t }nj=1 in period t, D2 displays in

a table {(y(j)t , p
(j)
t , f

(j)
t , v

(j)
t )}, where (i) p

(j)
t = p∗∗t (y

(j)
t ; vbt ), (ii) f

(j)
t = f∗

t (v
p∗∗
t (p

(j)
t ; vbt )), and (iii) v

(j)
t =

va∗t (vp∗∗t (p
(j)
t ; vbt )). (The size n could be chosen based on the available display space, and the access could

be displayed in terms of hours.) Thus, D2 offers a payment suggestion: “if you have y
(j)
t on hand, you are
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advised to pay p
(j)
t ,” and informs the resultant current and future rewards: “if you pay p

(j)
t , you will be

provided access f
(j)
t in the current period and your v-score will then be updated to v

(j)
t .” At any point in

time, the contract requires the consumer to make only a single-period payment decision, with the knowledge

of how her v-score will be updated upon payment (see Section 4.3), which is displayed in D2.

Figure 5(c) also shows how the displays must be updated over time. At the beginning of period t, D1

displays vbt , and the payment suggestions and rewards in D2 are based on this value of v-score. After the

consumer makes a payment p
(j)
t , D1 displays the corresponding updated v-score v

(j)
t (= vat in our model). At

the end of the period, if the contract is not terminated, then the v-score is updated from its current value to

vbt+1 while moving to the next period. The same update process continues thereafter. All the updates over

time can be done automatically and remotely using IoT technology, and at a frequency that the firm deems

appropriate (e.g., updates on a daily basis offer flexibility at the lowest possible denomination).

The v-scoring mechanism offers efficient confiscation and ownership transfer rules that can be easily

communicated through the color coding of digital displays. The rows in D2 that put the consumer at risk

of confiscation can be displayed in red, the rows that result in continuation can be displayed in green, and

blue can be used for the rows that offer ownership. D1 can dynamically change its display color depending

on what the current v-score entails. We believe that this dynamic scoring mechanism can resolve the issues

associated with fixed termination rules that are currently seen in practice (Zollmann et al. 2017, Kocieniewski

and Finch 2022), such as fixed confiscation rules, e.g., “we will confiscate the device if there is no payment

for 90 days.” Although it is easy to make the consumer aware of such a rule, it may not be efficient and is

therefore not necessarily enforced: a consumer who paid 80 USD cannot be treated the same as a consumer

who paid only 30 USD in the same amount of time, and now both with 90 days of no payment (all else equal).

The confiscation threat must be stronger for the latter, and the threat may need to intensify long before

the 90 day deadline is reached. The v-scoring mechanism automatically takes these factors into account by

dynamically offering different incentives to these two consumers and by communicating the threat via a red

light on the displays.

Similarly, fixed ownership rules such as “pay 150 USD over 3 years to obtain ownership,” again seen in

practice, are also inefficient. Some consumers could have paid faster, but they are given perverse incentives

to pay slowly. Moreover, if a consumer is paying too slowly, then because of time value of money, the firm

might want to charge her more than 150 USD, resulting in common situations wherein the consumer has

already paid 150 USD but ownership has yet to be transferred. Under the optimal contract, the consumers

are given ownership when their v-score goes above a certain threshold, which can be communicated at the

beginning, as well as dynamically using a blue light on the displays. We leave it to future research to test

the efficacy of the proposed contract and its implementation in the field.

5.2. Comparison with ToP Contracts

There are some features that are shared between the contract that we studied and the contracts that we

see in the ToP markets. For example, the mortgage contracts offered by the banks and the service contracts

offered by the utility companies evaluate consumers by tracking their payment history, the way the consumer
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is evaluated in our model through her v-score. If a consumer’s payment history is significantly bad, severe

measures are taken such as claiming the collateral or terminating the service contract, as in our model where

the consumer faces the risk of confiscation if her v-score falls below the threshold v̂Ct . If the consumer has a

good payment history, the organization might tolerate a few non-payment periods; our model also entitles

the consumer to grace periods if her v-score is sufficiently high. Similar to the firm in our model, utility

companies can regulate consumer access by providing fractional services based on payment levels. Next, we

compare the contract in this paper with some ToP contracts along a few specific dimensions, to further

enhance the understanding of some of its key features.

Credit scores versus v-scores. The v-score emerging from the optimal contract summarizes the con-

sumer’s payment history: it is higher for good payers and lower for bad payers. In this sense, we can interpret

a consumer’s v-score as her credit score. The consumers in the BoP markets hardly have any credit history

that they can show to financial organizations to obtain monetary support, and those organizations do not

usually offer loans to these consumers because they do not have a credit history; a vicious circle that v-

scores could help break. Provided that the policy environment is supportive, BoP consumers could use their

v-scores as credit scores while applying to other organizations for financial support (e.g., microfinance insti-

tutions, development banks, and other private firms), and those organizations in turn could treat v-scores

as indicators of consumers’ creditworthiness while extending support.

Despite this similarity, the functionality of v-score in our context is somewhat different from the function-

ality of credit score that we see in the ToP markets. Credit scores are usually constructed by third parties

using multiple sources of consumer transactions, and they act as a central repository of information that

different organizations use to assess the creditworthiness of consumers. A consumer generally knows that

certain actions increase her credit score, while certain others decrease it, but while taking those actions, she

may not necessarily be aware of (or may not take into consideration) what her credit score is, and what

the exact impact of her actions will be on her score. Therefore, the incentives induced by the credit-scoring

mechanism to elicit good payment behavior are implicit and imperfect. By contrast, the purpose of v-scoring

in our model is to explicitly offer consumers the (nonmonetary) payment incentives. The efficacy of the

contract hinges on the perfect knowledge of v-score and how it updates with the payments, which, as we

discussed in Section 5.1, can be communicated to the consumer through digital displays on her device.

Flexibility as a contractual feature. A distinctive feature of our setting is that the consumer is con-

tractually offered payment flexibility. This feature arises because of the consumer’s liquidity constraints and

income uncertainty—the factors that are specific to the BoP. If we remove these factors, then the contract

becomes inflexible—it becomes the kind of fixed installment contract that we see in the ToP markets. To see

this, refer to the payment function with crosses in Figure 4(c): it takes that shape for high values of vbt . On

this payment function, if we move the minimum income, call it y
t
, from zero to a value beyond the kink, then

in the domain [y
t
,∞), the payment function p∗∗t (y) is a flat line. In other words, we get this fixed installment

contract—in which the firm asks for the same amount irrespective of the consumer’s income—if the dispos-

able income (here, y
t
) and the credit score (here, vbt ) are sufficiently high; the typical characteristics of a

ToP consumer. Thus, payment flexibility is intimately tied to the fundamental features of the BoP market.
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Attitude to advance payments. A lending organization like a bank does not prefer the consumer to

pay in advance. A bank earns money by charging an interest rate that is higher than its own discount rate

(Choudhry 2022), and hence a consumer paying in advance hurts the bank’s earnings. The utility companies

allow their consumers to pay in advance for their services, but these advance payments are simply treated

as a store credit, and the consumer does not earn interest on it; the consumer is therefore not explicitly

incentivized to pay in advance. In contrast, the firm in our setting encourages the consumer to pay in

advance to accommodate the uncertainty in her income. The contract rewards the consumer for her advance

payments: her remaining credit at the end of a period (i.e., vet ) is appreciated by her discount factor. Without

this increase of the v-score, the consumer has no incentive to pay in advance.

Servitization. Some firms in the ToP markets adopt a servitization strategy, where instead of selling a

product (e.g., printers, heavy machinery, automotives), its outcome is sold as a service. The most common

service contracts that are offered under this strategy are subscription and pay per use. A subscription contract

requires the consumer to pay a (relatively high) fee and in return, she is offered uninterrupted service for a

(relatively long) specified duration. In a pay-per-use contract, the consumer pays for the service whenever

she requires it and the amount paid corresponds to the duration of usage. The choice between the two in

the ToP market generally depends on the intensity of demand for the service: if intensity is high, then a

subscription contract is better; otherwise, a pay-per-use contract is better (see, e.g., Fishburn and Odlyzko

1999). In a BoP market however, there is another factor at play: the consumer’s liquidity constraints, which

makes the contract design nontrivial. The products and services discussed in our paper are necessities, so

demand intensity is high. Despite that, a PAYGo firm cannot simply offer a subscription contract because

that requires the consumer to pay a higher amount upfront, which she may not always be able to.

Interestingly, the optimal contract integrates the features of both subscription and pay-per-use contracts

dynamically, depending on the consumer’s v-score. If a consumer pays high amounts in advance, then her

v-score shoots up and the contract allows her to access the device fully without any payments for the next

few periods. Thus, a farmer who earns money seasonally after harvests can plausibly use the device on a

subscription basis, while a truck driver who may earn money in small amounts spread over time can use the

device on a pay-per-use basis, as and when the money arrives. (The constraining factor in this case is not

the demand for the service—that always exists—but the ability to pay for it.)

Remote asset control. Several ToP firms and merchants sell electronic goods using payment models—

such as buy-now-pay-later and rent-to-own—that allow consumers to pay over time, like in our setting.

However, they do not incorporate the remote access-control feature into their devices. Doing the same in

a BoP market, although theoretically possible, might be ineffective because of practical limitations. If the

firm lacks the ability to control the device remotely, then it can discipline the consumer only through the

threat of confiscation. The (continuation) contract, which earlier was a triplet (f t, ct, ot), now reduces to

(ct, ot). It is easy to see that the resulting incentives will be weaker than before, and there will therefore be

more confiscations. The ToP organizations can avoid such dire consequences because they have alternative

mechanisms for influencing consumer behavior: in addition to confiscating the asset, they can take the
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consumer to court and sue her, block her bank account, or report her to credit-scoring agencies, which then

negatively affect her future purchasing power and prospects of getting a loan. Thus, the strong regulatory

framework in a ToP market does not necessitate remote asset control. By contrast, BoP markets usually have

weak and broken regulatory frameworks, which severely limits the set of available discipline mechanisms.

PAYGo firms therefore need to invest in IoT technologies and design devices that are remotely controllable

in order to maintain the ability to influence consumer behavior.

Contract initiation and adverse selection. Our contract initiation problem assumes that consumers in

the market differ only in terms of their liquid wealth, which is not observable to the firm; this problem is solved

by offering a menu of contracts that accepts varying levels of downpayment, starting consumers at different

values of v-scores. This assumption may not be far from reality in remote villages where the households

usually share characteristics and rely on similar means to make their living. However, we acknowledge that

our formulation of the initiation problem is incomplete. Consumers could differ on other characteristics at

the time of initiation—e.g., their financial discipline and consumption patterns, which are difficult to observe

but influence their willingness and ability to repay—thus resulting in a complex adverse selection problem.

Banks and other lending organizations in the ToP markets face similar problems, and solve them by resorting

to techniques such as screening and risk-based pricing (Choudhry 2022). We do not study these aspects of

the initiation problem in our paper, as our primary focus has been on the problem of efficiently managing

payment flexibility—the dynamic moral hazard problem that ensues after the contract starts. That said,

the techniques deployed by the ToP organizations can be practically useful in our setting too. For example,

extensive surveys could be used to cluster consumers into different homogeneous categories. The firm may

then decide to screen out some categories and offer different menus to the remaining categories depending

on their characteristics and perceived risk. Future research could explore these aspects in more detail.

6. Concluding Remarks
In this paper, we have carried out a rigorous analysis of the payment problem stemming from payment

flexibility in a PAYGo model. We used the optimal contracting approach to solve the problem and generated

insightful and implementable results on how to score consumers and optimal approaches to offering flexibility.

Our work has implications for firms, academics, policymakers, and consumers.

Our contracting model could act as a structured framework for the PAYGo firms to understand and

analyze the payment problems within the industry. They can conduct field experiments to test the efficacy

of different features suggested by the optimal contract: importantly, the v-scoring mechanism and offering

suggestions to consumers on how to make use of flexibility. The model can also form the basis for a dynamic

learning framework that learns more about consumer characteristics as more data is collected using IoT

technology and then adjusts the policies as necessary.

In terms of academic relevance, to the best of our knowledge, there has been no systematic theoretical

analysis of PAYGo contracts; we believe our paper is a first. The problem studied here is not only practically

relevant but also technically challenging. The approach that we have developed to solve the incentive problem

can be applied broadly to other contexts. Future research could explore other related problems within the
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context of PAYGo. A third party (a policymaker or a donor) could offer different types of subsidy dynami-

cally, either to the firm or the consumers, with the aim of improving societal outcomes. The design of optimal

subsidy programs deserves a detailed investigation. Another crucial problem is related to the sales agents of

PAYGo firms. The agents might share misleading information about the contract or device capabilities to

bring consumers on board quickly. This harms consumers and the firm alike (Zollmann et al. 2017, Kocie-

niewski and Finch 2022). It is therefore necessary to design incentives for agents that link their commissions

to consumers’ payment performance, yet still motivate them to reach out to low-income consumers.

Several low-income countries are resource-constrained and cannot extend their centralized supply networks

to remote rural areas. That is why these countries have been welcoming decentralized off-grid service provision

by private firms. While extending support to these firms or regulating them, policymakers can enforce

transparent scoring mechanisms and clear communication about the consequences of using flexibility, as

guided by the optimal contract. Policymakers must note that the v-scores emanating from our contract

are akin to credit scores that quantify the creditworthiness of consumers. They can therefore facilitate the

creation of a seamless framework across different organizations to extend further financial support to these

consumers based on their v-scores.

