
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

12-2010

Dynamic group key exchange revisited Dynamic group key exchange revisited

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Chik How TAN
National University of Singapore

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
YANG, Guomin and TAN, Chik How. Dynamic group key exchange revisited. (2010). Cryptology and
Network Security: 9th International Conference, CANS 2010, Kuala Lumpur, Malaysia, December 12-14:
Proceedings. 6467, 261-277.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7418

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7418&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Dynamic Group Key Exchange Revisited

Guomin Yang and Chik How Tan

Temasek Laboratories
National University of Singapore
{tslyg,tsltch}@nus.edu.sg

Abstract. In a dynamic group key exchange protocol, besides the basic
group setup protocol, there are also a join protocol and a leave protocol,
which allow the membership of an existing group to be changed more
efficiently than rerunning the group setup protocol. The join and leave
protocols should ensure that the session key is updated upon every mem-
bership change so that the subsequent sessions are protected from leav-
ing members (backward security) and the previous sessions are protected
from joining members (forward security). In this paper, we present a new
security model for dynamic group key exchange. Comparing to existing
models, we do a special treatment to the state information that a user
may use in a sequence of setup/join/leave sessions. Our treatment gives
a clear and more concise definition of session freshness for group key ex-
change in the dynamic setting. We also construct a new dynamic group
key exchange protocol that achieves strong security and high efficiency
in the standard model.

Keywords: Group Key Exchange, Dynamic Group, Insider Security,
Mutual Authentication, Strong Contributiveness.

1 Introduction

Group key exchange (GKE) protocols are mechanisms by which a group of n > 2
parties communicate over an insecure network can generate a common secret key
(usually we call this common secret key a session key as a user may have multiple
key exchange sessions). A static group key exchange (SGKE) protocol consists
of a long-lived key generation algorithm, and a group setup protocol which is
invoked whenever a group of parties want to establish a shared key. In contrast,
a dynamic group key exchange (DGKE) protocol consists of a long-lived key
generation algorithm and three sub-protocols: a setup protocol, a join protocol,
and a leave protocol. The join and leave protocols allow the membership of an
existing group to be changed more efficiently than rerunning the group setup
protocol. In this paper, we focus on the dynamic setting.

Since the goal of a GKE protocol is to establish a shared key that is known
only to the group members, the main security requirement is to make sure that
no information, not even a single bit, of the agreed key is leaked to any passive
or active adversaries outside the group. For the special case of two-party key
exchange, the problem has been extensively studied (e.g., [3, 4, 2, 13, 25] and

S.-H. Heng, R.N. Wright, and B.-M. Goi (Eds.): CANS 2010, LNCS 6467, pp. 261–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

262 G. Yang and C.H. Tan

many more). Though it might be natural to extend the existing results for two-
party key exchange to the group setting, such an extension is less trivial for
the dynamic group case. For dynamic group key exchange, special attentions
should be paid to the join and leave protocols: these two protocols must make
sure that upon every membership change, the session key is updated so that
the subsequent sessions are protected from leaving members (namely, backward
security) and the previous sessions are protected from joining members (namely,
forward security1). In other words, for the leave/join protocol, we have to assume
that the leaving/joining users are the adversary, who may misbehave (i.e. deviate
from the protocol specification) in one session, and try to break the security of
a subsequent/previous session among other parties.

To see more clearly the differences between a two-party (or static group) pro-
tocol and a dynamic group protocol: first, in the dynamic setting, the state infor-
mation of the honest parties in two sessions (e.g., one involves a joining/leaving
adversary and the other the adversary wants to attack) can be related, so the
definition of a fresh (or clean) session is less straightforward when session state
reveal queries are allowed; secondly, for several, say t, related sessions created
in a sequence of setup/join/leave events, the adversary can choose to attack one
session but at the same time actively participate in the rest t − 1 sessions, in
which the adversary may not honestly follow the protocol specification (e.g., the
adversary may plant some trapdoor information in one session, and try to break
the following sessions after he/she leaves the group); thirdly, when considering
the notion of forward secrecy, a secure DGKE protocol should ensure a past
session key Ki remains secure even when the adversary compromises both the
long-lived keys and the state information of the subsequent join/leave sessions
after session i.

For group key exchange protocols, it is also necessary to consider insider se-
curity. Two insider security issues need to be addressed: mutual authentication
and key control resistance. Different from two-party protocols, mutual authen-
tication for GKE protocol means when a party makes a decision “accept” in a
session, he/she must be sure that all his/her partners have indeed participated in
the session, in particular, a subset of protocol participants should not be able to
impersonate another party. For key control resistance, we require a secure group
key exchange protocol to be able to prevent a subset of users from controlling
(any part) of the session key.

Related Work. The case of two-party key exchange protocols has been exten-
sively studied in the past three decades (e.g., [16, 17, 3, 4, 2, 13, 25] and many
more). A lot of efficient and provably secure two party key exchange protocols
have been constructed, and many have been deployed in the real practice (e.g.
SSL, SSH, IPSec).

1 We remark that the notion of forward security with respect to the join protocol is
different from the conventional notion of “forward secrecy”. Informally, the latter
means an established session key remains secure even if an adversary learns the
long-lived keys of the protocol participants in the future.

Dynamic Group Key Exchange Revisited 263

Some early group key exchange protocols [12, 1,29, 30,21] extended two-party
key exchange (e.g., the two-party Diffi-Hellman protocol) to the multi-party set-
ting. In [9], based on the Bellare-Rogaway security model [3] for two-party key ex-
change, Bresson, Chevassut, Pointcheval, and Quisquater proposed the first
computational security model (referred to as the BCPQ model) for (static) group
key exchange protocols. The BCPQ model and its variants then became the de
facto standard for analyzing group key exchange protocols.

In [23], Katz and Yung proposed a scalable compiler to transform any static
GKE protocol secure against passive adversaries to a new protocol secure against
active adversaries. They then applied their compiler to the Burmester-Desmedt
protocol and obtained the first constant-round and fully-scalable static GKE
protocol in the standard model.

