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Abstract. We initiate the formal study on authenticated key exchange
(AKE) under bad randomness. This could happen when (1) an adver-
sary compromises the randomness source and hence directly controls the
randomness of each AKE session; and (2) the randomness repeats in
different AKE sessions due to reset attacks. We construct two formal
security models, Reset-1 and Reset-2, to capture these two bad random-
ness situations respectively, and investigate the security of some widely
used AKE protocols in these models by showing that they become in-
secure when the adversary is able to manipulate the randomness. On
the positive side, we propose simple but generic methods to make AKE
protocols secure in Reset-1 and Reset-2 models. The methods work in a
modular way: first, we strengthen a widely used AKE protocol to achieve
Reset-2 security, then we show how to transform any Reset-2 secure AKE
protocol to a new one which also satisfies Reset-1 security.

Keywords: Authenticated Key Exchange, Resettable Cryptography, Bad
Randomness.

1 Introduction

An Authenticated Key Exchange (AKE) protocol consists of a tuple of random-
ized algorithms that enable two parties communicating over an insecure network
to establish a common session key. These algorithms consume random coins
which are typically generated by pseudo-random number generators (PRNGs).
Practical PRNGs, such as ANSI X9.17 PRNG and FIPS 186 PRNG, can gener-
ate bit-strings which are computationally indistinguishable from truly random
strings provided that the seeds of the PRNGs are fresh and truly random [16].
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In practice (e.g. OpenSSL), seeds are formed by collecting random data from an
entropy pool, which can be created from a hardware source (e.g., sound/video
input, disk drives, etc.) and/or a non-hardware source (e.g., the timing and con-
tent of events such as mouse movement, keystroke, network traffic, etc.) [19,30].

In some practical situations however, the entropy pool could be controlled by
an adversary and the seeds may no longer be fresh or truly random. For example,
if an adversary has physical access to a hardware source and/or can control the
events of a non-hardware source [19], the adversary may be able to manipulate
the data in the entropy pool. Also, in some operating systems such as Linux,
random data from the entropy pool may be pre-generated and stored in a buffer
for later use. If the buffer is not well-protected, an adversary may be able to
modify these pre-generated random data.

Adversarial reset of machines could make an AKE protocol reuse the same
random coins in different sessions. It has been known as a real threat to some
computing devices such as smart cards [12,6]. Recently, Ristenpart and Yilek
[34] showed that the adversarial reset is also a serious security threat to Virtual
Machines (VMs). Generally, a system administrator can take snapshots of the
current system state of a VM from time to time as regular backups. The VM can
later be reverted back to a previous state using the snapshots. To perform an
adversarial reset, an adversary can first make a system on a VM crash, e.g., via
a Denial of Service (DoS) attack. Then when the system administrator reverts
the VM back to a “good state”, some random coins that have occurred before
the machine being reset would be reused after the VM is reverted [34].

We categorize the threats above into “Reset-1” and “Reset-2” attacks, re-
spectively. In Reset-1 attack, the adversary controls the random coins used by
the AKE algorithms, while in Reset-2 attack, the adversary can reset a device
to make algorithms reuse some random coins. The practical interests of these
attacks bring a natural question: would the existing AKE protocols, especially
those widely used ones, be still secure under these attacks?

In this paper, we conduct the first formal study on AKE under Reset-1 and
Reset-2 attacks. Below are the three aspects to which we contribute.

Security Models. We propose two formal security models for Reset-1 and
Reset-2 attacks respectively. We build our models based on the existing Bellare-
Rogaway (BR) [7] and Canetti-Krawczyk (CK) [13] security models by providing
the adversary additional capabilities. In the Reset-1 model, the adversary di-
rectly picks random coins for the AKE participants, while in the Reset-2 model,
the adversary does not pick random coins directly but can reset a participant so
that the same random coins will be used in multiple AKE sessions. In addition,
to capture Kaliski’s online Unknown Key Share (UKS) attacks [11], our models
allow the adversary to register malicious users with public keys of its own choice.

In the Reset-1 model, since the adversary already controls the randomness, if
the adversary also learns the long-lived key of either participant, it can trivially
compute the session key. Hence the model cannot allow the adversary to cor-
rupt the long-lived key of either participant, and Forward Secrecy (FS) cannot be
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captured. On the other side, the Reset-2 model does not have this restriction.
This also indicates that the two models are incomparable and explains the reason
why we need two models.