If there is no light in a household, its members are vulnerable to theft and reptile attacks in the nighttime,

while their productive time and the children’s study time are reduced. If a household does not use clean

cooking methods, the smoke from firewood or charcoal can impact their respiratory health, and they face fire

hazards that can burn their house down and even take their lives. If there is no access to clean water, they

are vulnerable to several water-borne diseases. A lack of access to smartphones and televisions means that

households cannot access critical information on current affairs and important opportunities. Depriving the

poor of such basic products and services traps them in poverty. The flexible financing available in PAYGo

models offers the possibility of bringing valuable assets within the reach of a large number of low-income

households and releasing them from the poverty trap. Our paper considers efficient mechanisms to bring

life-improving goods and services into the lives of the poor, which in turn contribute to increasing consumers’

productivity, improving their health, alleviating poverty, and promoting economic growth.
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Appendix A: Repayment Term

We assumed in the paper that the repayment term (the end time of the contract) is T , the lifetime of the

device. But this assumption may not always be realistic, especially when the device’s lifetime is too long.

For example, a solar home system’s lifetime usually exceeds 5 years, but most of the payment contracts that

we see only run for up to 3 years. So the repayment term θ need not coincide with the device’s lifetime T .

In our model, the firm can set the repayment term to any arbitrary length θ < T by exogenously setting

the last period for the contractual relationship to be θ. The choice of θ may depend on factors that are

external to the model, such as the expiration period of funds or the deadlines set by the involved parties. In

such a case, we can redo the analysis in Section 4 with θ, instead of T , as the last period. Doing so does not

qualitatively affect the contract structure: in Figure 5(a), period θ replaces period T—the period in which

there is no option of contract continuation. Interestingly, a repayment term less than T can also endogenously

emerge from our model. Recall Figure 2(b): if the firm sees no value in continuing the contract in a certain

period, it will terminate the contract in that period (by randomizing between confiscation and ownership

transfer). The following result establishes a sufficient condition for the existence of such a period θ (< T ).

To derive this result, we mute the impact of ownership incentives by setting Ot = 0 for all t, because we are

interested in the endogenous emergence of a shorter repayment term without the influence of a third party

(e.g., a policymaker or a donor who sets Ot).
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Proposition 9. If there exists a time period θ such that

Ct−1

Ct
≤ γ

δ

vet−1 − vet−1

vet − vet
, for 1< t≤ θ, and (38)

Ct−1

Ct
≥ γ

δ

vet−1 − vet−1

vet − vet
max

{
1,
vet − vet
λ2 Ct

}
for θ < t≤ T , (39)

then it is optimal to terminate in period θ.

We expect the confiscation payoffs to weakly decrease over time (i.e., Ct−1 ≥ γCt). Proposition 9 imposes

a condition on how Ct decreases over time: the relative fall in the confiscation payoffs (or equivalently, the

decrease in the log of confiscation payoffs) is bounded below by a time-varying threshold in (38) until a

period θ, and thereafter the relative fall is bounded above by a time-varying threshold in (39). It is easy to

show that the time-varying thresholds on the right-hand sides of (38) and (39) are increasing in t. Thus,

Proposition 9 states that if the confiscation payoffs fall at a moderate pace until a point in time, but thereafter

fall at an increasing pace, then the firm will surely terminate the contract before the end of the device’s

lifetime. In other words, if the technology depreciates at an accelerating pace beyond a point in time or if

the opportunity costs of the firm become increasingly intensive after a certain period (which both correlate

with a steep drop in Ct), then the contract’s repayment term θ will be shorter than T . Moreover, the faster

the technology depreciates, the shorter the repayment term.

Appendix B: Business Models

Three different business models that are prominently seen in the BoP markets emerge as special cases in

our contracting framework: (i) a sales model, in which the firm charges its consumers a fixed price and gives

ownership of (i.e., sells) the technology right after the payment; (ii) a rental model, wherein the firm never

gives the option of technology ownership (i.e., it only rents the technology) to its consumers; and (iii) a rent-

to-own model, which gives the option of ownership to consumers but does not immediately sell the device.

In this section, we examine the relationships between the characteristics of a technology and the business

model used to offer that technology.

As in Appendix A, we set the ownership incentive to zero in this section as well. By giving sufficiently

high ownership incentives, a policymaker or a donor can exogenously increase the possibility of ownership in

any period (see Figure 2(a)). However, we are interested in the endogenous emergence of different business

models (and the option of ownership) within the contracting framework, so we set Ot = 0 for all t.

With this in mind, we now formally characterize the option of ownership in our model. Recall from

Figures 4(b) and 4(c) that in period t, the highest reward that the firm offers the consumer is vp∗∗t (p̂∗2,t).

If this highest reward is equal to vpt , which is the value that the consumer derives if she was granted the

ownership in period t, then we say that the firm gives the option of ownership in period t. In contrast, if

vp∗∗t (p̂∗2,t)< vpt for all t≤ θ for a given repayment term θ, then the firm never gives the option of ownership

to the consumer—it only rents the device. Furthermore, if the option of ownership exists in period 0 itself,

then the firm sells the technology to consumers who can afford it. We define this using the second method

of contract initiation in Section 4.5. The option of ownership exists in period 0 if vb∗∗1 (d̂∗2) = vb1, where the

threshold d̂∗2 is d̂2 in Proposition 7 evaluated at the optimal values of α0, κ
v
0, and d. Specifically, to sell the
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technology, the firm charges a price of d̂∗2, and the consumers with wealth above d̂∗2 + κ̃ pay that price and

purchase the technology in period 0.

The following result establishes simple conditions on the confiscation payoff in the terminal period of the

contract for the emergence of different business models. We make two assumptions to derive this result.

First, the confiscation payoffs satisfy (38) and (39). Thus, the structure of the result holds for a repayment

term θ∗ that is either endogenously determined as per Proposition 9, or exogenously chosen but is smaller

than the endogenous repayment term θ. Second, λ̃2 ≥ λ2: this assumption is mild because λ̃2 characterizes

consumption utility over wealth, which is relatively larger in magnitude, as opposed to λ2, which characterizes

utility of consuming disposable income, which is relatively smaller in magnitude.

Proposition 10. For a firm with the set of confiscation values {Ct} that satisfy (38) and (39) and repayment

term θ∗ ≤ θ, there exist thresholds Ĉ(1) and Ĉ(2) such that:

(i) if Cθ∗ ≤ Ĉ(1), then the firm deploys a rent-to-own model for consumers with wealth below a threshold ŵ,

and a sales model for the consumers with wealth above ŵ,

(ii) if Ĉ(1) ≤Cθ∗ < Ĉ(2), then the firm deploys a rent-to-own model, and

(iii) if Cθ∗ ≥ Ĉ(2), then the firm deploys a rental model.

If the confiscation payoff in the terminal period is too low, then the firm sells the device to consumers who

can afford it and offers a rent-to-own model to consumers who cannot purchase it right away. In general,

Cθ∗ is low if the technology is either cheap or depreciates too fast once it is in the hands of the consumer,

and significant value cannot be obtained from it in a secondary market. We know from Appendix A that

fast-depreciating technologies are associated with shorter repayment terms. This result is consistent with the

fact that technologies such as clean cookstoves and small solar lamps, which cost less and depreciate fast,

are either sold directly or are offered on a rent-to-own basis with relatively short repayment terms that span

only a few weeks or months.

For moderate values of Cθ∗ , the firm offers only rent-to-own contracts. Solar home systems, smartphones,

and computing systems, which cost relatively more and depreciate at a relatively moderate pace, are pre-

dominantly offered on a rent-to-own basis with relatively longer repayment terms that span multiple years.

If Cθ∗ is too high, the firm only rents the technology. This will be the case for technologies that either cost

more or depreciate slowly, and remain quite valuable in a secondary market. In reality, these characteristics

map well to two settings. First, if the firm takes the responsibility of regularly maintaining the device and

replacing the parts when necessary, then it derives high value from that device even upon confiscation. We

usually see this happening with large solar home systems (e.g., with fans and television), which are only

rented out to consumers and maintained by the firm. Second is the case of services, such as providing cooking

gas through cylinders and purified water through prepaid meters. Besides the fact that these technologies

can never actually be owned by the consumer, they also have high a Cθ∗ because the confiscation payoff

comes, not from the resale of any device, but from simply shifting the provision of service from one consumer

to another relatively easily without incurring a high cost, so the firm’s opportunity costs vary little over

time. We conclude this section with a remark on how we can accommodate pure services like these (with no

ownership option) in our modeling framework.
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Modeling pure services. It is possible to transfer the ownership of technologies such as solar home

systems and smartphones to a consumer because they can provide services (i.e., energy and information) in a

self-sustaining manner, without the firm’s involvement, after the ownership. By contrast, purified water and

cooking gas cannot be provided in a self-sustaining manner (at least not with the prevailing technologies).

For there to be a continuous supply of these services, the firms must operate water purification stations with

piped connections, and source LPG and distribute it in cylinders. These technologies cannot therefore be

owned by a single consumer. Such pure services can be accommodated within our modeling framework, with

two minor modifications. First, a firm in this case incurs an operational cost to deliver the service (e.g., it

needs to maintain the purification systems, or replace all the cylinders once a month). This can be accounted

for in the firm’s objective at the beginning of each period by rewriting it as πbt (v
b
t )− cot , where c

o
t is the

operational cost in period t. We can easily see from the analyses in Section 4 that such a modification might

change the values of the thresholds in the optimal contract but does not affect its overall structure.

Second, given that the services operate over a much longer time period, perhaps it is appropriate to model

service delivery as an infinite-horizon problem. This too can be accommodated easily in our model by taking

T →∞ and making Ct, Gt, and c
o
t stationary. Interestingly, making Ct stationary is consistent with what we

just discussed above: when a technology does not depreciate over time, the firm offers it on a purely rental

basis, which indeed is the case here. This modification will make all the threshold policies and the payment

and reward functions in the optimal contract stationary (and also simpler).

The v-scoring mechanism in this case too can be implemented using digital displays, as we discussed in

Section 5.1, but without the blue light indicators as there is no ownership option here. It would be appropriate

to specify the access ft in terms of quantities (e.g., liters) of water or gas that will be provided. Overall, the

insights that we developed in the paper on how to efficiently manage payment flexibility—which has been

our primary focus—apply equally well to the case of pure services.

Appendix C: Proofs of Propositions in the Main Paper and the Appendices

For the proofs, we introduce some notational conventions:

1. We denote extended real numbers by R̄ :=R∪{−∞,∞}.

2. We use ′+ ( ′−) or d
d+

( d
d−

) to denote right (left) derivatives.

3. We extend the traditional derivative notation to borders of closed sets and kinks in concave functions

as follows. For a function π defined on any closed interval [x, x̄], we define π′(x) := π′+(x) and π′(x̄) :=

π′−(x̄). For a concave function π, we interpret the statement “π′(v) = k” as “k is a super-derivative of

π at v.” Similarly, we interpret inequality statements such as “π′(v)> k” as “there exists an element

of the super-differential of π at v, which is greater than k.” For reference, for a concave function π(x)

defined on [x, x̄], we say that k is a super-derivative of π at v if π(x)−π(v)≤ k(x− v) for all x∈ (x, x̄).

The set of all superderivatives of π at v is called the superdifferential of π at v and is guaranteed (by

converse of the mean value theorem) to be equal to [π′+(v), π′−(v)].

4. For a real function F (·), we define its generalized inverse as F−1∗(y) := sup{x∈ domF |F (x)≤ y}.
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5. Strict (weak) first-order stochastic dominance is denoted by ≻FSD (⪰FSD), while second-order stochas-

tic dominance is denoted by ≻SSD (⪰SSD).

6. For any cdf G(·), we denote the corresponding decumulative distribution function by Ḡ(·) := 1−G(·)
Throughout the proofs, we assume Yt = [y

t
,∞) for some y

t
≥ 0. This is more general than the assumptions

used in the paper (where y
t
= 0), but this generalization facilitates the proofs of Propositions 7–8.

Proof of Proposition 1. The proposition follows directly from the geometric construction outlined below

its statement in the main text. Furthermore, if v̂Ct > vat (resp. v̂Ot < vat ), the slope of the tangent passing

through (vat ,Ct) and (v̂Ct , v
e
t (v̂

C
t )) (resp., through (vat ,Ot) and (v̂Ot , v

e
t (v̂

O
t ))) is given by

sCt :=
πet (v̂

C
t )−Ct

v̂Ct − vat

(
sOt :=

Ot−πet (v̂
O
t )

vat − v̂Ot

)
.

With this in mind, we can write the recursive expression for the firm’s value function as

πat (v
a
t ) =


Ct+ sCt (v

a
t − vat ) if vat ≤ vat < v̂

C
t ,

πet (v
a
t ) if v̂Ct ≤ vat ≤ v̂Ot ,

πet (v̂
O
t )+ sOt (v

a
t − v̂Ot ) if v̂Ot < v

a
t ≤ vat . □

(40)

Proof of Proposition 2. Substituting the expression for vat from (16) into (15) reduces the problem (15)–

(16) to maxft∈[0,1] π
a
t (v

p
t −ftA). Using the property established in Proposition 1 that πat is a concave function

gives (17). Inserting the optimal fractional access (17) into (16) yields the optimal continuation value (18).