In [8], a formal model for dynamic group key exchange was proposed, this
model was later extended in [7] to consider concurrent protocol executions and
strong corruption. Provably secure protocols which require linear round com-
plexity are also proposed in [8, 7]. In [24], Lim et al. proposed another DGKE
protocol provably secure in the model of Bresson et al., the protocol requires
only two rounds but is proven secure in the random oracle model. In [18], Dutta
et al. presented another security model for dynamic group key exchange, and a
protocol with formal security proof, but neither their model nor the protocol was
carefully designed, as a result the model didn’t really capture forward/backward
security [32] and the protocol is flawed [31]. In [26], Manulis presented a 3-round
provably secure DGKE protocol (denoted by Dynamic TDH1) which uses a bi-
nary tree structure.

Insider Security. Katz and Shin [22] provided the first formal definition of
insider security for static group key exchange protocols under the Universal
Composability (UC) framework [14]. They also presented a generic compiler
to build UC-secure Static GKE protocols. Recently, in [19], Furukawa et al.
presented a more round-efficient UC-secure Static GKE protocol which requires
only two rounds, but the protocol requires each protocol participants to perform
O(n) pairing operations for an n-party group.

The insider security by Katz and Shin [22] considers impersonation attacks
by malicious protocol participants. Later, Bresson and Manulis [11] unified this
notion with key confirmation, and unknown key share resistance into their def-
inition of Mutual Authentication. Recently, Gorantla el al. [20] further unified
the Mutual Authentication definition by Bresson and Manulis with the notion
of Key Compromise Impersonation resistance.

The notion of key control was first introduced by Mitchell et al. [27], which
refers to attacks by which part of the protocol participants aim to control the
value of the session key. Resistance to key control attacks is formalized via the
notion of “contributiveness” in [6, 11] for group key exchange protocols. In [10],
Bresson and Manulis presented a compiler that can transform any GKE protocols
to achieve contributiveness at the cost of 2 extra communication rounds.

264 G. Yang and C.H. Tan

Our Contributions. In this paper, we present a new security model for dy-
namic group key exchange protocols. To define forward and backward security,
we provide a special treatment to the shared state information among a sequence
of setup/join/leave sessions. Our treatment gives a clear and more concise def-
inition of session freshness than existing models. We then construct an efficient
DGKE protocol and prove its security in the standard model.

2 Security Definitions

We start by some existing definitions and notations [3, 5] for key exchange pro-
tocols.

Protocol Participants and Long-Lived Keys. Let HU denote a nonempty
set of parties. Each party U ∈ HU is provided with a Long-Lived Key LLKU

that is generated by running a long-lived key generation algorithm KG. Later on,
new users can still be created and added into the system by the adversary. Such
an adversarial capability was first considered in [11]. Let MU denote the set
of users added by the adversary. When being created, a long-lived key LLKM

for M is generated by the adversary with the restriction that LLKPub
M , which

denotes the public part of LLKM , has never been used by any other user in the
system. However, we do not require LLKM to be generated by honestly running
the long-lived key generation algorithm KG, and the adversary may not know
the secret part of LLKM .

Instance Oracles. A party may run many instances concurrently except that
an instance in a join or leave session cannot run concurrently with any of its
ancestors (see footnote 2). We call each instance of a party an oracle, and we
use Πi

U (i ∈ N) to denote the ith instance of party U . All the oracles within
a party U share the same long-lived key LLKU . An oracle is activated when
it receives an incoming message from the network. Upon activation, the oracle
performs operations by following the Setup, Join or Leave protocol. We assume
that whenever a user wants to setup a new group or join an existing group, an
unused oracle will be used.

Session and Partner IDs, State Information, and Session Keys. When
an oracle Πi

U is activated to start a protocol (Setup, Join or Leave), it learns its
partner id pidi

U (similar to [11], we let pidi
U include the identity of U itself). At

the time Πi
U makes a decision Accept, it outputs (secret) session key ki

U under a
session id sidi

U which is determined during the protocol execution. Since we are
considering group key exchange in the dynamic setting, some state information
of Πi

U should also be saved. This information would be used if a Join or Leave
event later. In this paper, we assume that, after an instance Πi

U accepts, its state
information (which includes two fields pidold = pidi

U and sidold = sidi
U) will be

passed to another unused instance Πj
U (possibly picked by the adversary), and

Πj
U would replace Πi

U to participate in the next Join or Leave session. Also, after
Πj

U receives the state information from Πi
U , all the state information in Πi

U is
erased, and Πj

U is labeled used.

Dynamic Group Key Exchange Revisited 265

Discussion. A straightforward way to deal with the join and leave events is to
let Πi

U keep the state information at the end of a session and become active again
in the subsequent Join or Leave event. However, such an approach will introduce
troubles when we later define the freshness of an instance, since one instance may
participate in different sessions with different partners and generate different
session IDs. On the other hand, as we will see later, our approach makes the
security definition easy and clean. Besides, our approach is meaningful, it mimics
the following space-friendly implementation in real practice: after a KE session
is completed and the session key is returned to the upper layer application, the
user saves the necessary state information at a safe place in the harddisk, and
erases that copy of the program (which implements the DGKE protocol) and all
its state information from the memory. Later, when a join or leave event occurs,
the user starts a new copy of the protocol/program with the previously saved
state information as the parameters to the program.

Definition 1. A Dynamic Group Key Exchange Protocol DGKE consists of a
Long-Lived Key generation algorithm KG, a group setup protocol Setup, a join
protocol Join, and a leave protocol Leave.

– KG(1k): On input a security parameter 1k, the long-lived key generation al-
gorithm provides each user with a long-lived key LLKU .

– Setup(I): on input a set of user identities I, the setup protocol creates a new
multicast group G = I.

– Join(G′, I): on input an existing multicast group G′ and a set of users I such
that I ∩ G′ = ∅, the join protocol creates a new multicast group G = G′ ∪ I.

– Leave(G′, I): on input an existing multicast group G′ and a set of users I ⊂
G′, the leave protocol creates a new multicast group G = G′\I.

