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Abstract. We present a (probabilistic) public key encryption (PKE)
scheme such that when being implemented in a bilinear group, anyone
is able to check whether two ciphertexts are encryptions of the same
message. Interestingly, bilinear map operations are not required in key
generation, encryption or decryption procedures of the PKE scheme,
but is only required when people want to do an equality test (on the
encrypted messages) between two ciphertexts that may be generated
using different public keys. We show that our PKE scheme can be used
in different applications such as searchable encryption and partitioning
encrypted data. Moreover, we show that when being implemented in a
non-bilinear group, the security of our PKE scheme can be strengthened
from One-Way CCA to a weak form of IND-CCA.

Keywords: Public Key Encryption, Adaptive Chosen Ciphertext At-
tacks, Ciphertext Comparability, Searchable Encryption, Bilinear Map.

1 Introduction

Consider an outsourced database, data are stored in encrypted form. In order
to maintain a good data structure, or extract some statistical information of the
data, data may need to be partitioned. However, classical encryption schemes
are not suitable for this purpose, since given a pile of ciphertexts, no one is
able to tell the relationships among encrypted messages without knowing the
decryption keys.

Searchable encryption (SE) schemes, introduced by Boneh et al. [7], and inten-
sively studied in [3,1,21] may be one candidate to solve the problem. Informally
speaking, in a searchable encryption scheme, a Tag TM can be generated with
respect to a message M and a key pair (PK,SK) (given TM and PK, one should
not be able to derive the message M). There is also a function Test′ such that
Test′(TM , C) returns 1 if and only if the ciphertext C is an encryption of M
under public key PK. So using the tag, one should be able to categorize the
ciphertexts according to the encrypted messages. However, this method has one
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shortcoming: the same message encrypted under different public keys cannot be
categorized into one cluster.

Another possible approach is to use deterministic encryption schemes, which
has been studied in recent years [3,5,6]. A PKE scheme is deterministic if the
encryption algorithm is deterministic, namely given the same public key and the
message, the encryption algorithm always outputs the same ciphertext. How-
ever, deterministic encryption suffers from the same problem that searchable
encryption does for our purpose.

In this paper, we formalize the notion of Ciphertext Comparability for public
key encryption schemes. We introduce a (probabilistic) public key encryption
scheme such that when being implemented in a bilinear group its ciphertexts
are publicly comparable. That is, given two ciphertexts C1 and C2 generated
under public keys PK and PK ′, respectively, there is a function Test such that
Test(C1, C2) returns 1 if and only if C1 and C2 are encryptions of the same
message, no matter PK = PK ′ or not. Our encryption scheme itself does not
invoke any bilinear map operation in key generation, encryption or decryption
procedures, only the Test function does. Further more, we show that when being
implemented in a non-bilinear group, our PKE scheme can achieve a higher level
of confidentiality, but at the cost of losing ciphertext comparability.

Related Work. Since the introduction of public key cryptography due to the
seminal paper of Diffie and Hellman [14], public key encryption schemes are in
the center of modern cryptography. Different types of PKE schemes with differ-
ent security goals have been constructed. For a long time, people were searching
for PKE schemes providing strong confidentiality, namely indistinguishability or
semantic security under chosen-ciphertext attacks (IND-CCA2) [24,15]. Nowa-
days there are many PKE schemes (e.g. [11,12,23,22,9,2,10,19,18,20]) achieving
IND-CCA2 security. A historical survey on PKE can be found in [13].

In [7], Boneh et al. presented the notion of public key encryption with keyword
search (PEKS) and several constructions that achieve semantic security. In a
PEKS scheme, Alice, with a key pair (pk, sk), can provide Bob with a trapdoor
TW , which is computed as a function of her secret key sk and any keyword W
of her choice. Using TW , it is possible to check, using a function Test′, whether
an arbitrary given ciphertext c is an encryption of W or not. The consistency
condition is that Test′(TW , c) returns 1 if and only if c is an encryption of W .
Otherwise, the trapdoor TW should not give any information about the real
encrypted message W ′ (besides W ′ �= W ). Later, a general connection between
PEKS and (anonymous) IBE was given by Abdalla et al. [1]. Recently, Hofheinz
and Weinreb [20] presented a searchable public key encryption with decryption
(PEKSD) in the standard model.