Lastly, inserting (17) into (16) yields πpt (v
p
t ) = πat (v

p
t −min

{
[vpt − v̂At ]

+
,A

}
), which is also concave. □

The next lemma is a general (model-independent) result and is used in the proofs of Propositions 3 and

4. Similar results are given in Levy (1992) and Gao et al. (2018).

Lemma 1 (Stochastic Dominance via Slope). Let X be a continuous random variable with convex

support X ⊆R and cdf F . Let g,h :X →R be absolutely continuous and non-decreasing functions such that

E[h(X)] ≥ E[g(X)]. If g and h are right-differentiable and h′+(x) ≤ g′+(x), ∀x ∈ X \ {supX} then h(X)

weakly dominates g(X) in terms of second-order stochastic dominance (h(X)⪰SSD g(X)). Alternatively, if

g and h are left-differentiable and h′−(x)≤ g′−(x), ∀x∈X \ {inf X} then also h(X)⪰SSD g(X).

Proof. Denoting ξ = inf X , ψ= supX , define ḡ, h̄ : [ξ,ψ]→ R̄ by

ḡ(x) =


limy→ξ+ g(y) |x= ξ,

g(x) |x∈X \ {ξ,ψ},
limy→ψ− g(y) |x=ψ,

h̄(x) =


limy→ξ+ h(y) |x= ξ,

h(x) |x∈X \ {ξ,ψ},
limy→ψ− h(y) |x=ψ.

These two functions are just the natural extensions (by continuity) of g and h to the closure of their domains.

By definition, the cdf of h(X) is Fh(X)(x) = P (h(X) ≤ x) =
∫ h−1∗(x)

ξ
dF (u) = F (h−1∗(x)), and analogously

Fg(X)(x) = F (g−1∗(x)). Then, (h(X) ⪰SSD g(X)) ⇔ (
∫ x
−∞Fh(X)(u) − Fg(X)(u)du ≤ 0,∀x ∈ R). Notice that

ḡ(ξ) ≤ h̄(ξ), otherwise h′+(x) ≤ g′+(x) or h′−(x) ≤ g′−(x) would imply E[h(X)] > E[g(X)]. If ḡ(ψ) ≤ h̄(ψ)

or ḡ(ξ) = h̄(ξ), then as h′+(x) ≤ g′+(x) or h′−(x) ≤ g′−(x) we have g(x) ≤ h(x),∀x ∈ X , thus Fh(X)(x) ≤
Fg(X)(x),∀x∈X , which is equivalent to h(X)⪰FSD g(X), from which h(X)⪰SSD g(X) follows.

It remains to show that the statement of the lemma holds when both ḡ(ξ)< h̄(ξ) and ḡ(ψ)> h̄(ψ). In this

case, (h(X)⪰SSD g(X))⇔ (
∫ x
ḡ(ξ)

Fh(X)(u)−Fg(X)(u)du,∀x∈ {g(y)|y ∈X}). Denoting I(x) :=
∫ x
ḡ(ξ)

Fh(X)(u)−
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Fg(X)(u)du, we proceed to show that the integral condition for SSD holds, i.e., I(x)≤ 0,∀x∈ {g(y)|y ∈X}. We

have I(ḡ(ξ)) = 0, because the integral vanishes. Next, we can establish that I(ḡ(ψ))≤ 0, by using the property

that for any real random variable Y with cdf FY it holds that E[Y ] =
∫∞
0
(1−FY (u))du+

∫ 0

−∞FY (u)du, which

then implies 0≥ E[g(X)]− E[h(X)] =
∫∞
−∞Fh(X)(u)− Fg(X)(u)du= I(ḡ(ψ)). Next, we check the interior of

I(x). Because ḡ(·) and h̄(·) are continuous functions such that ḡ(ξ)< h̄(ξ) and ḡ(ψ)> h̄(ψ), there needs to

exist a point where they are equal (by the intermediate value theorem). Furthermore, as h′+(x) ≤ g′+(x)

or h′−(x) ≤ g′−(x), the set of all points on which these functions are equal is a closed interval (∃ξ∗,ψ∗

such that ξ < ξ∗ ≤ ψ∗ < ψ, where g(x) = h(x), ∀x ∈ [ξ∗,ψ∗], and ḡ(x) ̸= h̄(x),∀x ∈ [ξ, ξ∗) ∪ (ψ∗,ψ]). Thus,

the cdf-s Fh(X) and Fg(X) have the single-crossing property where F (h−1∗(x))≤ F (g−1∗(x)),∀x < g(ξ∗) and

F (h−1∗(x)) ≥ F (g−1∗(x)),∀x ≥ g(ξ∗). Because of this, the integrand in I(x) =
∫ x
ḡ(ξ)

Fh(X)(u) − Fg(X)(u)du

is weakly negative for u ≤ g(ξ∗) and weakly positive for u ≥ g(ξ∗). Hence, I(x) is non-increasing up to

x = g(ξ∗) and non-decreasing afterwards, which combined with I(ḡ(ξ)) = 0 and I(ḡ(ψ)) ≤ 0 implies that

I(x)≤ 0,∀x∈ {g(y)|y ∈X}, completing the proof. □

Proof of Proposition 3. Part 1: shape of vp∗t . We establish the shape of vp∗t by showing that the

choice of (pt(·), vpt (·)) in (19)–(21) can be be restricted to Pt × V̄t without loss of optimality, where V̄t :=
{vp∗t (p;αt, κ

v
t )|αt ≥ vpt , κ

v
t ∈ R̄+}, and vp∗t (p;αt, κ

v
t ) is given by (22). The proof is based on showing that for any

pair (pt(·), vpt (·)) that solves (19)–(21), we can construct vp∗t (·)∈ V̄t such that (pt(·), vp∗t (·)) also solves (19)–

(21). Assume (pt(·), vpt (·)) solves (19)–(21). Then, from (20) we have pt(y)∈ argmax
0≤p≤y

u(y−p)+vpt (p),∀y ∈Yt,

which implies (since pt(y) is a local maximum)

d

d−p
(vpt (p)+u(y− p))

∣∣∣
p=pt(y)

≥ 0, ∀y ∈Yt such that pt(y) ̸= 0, (41)

d

d+p
(vpt (p)+u(y− p))

∣∣∣
p=pt(y)

≤ 0, ∀y ∈Yt such that pt(y) ̸= y. (42)

Next, we will narrow down the region in which pt(y) lies. Define ˆ̂pt := sup{pt(y)|y ∈ Yt}, and κv∗t :=

inf{p|0 ≤ p ≤ ˆ̂pt,∃rp > p such that vpt (x) < vpt (p) + λ1(x− p),∀x ∈ (p, rp)}. Since both one-sided derivatives

of u(y) are either λ1 or λ2, from (41) it follows that d
d−p

vpt (p) ≥ λ2, for all p such that 0 < p ≤ ˆ̂pt. Note

that ˆ̂pt <∞ for any incentive compatible pt(y), as the amount of utility the principal can offer the agent is

bounded (vpt (y)≤ v̄pt ,∀y ∈Yt) but consumption utility is not (limy→∞ u(y) =∞).

First, since from the definition of κv∗t we have d
d+p

vpt (p) ≥ λ1,∀p ∈ [0, κv∗t ), for incomes below κv∗t any

incentive compatible payment policy will leave at most κ for consumption. Thus, min{ ˆ̂pt, [y−κ]+} ≤ pt(y)≤
min{ ˆ̂pt, y},∀y ≤ κv∗t . Second, from the definition of κv∗t we also have that for yt ∈ (κv∗t , rp) it holds that

pt(yt)< yt, i.e. will be optimal for the consumer to divert for personal consumption the marginal income above

κv∗t . Since (42) implies that d
d+p

vpt (p)≤ λ1 for every p for which there exists yp ∈Yt such that p= pt(yp)< yp,

we have that d
d+p

vpt (p)≤ λ1 for all p > κv∗t , so min{ ˆ̂pt, [y − κ]+} ≤ pt(y)≤min{κv∗t , ˆ̂pt}],∀y ∈ (κv∗t , κ
v∗
t + κ],

i.e. the consumer will divert for consumption all income above κv∗t until she exhausts her ability to receive

marginal utility λ1 from consumption. Third, for incomes above κv∗t +κ, because of the d
d+p

vpt (p)≤ λ1 for all

p > κv∗t condition, the consumer will either prefer consuming any marginal income or be indifferent between

consuming it and paying it to the firm, so pt(y) ∈ [min{κv∗t , ˆ̂pt},min{ ˆ̂pt, y − κ}],∀y ≥ κv∗t . Noticing that

ˆ̂pt ≥ κv∗t and combining the three cases yields that pt(y)∈ [min{[y−κ]+, κv∗t },max{y−κ, ˆ̂pt}],∀y ∈Yt.
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Now, consider vp∗t (p;αt, κ
v∗
t ), as given by (22). Noticing that p̂0,t(αt, κ

v∗
t ) ≥ ˆ̂pt,∀αt ∈ R we can see that

any payment policy ṕt that satisfies ṕt(y) ∈ [min{[y − κ]+, κv∗t },max{y − κ, p̂0,t(αt, κ
v∗
t )],∀y ∈ Yt satisfies

the incentive compatibility constraint (20). (This region is the Space of Incentive Compatible Payment

Functions illustrated Figure 3, panel (b), when κvt = κv∗t ; it can also be written using notation of footnote 2

as p
t
(y)≤ ṕ(y)≤ p̄t(y).) Thus the starting optimal payment policy pt, which was just shown to fall in this

region, is also incentive compatible under vp∗t (p;αt, κ
v∗
t ). Furthermore, we have that ∀y ∈ Yt, p ∈ [min{[y −

κ]+, κv∗t },max{y−κ,κv∗t }] :

vp∗t (p;αt, κ
v∗
t )+u(y− p) =

{
λ1y if y≤ κ+κv∗t ,

λ1(κ
v∗
t +κ)+λ2(y−κv∗t −κ) otherwise.

(43)

Taking a left derivative of (43) with respect to p yields that (41) holds for vpt (·) = vp∗t (·;αt, κv∗t ) with equal-

ity. Hence, from (41) we have that d
d−p

vpt (p)|p=pt(y) ≥ d
d−p

vp∗t (p;αt, κ
v∗
t )

∣∣
p=pt(y)

,∀y ∈ Yt such that pt(y) ̸=

0,∀αt ∈R, thus also d
d−y

vpt (pt(y))≥ d
d−y

vp∗t (pt(y);αt, κ
v∗
t ),∀y ∈Yt such that pt(y) ̸= 0,∀αt ∈R. Now, we iden-

tify the value of αt that will make the promise-keeping constraint (21) binding. Denoting this value by

α∗
t , we can find it by solving E[u(Yt − pt(Yt)) + vp∗t (pt(Yt);αt, κ

v∗
t )] = E[u(Yt − pt(Yt)) + vpt (pt(Yt))], which

yields α∗
t = E[vpt (pt(Yt)) − vp∗t (pt(Yt); 0, κ

v∗
t )]. So, we have that E[vp∗t (pt(Yt);α

∗
t , κ

v∗
t )] = E[vpt (pt(Yt))] and

d
d−y

vpt (pt(y)) ≥ d
d−y

vp∗t (pt(y);α
∗
t , κ

v∗
t ),∀y ∈ Yt such that pt(y) ̸= 0, which allows us to apply Lemma 1 and

obtain vp∗t (pt(Yt);α
∗
t , κ

v∗
t )⪰SSD v

p
t (pt(y)).

Here, we can use the result of Rothschild and Stiglitz (1970) that for any two random variables

X and Y , it holds that (X ⪰SSD Y and E[X] = E[Y ]) ⇔ (Y is a mean preserving spread of X) ⇔

(E[q(X)]≥E[q(Y )],∀ concave q(·)). Thus, from concavity of πpt we have E[πpt (vp∗t (pt(Yt);α
∗
t , κ

v∗
t ))+pt(Yt)]≥

E[πpt (vpt (pt(Yt)))+ pt(Yt)], so the pair (pt, v
p∗
t ) performs at least as good as (pt, v

p
t ) in the objective function

(19), while both pairs satisfy the constraints (20)–(21), implying the optimality of (pt, v
p∗
t ).

Lastly, a technical remark is that without loss of optimality, we can restrict attention to finite κvt (so

κvt ∈ R+ rather than R̄+), because in problem (19)–(21), for every αt, both the firm and the consumer are

indifferent between all vp∗t (p;αt, κ
v
t ) such that κvt ≥ (v̄t−αt)/λ1.

Part 2: construction of p∗t . We present the proof of this part of the proposition by construction, but note

that the same result can be also be obtained by pointwise optimization, analagously to Part 2 of Proposition 7.

The intution of how this alternative method works is also given in the discussion following Proposition 3.