An execution of DGKE consists of running the KG algorithm once, and many
concurrent executions of the other three protocols. We say DGKE is correct if,
when no adversary is present, all the parties in the group G compute the same
session key at the end of the Setup, Join or Leave protocol.

Security Model. We consider the following game that involves all the users
in the set HU and an adversary A. All the users are connected via an unau-
thenticated network that is controlled by A. The game is initiated by running
the long-lived key generation algorithm KG to provide each user in HU with
a long-lived key. The adversary A is then given {LLKPub

U }U∈HU and interacts
with the oracles via the queries described below.

– Register(M,LLKPub
M): This query allows the adversary A to create and add

a new user M with long-live (public) key LLKPub
M into the system. We re-

quire that neither the user identity M nor the long-lived public key LLKPub
M

has been used by any other user in the system. However, we don’t require
LLKPub

M to be generated by running the KG algorithm. All the activities and
operations of user M will be performed by the adversary A.

266 G. Yang and C.H. Tan

– Send(Πi
U ,msgin): This query allows A to invoke instance Πi

U with an incom-
ing message msgin. Upon receiving the message, Πi

U performs operations
according to the Setup, Join or Leave protocol, and generates the response.
Should Πi

U accept or reject will be made available to A. When an oracle Πi
U

accepts, A chooses another unused instance Πj
U . The state information of

Πj
U is then set to StjU = StiU (this operation is assumed to be done within

the user U . In particular, the adversary is unaware of the state information
being passed, but the adversary may learn this information via a RevealState
query (described below) to Πj

U). Πj
U is labeled used and will replace Πi

U to
participate in the subsequent Join or Leave protocol. The Setup, Join and
Leave events are also activated by A through Send queries, as follows:
1. When A wants to activate an unused instance Πi

U to start the Setup
protocol, it sets msgin = setup‖pid where pid is the partner id of the
instance Πi

U .
2. When A wants activate an instance Πi

U , which is either unused (i.e. U
is going to join an existing group) or has been used (i.e. U is a mem-
ber of the existing group), to start the Join protocol, it sets msgin =
join‖pidold‖sidold‖pidnew where pidold denotes the old group (with ses-
sion id sidold) on top of which a new group pidnew is to be built. It is
worth noting that several groups with the same set of members may
exist, so the session id is necessary to uniquely identify the (old) group.

3. Similarly, when A wants activate an instance Πi
U to start the Leave

protocol, it sets msgin = leave‖pidnew . Note that if Πi
U participates in

the leave protocol, it should already have the information of the existing
group, so the fields pidold and sidold are not needed.

– Corrupt(U): This query allows the adversary to obtain the long-lived key
LLKU .

– RevealKey(Πi
U): This query reveals the session key being held by the oracle

Πi
U .

– RevealState(Πi
U): This query reveals all the state information, but not the

long-lived key, currently being held by the oracle Πi
U .

– Test(Πi
U): This query is asked only once in the game, and is only available if

oracle Πi
U has accepted, and is fresh (see below). An unbiased coin b is tossed,

if b = 0, a random value drawn from the session key space is returned; if
b = 1, the real session key ki

U is returned. After the Test query, the adversary
can still perform those queries described above.

Oracle Freshness. An oracle Πi
U is fresh if all of the following conditions hold:

1. pidi
U ∩MU = ∅;

2. No user in pidi
U is corrupted before the adversary makes a Send(Πj

V , ∗) query
with (V ∈ pidi

U ∧ sidj
V = sidi

U);
3. No RevealState query is performed to an oracle Πj

V with (V ∈ pidi
U ∧ sidj

V =
sidi

U) or any of its ancestors2.
2 We say Πi

V is an ancestor of Πj
V if there exists a path (Πi

V , ..., Πt
V , ...Πj

V) such that
each instance in the path passes its state information to the next one.

Dynamic Group Key Exchange Revisited 267

4. No RevealKey query is performed to an oracle Πj
V with (V ∈ pidi

U ∧ sidj
V =

sidi
U).

SK-Security. Before A terminates it outputs a bit b′. We say A wins the game
if b′ = b. We define the advantage of the adversary A attacking protocol DGKE
to be

Advsk
A,DGKE(k) = |Pr[b′ = b]− 1

2
|

Definition 2 (SK-Security). We say a dynamic group key exchange protocol
DGKE is SK-secure if, for any polynomial time adversary A, the advantage
Advsk

A,DGKE(k) is a negligible function of the security parameter k.

Comparisons with Existing Models. In the early models by Bresson et
al. [8, 7], a single instance will maintain the state information in a sequence
of setup, join, and leave events. When defining the freshness, the adversary
is not allowed to reveal the state information of the instance (or any of its
partners) at any time. As a consequence, it does not capture the scenario that
the adversary compromises the state information in the join/leave sessions which
are subsequent sessions of the test session.

In the model by Dutta and Barua [18], the adversary can only passively re-
ceived communication transcripts of the join and leave protocols, but in real-
ity, the adversary is the joining/leaving user who actively participated in the
join/leave session. In [32], it has been shown that the proven secure protocol
in [18] doesn’t provide backward security.

In the model by Manulis [26], similar to the approach by Bresson et al., a single
instance will maintain the state information in a sequence of setup/join/leave
events, however the adversary is allowed to reveal the state information of the
instance output in the test query at some points. While in our model, due to our
trick to the state information, each oracle will participate in at most one session,
which makes the definition of session freshness more concise as we don’t need to
consider at which points the adversary is allowed to perform RevealState to an
instance.

Another difference between Manulis’s model and ours is that we have different
meanings in backward security. In Manulis’s model, backward security considers
an adversary who compromises state information of the ancestors (see footnote
2) of the instances in the test session, while ours means the leaving users, who
may plant some trapdoors in the previous sessions, cannot learn any information
of the session key established among the remaining group of users, but our model
requires none of the instances in the test session, or any of their ancestors, has
been asked a RevealState query. The definition by Manulis is stronger than ours,
however, such a definition may be too strong as no existing DGKE protocol
(including the dynamic TDH1 by Manulis) can achieve such a security level.
The reason is that in order to perform join/leave efficiently, some critical state
information (such as the DH exponents) used by the join/leave protocol is related
to state information of the previous session. In order to provide the backward
security defined by Manulis, each instance needs to freshly generate all critical

268 G. Yang and C.H. Tan

state information in each session, in which case the join/leave protocol most
likely gains no advantage than the setup protocol (i.e., the protocol essentially
becomes a static one).