In [3], Bellare et al. initiated the notion of deterministic public key encryption
where the encryption algorithm is deterministic. Deterministic encryption has
been shown to be a useful tool in many applications, e.g. fast (i.e. logarithmic
time) searching on encrypted data. This topic is further studied in [5,6].

As discussed in the introduction, if we are concerning encryptions generated
under one public key, both searchable encryption and deterministic encryption
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can be used to do equality tests among ciphertexts. However, we are interested
in a more general multi-key setting.

This work is different from the verifiable encryption considered by Camenisch
and Shoup in [8]. In a verifiable encryption scheme, the encrypter, who knows the
plaintext, is able to prove (in zero-knowledge) to a third party that the message
“encapsulated” in the ciphertext satisfies some property, e.g. the plaintext is the
discrete log of an element with respect to a base in a group. So after generating
the ciphertext, additional work is required from the encrypter in order to conduct
the proof. Our work does not require any extra effort from the encrypters after
generating the ciphertexts, and equality test can be performed just using the
ciphertexts.

Our Contributions. In this paper, we give the notion of ciphertext compara-
bility for public key encryption schemes, and present such a scheme. Our scheme
allows anyone to compare two ciphertexts and check if they are encryptions of
the same message, even though the ciphertexts may be generated using differ-
ent public keys. We show that when being implemented in a bilinear group,
our encryption scheme is one-way under chosen ciphertext attacks (as we will
see shortly, it is impossible to achieve IND-ATK type of security for encryption
schemes with ciphertext comparability) in the random oracle model. We show
that PKE schemes with ciphertext comparability can be used in many appli-
cations, such as constructing searchable encryption, and partitioning encrypted
data.

We then analyze the security of our encryption scheme when being imple-
mented in a non-bilinear group. We show that under the DDH assumption our
scheme achieves Weak Indistinguishability under Chosen Ciphertext Attacks
(W-IND-CCA2) in the random oracle model.

Paper Organization. In the next section, we give the definitions and security
models for public key encryption schemes with ciphertext comparability. Then
we give our construction of a PKE scheme with ciphertext comparability in Sec. 3
and show some of its applications in Sec. 4. In Sec. 5, we give the definition of
W-IND-ATK and prove that when being implemented in a non-bilinear group,
our PKE scheme can achieve W-IND-CCA2 security.

2 Definitions

A public key encryption scheme Π = (G, E ,D) consists of a triple of algorithms.
The key generation algorithm G takes a security parameter k ∈ N and outputs a
public/private key pair (pk, sk). The encryption algorithm E takes a message m
and the public key pk, and outputs a ciphertext c. The decryption algorithm D
takes sk and c as input, and outputs m or ⊥ (which indicates decryption failure).
The correctness requirement is that ∀k ∈ N and ∀m ∈ PtSp(k) , (pk, sk) ←
G(1k), m ← D(sk, E(pk,m)) where PtSp(k) is the plaintext space associated
to Π .
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We say that Π has Ciphertext Comparability with error ε for some function
ε(·) if there exists an efficiently computable deterministic function Test(·, ·) such
that for every k we have

1. Perfect Consistency: for every x ∈ PtSp(k)

Pr
[

(pk, sk)← G(1k), (pk′, sk′) ← G(1k), C ← E(pk, x)
C′ ← E(pk′, x): Test(C,C′) = 1

]
= 1

2. Soundness: for every polynomial time algorithm M

Pr
[

(C,C′, sk, sk′) ←M(1k), x← D(sk, C), x′ ← D(sk′, C′) :
x �= ⊥ ∧ x′ �= ⊥ ∧ x �= x′ ∧ Test(C,C′) = 1

]
≤ε(k)

In the above definition, consistency ensures that encryptions (even under dif-
ferent public keys) of the same message can be recognized. Soundness measures
the probability of false-hits (i.e. Test(C,C′) = 1 but C and C′ are encryptions
of different messages).

Sanity Check. In our definition for ciphertext comparability, the Test function
does not perform any sanity check on the ciphertexts, namely, we don’t specify
the output of Test when its input cannot be decrypted. We only require that when
the ciphertexts are real encryptions of messages, the function works properly.
On the other hand, checking whether a ciphertext is in the correct form without
using the private key is another problem out of the scope of this paper.