First, we establish an intermediary result. Let, (pt(y), v
p∗
t (p;αt, κ

v
t )) ∈ Pt × V̄t satisfy (20)–(21). We will

construct a piecewise-linear p†t(y;αt;κ
v
t )∈Pt, such that (p†t(y;αt;κ

v
t ), v

p∗
t (p;αt, κ

v
t )) performs equal or better

to (pt(y), v
p∗
t (p;αt, κ

v
t )) in (19)–(21). Note that under vp∗t (p;αt, κ

v
t ), the consumer is indifferent between all

p̂t(y) such that p̂t(y) = pt(y) for y ≤ κ+ κvt and p̂t(y) ∈ [κvt , y − κ] for y > κ+ κvt . This is because once the

consumer has paid κvt to the firm and has consumed κ, she will derive marginal utility λ2 from any additional

money, irrespective of whether she consumes it or pays it to the firm. Let p̂2,t be as given by (25), and define

p†t(y;αt;κ
v
t ) :=


pt(y) if y≤ κ+κvt ,

y−κ if κvt +κ≤ y≤ p̂2,t(αt, κ
v
t )+κ,

p̂2,t(αt, κ
v
t ) if y≥ p̂2,t(αt, κ

v
t )+κ.

(44)
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The idea behind this construction is that under vp∗t (·;αt, κvt ), after the firm has received κvt money, it needs

to promise λ2 utility to the agent for every additional unit of money received; as πpt (·) is concave, the “cost

of fulfilling promises” is convex, thus the consumer giving more money to the firm is beneficial to the firm,

but only up to some point (p̂2,t). Thus, p
†
t(y;αt;κ

v
t ) is constructed as a modification of pt(y) that changes

how the consumer uses money in excess of κ+ κvt : the indifference between consuming money at marginal

utility λ2 and or giving it to the firm (at marginal promised future utility λ2) is broken in favor of giving

the money to the firm, but only until the consumer has given p̂2,t money to the firm, after which consumer

consumes any additional money. Notice that pt(y) satisfies pt(κ+κ
v
t ) = κvt . Thus p

†
t(y;αt;κ

v
t ) is continuous, so

p†t(y;αt;κ
v
t )∈Pt. Because of the aforementioned indifference property, under vp∗t (p;αt, κ

v
t ) the agent derives

the same utility when using p†t(y;αt;κ
v
t ) as with pt(y), thus the pair (p

†
t(y;αt;κ

v
t ), v

p∗
t (p;αt, κ

v
t )) also satisfies

the constraints (20)–(21).

Now, to show that that the firm prefers p†t over pt, we first establish one property: that pt ≤ y−κ,∀y > κvt .
If this were not the case (∃y∗ > κvt , s.t. pt(y

∗) > y∗ − κ), following pt when her income is y∗ would give

the consumer expected utility vp∗t (pt(y
∗);αt, κ

v
t ) + u(y∗ − pt(y

∗)) = λ1κ
v
t + λ2(pt(y

∗) − κvt ) + λ1min{y∗ −
pt(y

∗), κ}+ λ2[y
∗ − pt(y

∗)− κ]+ = λ1(κ
v
t + y∗ − pt(y

∗)) + λ2(pt(y
∗)− κvt )< λ1(κ+ κvt ) + λ1(y

∗ − κ− κvt ), but

the consumer could get utility λ1(κ+κ
v
t )+λ2(y

∗−κ−κvt ) by paying the firm κvt and consuming the rest, in

violation of the incentive compatibility constraint (20). Now, we shall establish that for any y ∈Yt,

πpt (v
p∗
t (p†t(y;αt;κ

v
t );αt, κ

v
t ))+ p†t(y;αt;κ

v
t )≥ πpt (v

p∗
t (pt(y);αt, κ

v
t ))+ pt(y). (45)

For y ∈ [0, κ + κvt ] ∩ Yt, we have p†t(y;αt;κ
v
t ) = pt(y) from (44), so (45) follows. For y ∈ [κ + κvt , p̂2,t +

κ] ∩ Yt, from pt(y) ≤ y − κ and (44) we have y − κ = p†t(y;αt;κ
v
t ) ≥ pt(y) ≥ κvt , from which (45) fol-

lows again as πpt (v
p∗
t (p;αt, κ

v
t )) + p is non-decreasing on p ∈ [κvt , p̂2,t(αt, κ

v
t )] because it is concave with

p̂2,t(αt, κ
v
t ) ∈ argmaxp π

p
t (v

p∗
t (p;αt, κ

v
t )) + p. Finally, for y ∈ [p̂2,t(αt, κ

v
t ) + κ,∞) ∩ Yt, (45) follows from

p†t(y;αt;κ
v
t ) = p̂2,t(αt, κ

v
t ) ∈ argmaxp π

p
t (v

p∗
t (p;αt, κ

v
t )) + p. So, as (45) holds for all y, we also have

πpt (v
p∗
t (p†t(Yt;αt;κ

v
t );αt, κ

v
t )) + p†t(Yt;αt;κ

v
t ))⪰FSD π

p
t (v

p∗
t (pt(Yt);αt, κ

v
t )) + pt(Yt), thus (p†t , v

p∗
t ) performs at

least as good as (pt, v
p∗
t ) in the objective function (19).

We constructed p†t(y) from pt(y) by linearizing the segment where payments and consumption both

yield marginal utility λ2 to the agent. We do the same process again to transform the segment where

payments and consumption both yield marginal utility λ1 (for y ∈ [0, κ + κvt ]). The resulting function p∗t

will have the property that (p∗t , v
p∗
t ) performs at least as well as (pt, v

p∗
t ) in (19)–(21). So, let p∗t (y;αt, κ

v
t )

be the one given by (23). Analogously to the proof of the same properties for p†t(y;αt;κ
v
t ), it follows

that (p∗t , v
p∗
t ) satisfies constraints (20)–(21) (due to the agent’s indifference between p†t and p∗t under

vp∗t ), while πpt (v
p∗
t (p∗t (Yt;αt, κ

v
t );αt, κ

v
t )) + p∗t (Yt;αt, κ

v
t ) ⪰FSD π

p
t (v

p∗
t (p†t(Yt;αt;κ

v
t ));αt, κ

v
t )) + p†t(Yt;αt;κ

v
t )),

so p∗t (y;αt, κ
v
t ) is the optimal payment policy when using the reward function vp∗t (p;αt;κt). □

Proof of Proposition 4. Preliminaries. We first introduce some auxiliary notation to be used in the

proof. Let Ψ(ωt) := ωt − λ1κ
v
t (ωt); let ω̂1,t(v

b
t ) be an implicit function defined by Ψ(ωt)− vbt +Λ1,t = 0; let

ω̂2,t(v
b
t ) be an implicit function defined by Ψ(ωt)− vbt +Λ2,t = 0; let ht(ωt) := ωt − (λ1 − λ2)κ

v
t (ωt); and let

p1,t(v
b
t , ωt) :=maxp∈R+

πpt (v
b
t −ωt+λ1p)+ p subject to vbt −ωt+λ1p∈ [vpt , v̄

p
t ].
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Part (i): if vbt ≤ v̂bt then ω∗
t (v

b
t ) ∈ ℜ, otherwise ω∗

t (v
b
t ) = ωt . We start by showing that the optimal val-

ues of (αt, κ
v
t ) in (26)–(27) satisfy κvt = p̂1,t(αt, κ

v
t ) (thus also the optimal ωt satisfies κvt (ωt) = p̂1,t(v

b
t −

ωt, κ
v
t (ωt))). To do that, we first demonstrate that for any p∗t (y;αt, κ

v
t ) and v

p∗
t (p;αt, κ

v
t ), as given by Proposi-

tion 3, that solve (19)–(21), we can construct α∗∗
t (αt, κ

v
t ) such that p∗t (y;αt, κ

v
t ), v

p∗
t (p;α∗∗

t (αt, κ
v
t ), p̂1,t(αt, κ

v
t ))

solve the same problem. Let vp††t (p;αt, κ
v
t ) := vp∗t (p;α∗∗

t (αt, κ
v
t ), p̂1,t(αt, κ

v
t )) where α∗∗

t (αt, κ
v
t ) :=

E[vp∗t (p∗t (Yt;αt, κ
v
t );αt, κ

v
t )−v

p∗
t (p∗t (Yt;αt, κ

v
t ); 0, p̂1,t(αt, κ

v
t ))]. In other words, vp††t (p;αt, κ

v
t ) is a modified ver-

sion of vp∗t (p) which (a) changes the agent’s marginal reward for paying money to the firm from λ1 to λ2

on the p ∈ [p̂1,t(αt, κ
v
t ), κ

v
t ] segment, (b) changes the constant αt by increasing it to compensate for the

loss of expected utility resulting from the change under (a) (to ensure the promise-keeping constraint (21)

still binds). Then, combining incentive compatibility (20) with (43) we have that under vp††t (p) , any pay-

ment function p̌t ∈ Pt that satisfies p̌t(y) ∈ [min{(y− κ)+, p̂1,t(αt, κ
v
t )},max{y− κ, p̂1,t(αt, κ

v
t )}] is incentive

compatible. From (23) it follows that p∗t (y;αt, κ
v
t ) satisfies this criterion, so p∗t (y;αt, κ

v
t ), v

p††
t (p;αt, κ

v
t ) sat-

isfy (20). That p∗t (y;αt, κ
v
t ), v

p††
t (p;αt, κ

v
t ) satisfy the promise-keeping constraint (21) follows directly from

p∗t (y;αt, κ
v
t ), v

p∗
t (p;αt, κ

v
t ) satisfying it and the construction of α∗∗

t (αt, κ
v
t ). It remains to show that the firm

receives at least as much expected utility under p∗t (y;αt, κ
v
t ) and vp††t (p;αt, κ

v
t ) as under p∗t (y;αt, κ

v
t ) and

vp∗t (p;αt, κ
v
t ). We have that d

d+p
vp††t (p;αt, κ

v
t )≤ d

d+p
vp∗(p;αt, κ

v
t ),∀y ∈ Yt (from the construction of vp††t , the

slopes of vp††t (p;αt, κ
v
t ) and v

p∗
t (p;αt, κ

v
t ) are the same everywhere except on [p̂1,t(αt, κ

v
t ), κ

v
t ), where v

p††
t is less

steep). Then, d
d+y

(
vp††t (p∗t (y;αt, κ

v
t );αt, κ

v
t )
)
≤ d

d+y
(vp∗t (p∗t (y;αt, κ

v
t );αt, κ

v
t )) ,∀y ∈ Yt, thus from Lemma 1 it

follows that vp††t (p∗t (Yt;αt, κ
v
t );αt, κ

v
t )⪰SSD v

p∗
t (p∗t (Yt;αt, κ

v
t );αt, κ

v
t ). As for any two random variables X,Y ,

(X ⪰SSD Y and E[X] =E[Y ])⇔ (Y is a mean preserving spread of X)⇔ (E[q(X)]≥E[q(Y )],∀ concave q(·))

(Rothschild and Stiglitz 1970), from concavity of πpt (v
p
t ) we have E[πpt (vp††t (p∗t (Yt;αt, κ

v
t );αt, κ

v
t )) +

p∗t (Yt;αt, κt)] ≥ E[πpt (vp††t (p∗t (Yt;αt, κ
v
t );αt, κ

v
t )) + p∗t (Yt;αt, κ

v
t )], thus the pair (p∗t (y;αt, κ

v
t ), v

p††
t (p;αt, κ

v
t ))

performs at least as good as (p∗t (y;αt, κ
v
t ), v

p∗
t (p;αt, κ

v
t )) in the objective function (19), while both

pairs satisfy the constraints (20)–(21), implying the optimality of (p∗t (y;αt, κ
v
t ), v

p††
t (p;αt, κ

v
t )). However,

notice from Proposition 3 that the optimal payment function, given a reward function vp††t (p;αt, κ
v
t ), is

p∗t (y;α
∗∗
t (αt, κ

v
t ), p̂1,t(αt, κ

v
t )), implying that the initial choice of optimal (αt, κ

v
t ) satisfies κ

v
t = p̂1,t(αt, κ

v
t ).

Then, the optimal ωt satisfies κvt (ωt) = p̂1,t(v
b
t − ωt, κ

v
t (ωt)) ≤ p1,t(v

b
t , ωt) = (Λ1,t − (vbt − ωt))/λ1, which

implies ωt − λ1κ
v
t (ωt) ≥ vbt − Λ1,t ⇒ Ψ(ωt) ≥ Ψ(ω̂1,t(v

b
t )) = 1− Λ1,t ⇒ ωt ≤ ω̂1,t(v

b
t ). Since ω̂1,t(v

b
t ) is given

implicitly by the ω that solves ω − λ1κ
v
t (ω) − vbt + Λ1,t = 0, we have ωt − λ1κ

v
t (ωt) − vbt + Λ1,t ≥ 0 (since

ω − λ1κ
v
t (ω), is decreasing in ω), rearranging which yields the ωt − λ1κ

v
t (ωt) ≥ vbt − Λ1,t condition in the

definition of ℜ (which is equivalent to ωt ≤ ω̂1,t(v
b
t )). Differentiating ω̂1,t(v

b
t ) implicitly yields ω̂′

1,t(v
b
t ) =

1/Ψ′(ω̂1,t(v
b
t )), so ω̂1,t(v

b
t ) is non-increasing and concave since Ψ(ω) is non-increasing and concave. Defining

v̂bt := max{vbt , sup{v ∈ [vbt , v̄
b
t ]|ω̂1,t(v

b
t )> ωt}} and observing that αt ≥ vbt implies ωt ≤ vbt − vbt yields that the

optimal (vbt , ωt) ∈ ℜ if vbt ≤ v̂bt and ωt = vbt otherwise. Lastly, since ω̂1,t(v
b
t ) is concave on vbt ∈ [vbt , v̂

b
t ], the

convexity of ℜ follows from it being an intersection of two convex sets, more precisely ℜ= ℜ1 ∩ℜ2, where

ℜ1 is the hypograph of ω̂1,t(v
b
t )|[vbt ,v̂bt ], and ℜ2 := {(vbt , ωt)∈ [vbt , v̂

b
t ]× [ωt, ω̄t]|ωt ≤ vbt − vbt}.