MA-Security. We say that an instance Πi
U is honest if U ∈ HU and Πi

U

honestly performs its operations according to the protocol. Below we review
the definition of MA-security in [20]. The definition is a modification of the MA-
security in [11] by including the notion of Key Compromise Impersonation (KCI)
resistance. Recall that in a KCI attack an adversary corrupts a user U and then
impersonates other (uncorrupted) users to (honest instances of) U .

Definition 3 (MA-Security). Let DGKE be a correct dynamic group key ex-
change protocol and A′ an adversary who is allowed to perform Register, Send,
Corrupt, RevealKey and RevealState queries. We say that A′ breaks the mutual au-
thentication of DGKE if at some point during the execution of DGKE , there exists
an honest instance Πi

U who has accepted with ki
U and another user V ∈ HU∩pidi

U

who is uncorrupted at the time Πi
U accepts such that

1. There is no instance oracle Πt
V with (pidt

V , sidt
V) = (pidi

U , sidi
U), or

2. There is an instance oracle Πt
V with (pidt

V , sidt
V) = (pidi

U , sidi
U) that has

accepted with kt
V
= ki

U .

Denote Advma
A′,DGKE(k) the probability that A′ breaks the mutual authentication

of DGKE . We say a dynamic group key exchange protocol DGKE is MA-secure
if for any polynomial time adversary A′, Advma

A′,DGKE(k) is a negligible function
of the security parameter k.

Contributiveness. We present below the notion of contributiveness for dy-
namic group key exchange protocols. A group key exchange protocol secure
under this notion can resist key control attacks where a subset of insiders tries
to control any part of the resulting session key.

Definition 4 (Co-Security). Let DGKE be a correct dynamic group key ex-
change protocol and A′′ = (A′′

1 ,A′′
2) an adversary who is allowed to perform

Register, Send, Corrupt, RevealKey and RevealState queries. A′′ runs in two
stages:

– (Prepare.) A′′
1 performs the oracle queries and outputs a bit b, an index j,

along with some state information St.
– (Attack.) On input St, A′′

2 performs the oracle queries and finally outputs
(U, i).

We say that A′′ wins if

1. Πi
U has terminated accepting ki

U such that the j-th bit of ki
U is equal to b,

2. Πi
U is honest and has not started its execution in the Prepare stage,

3. Πi
U has never been asked a RevealState query in the Attack phase.

Define

Advco
A′′,DGKE(k) = Pr[A′′ wins]− 1

2
.

Dynamic Group Key Exchange Revisited 269

A dynamic group key exchange protocol DGKE is said to provide contributiveness
(or Co-security) if for any polynomial time adversary A′′, Advco

A′′,DGKE(k) is a
negligible function of the security parameter k.

Our definition of contributiveness is different from the existing definitions of
strong contributiveness defined in [11,20]. The later requires that the adversary
cannot control the whole key, and as a result it does not capture partial-key con-
trol attacks. Below we present a protocol that achieves strong contributiveness
but fail to achieve our notion of contributiveness.

U1 U2 U3 U4 U5

ki
$←{0, 1}�, xi

$←Z
∗
q , σ1

i ← DS.Sign(ski, M
1
i ‖I)

M1
1 = k1‖gx1 , σ1

1 M1
2 = k2‖gx2 , σ1

2 M1
3 = k3‖gx3 , σ1

3 M1
4 = k4‖gx4 , σ1

4 M1
5 = H(k5)‖gx5 , σ1

5

Broadcast Round 1

sid ← H(I‖k1‖k2‖k3‖k4‖H(k5)), tLi ← H(gxL(i)xi), tRi ← H(gxR(i)xi)

Ti ← tLi ⊕ tRi , T̂5 ← k5 ⊕ tR5 , σ2
i ← DS.Sign(ski, M

2
i)

M2
1 = T1‖sid, σ2

1 M2
2 = T2‖sid, σ2

2 M2
3 = T3‖sid, σ2

3 M2
4 = T4‖sid, σ2

4 M2
5 = T̂5‖T5‖sid, σ2

5

Broadcast Round 2

Session Key k = H(I‖k1‖k2‖k3‖k4‖k5)

Fig. 1. A (Static) Group Key Exchange Protocol [20]. I = {U1, U2, U3, U4, U5}.

The protocol in Fig. 1 is proven secure under the strong contributiveness
definition in [11,20]. However, the protocol does not provide partial-key control
resistance. In the protocol, the keying materials ki of Ui (1 ≤ i ≤ 4) are sent in
clear at the beginning of the protocol, so the last user (i.e. U5 in our example)
can (partially) control the session key as follows: after seeing the ki’s of all
the other users, U5 repeatedly tries different values for k5 until the session key
k = H(I‖k1‖k2‖k3‖k4‖k5) has a desired pattern. We can see that in order to
control s bits of the final session key, the expected number of trials that U5 needs
to perform is 2s.

A similar attack can be performed to other protocols (e.g., those in [8,7,24,
18,26,11]) where a user can repeatedly try different keying materials after seeing
the keying material sent by other users.

However, in our definition of contributiveness, we don’t allow the adversary
to make the RevealState query. This restriction is necessary in our definition
since otherwise the adversary can use the RevealState query to learn the keying
material of the instance under attack, and then repeatedly choose the proper
keying materials for other users. In contrast, such a restriction is not required in
the strong contributiveness definition in [11,20]. So in general, these two notions
are incomparable. However, we believe partial-key control resistance may be
more important in some circumstances.

It is also worth noting that partial-key control attacks have been considered
in some previous work, such as in the shielded-insider privacy security notion

270 G. Yang and C.H. Tan

by Desmedt et al. [15], and in the weak contributiveness notion by Bresson and
Manulis [10]. We leave the relationship among these partial-key control resistance
notions an open problem.