Security of Existing Protocols. Based on the two new models we defined,
we show that some well-known AKE protocols (e.g. ISO [24,13], SIGMA1 [14,27],
JFK [2], SKEME [28], HMQV [26]), which are proven secure in their original se-
curity models will become insecure when the adversary is allowed to manipulate
the randomness in the way defined in Reset-1 and/or Reset-2.

Designing New Protocols. We then present techniques to build AKE pro-
tocols that are secure in both Reset-1 and Reset-2 models. We present a generic
way to efficiently transform a Reset-2 secure AKE protocol to a new one which is
secure in both Reset-1 and Reset-2 models. Our idea is to generate good “inter-
nal” randomness within the protocol, we do this by applying a pseudo-random
function (PRF) to the “raw” randomness at the very beginning of a protocol
so that after this treatment, computationally “good” randomness are used in
the remaining steps of the protocol. And we prove that this simple (but useful)
idea indeed works. However, we remark that some additional requirement on the
PRF is needed in order to make the transformed protocol still be Reset-2 secure.

Our transformation provides a “modular approach” to the construction of
Reset-1 and Reset-2 secure AKE protocols: (1) we first build a Reset-2 secure
AKE protocol Π ; (2) then we apply the transformation to Π and get a new
protocol Π ′ which maintains Reset-2 security and in addition to this, it also
satisfies Reset-1 security. We illustrate this modular approach by proposing a
new SIG-DH based AKE protocol which is transformed from the ISO protocol.
The modifications we made are simple and efficient, and can be deployed easily
to existing implementations of the protocol.

2 Related Work

Authenticated key exchange (AKE) protocols have been extensively studied
within the cryptographic community. The first complexity-theoretic treatment
of the security notion of AKE is due to Bellare and Rogaway [7]. Their model
(referred to as the BR model) and its variants (e.g., [8,9,13]) then became the
de facto standard for analyzing AKE protocols. In [13], Canetti and Krawczyk
combined previous work and presented a new security model (referred to as the
CK model). They showed that AKE protocols secure in their model can be com-
posed with symmetric key encryption and authentication functions to provide
provably secure communication channels. The CK model was used to demon-
strate the security of many popular AKE protocols such as the ISO protocol
[24,13], the SIGMA protocol [14,27], the HMQV protocol [26] and many more.
Recently, LaMacchia et al. [29] extended the CK model to a new model (referred
to as eCK model). In their model, the adversary is allowed to compromise either

1 SIGMA serves as the basis of the signature-based mode of IKE [23] and IKEv2 [25].
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the long-live keys or the ephemeral keys (the latter are related to the random-
ness) of the participants of a protocol session. There have been many discussions
on the strength of the two (CK and eCK) models [29,32,10]. In [10], Boyd et al.
suggested that these two models are incomparable. In this paper, we follow the
definitional approach of Canetti and Krawczyk, and we will see later that in fact
our Reset-2 model can be considered as Resettable CK model.

None of the existing security models for AKE considers the bad randomness
scenarios that we describe in this paper. Although for AKE protocols resilience
to the leakage of ephemeral secret key has been studied by Krawczyk [26] and by
LaMacchia et al. [29], their work is different from ours: firstly, ephemeral secret
key is related but not equivalent to the randomness required by an AKE pro-
tocol, in particular, randomness may be required in other parts of the protocol;
secondly, in the case of ephemeral secret key leakage, the adversary can only
passively learn the ephemeral secret key, but not control its value. Another piece
of work that is “somehow” related to ours is the work by Aiello et al. [2] in which
the JFK (Just Fast Keying) AKE protocol was proposed and discussions about
the reuse of Diffie-Hellman (DH) exponents in multiple JFK AKE sessions were
made. However, this is different from the Reset-2 scenario we discussed earlier.
The reuse of DH exponent is initiatively implemented by a participant of the
protocol for reducing the number of costly modular exponentiation operations.
But in a reset attack, all the components of the protocol use unfresh/used ran-
domness. To see the difference more clearly, if an AKE protocol (such as JFK)
uses a randomized digital signature scheme (such as Digital Signature Standard
- DSS [1]), then reusing the same randomness to sign different messages may
allow an adversary to derive the secret signing key. However, merely reusing the
DH exponent may not cause such a serious consequence.