Part (ii): concavity of πb∗t . We leverage the property that any univariate concave function on a closed

interval can be approximated arbitrarily closely by a smooth concave function (the Convex Smoothing; e.g.,
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see Azagra 2013). Specifically, the property implies that for any ϵ > 0 there exists a smooth (i.e., of class

C∞) and strictly concave function πpϵt (v) such that πpt (v)− ϵ ≤ πpϵt (v) ≤ πpt (v), for all v ∈ [vpt , v̄
p
t ]. We will

replace πpt in (30)–(31) with πpϵt ; the solution of this problem will then be πb∗t . First, we note that the first

part of this proof works in an identical way if we replace πpt (v) with π
pϵ
t (v) (assuming πpt (v) in the definition

Λj,t, j ∈ {1,2} is also replaced with πpϵt (v)). Second, because of the property that under the optimum of

(30)–(31), κvt = p̂1,t(αt, κ
v
t ) holds, we can replace the p̂1,t(v

b
t −ωt, κvt (ωt)) in p∗t with κt(ωt) without changing

the optimum; or more explicitly, we can replace p∗t (y;αt, κt) with

pκ∗t (y;αt, κt) :=


y for 0≤ y < κvt ,

κvt for κvt ≤ y < κvt +κ,

y−κ for κvt +κ≤ y < p̂2,t(αt, κ
v
t )+κ,

p̂2,t(αt, κ
v
t ) for y≥ p̂2,t(αt, κ

v
t )+κ.

Putting these changes together, we will solve the following modified version of (30)–(31):

πb∗t (vbt ) = max
ωt∈[ωt,ωt]

π̃bϵt (v
b
t , ωt), where (46)

π̃bϵt (v
b
t , ωt) =E

[
pκ∗t (Yt ; v

b
t −ωt, κ

v
t (ωt))+πpϵt (vp∗t (pκ∗t (Yt ; v

b
t −ωt, κ

v
t (ωt)) ; v

b
t −ωt, κ

v
t (ωt)))

]
. (47)

The proof proceeds in three steps: first, we will show that πb∗t (vbt ) is concave on [vbt , v̂
b
t ]; second, we will

show concavity on [v̂bt , v̄
b
t ]; and finally, we will show that the transition between these two segments preserves

concavity over the whole domain as (πb∗t )′−(v̂bt )≥ (πb∗t )′+(v̂bt ).

Proceeding with the first step, we note that when (vbt , ωt)∈ℜ, then ωt ≤ ω̂1,t(v
b
t )≤ ω̂2,t(v

b
t ), thus Ψ(ωt)≥

Ψ(ω̂2,t) = vbt − Λ2,t, so ω(t) − (λ1 − λ2)κ
v
t (ωt) − λ2κ

v
t (ωt) ≥ ωt − Λ2,t, rearranging which yields κvt (ωt) ≤

(Λ2,t− vbt +ωt− (λ1 − λ2)κ
v
t (ωt))/λ2. Thus, from (25) we have p̂2,t(v

b
t −ωt, κ

v
t (ωt)) = (Λ2,t− vbt +ωt− (λ1 −

λ2)κ
v
t (ωt))/λ2 =: p2,t(v

b
t , ωt). Inserting this last equation and the expression for pκ∗t into (47) we obtain

π̃bϵt (v
b
t , ωt) =

∫ κv
t (ωt)

0

[
πpϵt (vbt −ωt+λ1y)+ y

]
dGt(y)

+

∫ κv
t (ωt)+κ

κv
t (ωt)

[
πpϵt (vbt −ωt+λ1κ

v
t (ωt)+κvt (ωt)

]
dGt(y)

+

∫ p2,t(v
b
t ,ωt)+κ

κv
t (ωt)+κ

[
πpϵt (vbt −ωt+(λ1 −λ2)κ

v
t (ωt)+λ2(y−κ))+ y−κ

]
dGt(y)

+

∫ ∞

p2,t(vbt ,ωt)+κ

[
πpϵt (vbt −ωt+(λ1 −λ2)κ

v
t (ωt)+λ2p2,t(v

b
t , ωt))+ p2,t(v

b
t , ωt)

]
dGt(y).

(48)

Taking a partial derivative of this expression with respect to vbt yields

∂π̃bϵt (v
b
t , ωt)

∂vbt
=

∫ κv
t (ωt)

0

(πpϵt )′(vbt −ωt+λ1y)dGt(y)

+ (πpϵt )′(vbt −ωt+λ1κ
v
t (ωt))[Gt(κ+κvt (ωt))−Gt(κ

v
t (ωt))]

+

∫ p2,t(v
b
t ,ωt)+κ

κv
t (ωt)+κ

(πpϵt )′(vbt −ht(ωt)+λ2(y−κ))dGt−
1

λ2

Ḡt(p2,t(v
b
t , ωt)+κ),

(49)

∂2π̃bϵt (v
b
t , ωt)

∂(vbt )
2

=

∫ κv
t (ωt)

0

(πpϵt )′′(vbt −ωt+λ1y)dGt(y)+ (πpϵt )′′(vbt −ωt+λ1κ
v
t (ωt))[Gt(κ+κvt (ωt))−Gt(κ

v
t (ωt))]

+

∫ p2,t(v
b
t ,ωt)+κ

κv
t (ωt)+κ

(πpϵt )′′(vbt −ht(ωt)+λ2(y−κ))dGt(y)+
1

λ2

gt(p2,t(v
b
t , ωt)+κ)

∂p2,t(v
b
t , ωt)

∂vbt

+(πpϵt )′(vbt −ht(ωt)+λ2p2,t(v
b
t , ωt))gt(p2,t(v

b
t , ωt)+κ)

∂p2,t(v
b
t , ωt)

∂vbt
≤ 0.
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Here, the second derivative is negative because (a) the (πpϵt )′′ terms are negative since πpϵt is concave, while

[Gt(κ+κ
v
t (ωt))−Gt(κ

v
t (ωt))] is positive as Gt is increasing, making the first three additive terms are all neg-

ative; (b) the sum of the last two additive terms is also negative because (πpϵt )′(vbt −ht(ωt)+λ2p2,t(v
b
t , ωt))≥

−1/λ2 and ∂p2,t(v
b
t , ωt)/∂v

b
t =−1/λ2. Differentiating with respect to ωt yields

∂π̃bϵt (v
b
t , ωt)

∂ωt
=−

∫ κv
t (ωt)

0

[(πpϵt )′(vbt −ωt+λ1y)− (πpϵt )′(vbt −ωt+λ1κ
v
t (ωt))]dGt(y)

+ [λ1(π
pϵ
t )′(vbt −ωt+λ1κ

v
t (ωt))+ 1]κv′t (ωt)[Gt(κ+κvt (ωt))−Gt(κ

v
t (ωt))]

+h′
t(ωt)

[
(πpϵt )′(vbt −ωt+λ1κ

v
t (ωt))Ḡt(κ+κvt (ωt))+

1

λ2

Ḡt(p2,t(v
b
t , ωt)+κ)

−
∫ p2,t(v

b
t ,ωt)+κ

κ+κv
t (ωt)

(πpϵt )′(vbt −ht(ωt)+λ2(y−κ))dGt(y)

]
.

(50)

Denote the term in square brackets in the last two rows above (the one that multiples h′
t(ωt)) by Υ and notice

that Υ ≥ (πpϵt )′(vbt − ωt + λ1κ
v
t (ωt))Ḡt(κ+ κvt (ωt))− (πpϵt )′(vbt − ht(ωt) + λ2κ

v
t (ωt))[Ḡt(κ+ κvt (ωt))− Ḡt(κ+

p2,t(v
b
t , ωt))]+ Ḡt(κ+p2,t(v

b
t , ωt))/λ2≥ [(πpϵt )′(vbt −ht(ωt)+λ2κ

v
t (ωt))+1/λ2]Ḡt(κ+p2,t(v

b
t , ωt))≥ 0; this will

be useful to establish the sign of the second derivative. Also, denote Mt(z) := (Ḡt(z)− Ḡt(z + κ))/((λ1 −

λ2)Ḡt(z+κ)), which will be a recurring expression in equations that follow. Note that our assumption that

Gt(·) has a decreasing hazard rate implies that Mt(·) is decreasing. Taking second-order partial derivatives

of π̃bϵt (v
b
t , ωt) yields

∂2π̃bϵt (v
b
t , ωt)

∂ω2
t

=

∫ κvt (ωt)

0

(πpϵt )′′(vbt −ωt+λ1y)dGt(y)+ [λ1(π
pϵ
t )′(vbt −ωt+λ1κ

v
t (ωt))+ 1]

∂

∂ωt
Mt(κ

v
t (ωt))

+h′′
t (ωt)Υ+ (h′

t(ωt))
2

∫ p2,t(v
b
t ,ωt)+κ

κ+κv
t (ωt)

(πpϵt )′′(vbt −ht(ωt)+λ2(y−κ))dGt(y)

+ (πpϵt )′′(vbt −ωt+λ1κ
v
t (ωt))(−1+λ1κ

v
t (ωt))

2[Gt(κ+κvt (ωt))−Gt(κ
v
t (ωt))]< 0,

∂2π̃bϵt (v
b
t , ωt)

∂vtb∂ωt
=−

∫ κv
t (ωt)

0

(πpϵt )′′(vbt −ωt+λ1y)dGt(y)

+ (πpϵt )′′(vbt −ωt+λ1κ
v
t (ωt))[Gt(κ+κvt (ωt))−Gt(κ

v
t (ωt))](λ1κ

v′
t (ωt)− 1)

+h′
t(ωt)

∫ p2,t(v
b
t ,ωt)+κ

κ+κv
t (ωt)

(πpϵt )′′(vbt −ht(ωt)+λ2(y−κ))dGt(y).

The ∂2π̃bϵt (v
b
t , ωt)/∂ω

2
t < 0 result also guarantees uniqueness of ω∗

t (v
b
t ). We will use these derivatives to

establish joint concavity by examining the Hessian matrix. For notational brevity, we introduce notation for

the recurring expressions:

K1 :=

∫ κv
t (ωt)

0

(πpϵt )′′(vbt −ωt+λ1y)dGt(y),

K2 :=[λ1(π
pϵ
t )′(vbt −ωt+λ1κ

v
t (ωt))+ 1]

∂

∂ωt
Mt(κ

v
t (ωt)),

K3 :=

∫ p2,t(v
b
t ,ωt)+κ

κ+κv
t (ωt)

(πpϵt )′′(vbt −ht(ωt)+λ2(y−κ))dGt(y),

K4 :=h
′′
t (ωt)Υ,

K5 :=(πpϵt )′′(vbt −ωt+λ1κ
v
t (ωt))[Gt(κ+κvt (ωt))−Gt(κ

v
t (ωt))],

K6 :=

(
1

λ2

+(πpϵt )′(vbt −ht(ωt)+λ2p2,t(v
b
t , ωt))

)
gt(p2,t(v

b
t , ωt)+κ)

∂p2,t(v
b
t , ωt)

∂vbt
.

(51)
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Note that Ki ≤ 0,∀i∈ {1,2, . . . ,6}. Using this notation, we can write the second partial derivatives of π̃bϵt as

∂2π̃bϵt (v
b
t , ωt)

∂ω2
t

=K1 +K2 +h′
t(ωt)

2K3 +K4 +K5(λ1κ
v′
t (ωt)− 1)2,

∂2π̃bϵt (v
b
t , ωt)

∂(vbt )
2

=K1 +K3 +K5 +K6,

∂2π̃bϵt (v
b
t , ωt)

∂vbt∂ωt
=−K1 +K5(λ1κ

v′
t (ωt)− 1)−h′

t(ωt)K3.

To show that the Hessian of π̃bϵt (v
b
t , ωt) is negative-semidefinite, we need that all the first-order principal

minors are weakly negative (so,
∂2π̃bϵ

t (vbt ,ωt)

∂ω2
t

≤ 0 and
∂2π̃bϵ

t (vbt ,ωt)

∂(vbt )
2 ≤ 0, which is already shown above), while the

determinant of the Hessian is weakly positive. Calculating the determinant yields

∂2π̃bϵt (v
b
t , ωt)

∂ω2
t

∂2π̃bϵt (v
b
t , ωt)

∂(vbt )
2

−
(
∂2π̃bϵt (v

b
t , ωt)

∂vbt∂ωt

)2

=(K2 +K4)(K1 +K3 +K5)+K1K3(1−h′
t(ωt))

2

+K1K5(λ1(κ
v
t )

′(ωt))
2 +K3K5(h

′
t(ωt)− 1+λ1(κ

v
t )

′(ωt))
2

+K6

∂2π̃bϵt (v
b
t , ωt)

∂ω2
t

≥ 0.

Here, the last inequality holds since all of the additive terms are weakly positive. Thus, the Hessian is

negative-semidefinite and hence π̃bϵt (v
b
t , ωt) is jointly concave. From joint concavity of π̃bϵt (v

b
t , ωt) and convexity

of ℜ it follows from (Boyd and Vandenberghe 2004, pp. 87–88) that πb∗t (vbt ) =maxωt∈[ωt,ω̄t] π̃
bϵ
t is concave on

vbt ∈ [vbt , v̂
b
t ] = proj1ℜ (the projection of ℜ on its vbt component).