In the following, we review the classical notions of privacy for public key en-
cryption schemes, namely, indistinguishability under chosen plaintext and chosen
ciphertext attacks [17,24,15].

Definition 1 (IND-ATK [4]). Let Π = (G, E ,D) be a public key encryp-
tion scheme and let A = (A1,A2) be a polynomial-time adversary. For atk ∈
{cpa, cca1, cca2} and k ∈ N let

Advind−atk
A,Π

def= Pr
[

(pk, sk)← G(1k), (x0, x1, δ)← AO1
1 (pk), b← {0, 1},

y ← E(pk, xb), b′ ← AO2
2 (pk, x0, x1, δ, y) : b′ =b

]
−1

2

where x0 �= x1 ∧ |x0| = |x1| and
If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In the case of CCA2, we insist that A2 does not ask its oracle for decrypting y.
We say that Π is secure in the sense of IND-ATK if Advind−atk

A,Π is negligible for
any A.

Unfortunately, indistinguishability based security notions are not applicable
to PKE schemes with ciphertext comparability. Given the challenge ciphertext
y and plaintexts x0, x1, an adversary A can compute another ciphertext
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y′ = E(pk, x1), and then return Test(y, y′) as her guess of the value b in the
IND-ATK games. The advantage of the adversary A is

Advind−atk
A,Π =

1
2
Pr[Test(y, y′) = 1|b = 1] +

1
2
Pr[Test(y, y′) = 0|b = 0]− 1

2

=
1
2

+
1
2
Pr[Test(y, y′) = 0|b = 0]− 1

2

=
1
2
(1− Pr[Test(y, y′) = 1|b = 0])

≥ 1
2
(1− ε(k))

As ciphertext comparability and indistinguishability are irreconcilable, we go
back to the one-way definition of privacy for public key encryption schemes.

Definition 2 (OW-ATK). Let Π=(G, E ,D) be a public key encryption scheme
and let A = (A1,A2) be a polynomial-time adversary. For atk ∈ {cpa, cca1, cca2}
and k ∈ N let

Advow−atk
A,Π

def= Pr
[

(pk, sk)← G(1k), δ ← AO1
1 (pk), x← PtSp(k)

y ← E(pk, x), x′ ← AO2
2 (pk, δ, y) : x′ = x

]
where

If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In the case of CCA2, we insist that A2 does not ask its oracle to decrypt y. We
say that Π is secure in the sense of OW-ATK if Advow−atk

A,Π is negligible for any
A.

A Simpler Definition of OW-CCA2. The following theorem states that the
OW-CCA2 definition can be simplified.

Theorem 1. In the case of OW-CCA2, the definition with O1 = Dsk(·) (denoted
Def1) is equivalent to that with O1 = ε (denoted Def2).

Proof. 1. Def1 ⇒ Def2: trivial.
2. Def2 ⇒ Def1: we prove that if a PKE scheme Π is secure under definition

Def2, it is also secure under definition Def1. First of all, an obvious fact is that
if Π is secure under definition Def2 then |PtSp(k)| > p(k) for any polynomial p.

The proof is by contradiction. Suppose there exists a polynomial-time adver-
sary A that breaks Π in Def1 with a non-negligible advantage, we construct
another polynomial-time adversary B that breaks Π in Def2 also with a non-
negligible advantage.
B is given (pk, y), where (pk, sk) ← G(1k), x ← PtSp(k), y ← E(pk, x). B

simulates the experiment of Def1 as follows: B gives pk to A as the public key,
and simulates O1 = Dsk(·) by asking its own decryption oracle. If O1 is queried
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with y, B makes a random guess on x and aborts the game. Otherwise, B gives
y to A after A finishes to query O1, and continues to simulate O2 = Dsk(·) in
Def1 by using its own decryption oracle. Finally, B outputs whatever A outputs.

Denote E the event A queries O1 with y. If E does not occur, then the simula-
tion is perfect. Since |PtSp(k)| > p(k) for any polynomial p, for any ỹ A queried
to O1, the probability that Dsk(ỹ) = x is negligible as x is randomly selected
from PtSp(k). So the probability that E occurs is negligible. �
The above theorem shows that the simplification does not weaken the definition
of security. On the other hand, it helps simplify the security proofs.