Resettable Cryptography. Resettable security have been considered for
other cryptographic protocols before, such as resettable Zero-Knowledge (rZK)
proof [12] and resettable Identification (rID) protocols [6]. Recently, Goyal and
Sahai [22] studied the problem of resettably secure two-party and multi-party
computation for general functionalities, and in [35], Yilek studied resettably
secure public key encryption. Although AKE can be considered as a two-party
computation function, our work is different from that of Goyal and Sahai [22].
We focus on examining and enhancing the existing AKE protocols that have
been widely used in the real practice.

Hedged Cryptography. Our paper is not the first paper to treat bad random-
ness for cryptographic operations. The Hedged Cryptography [4,34] preprocesses
randomness together with other inputs (messages, keys, etc.) of a cryptographic
operation to provide (pseudo)randomness for the cryptographic operation. In
particular, in [34], Ristenpart and Yilek presented the hedged RSA key transport
and authenticated Diffie-Hellman key exchange protocols used in TLS without
formal security models. Their heading technique is different from our treatment
to the randomness presented in Sec. 5 and their hedged protocols cannot provide
Reset-1 security.
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3 Security Models and Definitions

3.1 AKE Protocol Descriptions

An Authenticated Key Exchange (AKE) protocol consists of two probabilistic
polynomial time algorithms: the Long-Lived Key generation algorithm SKG and
a protocol execution algorithm P. In this paper, we focus on the public key
setting where the algorithm SKG returns a public key and a private key upon
each invocation.

Protocol Participants. We initialize a nonempty set U of parties. Each party
U ∈ U is named by a unique string, and that string has some fixed length. We
use another set MU to denote malicious parties who are added into the system
by an adversary after the initialization phase. Each malicious party M ∈ MU is
also named by a distinct and fixed-length string which has never been used to
name another party inside the system.

Long-Lived Keys. Each party U ∈ U holds a public/private key pair (pkU , skU )
that is generated according to the Long-Lived Key generation algorithm SKG.
However, for each party M ∈ MU , its public key pkM can be set to any value
except that pkM has never been used as the public key of another party inside
the system.

Instances. A party may run many instances concurrently. We denote instance
i of party U by Πi

U . At the time a new instance is created, a unique instance
number within the party is chosen, a sequence of random coins are tossed and
feeded to that instance, and the instance enters the “ready” state.

Protocol Execution. A protocol execution algorithm is a probabilistic algo-
rithm taking strings to strings. This algorithm determines how instances of the
parties behave in response to signals (messages) from their environment. Upon
receiving an incoming signal (message) Min, an instance runs the protocol P and
generates

(Mout, acc, term
i
U , sidi

U , pidi
U , ssk,St i

U ) ← P(1k, U, pkU , skU ,St i
U , Min).

The first component Mout corresponds to the responding message, the second
component acc denotes the decision the instance has made, and the third com-
ponent termi

U indicates if the protocol execution has been terminated. A session
id (sidi

U ), and partner id (pidi
U ) may be generated during the protocol execution.

When the decision is accept, the instance holds a session key (ssk) which is to be
used by upper layer applications. For all the protocols we analyze in this paper,
we assume the state information St i

U is erased from the memory of U once termi
U

becomes true.

Partnership. The partnership between two instances is defined via parter ID
(pid) and session ID (sid). The pid names the party with which the instance
believes it has just exchanged a key, and the sid is an identifier which uniquely
labels the AKE session. We say two instances Πi

U and Πj
V are partners if pidi

U =
V, pidj

V = U and sidi
U = sidj

V .
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procedure Initialize

For all U ∈ U
(pkU , skU ) ←$ SKG(1k, U) ; TU ← ∅

Timer ← 0 ; b ←$ {0, 1} ; MU ← ∅
return {pkU}U∈U

procedure Register(U, pk)

If (U ∈ (U ∪ MU) ∨ pk ∈ {pkV }V ∈U∪MU ) then

return Invalid

MU ← MU ∪ {U}
return true

procedure NewInstance(U, i, N)

If (U /∈ U ∨ i ∈ TU ) then return Invalid

TU ← TU ∪ {i} ; Ni
U ← N ; Sti

U ← (Ni
U , ready)

acci
U ← false ; termi

U ← false

sidi
U ←⊥ ; pidi

U ←⊥ ; sski
U ←⊥

return true

procedure Send(U, i, Min)

If (U /∈ U ∨ i /∈ TU ∨ termi
U ) then return Invalid

(Mout, acc, termi
U , sidi

U , pidi
U , ssk, Sti

U )

← P(1k, U, pkU , skU , Sti
U , Min)