Proceeding to step two: establishing concavity of πb∗t (vbt ) on vbt ∈ [v̂bt , v̄
b
t ]. Since ωt = ωt is optimal in this

region (by part (i) of this proof), and κt(ωt) = 0, we have that on vbt ∈ [v̂bt , v̄
b
t ]:

πb∗t (vbt ) = π̃bϵt (v
b
t , ωt) =

∫ κ

0

πpϵt (vbt −ωt)dGt(y)

+

∫ p̂2,t(v
b
t−ωt,0)+κ

κ

[
πpϵt (vbt −ωt+λ2(y−κ))+ y−κ

]
dGt(y)

+

∫ ∞

p̂2,t(vbt−ωt,0)+κ

[
πpϵt (vbt −ωt+λ2p̂2,t(v

b
t −ωt,0))+ p̂2,t(v

b
t −ωt,0)

]
dGt(y).

From (25) we have p̂2,t(v
b
t −ωt,0) =max{(Λ2,t− vbt +ωt)/λ2,0}; therefore there exists ˆ̂vbt ∈ [v̂bt , v

b
t ] such that

p̂2,t(v
b
t −ωt,0) = (Λ2,t−vbt +ωt)/λ2 if vbt ∈ [v̂bt ,

ˆ̂vbt ] and p̂2,t(v
b
t −ωt,0) = 0 if vbt ∈ [ˆ̂vbt , v

b
t ]. Thus, on v

b
t ∈ (v̂bt ,

ˆ̂vbt ),

dπb∗t (vbt )

dvbt
=(πpϵt )′(vbt −ωt)Gt(κ)+

∫ (Λ2,t−vbt+ωt)/λ2+κ

κ

(πpϵt )′(vbt −ωt+λ2(y−κ))dGt(y)

− 1

λ2

Ḡt((Λ2,t− vbt +ωt)/λ2 +κ),

(52)

d2πb∗t (vbt )

d(vbt )
2

=(πpϵt )′′(vbt −ωt)Gt(κ)+

∫ (Λ2,t−vbt+ωt)/λ2+κ

κ

(πpϵt )′′(vbt −ωt+λ2(y−κ))dGt(y)

− 1

λ2

(πpϵt )′(Λ2,t)gt((Λ2,t− vbt +ωt)/λ2 +κ)

− 1

λ2

Ḡt((Λ2,t− vbt +ωt)/λ2 +κ)≤ 0.

Here, the second derivative is weakly negative because all the (πpϵt )′′ terms are weakly negative (from con-

cavity of (πpϵt )′′), while (πpϵt )′(Λ2,t) is positive by definition of Λ2,t. Hence, πb∗t (vbt ) is concave on [v̂bt ,
ˆ̂vbt ]. We
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can do the same check on [ˆ̂vbt , v
b
t ], which yields πb∗t (vbt ) = πpϵt (vbt −ωt), which is concave as πpϵt (·) is concave.

Furthermore, concavity of πb∗t (vbt ) on [v̂bt , v
b
t ] follows from

dπb∗t (vbt )

d−vbt

∣∣∣∣∣
vbt=

ˆ̂vbt

= lim
vbt→ˆ̂vb−t

[
(πpϵt )′(vbt −ωt)Gt(κ)

+

∫ (Λ2,t−vbt+ωt)/λ2+κ

κ

(πpϵt )′(vbt −ωt+λ2(y−κ))dGt(y)−
1

λ2

Ḡt((Λ2,t− vbt +ωt)/λ2 +κ)
]

=(πpϵt )′(ˆ̂vbt −ωt)Gt(κ)−
1

λ2

Ḡt(κ)

≥(πpϵt )′(ˆ̂vbt −ωt)

=
dπb∗t (vbt )

d−vbt

∣∣∣∣∣
vbt=

ˆ̂vbt

.

Finally, only the third step remains, where we need to ensure that the possible kink at v̂bt does not break

concavity. Since πb∗t (vbt ) is concave on [vbt , v̂
b
t ] (as shown in the first step of this proof), it is left-differentiable on

(vbt , v̂
b
t ] and right-differentiable on [vbt , v̂

b
t ) with (πb∗t )′−(vbt )≥ (πb∗t )′+(vbt ). Thus, using the Envelope Theorem

for one-sided derivatives (Milgrom and Segal 2002, Theorem 1) and recalling that the optimal ωt at v̂
b
t is ωt,

from (49) we have that

dπb∗t (vbt )

d−vbt

∣∣∣∣∣
vbt=v̂

b
t

≥(πpϵt )′(v̂bt −ωt)Gt(κ)+

∫ p2,t(v̂
b
t ,ωt)+κ

κ

(πpϵt )′(v̂bt −ωt+λ2(y−κ))dGt−
1

λ2

Ḡt(p2,t(v̂
b
t , ωt)+κ),

while from (52) it follows that

dπb∗t (vbt )

d+vbt

∣∣∣∣∣
vbt=v̂

b
t

=(πpϵt )′(v̂bt −ωt)Gt(κ)+

∫ p2,t(v̂
b
t ,ωt)+κ

κ

(πpϵt )′(v̂bt −ωt+λ2(y−κ))dGt−
1

λ2

Ḡt(p2,t(v̂
b
t , ωt)+κ);

thus (πb∗t )′−(v̂bt )≥ (πb∗t )′+(v̂bt ) and so πb∗t (·) is concave on its entire domain. □

Proof of Proposition 5. Part (i). We will show that α∗
t (v

b
t ) is increasing by demonstrating that it is abso-

lutely continuous (thus also almost-everywhere differentiable), with a positive derivative wherever it exists.

First, we establish absolute continuity. From the proof of Proposition 4, part (ii), we have that π̃bϵ(vbt , ωt) :

[vbt , v̄
b
t ] × [ωt, ω̄t] → R is a smooth strictly concave function. We define its extension in the ωt direction

π̃bϵXt (vpt , ωt) : [v
b
t , v̄

b
t ]×R→R by

π̃bϵXt (vbt , ωt) :=


π̃bϵt (v

b
t , ωt)− (ωt−ωt)

2 − (ωt−ωt)
∂π̃bϵ

t (vbt ,ωt)

∂+ωt
if ωt ∈ (−∞, ωt),

π̃bϵt (v
b
t , ωt) if ωt ∈ [ωt, ω̄t],

π̃bϵt (v
b
t , ω̄t)− (ωt− ω̄t)

2 +(ωt− ω̄t)
∂π̃bϵ

t (vbt ,ω̄t)

∂−ωt
if ωt ∈ (ω̄t,∞).

Thus defined π̃pϵXt is strictly concave in ωt (although not necessarily jointly concave), smooth, and

ensures existence of maxωt∈R π̃
bϵX
t (vbt , ωt). Let ω

†
t (v

b
t ) be given implicitly by ∂π̃bϵXt (vbt , ωt)/∂ωt = 0; ω†

t (v
b
t )

can be thought of as the unconstrained version of ω∗
t (v

b
t ) (while ω∗

t solves maxωt∈[ωt,ω̄t] π̃
bϵ
t (v

b
t , ωt) =

maxωt∈[ωt,ω̄t] π̃
bϵX
t (vbt , ωt), ω

†
t solves maxωt∈R π̃

bϵX
t (vbt , ωt)).

By the Implicit Function Theorem, ω†
t (v

b
t ) is continuously differentiable, thus also Lipschitz continuous,

so there exists K ∈ R such that |ω†
t (v1) − ω†

t (v2)| ≤ K|v1 − v2|,∀v1, v2 ∈ [vbt , v̄
b
t ]. Since ω

∗
t (v

b
t ) = min{vbt −

vbt ,max{ωt, ω
†
t (v

b
t}}, we have |ω∗

t (v1)−ω∗
t (v2)| ≤ |ω†

t (v1)−ω†
t (v2)| ≤K|v1 − v2|,∀v1, v2 ∈ [vbt , v̄

b
t ], so ω

∗
t (v

b
t ) is
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also Lipschitz continuous. From α∗
t (v

b
t ) = vbt −ω∗

t (v
b
t ) it then follows that α∗

t (v
b
t ) is Lipschitz continuous, thus

also absolutely continuous, which is what we wanted to show.

Now we need to find the derivatives of α∗
t (v

b
t ) (where they exist). Since π̃bϵt (v

b
t , ωt) is jointly concave

(established in Part (ii) of the proof of Proposition 4), whenever (vbt , ω
∗
t (v

b
t )) is in the interior of ℜ, ω∗

t (v
b
t )

is the solution of ∂π̃bϵt (v
b
t , ωt)/∂ωt = 0. Thus, at any such point, we can differentiate ω∗

t (v
b
t ) implicitly, which

yields

dω∗
t (v

b
t )

dvbt
=−

(
∂2π̃bϵt (v

b
t , ωt)

∂ωt∂vbt

)/(
∂2π̃bϵt (v

b
t , ωt)

∂ω2
t

)
=− −K1 +K5(λ1κ

v′
t (ωt)− 1)−h′

t(ωt)K3

K1 +K2 +h′
t(ωt)

2K3 +K4 +K5(λ1κv′t (ωt)− 1)2
,

where all Kj-s are given by (51). Since α∗
t (v

b
t ) = vbt −ω∗

t (v
b
t ), at those points we also have

dα∗
t (v

b
t )

dvbt
=1− dω∗

t (v
b
t )

dvbt

=
K2 +h′

t(ωt)
2K3 +K4 +2K5(λ1κ

v′
t (ωt)− 1)−h′

t(ωt)K3

K1 +K2 +h′
t(ωt)

2K3 +K4 +K5(λ1κv′t (ωt)− 1)2
.

Since allKj-s are weakly negative, h′
t(ωt) is positive (see the proof of Proposition 4, part (ii)), and λ1κ

v′
t (ωt)−

1 = λ1/[(λ1 − λ2)Ḡt(κ
v
t (ωt) + κ)]− 1 = [λ1Gt(κ

v
t (ωt) + κ) + λ2Ḡt(κ

v
t (ωt) + κ)]/[(λ1 − λ2)Ḡt(κ

v
t (ωt) + κ)]> 0,

we have that
dα∗

t (v
b
t )

dvbt
≥ 0.

There are two more corner possibilities to check: First, it is possible that ω∗
t (v

b
t ) = ωt. This is always

the case for vbt ∈ [v̂bt , v
b
t ], but it may also be true for some vbt ∈ [vbt , v̂

b
t ). For all such points where ω∗

t (v
b
t )

is differentiable, we have (ω∗
t )

′(vbt ) = 0 thus also
dα∗

t (v
b
t )

dvbt
= 1. Second, for vbt ∈ [vbt , v̂

b
t ] a corner solution of

ω∗
t (v

b
t ) = vbt−vbt is possible. Once again, for any such point where ω∗

t (v
b
t ) is differentiable, we have (ω

∗
t )

′(vbt ) = 1

thus also
dα∗

t (v
b
t )

dvbt
= 0. (Note that for any vbt such that (vbt , ω

∗
t (v

b
t )) is in the part of the closure of ℜ that

satisfies ω∗
t (v

b
t )−λ1κ

v
t (ω

∗
t (v

b
t )) = vbt −Λ1,t, ω

∗
t (v

b
t ) also solves ∂π̃bϵt (v

b
t , ωt)/∂ωt = 0, thus that case will not need

to be checked separately.) Putting all the cases together we have that
dα∗

t (v
b
t )

dvbt
≥ 0 at all points where α∗

t (v
b
t )

is differentiable, which together absolute continuity, established earlier in the proof, implies that α∗
t (v

b
t ) is

increasing.

Part (ii). From the shape of ℜ in Proposition 4 we have that that ω∗
t (v

b
t ) exhibits a ∩-pattern where

ω∗
t (v

b
t ) = ωt,∀vbt ∈ {vbt}∪ [v̂bt , v

b
t ]. The statement of Part (ii) then follows from κvt (ωt) being a non-decreasing

function with κvt (ωt) = 0.

Part (iii). As shown in part (i) of the proof of Proposition 4, for vbt ∈ [vbt , v̂
b
t ] we have kv∗t (vbt ) = p̂∗1,t(v

b
t )

while (24) implies p̂∗1,t(v
b
t ) ≤ p̂∗0,t(v

b
t ). On the other hand, for vbt ∈ [v̂bt , v̄

b
t ], from Proposition 4 we obtain

κ∗
t (v

b
t ) = κ∗

t (ω
∗
t (v

b
t )) = κ∗

t (ωt) = 0. So, on entire vbt ∈ [vbt , v̄
b
t ], we have min{κv∗t (vbt ), p̂

∗
0,t(v

b
t )}= κv∗t (vbt ).