3 A New Dynamic Group Key Exchange Protocol

In this section, we present a new dynamic group key exchange protocol and show
that it satisfies all the security definitions (i.e. SK-, MA-, and Co-Security) given
in Sec. 2. Our protocol makes use of a commitment scheme CMT = (CMT,CVF),
a digital signature scheme DS, and two pseudo-random function families F̂
and F̃.

3.1 Primitives

Commitment Schemes. A commitment scheme CMT consists of two algo-
rithms: a commitment algorithm CMT which takes a message M to be committed
as input and returns a commitment C and an opening key δ, and a deterministic
verification algorithm CVF which takes C,M, δ as input and returns either 0 or
1. We say CMT = (CMT,CVF) is a perfectly hiding and computationally bind-
ing commitment scheme with binding error ε if CMT achieves all the following
properties.
– Consistency: for any message M

Pr[(C, δ) $←CMT(M) : CVF(C,M, δ) = 1] = 1.

– Perfectly Hiding: for any messages M0 and M1 such that |M0| = |M1|, the

commitmentsC0 andC1 are identically distributed where (C0, δ0)
$←CMT(M0),

and (C1, δ1)
$←CMT(M1).

– Computationally Binding: For every polynomial time algorithm M

Advbind
CMT ,M

def= Pr

⎡⎣ (C, (M0, δ0), (M1, δ1))←M(1k) :
M0
= M1 ∧ CVF(C,M0, δ0) = 1
∧CVF(C,M1, δ1) = 1

⎤⎦ ≤ ε(k).

In our protocol we will make use of a commitment scheme with the following
additional property: for any message M , an honest execution of CMT(M) gen-
erates a commitment C that is uniformly distributed in the range of CMT(·).
We call such kind of commitment schemes Uniformly Distributed commitment
schemes. A typical example of this type of commitment schemes is the Peder-
sen commitment scheme [28] where the computationally binding property holds
under the Discrete Log assumption.

Pseudo-random Function Family. A family of efficiently computable func-
tions F = {FK : D → R|K ∈ K} is called a pseudo-random function family, if for
any polynomial time algorithm A,

Advprf
F,A(k) def= Pr[AFκ(·)(1k) = 1]− Pr[ARF(·)(1k) = 1]

is negligible where κ
$←K and RF : D → R is a truly random function.

Dynamic Group Key Exchange Revisited 271

Digital Signature Scheme. A digital signature scheme DS consists of three
algorithms: a key generation algorithm DS.Kg that takes a security parameter
1k as input and returns a long-lived key pair (pk, sk) where pk is public and
sk is private; a signing algorithm DS.Sign that takes a private key sk and a
message m ∈ {0, 1}∗ as input, and returns a signature σ; and a verification
algorithm DS.V er that takes a public key pk, a message m and a signature σ as
input, and returns a bit b ∈ {0, 1} indicating the validity of the signature. The
consistency requirement is that for any security parameter k and any message
m ∈ {0, 1}∗,

Pr[(pk, sk)← DS.Kg(1k) : DS.V er(pk,m,DS.Sign(sk,m)) = 1] = 1.

We say DS is existentially unforgeable under chosen message attacks (uf-cma),
if for any polynomial time algorithm F ,

Advuf−cma
DS,F (k) def= Pr

⎡⎢⎢⎣
(pk, sk)← DS.Kg(1k),
(m∗, σ∗) ← FDS.Sign(sk,·)(pk) :
DS.V er(pk,m∗, σ∗) = 1
∧ F has never queried DS.Sign(sk,m∗)

⎤⎥⎥⎦
is negligible.

3.2 The Protocol

Our protocol is an improved version of the protocol by Kim et al. [24] with the
following differences: (1) the protocol in [24] is in the random oracle model while
ours is in the standard model; (2) the protocol in [24] cannot achieve MA- and
Co-security.

Protocol Design. The setup protocol makes use of two-party Diffie-Hellman
key exchange to form a ring structure: each party generate an ephemeral pub-
lic/private key pair (xi, g

xi), and generates a left key KL
i (based on gxi−1xi) with

his left neighbor and a right key KR
i (based on gxi+1xi) with his right neighbor,

and broadcasts KL
i ⊕KR

i . Then each group member can recover the left/right
keys of all other group members due to the ring structure. One of the mem-
bers also conceals its keying material using his right key, and others just send
the keying materials in clear. Now only the legitimate group members can re-
cover the concealed keying material and compute the final session key. To ensure
contributiveness, we require each party to commit their keying material before
receiving others’ keying materials.

For the join/leave event, we let part of the existing group members to perform
the same procedures as in the setup protocol, but the rest of the users do not
need to run the full setup protocol, so computational and communication cost
can be saved. And to ensure forward/backward security, the state information
of the each user is updated using two pseudo-random functions. Below are the
details of the protocol.

272 G. Yang and C.H. Tan

Let G denote a cyclic group of prime order q, and g is a generator of G. Our
dynamic group key exchange protocol works as follows:

– KG: For each user Ui inside the system, a long lived key pair (pki, ski) ←
DS.Kg(1k) is generated.

– Setup (Fig. 2): The following protocol is performed among a set I = {U1,
U2, ..., Un} of users.
1. (Round 1) Each user Ui chooses ki

$←{0, 1}�, xi
$←Z∗

q and computes
(k′

i, δi)← CMT(ki). Ui then broadcasts M1
i = k′

i‖gxi.
2. (Round 2) Upon receiving all the messages M1

j (j
= i), each Ui computes
sidi ← k′

1‖k′
2‖...‖k′

n, tLi ← F̂g
xL(i)xi (1)3, tRi ← F̂g

xR(i)xi (1), ωi ← tLi ⊕ tRi .
Ui (1 ≤ i < n) sets M2

i = ωi‖ki‖δi and Un computes Tn ← tRn ⊕ (kn‖δn)
and sets M2

n = ωn‖Tn. Each Ui then generates a signature σ2
i on the

message M1
i ‖M2

i ‖I‖sidi and broadcast M2
i ‖σ2

i .
3. (Key Computation) Upon receiving M2

j ‖σ2
j (j
= i), each Ui verifies all

the signatures. If the signatures are valid, Ui derives tLi−1 ← tLi ⊕ ωi−1,
tLi−2 ← tLi−1 ⊕ ωi−2, ... until tL1 = tRn is derived. Ui then derives kn‖δn ←
tRn ⊕ Tn. Ui then verifies if CVF(k′

j , kj , δj) = 1 for all j
= i. If all the
verifications are successful, Ui computes the session key as ki ← F̃k̂(1)
where k̂ ←

⊕
Uj∈I kj .