If (acc∧ not acci
U ) then

sski
U ← ssk ; acci

U ← true

return (Mout, acc, termi
U , sidi

U , pidi
U )

procedure Reveal(U, i)

If (U /∈ U ∨ i /∈ TU ) then return Invalid

Timer ← Timer + 1 ; Time[Reveal, (U, i)] ← Timer

return sski
U

procedure Corrupt(U)

If U /∈ U then return Invalid

Timer ← Timer + 1

Time[Corrupt, U ] ← Timer

return skU

procedure Test(U∗, i∗)
If U∗ /∈ U then return Invalid

If (not acci∗
U∗) then return Invalid

K ←$ KeySpace

If b = 0 then return K

Else return sski∗
U∗

procedure Finalize(b′)

V ∗ ← pidi∗
U∗

If V ∗ /∈ U then return false

If (Time[Corrupt, U∗]
∨Time[Corrupt, V ∗])
return false

If (Time[Reveal, (U∗, i∗)])
return false

If (∃i, i �= i∗ ∧ Ni
U∗ = Ni∗

U∗)

return false

If (∃j∗ ∈ TV ∗ , pidj∗
V ∗ = U∗

∧sidj∗
V ∗ = sidi∗

U∗)

If (∃j, j �= j∗ ∧ Nj
V ∗ = Nj∗

V ∗)

return false

If (Time[Reveal, (V ∗, j∗)])
return false

return (b = b′)

Fig. 1. Game RAKE-1

3.2 Security Models

We define two security models to capture the two scenarios (namely, Reset-1
and Reset-2) where the randomness of an AKE protocol goes bad. However, we
assume that the long-lived keys of all the honest party in the set U are securely
generated using fresh random coins.

Reset-1 Model. In this model, we consider the scenario where the randomness
of each instance is completely controlled by the adversary. The formal definition
is given in Figure 1 where in total six types of oracle queries are defined to
capture the adversarial capabilities. In the following we explain those oracle
queries in detail.
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Register(U, pkU ) This oracle query allows the adversary A to register a new
user U with public key pkU . Here we only require that neither the user
identity U nor the public key pkU exists in the system. In particular, we do
not require the adversary to provide a proof of knowledge on the secret key
with regard to pkU .

NewInstance(U, i, N) This oracle query allows A to initialize a new instance
Πi

U within party U with a binary string N which serves as the random tape
of Πi

U .
Send(U, i, Min) This oracle query invokes instance i of U with message Min.

The instance then runs P(1k, U, pkU , skU ,St i
U , Min) and sends the response

back to the adversary. Should Πi
U terminate or accept will be made available

to A. The session id sidi
U and partner id pidi

U are also made available to A
once they are available.

Reveal(U, i) If oracle Πi
U has accepted and generated a session key sski

U , then
sski

U is returned to the adversary.
Corrupt(U) By making this oracle query, adversary A obtains the long-lived

secret key skU of party U .
Test(U∗, i∗) By making this oracle query, A selects a challenge instance Πi∗

U∗ . If
Πi∗

U∗ has accepted, holding a session key sski∗
U∗ , then the following happens.

If the coin b, flipped in the Initialize phase, is 1, then sski∗
U∗ is returned

to the adversary. If b = 0, then a random session key is drawn from the
session key space and returned to the adversary. This query is only asked
once during the whole game.

The success of an adversary is measured by its ability to distinguish a real session
key from a random key in the session key space. However, some oracle queries will
render session keys exposed. By issuing these queries the adversary can trivially
win the game. To exclude these trivial attacks, we consider the adversary to be
successful only if it specifies a fresh oracle in the Test query.

First of all, the adversary can trivially derive a session key if one of the parties
involved in that session is the adversary itself (i.e. one party is created by the
adversary via a Register query).

The adversary will learn a party’s long lived key by making a Corrupt query.
Since in the Reset-1 model, randomness is completely controlled by the adver-
sary, once a party is corrupted, the adversary is able to derive all state infor-
mation and session keys ever generated by the party. So there is no security
guarantee on session keys of any corrupted party. In other words, we don’t con-
sider the notion of forward secrecy in the Reset-1 model.