Since p̂0,t(αt, κ
v
t ) is given as the solution of λ1p+ (λ2 − λ1)[p− κvt ]

+ − vpt + αt = 0, by Implicit Function

Theorem, the partial derivatives of p̂0,t(αt, κ
v
t ) are given by

∂p̂0,t(αt, κ
v
t )

∂αt
=

{
−1/λ1 if p̂0,t(αt, κ

v
t )≤ κvt ,

−1/λ2 if p̂0,t(αt, κ
v
t )>κ

v
t ,

∂p̂0,t(αt, κ
v
t )

∂κvt
=

{
0 if p̂0,t(αt, κ

v
t )<κ

v
t ,

(λ2 −λ1)/λ2 if p̂0,t(αt, κ
v
t )>κ

v
t .
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As κv∗t (vbt )≤ p̂∗0,t(v
b
t ), the slope of p̂0,t(α

∗
t (v

b
t ), κ

v∗
t (vbt )) does not depend on κv∗t (vbt ); and as α∗

t (v
b
t ) is increas-

ing in vbt , p̂0,t(α
∗
t (v

b
t ), κ

v∗
t (vbt )) is decreasing in vbt .

Part (iv). p̂∗1,t(v
b
t ) = κv∗t (vbt ) is established in the proof of Proposition 4, part (i), after which p̂∗1,t(v

b
t )

exhibiting a ∩–pattern in vbt follows from part (ii) of this proposition.

Part (v). From the proof of Proposition 4, part (ii), we have that on [vbt , v̂
b
t ]: p̂

∗
2,t(v

b
t ) = (Λ2,t−α∗

t (v
b
t )−(λ1−

λ2)κ
v∗
t (vbt ))/λ2 = (Λ2,t − vbt + ω∗

t (v
b
t )− (λ1 − λ2)κ

v∗
t (vbt ))/λ2 = (Λ2,t − vbt + ht(ω

∗
t (v

b
t )))/λ2, where ht(ωt) :=

ωt− (λ1−λ2)κ
v
t (ωt) (as in the proof of Proposition 4). Thus, for all vbt ∈ [vbt , v̂

b
t ] for which dω

∗
t (v

b
t )/dv

b
t exists,

dp̂∗2,t(v
b
t )/dv

b
t also exists and is given by

dp̂∗2,t(v
b
t )

dvbt
=

1

λ2

(
−1+h′

t(ω
∗
t (v

b
t ))

dω∗
t (v

b
t )

dvbt

)
=

1

λ2

(
−1−h′

t(ω
∗
t (v

b
t ))

−K1 +K5(λ1κ
v′
t (ω

∗
t (v

b
t ))− 1)−h′

t(ω
∗
t (v

b
t ))K3

K1 +K2 +h′
t(ω

∗
t (v

b
t ))

2K3 +K4 +K5(λ1κv′t (ω
∗
t (v

b
t ))− 1)2

)
=− 1

λ2

(
1+

−K1h
′
t(ω

∗
t (v

b
t ))+K5h

′
t(ω

∗
t (v

b
t ))(λ1κ

v′
t (ω

∗
t (v

b
t ))− 1)− (h′

t(ω
∗
t (v

b
t )))

2K3

K1 +K2 +h′
t(ω

∗
t (v

b
t ))

2K3 +K4 +K5(λ1κv′t (ω
∗
t (v

b
t ))− 1)2

)
=− 1

λ2

(
K1(1−h′

t(ω
∗
t (v

b
t )))+K2 +K4 +K5(λ1κ

v′
t (ω

∗
t (v

b
t ))− 1)(h′

t(ω
∗
t (v

b
t ))+λ1κ

v′
t (ω

∗
t (v

b
t ))− 1)

K1 +K2 +(h′
t(ω

∗
t (v

b
t )))

2K3 +K4 +K5(λ1κv′t (ω
∗
t (v

b
t ))− 1)2

)
.

Here, the signs of all terms that multiplyKi-s are clearly positive except (1−h′
t(ω

∗
t (v

b
t )) = (λ1−λ2)κ

v′
t (ωt)> 0

and the sign of h′
t(ω

∗
t (v

b
t ))+λ1κ

v′
t (ω

∗
t (v

b
t ))− 1, which is unclear. Expanding that term yields −1+λ1/[(λ1 −

λ2)Ḡt(κ+κ
v
t (ω

∗
t (v

b
t )))]−Gt(κ+κ

v
t (ω

∗
t (v

b
t )))/Ḡt(κ+κ

v
t (ω

∗
t (v

b
t ))) = λ2/[(λ1−λ2)Ḡt(κ+κ

v∗
t (vbt ))> 0. Thus, as

all Ki-s are negative and the terms multiplying them are positive, we have that dp̂∗2,t(v
b
t )/dv

b
t ≤ 0.

From the proof of Proposition 4, part (ii), we also have that there exists ˆ̂vbt ∈ [v̂bt , v
b
t ] such that p̂∗2,t(v

b
t ) =

(Λ2,t−vbt +ωt)/λ2 if vbt ∈ [v̂bt ,
ˆ̂vbt ] and p̂

∗
2,t(v

b
t ) = 0 if vbt ∈ [ˆ̂vbt , v

b
t ]. In both of those cases p∗2,t(v

b
t ) is also (weakly)

decreasing. Finally, that p∗2, t(v
b
t ) is absolutely continuous follows from a Lipschitz continuity argument

analogous to the one used in part (i) of this proof. Thus, it is decreasing on its entire domain.

Part (vi). For vbt ∈ [vbt , v̂
b
t ], p

∗
1,t(v

b
t ) = κv∗t (vbt ), so

p∗2,t(v
b
t )− p∗1,t(v

b
t ) = (Λ2,t−α∗

t (v
b
t )− (λ1 −λ2)κ

v∗
t (vbt ))/λ2 −κv∗t (vbt )

= (Λ2,t−α∗
t (v

b
t )−λ1κ

v∗
t (vbt ))/λ2.

Here α∗
t (v

b
t ) is increasing (by part (i) of this proposition), while κv∗t (vbt ) is ∩-shaped (by part (ii) of this

proposition). Thus there exists v̀bt ∈ [vbt , v̂
b
t ] such that both α∗

t (v
b
t ) and κ

v∗
t (vbt ) are increasing on vbt ∈ [vbt , v̀

b
t ],

in which case we also obtain that p∗2,t(v
b
t ) is decreasing on vbt ∈ [vbt , v̀

b
t ].

For vbt ∈ [v̂bt , v
b
t ] we have p∗1,t(v

b
t ) = 0, while p̂∗2,t(v

b
t ) = (Λ2,t − vbt + ωt)/λ2 if vbt ∈ [v̂bt ,

ˆ̂vbt ] and p̂
∗
2,t(v

b
t ) = 0 if

vbt ∈ [ˆ̂vbt , v
b
t ]. In both of those cases p∗2,t(v

b
t ) is (weakly) decreasing, thus so is p∗2,t(v

b
t )− p∗1,t(v

b
t ). □

Proof of Proposition 6. The result follows directly from noting that (32) is linear, thus also concave, and

applying Propositions 2–4. □

Proof of Proposition 7.

Part 1: optimality of vb∗1 (d;α0, κ
v
0). First, we note an intuitive property: (35) implies that without loss of

optimality we can restrict attention in (34)–(35) to non-decreasing functions d and vb1. Consider an arbitrary



52 Uppari and Zorc: Designing Payment Models for the Poor

triple (d, v̂b1, d)∈D×V0×R+ that satisfies the IC constraint (35), and denote the consumer’s expected utility

under this triple by v†. Can the firm benefit from choosing a different reward function vb1, while keeping d, d,

and v† constant? From (34)–(35), this problem can be formulated as

max
vb1∈V0

E
[
d(W )+ γπb1(v

b
1(d(W )))−K|d(W )≥ d]×Pr{d(W )≥ d}

s.t. d(w)∈ argmax
0≤d<w

{
ũ(w− d)+ δvb1(d) if d≥ d;

ũ(w)+ δvb1 otherwise,
∀w ∈R+,

v† =E
[
1W≥d(ũ(W − d(W ))+ δvb1(d(W )))+1W<d(ũ(W )+ δvb1)].

Denoting byWd,d a random variable with distribution equal to the conditional distribution ofW , conditional

on d(W ) ≥ d; defining v††d,d := (v† − E[1W<d(ũ(W ) + δvb1)])/Pr{W ≥ d}; and dropping the terms from the

objective function that do not depend on vb1, we can restate the problem above as

max
vb1∈V0

E
[
d(Wd,d)+ γπb1(v

b
1(d(Wd,d)))] (53)

s.t. d(w)∈ argmax
d≤d<w

ũ(w− d)+ δvb1(d), ∀w ∈ suppWd,d, (54)

ũ(w− d(w))+ δvb1(d(w))≥ ũ(w)+ δvb1, ∀w ∈ suppWd,d, (55)

v††d,d =E
[
ũ(Wd,d− d(Wd,d))+ δvb1(d(Wd,d))]. (56)

Now, consider the closely related problem

max
vb1∈V0

E
[
d(Wd,d)+ γπb1(v

b
1(d(Wd,d)))] (57)

s.t. d(w)∈ argmax
0≤d<w

ũ(w− d)+ δvb1(d), ∀w ∈ suppWd,d, (58)

v††d,d =E
[
ũ(Wd,d− d(Wd,d))+ δvb1(d(Wd,d))]. (59)

This is useful as (57)–(59) is analogous to (19)–(21) that we already solved. Thus, it follows from the proof

of Proposition 3, part 1, that there exists vb∗1 (d;α0, κ
v
0), as given by (36), such that it satisfies (58)–(59)

and performs as well as v̂b1 or better in (57). It is easily verifiable that vb∗1 also satisfies (55) and—because

(58) is tighter than (54)—also satisfies (54). Thus, vb∗1 also performs as well or better than v̂b1 in (53)–(56).

Consequently, in (34)–(35), we can restrict attention to reward functions that satisfy the functional form in

(36) without loss of optimality, i.e., vb1 ∈ {vb∗1 (·;α0, κ
v
0)|α0, κ

v
0 ∈R+}.

Part 2: optimality of d∗(w;α0, κ
v
0, d). We will solve the problem of finding the optimal d, for any given

vb1(·;α0, κ
v
0) and d, by pointwise optimization of (34)–(35), and afterword verify that this solution really

belongs to D. To do that, we first introduce some notation needed to rewrite (35) in a more convenient form.

Denote w(α0, κ
v
0, d) = inf{w ∈ [d,∞)|ũ(w − d) + δvb∗1 (d;α0, κ

v
0) ≥ ũ(w) + δvb1}—this is the lowest wealth at

which the consumer is willing to pay the minimum downpayment. (It is possible that w(α0, κ
v
0, d) =∞, in

which case the consumer is never willing to pay the downpayment, regardless of the realization of W .) Note

that without loss of otimality, in (34)–(35) we can restrict attention to triples (d, v1b , d) such that d(w) = d. (To

see why this is the case, assume there exists an optimal triple (d, v1b , d) that does not satisfy this property. But

then, changing the minimum downpayment to dalt := inf{w ∈R+|d(w) = d} will still be incentive compatible

and achieve the same payout for the firm, implying that (d, vb1, d
alt) is optimal as well.) With this in mind, for
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w≥w(α0, κ
v
0, d), we can write down the upper and lower bounds of incentive compatible payment functions

(ones that satisfy (35)) as

d×(w;α0, κ
v
0, d) :=


min{d+w−w,max{d̂0(α0, κ

v
0), d}} if w<w+ [κv0 − d]+,

min{d+ [κv0 − d]+,max{d̂0(α0, κ
v
0), d}} if w+ [κv0 − d]+ ≤w< d+ κ̃+ [κv0 − d]+,

min{w− κ̃,max{d̂0(α0, κ
v
0), d}} if w+ [κv0 − d]+ ≤w< d̂0(α0, κ

v
0)+ κ̃,

max{d̂0(α0, κ
v
0), d} if w≥ d̂0(α0, κ

v
0)+ κ̃,

d◦(w;α0, κ
v
0, d) :=


d if w< κ̃+ d,

min{w− κ̃,max{d̂0(α0, κ
v
0), d}} if κ̃+ d≤w< κ̃+ d+ [κv0 − d]+,

min{d+ [κv0 − d]+,max{d̂0(α0, κ
v
0), d}} if w≥ κ̃+ d+ [κv0 − d]+.

(For w<w(α0, κ
v
0, d), any d(w)≤w is incentive compatible, but the firm will not accept any such payment.)

This allows us to express the pointwise optimization of (34)–(35) for each w≥w by

max
d(w)

d(w)+ γπb1(v
b∗
1 (d(w);α0, κ

v
0))−K (60)

s.t. d◦(w;α0, κ
v
0, d)≤ d(w)≤ d×(w;α0, κ

v
0, d). (61)

From Proposition 4, πb1 is concave, and thus, using the shape of vb∗1 from part 1 of this proposition, the

objective function of the problem above is either uni- or bi-modal in d(w), being weakly increasing up

to d††1 (α0, κ
v
0, d) := min{κv0, [δΛ1,0 − α0]

+/λ̃1}, after which it is weakly decreasing up to κv0 (this region is

empty if [δΛ1,0 − α0]
+/λ̃1 > κv0), weakly increasing up to d††2 (α0, κ

v
0, d) := (δΛ2,0 − α0 −

(
λ̃1 − λ̃2)κ

v
0)/λ̃2,

and weakly decreasing afterwards. Here, Λ1,0 and Λ2,0 are as given in the statement of the proposition.