3 PKE with Ciphertext Comparability in Bilinear
Groups

Our construction is based on the Computational Diffie-Hellman (CDH) assump-
tion in bilinear groups. Let G1,G2 denote two groups of prime order q, and
e : G1×G1 → G2 a bilinear map between them. The map satisfies the following
properties:

1. Bilinear: For any U, V ∈ G1, and a, b ∈ Zq, we have e(Ua, V b) = e(U, V )ab;
2. Non-degenerate: If g is a generator of G1, then e(g, g) is a generator of G2;
3. Computable: there exists an efficient algorithm to compute e(U, V ) for any

U, V ∈ G1.

Computational Diffie-Hellman (CDH) Problem: Fix a generator g of G1.
The CDH problem is as follows: given g, ga, gb as input where a, b are randomly
selected from Zq, compute gab. We say that CDH is intractable if all polynomial
time algorithms have a negligible advantage in solving CDH.

We build a public key encryption scheme with ciphertext comparability in a
bilinear group where CDH is intractable. Our construction uses a hash function
H : G

3
1 → {0, 1}k+�, where k and 
 are security parameters such that elements

of G1 are represented in k bits and elements of Zq are represented in 
 bits. Our
PKE with ciphertext comparability works as follows:

– G(1k): Select x← Z∗
q and compute y = gx. Set pk = y and sk = x.

– E(pk,m): To encrypt a plaintext m ∈ G∗
1 (def= G1\{1}), select r ← Z∗

q ,
compute U = gr, V = mr, W = H(U, V, yr) ⊕ m‖r. The ciphertext is
C = (U, V,W ).

– D(sk, C): To decrypt a ciphertext C = (U, V,W ), compute m‖r ←
H(U, V, Ux) ⊕ W . If (m ∈ G∗

1 ∧ r ∈ Z∗
q ∧ U = gr ∧ V = mr), return m;

otherwise, return ⊥.
– Test(C1, C2): Given two ciphertexts C1 = (U1, V1,W1) and C2 =

(U2, V2,W2), if e(U1, V2) = e(U2, V1), return 1; otherwise, return 0.

Theorem 2. The above PKE scheme has perfect consistency and perfect
soundness.
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Proof. The proof is straightforward, as follows:
1. Perfect Consistency. It is easy to see that for any (pk, sk)← G(1k), (pk′, sk′) ←
G(1k) and C ← E(pk,m), C′ ← E(pk′,m) where C = (gr,mr, W ), C′ =
(gr′

,mr′
,W ′), we have

e(gr,mr′
) = e(gr′

,mr) = e(g,m)rr′

for any m ∈ G∗
1 and (r, r′) ∈ Z∗

q
2.

2. Perfect Soundness. Given two ciphertexts C=(gr,mr,W ), C′=(gr′
, m′r′

,W ′),
we have

e(gr,m′r′
) = e(g,m′)rr′

, e(gr′
,mr) = e(g,m)rr′

then it must be true that e(g,m′)rr′ �= e(g,m)rr′
for any m �= m′ and (r, r′) ∈

Z
∗
q
2. �

Theorem 3. The PKE scheme above with message space G∗
1 is OW-CCA2 se-

cure in the random oracle model assuming CDH is intractable.

Proof. Let A be a PPT adversary attacking the OW-CCA2 security of the above
PKE scheme. Suppose that A runs in time t and makes at most qH hash queries
and qD decryption queries. Let AdvOW-CCA2

A (t, qH , qD) denote the advantage of
A in the OW-CCA2 experiment. We first consider the original game:

Game G0

1. x← Z∗
q , y = gx

2. m← G∗
1, r← Z∗

q , U
∗ = gr, V ∗ = mr, W ∗ = H(U∗, V ∗, yr)⊕ (m‖r)

3. m′ ← AOH ,O2(y, U∗, V ∗,W ∗), where the oracles work as follows.
– OH : On input a triple (U, V, Y ) ∈ G3

1, a compatible random value is
returned, where by ‘compatible’ we mean that if the same input is asked
multiple times, the same answer will be returned. Note that a query to
this oracle is also issued when computing the challenge ciphertext or
simulating the decryption oracle.