4. (Post Computation) Each Ui computes hL
i ←F̂g

xL(i)xi (0), hR
i ←F̂g

xR(i)xi (0)
and X ← F̃k̂(0), saves (hL

i , h
R
i , X) with pidi = I and sidi in the memory,

and erases all other state information.

U1 U2 U3 U4

ki
$←{0, 1}�, (k′

i, δi) ← CMT(ki), xi
$←Z

∗
q

M1
1 = k′

1‖gx1 M1
2 = k′

2‖gx2 M1
3 = k′

3‖gx3 M1
4 = k′

4‖gx4

Broadcast Round 1

sidi ← k′
1‖k′

2‖k′
3‖k′

4, tLi ← F̂
g

xL(i)xi (1), tRi ← F̂
g

xR(i)xi (1), ωi ← tLi ⊕ tRi
T4 ← tR4 ⊕ (k4‖δ4), σ2

i ← DS.Sign(ski, M
1
i ‖M2

i ‖I‖sidi)

M2
1 = ω1‖k1‖δ1, σ2

1 M2
2 = ω2‖k2‖δ2, σ2

2 M2
3 = ω3‖k3‖δ3, σ2

3 M2
4 = ω4‖T4, σ2

4

Broadcast Round 2

Session Key k = F̃k̂(1) where k̂ = k1 ⊕ k2 ⊕ k3 ⊕ k4

Post Computation

hL
i ← F̂

g
xL(i)xi (0), hR

i ← F̂
g

xR(i)xi (0), X ← F̃k̂(0)

hL
1 , hR

1 , X hL
2 , hR

2 , X hL
3 , hR

3 , X hL
4 , hR

4 , X

Fig. 2. The Setup Protocol. I = {U1, U2, U3, U4}.
3 Here for simplicity we directly use the Diffie-Hellman key as the pseudo-random

function key, in practice, one may need to first apply a Key Drivation Function
(KDF) to the Diffie-Hellman key, and then use the output of the KDF as the pseudo-
random function key.

Dynamic Group Key Exchange Revisited 273

– Join (Fig. 3): Given an old group I = {U1, U2, ..., Un} where each member has
state information (hL

i , h
R
i , X) and a set of new users J = {Un+1, Un+2, ...,

Un+k}, the Join protocol works as follows:
1. (Round 1): Each Ui (1 ≤ i ≤ n + k) chooses k̂i

$←{0, 1}� and computes
(k̂′

i, δ̂i) ← CMT(k̂i). Each Uj (j ∈ {1, n, n + 1, ..., n + k}) also chooses

x̂j
$←Z∗

q , and U2 sets x̂2 = X . Then each Ui (1 ≤ i ≤ n + k) broadcasts
M1

i where M1
j = k̂′

j‖gx̂j for j ∈ {1, 2, n, n + 1, ..., n + k} and M1
� = k̂′

�

for � ∈ {3, ..., n− 1}.
2. (Round 2): Upon receiving all the messages, each Ui(1 ≤ i ≤ n + k)

computes sidi ← k̂′
1‖k̂′

2‖...‖k̂′
n+k. Each Uj (j ∈ {1, 2, n, n + 1, ..., n +

k}) then computes tLj ← F̂
g

x̂L(j) x̂j (1), tRj ← F̂
g

x̂R(j) x̂j (1) where x̂L(n) =
x̂2, x̂R(2) = x̂n, and ωi ← tLi ⊕ tRi . Each U� (� ∈ {3, ..., n − 1}) also
computes tR� = tR2 , tL� = tL2 (as U� also has X), ω� ← tL� ⊕ tR� . Ui (i ∈
{1, 2, n + 1, ..., n + k}) sets M2

i = ωi‖k̂i‖δ̂i, U� (3 ≤ � ≤ n − 1) sets
M2

� = k̂�‖δ̂�, and Un computes Tn ← tRn ⊕ (k̂n‖δ̂n) and sets M2
n =

ωn‖Tn. Each Ui (1 ≤ i ≤ n+k) generates a signature σ2
i on the message

M1
i ‖M2

i ‖I ′‖sidi and broadcasts M2
i ‖σ2

i .
3. (Key Computation): Each Ui ∈ I′ performs the same procedures as

he/she does in the Key Computation phase of the Setup protocol, except
that for each U� (3 ≤ � ≤ n−1), tL� = tL2 and tR� = tR2 are used. The final
session key of each Ui is computed as ki ← F̃k̂(1) where k̂ ←

⊕
Uj∈I′ k̂j .

4. (Post Computation) Each Uv (v ∈ {1, n + 1, ..., n + k}) computes hL
v ←

F̂
g

x̂L(v) x̂v (0), each Uj (j ∈ {n, n+1, ..., n+k}) computes hR
j ← F̂

g
x̂R(j) x̂j (0),

and hR
1 , hL

n , h
L
� , h

R
� (2 ≤ � ≤ n − 1) remain unchanged. Each Ui (i ∈

{1, 2, ..., n+ k}) computes X ′ ← F̃k̂(0), saves (hL
i , h

R
i , X ′) with pidi = I ′

and sidi in the memory, and erases all other state information.
– Leave (Fig. 4): Let I = {U1, U2, ..., Un} be an existing group where each

member Ui has state information (hL
i , h

R
i , X). Let I ′ = I\J where J =

{Ul1 , Ul2 , ..., Uln′} denotes the set of leaving users, and N(J) be the set
of neighbors of those leaving users, i.e. N(J) = {Ul1−1, Ul1+1, ..., Uln′−1,
Uln′+1}. The Leave protocol works as follows:
1. (Round 1): Each Ui in I ′ randomly chooses k̃i ∈ {0, 1}� and computes