Given that there is no w ≥ w, such that d◦(w;α0, κ
v
0, d)< κ0 < d×(w;α0, κ

v
0, d), the maximizer of (60)–(61)

is either going to be an interior one where d∗(w) ∈ {d††1 (α0, κ
v
0, d), d

††
2 (α0, κ

v
0, d)}, or a corner one where

d∗(w)∈ {d◦(w;α0, κ
v
0, d), d

×(w;α0, κ
v
0, d)}. More precisely, for w≥w, inserting the expressions for d× and d◦

into (60)–(61), we have that

d∗(w;α0, κ
v
0, d) =


d+w−w(α0, κ

v
0, d) if w≤ d̂1(α0, κ

v
0, d)+w(α0, κ

v
0, d)− d,

d̂1(α0, κ
v
0, d) if d̂1(α0, κ

v
0, d)+w(α0, κ

v
0, d)− d≤w≤ d̂1(α0, κ

v
0, d)+ κ̃,

w− κ̃ if d̂1(α0, κ
v
0, d)+ κ̃≤w≤ d̂2(α0, κ

v
0, d)+ κ̃,

d̂2(α0, κ
v
0, d) if w≥ d̂2(α0, κ

v
0, d)+ κ̃,

where d̂1(α0, κ
v
0, d) = max{d,min{w(α0, κ

v
0, d) + [κv0 − d]+, d††1 (α0, κ

v
0, d), d̂0(α0, κ

v
0)}}, d̂2(α0, κ

v
0, d) =

max{d, d††2 (α0, κ
v
0, d),min{κv0, d̂0(α0, κ

v
0}}. Lastly, for completeness, we note that thus defined d∗(w;α0, κ

v
0, d)

is piecewise-linear (thus also left- and right- differentiable) as well as continuous, so d∗(w;α0, κ
v
0, d) ∈ D,

completing the proof. □

Proof of Proposition 8. Part (i). Denote by d†, vb†1 the solution of (33), and assume the opposite: there

exist α∗
0, κ

v∗
0 , d

∗, such that d∗∗, vb∗∗1 , d∗ solve (34)–(35) and d† < d∗. (As introduced in the paragraph after

Proposition 7, d∗∗, vb∗∗1 are the functions d∗, vb∗1 given by Proposition 7, evaluated the optimal parameters

α∗
0, κ

v∗
0 , d

∗.) Then, denoting the cdf of W by F , from (34) we have that the expected profit of the firm under

d∗∗, vb∗∗1 , d∗ is

(d∗ + γπb1(v
b∗∗
1 (d∗))−K)×Pr{W ≥w(α∗

0, κ
v∗
0 , d

∗)}

+

∫ ∞

inf{x∈R+|d∗∗(x)>d∗}

(
πb1(v

b∗∗
1 (d∗∗(w)))+ d∗∗(w)−πb1(v

b∗∗
1 (d∗))− d∗∗(d∗)

)
dF (w). (62)
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Changing the minimum downpayment from d∗ to d† while keeping α∗
0, κ

v∗
0 the same would change the firm’s

payoff to

(d† + γπb1(v
b∗∗
1 (d†))−K)×Pr{W ≥w(α∗

0, κ
v∗
0 , d

†)}

+

∫ ∞

inf{x∈R+|d∗∗(x)>d∗}

(
πb1(v

b∗∗
1 (d∗∗(w)))−πb1(v

b∗∗
1 (d∗))

)
dF (w)

+

∫ ∞

inf{x∈R+|d∗(x;α∗
0 ,κ

v∗
0 ,d†)>d†}

(
min{πb1(vb∗∗1 (d∗(w;α∗

0, κ
v∗
0 , d

†)), πb1(v
b∗∗
1 (d(inf{x∈R+|d∗∗(x)>d∗})))}−πb1(v

b∗∗
1 (d†))

)
dF (w).

Here, the first line is no larger than the first line of (62) (because of the optimality of d†, vb†1 in (33)),

the second line is the same as in (62), while the third line is weakly positive (because πb1(v
b∗∗
1 (·)) is non-

decreasing). Therefore, this change did not decrease the firm’s payoff, and then either we have a contradiction

to the optimality of (α∗
0, κ

v∗
0 , d

∗) or (α∗
0, κ

v∗
0 , d

†) achieves the same optimum. Lastly, that the wealth needed

to acquire the technology in the second method is also no larger than in the first follows from Pr
{
W ≥

d, ũ(W − d) + δvb1 ≥ ũ(W ) + δvb1
}
= 1 − F (w(α0, κ

v
0, d)) for any incentive compatible (α0, κ

v
0, d) such that

vb1(d;α0, κ0) = vb1, as well as w(α0, κ
v
0, d) being weakly increasing in d.

Part (ii). The statement follows directly from (33) being the same optimization problem as (34)–(35), just

over a smaller parameter space. More precisely, restricting the firm’s choice in (34)–(35) to reward functions

that satisfy vb1(d) = vb1,∀d≥ d retrieves (33). □

Proof of Proposition 9. Preliminaries.We first derive some conditions which will be helpful for showing the

statement of the proposition. Recall that in periods before last, ownership can only be possible if (πpt )
′(v̄pt )≥

−1/λ2, or equivalently (πat )
′(v̄at )≥−1/λ2. We start by determining that slope, which will also be instrumental

to characterize the situations where the firm wants to terminate irrespective of the payment.

From πet−1(v
e
t−1) = γπbt (v

e
t−1/δ) we have (πet−1)

′(vet−1) = γ/δ(πbt )
′(vet−1/δ). From the proof of Proposition

4, part (i), if ˆ̂vbt < vbt then πbt (v
b
t ) = πpt (v

b
t − ωt), so from (πet−1)

′(v̄et−1) = γ/δ(πbt )
′(v̄et−1/δ) in this case we

have (πet−1)
′(v̄et−1) = γ/δ(πat )

′(v̄at ). On the other hand, if ˆ̂vbt = vbt , by inserting ω∗
t (v

b
t ) into (52) we obtain

(πet−1)
′(v̄et−1) = γ/δ

[
(πat )

′(v̄at )Gt(κ)− Ḡt(κ)/λ2

]
.

Applying Proposition 1, the situations where the principal desires to terminate irrespective of payment

arise if and only if (9) is satisfied, which here becomes equivalent to −Ct/(v̄et − vet ) ≤ (πet )
′(v̄et ). Checking

whether this condition is satisfied in different time periods will be the core of the proof.

Now, consider a period θ as defined in the statement of this proposition. Then, for t≤ θ we have

Ct−1

Ct
≤ γ

δ

vet−1 − vet−1

vet − vet
⇔− Ct−1

v̄et−1 − vet−1

≥−γ
δ

Ct
v̄et − vet

.

If t > θ, then (39) holds, so

− Ct−1

v̄et−1 − vet−1

≤−γ
δ

Ct
v̄et − vet

and − Ct−1

v̄et−1 − vet−1

≤−γ
δ

[
Ct

v̄et − vet
Gt(κ)−

1

λ2

Ḡt(κ)

]
.

Part 1: optimality of terminating when t ≥ θ. We will show this by backward induction. From the last

period payoff function (32), we have

(πaT )
′(vaT )≥− CT

v̄aT − vaT
, so (πeT−1)

′(veT−1)≥− CT−1

v̄eT−1 − veT−1

,
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which forms the basis of the induction. Assume there exists t > θ such that (πet )
′(vet ) ≥ − Ct

v̄et−v
e
t
.

Then because, as established in the preliminaries, (πet−1)
′(v̄et−1) is equal to either γ/δ(πat )

′(v̄at ) or

γ/δ
[
(πat )

′(v̄at )Gt(κ)− Ḡt(κ)/λ2

]
, both of which are greater than − Ct

v̄et−v
e
t
, we have that (πet−1)

′(v̄et−1) ≥
− Ct−1

v̄e
t−1

−ve
t−1

as well, completing the induction.

Part 2: optimality of not terminating when t < θ. Once again, we will show this by backward induction.

First, we show that it will be optimal not to terminate at time θ − 1, which will form the basis of the

induction. From part 1 of this proposition, it is optimal to terminate at θ so (πeθ)
′(v̄eθ)≥− Cθ

v̄e
θ
−ve

θ
. Thus, using

expressions from the preliminaries we obtain that, if −Cθ/(v̄eθ − veθ)<−1/λ2,

(πeθ−1)
′(v̄eθ−1) =−γ

δ

Cθ
v̄eθ − veθ

≤− Cθ−1

v̄eθ−1 − veθ−1

.

If −Cθ/(v̄eθ − veθ)≥−1/λ2, we have

(πeθ−1)
′(v̄eθ−1) =− γ

δ

[
Cθ

v̄eθ − veθ
Gθ(κ)+

1

λ2

Ḡθ(κ)

]
≤− γ

δ

[
Cθ

v̄eθ − veθ
Gθ(κ)+

Cθ
v̄eθ − veθ

Ḡθ(κ)

]
=− γ

δ

Cθ
v̄eθ − veθ

≤− Cθ−1

v̄eθ−1 − veθ−1

.

Combining the two exhaustive cases, we have (πeθ−1)
′(v̄eθ−1)≤− Cθ−1

v̄e
θ−1

−ve
θ−1

, so it is optimal not to terminate in

period θ−1. Assume there exists period t≤ θ such that (πet )
′(v̄et )≤− Ct

v̄et−v
e
t
. Then, if −Ct/(v̄et − vet )<−1/λ2,

(πet−1)
′(v̄et−1) =

γ

δ
(vet−1)

′(v̄et−1)≤− Ct−1

v̄et−1 − vet−1

.

If −Ct/(v̄et − vet )≥−1/λ2, we have

(πet−1)
′(v̄et−1) =− γ

δ

[
Ct

v̄et − vet
Gt(κ)+

1

λ2

Ḡt(κ)

]
≤− γ

δ

Ct
v̄et − vet

≤− Ct−1

v̄et−1 − vet−1

.

Thus, (πet−1)
′(v̄et−1)≤− Ct−1

v̄e
t−1

−ve
t−1

in all cases, completing the induction. □

Proof of Proposition 10. From the proof of Proposition 9 we have that for all 1 ≤ t < θ : (πet )
′(v̄et ) ≤

−Ct/(v̄et − vet ) and

(πet−1)
′(v̄et−1) =

{
γ

δ
(πet )

′(v̄et ) if (πet )
′(v̄et )<− 1

λ2
,

− γ

δ

[
Ct

v̄et−v
e
t
Gt(κ)+

1
λ2
Ḡt(κ)

]
if (πet )

′(v̄et )≥− 1
λ2
.

(63)

Note that this expression is strictly negative. Since in any period t, (πet )
′(v̄et ) < −1/λ2 implies that no

ownership can be attained in period t, while also implying that (πe
t̂
)′(v̄e

t̂
)<−1/λ2 for all t̂ < t (using (63)), it

follows that (πet )
′(v̄et )<−1/λ2 also implies that ownership cannot be attained in any period up to t. Thus for

a model to become a rent-only model, it is sufficient that (πeθ∗−1)
′(v̄eθ∗−1)<−1/λ2 and that direct sales do

not happen at contract initiation (period 0). From the proof of Proposition 7 we have that a no-direct-sales

model is optimal if (πb1)
′(v̄b1)≤−δ/(γλ̃2).

Thus, if λ̃2 > δ/(γλ2) then (πeθ∗−1)
′(v̄eθ∗−1)<−1/λ2 will also imply no direct sales. Since −Cθ∗/(v̄eθ∗ −veθ∗)≤

−1/λ2 implies (πeθ∗−1)
′(v̄eθ∗−1)<−1/λ2, rent-only will be optimal in all periods if Cθ∗ ≥ (v̄eθ∗ −veθ∗)/λ2. Setting

Ĉ(2) = (v̄eθ∗ − veθ∗)/λ2 completes part (iii) of the proposition.
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Now, we examine what happens if Cθ∗ < (v̄eθ∗ − veθ∗)/λ2. Then,

(πeθ∗−1)
′(v̄eθ∗−1) =−γ

δ

[
Cθ∗

v̄eθ∗ − veθ∗
Gθ∗(κ)+

1

λ2

Ḡθ∗(κ)

]
, (64)

which could be either smaller or greater than −1/λ2. Note that (63) implies that for all 0≤ t < θ , (πet )
′(v̄et )

is increasing in (πeθ∗−1)
′(v̄eθ∗−1). Therefore, there exists a threshold Bθ∗ such that (πb1)

′(v̄b1) < −δ/(γλ̃2) if

(πeθ∗−1)
′(v̄eθ∗−1)<Bθ∗ and (πb1)

′(v̄b1)≥−δ/(γλ̃2) otherwise. More precisely, to ensure uniqueness of Bθ∗ , we

define it as Bθ∗ = inf{B ∈ R|(πeθ∗−1)
′(v̄eθ∗−1) ≥ B ⇒ (πb1)

′(v̄b1) ≥ −δ/(γλ̃2)}. Then, using (64) we can verify

that −Cθ∗−1/(v̄
e
θ∗−1−veθ∗−1)≥ (πeθ∗−1)

′(v̄eθ∗−1)≥−γ/(δλ2). Consequently, if Bθ∗ is equal to the upper bound

−Cθ∗−1/(v̄
e
θ∗−1 − veθ∗−1), there will be no possibility of attaining ownership in the first period; otherwise,

ownership is possible if (πeθ∗−1)
′(v̄eθ∗−1)≥Bθ∗ . From (64), the statement of parts (i) and (ii) of the proposition

then follow by setting

Ĉ(1) =

[
− δ

γ
Bθ∗ −

1

λ2

Ḡθ∗(κ)

]+
v̄eθ∗ − veθ∗

λ2

. □
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