– O2: On input a ciphertext (U, V,W ), it runs the decryption algorithm
D to decrypt it using the secret key x.

Let X0 be the event that m′ = m in Game G0. In the following, let Xi be the
event that m′ = m in Game Gi for i = 1, 2, · · · . A’s winning probability in
Game Gi is Pr[Xi]. Next we modify Game G0 and obtain the following game.

Game G1

1. x← Z∗
q , y = gx, T = ∅

2. m← G∗
1, r← Z∗

q , U∗ = gr, V ∗ = mr, R∗ ← {0, 1}k+�, W ∗ = R∗ ⊕ (m‖r),
T = T ∪ {(U∗, V ∗, (U∗)x, R∗)}

3. m′ ← AOH ,O2(y, U∗, V ∗,W ∗), where the oracles work as follows.
– OH : On input (U, V, Y ) ∈ G3

1, if there is an entry (U, V, Y, h) in the
hash table T , h is returned; otherwise, a random value h is selected and
returned, and (U, V, Y, h) is added into T .
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– O2: On input a ciphertext (U, V,W ), a hash query on (U, V, Ux) is issued.
Suppose the answer is h ∈ {0, 1}k+�. Then m‖r is computed as h⊕W ,
and the validity check on whether U = gr and V = mr is performed. If
the check fails, ⊥ is returned; otherwise, m is returned.

Due to the idealness of the random oracle, Game G1 is identical to Game G0.
Thus Pr[X1] = Pr[X0]. In the next game, we further modify the simulation in
an indistinguishable way.

Game G2

1. x← Z∗
q , y = gx, T = ∅

2. m← G∗
1, r← Z∗

q , U∗ = gr, V ∗ = mr, W ∗ ← {0, 1}k+�,
T = T ∪ {(U∗, V ∗, (U∗)x,W ∗ ⊕ (m‖r))}

3. m′ ← AOH ,O2(y, U∗, V ∗,W ∗), where the oracles work as follows.
– OH : It is simulated in the same way as that in Game G1 except that

if A asks (U∗, ·, (U∗)x), the game is aborted. Let this event be E.
– O2: The same as that in Game G1 except that if A asks for decryption

of (U∗, V ∗,W ′) where W ′ �= W ∗, ⊥ is returned.

The challenge ciphertext generated in this game is identically distributed to that
in Game G1, as W ∗ is a random value in both Game G1 and Game G2. Also,
the simulation of O2 is perfect since W ∗ is uniquely determined by U∗ and V ∗.
Therefore, if event E does not occur, Game G2 is identical to Game G1. Next,
we show that event E occurs with negligible probability.

Lemma 1. Event E happens in Game G2 with negligible probability if CDH is
intractable.

Proof. Suppose that Pr[E] is non-negligible. We construct a PPT algorithm B to
break the CDH assumption. Given a tuple (g, ga, gc) ∈ G

3
1, B randomly selects

α← Z∗
q and R∗ ← {0, 1}k+�, then sets the public key y = ga and U∗ = gc, and

computes m = gα. It then adds (U∗, V ∗ = (U∗)α,#,#) into table T which is
initially empty, where # represents that the value is unknown. B invokes adver-
sary A on input (y, U∗, V ∗, R∗), where the challenge ciphertext (U∗, V ∗, R∗) has
the same distribution as that in Game G2. The oracles for A are simulated as
follows.

– OH : B simulates the oracle as described in Game G1, except that if A
makes a query on (U∗, ·, Z), B checks if e(g, Z) = e(y, U∗). If the equation
holds, B outputs Z and aborts the game.

– O2: On input (U, V,W ), if the input is U = U∗, V = V ∗ and W �= R∗, B
returns ⊥. Otherwise, B searches T for an entry of the form (U, V, ·, ·). For
each item (U, V, Y, h), B computes m‖r = h⊕W and proceeds as follows.
1. If U = gr, V = mr and Y = yr, m is returned;
2. Otherwise,B continues to searchT for the next entry of the form (U, V, ·, ·).

If nothing is returned to A in the above loop for all entries (U, V, ·, ·) in T ,
B returns ⊥.
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Denote E′ the event that A queries OH on input (U∗, ·, gac). At the end of the
simulation, if E′ does not occur, B aborts with failure.