(k̃′
i, δ̃i) ← CMT(k̃i). Each U� (� ∈ I′\N(J)) sets M1

� = k̃′
�. Each Uj in

N(J) additionally chooses x̃j
$←Z∗

q , and sets M1
j = k̃′

i‖gx̃j . Each Ui in I ′
broadcasts M1

i .
2. (Round 2): Upon receiving all the messages, each Ui in I ′ computes

sidi as the concatenation of all the k̃′
j sent by Uj ∈ I′. Each pair of

neighbors Ulj−1 and Ulj+1 in N(J) generate hR
lj−1 = F̂

g
x̃lj+1x̃lj−1 (0)

and hL
lj+1 = F̂

g
x̃lj−1x̃lj+1 (0), respectively. Each Ui in I ′ generates tLi =

F̂hL
i
(1), tRi = F̂hR

i
(1), and ωi ← tLi ⊕ tRi . The user Uln′+1 additionally

computes Tln′+1 ← tRln′+1⊕ (k̃ln′+1‖δ̃ln′+1). Each Ui in I ′\{Uln′+1} then
sets M2

i = ωi‖k̃i‖δ̃i, Uln′+1 sets M2
ln′+1 = ωln′+1‖Tln′+1. Finally, each

274 G. Yang and C.H. Tan

U1 U2 U3 U4 U5

hL
1 , hR

1 , X hL
2 , hR

2 , X hL
3 , hR

3 , X hL
4 , hR

4 , X

k̂i
$←{0, 1}�, (k̂′

i, δ̂i) ← CMT(k̂i), x̂i
$←Z

∗
q , x̂2 ← X

M1
1 = k̂′

1‖gx̂1 M1
2 = k̂′

2‖gX M1
3 = k̂′

3 M1
4 = k̂′

4‖gx̂4 M1
5 = k̂′

5‖gx̂5

Broadcast Round 1

tLi ← F̂
g

x̂L(i)x̂i (1), tRi ← F̂
g

x̂R(i)x̂i (1) for {U1, U2, U4, U5}, tL3 = tL2 & tR3 = tR2

ωi ← tLi ⊕ tRi , T4 ← tR4 ⊕ (k̂4‖δ̂4), sidi ← k̂′
1‖k̂′

2‖k̂′
3‖k̂′

4‖k̂′
5, σ2

i ← DS.Sign(ski, M
1
i ‖M2

i ‖I′‖sidi)

M2
1 = ω1‖k̂1‖δ̂1, σ2

1 M2
2 = ω2‖k̂2‖δ̂2, σ2

2 M2
3 = k̂3‖δ̂3, σ2

3 M2
4 = ω4‖T4, σ2

4 M2
5 = ω5‖k̂5‖δ̂5, σ2

5

Broadcast Round 2

Session Key k = F̃k̂(1) where k̂ ← k̂1 ⊕ k̂2 ⊕ ... ⊕ k̂5

Post Computation

h′L
i ← F̂

g
x̂L(i)x̂i (0), h′R

i ← F̂
g

x̂R(i)x̂i (0), X′ ← F̃k̂(0)

h′L
1 , hR

1 , X′ hL
2 , hR

2 , X′ hL
3 , hR

3 , X′ hL
4 , h′R

4 , X′ h′L
5 , h′R

5 , X′

Fig. 3. The Join Protocol. I′ = {U1, U2, U3, U4, U5},J = {U5}.

Ui in I ′ generates a signature σ2
i on the message M1

i ‖M2
i ‖I ′‖sidi and

broadcasts M2
i ‖σ2

i .
3. (Key Computation): Each Ui ∈ I′ performs the same procedures as

he/she does in the Key Computation phase of the Setup protocol. The
final session key of each Ui is computed as ki ← F̃k̂(1) where k̂ ←⊕

Uj∈I′ k̃j .

4. (Post Computation): Each Ui ∈ I′ computes h′L
i ← F̂hL

i
(0), h′R

i ←
F̂hR

i
(0), X ′ ← F̃k̂(0), saves (h′L

i , h
′R
i , X ′) with pidi = I ′ and sidi in the

memory, and erases all other state information.

3.3 Security Analysis

We prove that our protocol is secure with respect to the security definitions (i.e.
SK-, MA, and Co-security) given in Sec. 2.

Decisional Diffie-Hellman (DDH) Problem: Fix a generator g of G. The
DDH assumption claims that {g, ga, gb, Z} and {g, ga, gb, gab} are computation-
ally indistinguishable where a, b are randomly selected from Zq and Z is a random
element of G.

Theorem 1. The proposed dynamic group key exchange protocol is SK-secure
if the DDH assumption holds in the underlying group G, DS is a uf-cma secure
digital signature scheme, CMT is a uniformly distributed perfectly hiding com-
mitment scheme, F̂ and F̃ are two independent pseudo-random function families.

We prove the Theorem in three cases: (1) the Test query is made to a setup
session, (2) the Test query is made to a join session, and (3) the Test query is

Dynamic Group Key Exchange Revisited 275

U1 U2 U3 U4 U5

hL
1 , hR

1 , X hL
2 , hR

2 , X hL
3 , hR

3 , X hL
4 , hR

4 , X hL
5 , hR

5 , X

k̃i
$←{0, 1}�, (k̃′

i, δ̃i) ← CMT(k̃i), x̃i
$←Z

∗
q

M1
1 = k̃′

1 M1
2 = k̃′

2 M1
3 = k̃′

3‖gx̃3 M1
5 = k̃′

5‖gx̃5

Broadcast Round 1

hR
3 ← F̂(gx̃5)x̃3 (0) hL

5 ← F̂(gx̃3)x̃5 (0)

sidi ← k̃′
1‖k̃′

2‖k̃′
3‖k̃′

5, tLi ← F̂hL
i

(1), tRi ← F̂hR
i

(1), ωi ← tLi ⊕ tRi

T5 ← tR5 ⊕ (k̃5‖δ̃5), σ2
i ← DS.Sign(ski, M

1
i ‖M2

i ‖I′‖sidi)