(Analysis): We first show that the decryption queries are simulated indistin-
guishably from Game G2. We separate all the decryption queries into two types:

1. Type 1: (U, V, Ua) has been queried toOH before a decryption query (U, V,W )
is issued. In this case, W is uniquely determined after (U, V, Ua) is queried
to OH . So the decryption oracle is simulated perfectly.

2. Type 2: (U, V, Ua) has never been queried to OH when a decryption query
(U, V,W ) is issued. In this case, ⊥ is returned by the decryption oracle.
The simulation fails if (U, V,W ) is a valid ciphertext. However, due to the
idealness of the random oracle, this happens with probability 1/2k+�.

Denote E2 the event that a valid ciphertext is rejected in the simulation. Then
we have

Pr[E2] ≤ qD

2k+�
.

If E2 does not happen, then the simulation is identical to Game G2, so
Pr[E′|¬E2] = Pr[E]. Then we have

Pr[E′] = Pr[E′|E2]Pr[E2] + Pr[E′|¬E2]Pr[¬E2]
≥ Pr[E′|¬E2]Pr[¬E2]
= Pr[E](1− Pr[E2])
≥ Pr[E]− Pr[E2]

Therefore,
AdvCDH

B ≥ Pr[E]− qD

2k+�

which is non-negligible. This completes the proof of Lemma 1. �
Since Game G1 and Game G2 are the same if event E does not occur, we
have,

|Pr[X1]− Pr[X2]| ≤ Pr[E].

Lemma 2. Pr[X2] is negligible under the CDH assumption.

Proof. Suppose that Pr[X2] is non-negligible. We construct a PPT algorithm B
to break the CDH assumption. Given a tuple (g, Û = gr, V̂ = mr) ∈ G

3
1, where

r ← Zq and m← G∗
1, B’s goal is to compute m. B randomly selects x← Z∗

q and
sets the public key y = gx. It then adds (U∗ = Û , V ∗ = V̂ , (U∗)x,#) into table
T which is initially empty, where # represents that the value is unknown. B ran-
domly selects R∗ ← {0, 1}k+� and invokes adversary A on input (y, U∗, V ∗, R∗).
B simulates the game by following the description of Game G2. Finally B out-
puts whatever A outputs. So we have

Pr[X2] ≤ AdvCDH
B .

�
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Therefore, we have

AdvOW-CCA2
A (t, qH , qD) = Pr[X0]

= Pr[X1]

≤ Pr[X2] + AdvCDH +
qD

2k+�

≤ 2AdvCDH +
qD

2k+�
.

This completes the proof of Theorem 3. �

4 Variants and Applications

Encrypting Long Messages. In our PKE scheme above, we assume that mes-
sages are elements of group G∗

1. To encrypt long messages, we can use a collision
resistant hash function H ′ : {0, 1}∗ → G

∗
1 and a pseudo-random bit generator

PRG [16]. We modify the scheme as follows:

– G(1k): Unchanged.
– E(pk,m): To encrypt a plaintext M ∈ {0, 1}∗, compute m← H ′(M). Select

r ← Z∗
q , compute U ← gr, V ← mr,K ← H(U, V, pkr) and W ← PRG(K)⊕

M‖r. The ciphertext is C = (U, V,W ).
– D(sk, C): To decrypt a ciphertext C = (U, V,W ), compute K ←

H(U, V, Usk), M‖r ← PRG(K) ⊕W , and m ← H ′(M). If (r ∈ Z∗
q ∧ U =

gr ∧ V = mr), return M ; otherwise, return ⊥.
– Test(C1, C2): Unchanged

It follows that the above (hybrid) encryption scheme also has ciphertext com-
parability. The perfect consistency is still maintained, however, the soundness is
no longer perfect, but is bounded by the collision probability of H ′.

Theorem 4. The modified PKE scheme above is OW-CCA2 secure assuming
H,H ′ are random oracles, PRG is a secure pseudo-random bit generator, and
CDH is intractable.

The proof essentially follows that of Theorem 3, we can replace the pseudo-
random bit string with a truly random string when generating the challenge
ciphertext. Since the adversary does not know the random seed of the PRG (due
to the CDH assumption and H is a random oracle), the difference between the
games is negligible provided PRG is a secure pseudo-random bit generator.

Searchable Encryption. A PKE scheme with ciphertext comparability is nat-
urally searchable. To generate a tag TM for message M , one can simply encrypt
M under any valid public key to generate a ciphertext C, and set TM = C. Then
using the Test function, anyone is able to search encryptions of the message M ,
even if they are generated using different public keys.

Partitioning Encrypted Data. In applications such as outsourced databases,
by using a PKE scheme with ciphertext comparability, the database administra-
tor is able to do a partition of the database according to the encrypted messages
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without any help from the message owners. These schemes may also be useful
in other similar applications such as collection and categorization of confidential
data through an agent.

5 Weak IND-CCA2 vs Ciphertext Comparability

In Sec. 2, we have shown that ciphertext comparability and indistinguishability
are irreconcilable. In this section, we are interested in the following question: if
we don’t need ciphertext comparability, or when being implemented in a non-
bilinear group, what kind of security level can our PKE scheme in Sec. 3 achieve?
The first security model we’d like to try is of course IND-CCA. Unfortunately,
our scheme is even not IND-CPA secure, as shown below.

Theorem 5. The PKE scheme in Sec. 3 with message space G∗
1 is not IND-CPA

secure.

Proof. We construct a PPT adversary A as follows. Given public key y, A com-
putes m0 = gr0 and m1 = gr1 for any two distinct r0 and r1 chosen arbitrarily
from Z∗

q . A sends (m0,m1) to the game simulator. After receiving the challenge
ciphertext c∗ = (U, V,W ), A checks if V = U r0 . If yes, A returns 0; otherwise A
returns 1. The probability that A guesses correctly the value of b is 1. �
The above attack demonstrates the advantage the adversary can get from se-
lecting the challenge plaintexts. In the next, we define a different set of indistin-
guishability games where the adversary has no such power.

Definition 3 (W-IND-ATK). Let Π = (G, E ,D) be a public key encryp-
tion scheme and let A = (A1,A2) be a polynomial-time adversary. For atk ∈
{cpa, cca1, cca2} and k ∈ N let

Advw−ind−atk
A,Π

def= Pr

⎡⎣ (pk, sk)← G(1k), δ ← AO1
1 (pk),

(x0, x1) ← PtSp(k), b← {0, 1}, y← E(pk, xb),
b′ ← AO2

2 (pk, x0, x1, δ, y) : b′ = b

⎤⎦− 1
2

where x0 �= x1 ∧ |x0| = |x1| and
If atk = cpa then O1(·) = ε and O2(·) = ε
If atk = cca1 then O1(·) = Dsk(·) and O2(·) = ε
If atk = cca2 then O1(·) = Dsk(·) and O2(·) = Dsk(·)

In the case of CCA2, we insist that A2 does not ask its oracle for decrypting
y. We say that Π is secure in the sense of W-IND-ATK if Advw−ind−atk

A,Π is
negligible for any A.

W-IND-CCA2 Security of Our PKE. Interestingly, we can show that when
being implemented in a non-bilinear group, our PKE scheme given in Sec. 3 can
achieve W-IND-CCA2 security under the DDH assumption which is described
below.
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Decisional Diffie-Hellman (DDH) Problem. Fix a generator g of G1. The
DDH assumption claims that {g, ga, gb, Z} and {g, ga, gb, gab} are computation-
ally indistinguishable where a, b are randomly selected from Zq and Z is a random
element of G1.

Theorem 6. The PKE scheme in Sec. 3 with message space G∗
1 is W-IND-CCA2

secure in the random oracle model under the DDH assumption.

The proof is by contradiction. Suppose there exists an adversary who can break
the encryption scheme, we plant the DDH problem (g,m,U = gr, V = Z) into
the challenge ciphertext to the adversary, and simulate the decryption oracle in
a similar way as in the proof of Theorem 3. Then depending on Z = mr (i.e. Z
is in the “right” form) or Z ← G1 (Z is independent of m), the adversary would
have different probability in winning the game, so we can use the adversary to
solve the DDH problem. The detailed proof is deferred to the full version of the
paper.
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