M2
1 = ω1‖k̃1‖δ̃1, σ2

1 M2
2 = ω2‖k̃2‖δ̃2, σ2

2 M2
3 = ω3‖k̃3‖δ̃3, σ2

3 M2
5 = ω5‖T5, σ2

5

Broadcast Round 2

Session Key k = F̃k̂(1) where k̂ = k̃1 ⊕ k̃2 ⊕ k̃3 ⊕ k̃5

Post Computation

h′L
i ← F̂hL

i
(0), h′R

i ← F̂hR
i

(0), X′ ← F̃k̂(0)

h′L
1 , h′R

1 , X′ h′L
2 , h′R

2 , X′ h′L
3 , h′R

3 , X′ h′L
5 , h′R

5 , X′

Fig. 4. The Leave Protocol. I′ = {U1, U2, U3, U5},J = {U4}.

made to a leave session. To prove (1), we just follow the same approach as other
existing work does, we define a sequence of games, starting from the original
SK-security game, ending with a game in which the adversary has no advantage,
and show that the difference between each two consecutive games is negligible.
For case (2) and (3), we use the idea that f(0) and f(1) “looks” random and
independent to any polynomial time adversary if f(·) is a secure pseudo-random
function, so even if the adversary see one of them, we can still replace the other
with a random element.

Theorem 2. The proposed dynamic group key exchange protocol is MA-secure
if DS is a uf-cma secure digital signature scheme, and CMT is a computationally
binding commitment scheme.

Theorem 3. The proposed dynamic group key exchange protocol is Co-secure
if CMT is a perfectly hiding and computationally binding commitment scheme,
and F̃ is a pseudo-random function family.

The detailed proofs are deferred to the full paper.

4 Conclusions and Future Work

In this paper, we presented a new security model for dynamic group key ex-
change (DGKE) protocols and a new definition of contributiveness which cap-
tures partial-key control attacks. Comparing to existing security models, our
new model is more concise and easy to use. We also presented a new DGKE
protocol that provides strong security as well as high efficiency. Some possible
future work includes 1) study the relationship among the existing partial-key
control resistance notions; and 2) construct a robust protocol that can handle
the situation of user crash during protocol execution.

276 G. Yang and C.H. Tan

References

1. Ateniese, G., Steiner, M., Tsudik, G.: Authenticated group key agreement and
friends. In: ACM Conference on Computer and Communications Security, pp. 17–
26 (1998)

2. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols. In: Proc. 30th ACM Symp.
on Theory of Computing, pp. 419–428. ACM, New York (May 1998)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

4. Bellare, M., Rogaway, P.: Provably secure session key distribution – the three party
case. In: Proc. 27th ACM Symp. on Theory of Computing, Las Vegas, pp. 57–66.
ACM, New York (1995)

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

6. Bohli, J.-M., Gonzalez Vasco, M.I., Steinwandt, R.: Secure group key establishment
revisited. Int. J. Inf. Sec. 6(4), 243–254 (2007)

7. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group Diffie-Hellman key ex-
change under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)

8. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group Diffie-
Hellman key exchange - the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001)

9. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: ACM Conference on Computer and
Communications Security, pp. 255–264 (2001)

10. Bresson, E., Manulis, M.: Contributory group key exchange in the presence of
malicious participants. IET Information Security 2(3), 85–93 (2008)

11. Bresson, E., Manulis, M.: Securing group key exchange against strong corruptions
and key registration attacks. International Journal of Applied Cryptography 1(2),
91–107 (2008)

12. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system (extended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS,
vol. 950, pp. 275–286. Springer, Heidelberg (1995)

13. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
http://eprint.iacr.org/

15. Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: A non-malleable group key
exchange protocol robust against active insiders. In: Katsikas, S.K., López, J.,
Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 459–
475. Springer, Heidelberg (2006)

16. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22, 644–654 (1976)

17. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes, and Cryptography 2(2), 107–125 (1992)

Dynamic Group Key Exchange Revisited 277

18. Dutta, R., Barua, R.: Constant round dynamic group key agreement. In: Zhou,
J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 74–88.
Springer, Heidelberg (2005)

19. Furukawa, J., Armknecht, F., Kurosawa, K.: A universally composable group key
exchange protocol with minimum communication effort. In: Ostrovsky, R., De
Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 392–408. Springer,
Heidelberg (2008)

20. Choudary Gorantla, M., Boyd, C., González Nieto, J.M.: Modeling key compromise
impersonation attacks on group key exchange protocols. In: Jarecki, S., Tsudik, G.
(eds.) PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Heidelberg (2009)

21. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.-c.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer,
Heidelberg (1996)

22. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In:
ACM Conference on Computer and Communications Security, pp. 180–189 (2005)

23. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003)

24. Kim, H.-J., Lee, S.-M., Lee, D.H.: Constant-round authenticated group key ex-
change for dynamic groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 245–259. Springer, Heidelberg (2004)

25. Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg
(2005)

26. Manulis, M.: Provably secure group key exchange. PhD Thesis, Ruhr University
Bochum (2007), http://www.manulis.eu/phd.html

27. Mitchell, C., Ward, M., Wilson, P.: On key control in key agreement protocols.
Electronics Letters 34, 980–981 (1998)

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1991)

29. Steer, D.G., Strawczynski, L., Diffie, W., Wiener, M.J.: A secure audio teleconfer-
ence system. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 520–528.
Springer, Heidelberg (1988)

30. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman key distribution extended to
group communication. In: ACM Conference on Computer and Communications
Security, pp. 31–37 (1996)

31. Tan, C.-H., Yang, G.: Comment on provably secure constant round contributory
group key agreement in dynamic setting. IEEE Transactions on Information Theory
(to appear)

32. Teo, J.C.M., Tan, C.H., Ng, J.M.: Security analysis of provably secure constant
round dynamic group key agreement. IEICE Transactions 89-A(11), 3348–3350
(2006)

	Dynamic group key exchange revisited
	Citation

	tmp.1665640309.pdf.f2UVI