The adversary can certainly learn the value of a session key via a Reveal
query. In the reset setting, the adversary can also derive a session key by mount-
ing the reset-and-reply attack. Specifically, the adversary first activates a proto-
col execution between instance Πi

U with random tape NU , and instance Πj
V with

random tape NV . Then it activates another instance Πi′
U with the same random

tape NU . By replaying messages from Πj
V , the adversary makes sski′

U = sski
U . In

this case, revealing sski
U (or using it in a upper layer application) will automati-

cally render sski′
U insecure, and vice versa. This type of attacks imply that as long
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procedure Initialize

The same as in Game RAKE-1

procedure Register(U,pk)

The same as in Game RAKE-1

procedure NewInstance(U, i, j)

If (U /∈ U ∨ i ∈ TU ) then return Invalid

If j �= ⊥ ∧ j /∈ TU then return Invalid

If j = ⊥ then Ri
U ←$ RandomCoins

Else Ri
U ← Rj

U

TU ← TU ∪ {i} ; St i
U ← (Ri

U , ready)

acci
U ← false ; termi

U ← false

sidi
U ←⊥ ; pidi

U ←⊥ ; sski
U ←⊥

return true

procedure Send(U, i, Min)

The same as in Game RAKE-1

procedure Reveal(U, i)

The same as in Game RAKE-1

procedure Corrupt(U)

The same as in Game RAKE-1

procedure Test(U∗, i∗)
The same as in Game RAKE-1

procedure Finalize(b′)
V ∗ ← pidi∗

U∗

If V ∗ /∈ U then return false

If (∃i, i �= i∗ ∧ Ri
U∗ = Ri∗

U∗)

return false

If (Time[Reveal, (U∗, i∗)])
return false

If (∃j∗ ∈ TV ∗ , pidj∗
V ∗ = U∗

∧sidj∗
V ∗ = sidi∗

U∗)

If (∃j, j �= j∗ ∧ Rj
V ∗ = Rj∗

V ∗)

return false

If (Time[Reveal, (V ∗, j∗)])
return false

Else

If (Time[Corrupt, V ∗])
return false

return (b = b′)

Fig. 2. Game RAKE-2

as the random tape of one instance Πi
U is used by another instance Πi′

U , there is
no security guarantee on the session keys generated by these two instances. So
when defining the freshness of an instance, we require that its random tape is
never used by another instance. Our goal is to design AKE protocols such that
reset attacks would not affect the security of session keys generated by those
un-reset instances.

Definition 1. Let AKE be an AKE protocol. Let A be a Reset-1 adversary
against AKE and k a security parameter. The advantage of A is defined as

Advrake-1
AKE,A(k) = Pr [ RAKE-1AKE,A(k) ⇒ true ] − 1/2 .

We say AKE is secure in the Reset-1 model if

1. in the presence of a benign adversary who faithfully conveys messages, then
two partnering instances output the same session key; and

2. for any PPT adversary A, Advrake-1
AKE,A(k) is negligible.

Reset-2 Model. In this model, we consider the scenario where the adversary is
able to perform reset attacks, but unable to directly set the value of the random
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coins. The game RAKE-2, described in Figure 2, is used to define the security of
AKE protocols in the Reset-2 setting. The definitions of oracle queries Register,
Send, Reveal, Corrupt and Test are the same as those in game RAKE-1. But
differently, when initializing a new user instance Πi

U via a NewInstance query,
the adversary does not set the random coins directly. Instead, it can specify
another instance Πj

U that has already been initialized, and instance Πi
U would

use the same random coins that Πj
U has used. The adversary can also let Πi

U

use fresh random coins by setting j = ⊥.
This adversarial model enables us to define forward secrecy. Recall that for-

ward secrecy requires that compromising two users’ long-lived secret keys should
not allow the adversary to compromise any already established session key. We
say an instance Πi

U (U ∈ U) is fs-unfresh in the Reset-2 model if any of the
following conditions is true:

1. pidi
U is created by the adversary via a Register query.

2. A reveals the session key of Πi
U .

3. There exists another instance of U whose random tape is the same as that
of Πi

U (i.e. a reset attack against Πi
U has occured).

4. Condition 2 is true regarding the partner-oracle of Πi
U (if it exists).

5. Condition 3 is true regarding the partner-oracle of Πi
U (if it exists).

6. Πi
U has no partner instance, and A corrupts pidi

U .

Otherwise, we say Πi
U is fs-fresh.

Definition 2. Let AKE be an AKE protocol. Let A be a Reset-2 adversary
against AKE and k a security parameter. The advantage of A is defined as

Advrake-2
AKE,A(k) = Pr [ RAKE-2AKE,A(k) ⇒ true ] − 1/2 .

We say AKE is secure in the Reset-2 model if

1. in the presence of a benign adversary who faithfully conveys messages, then
two partnering instances output the same session key; and

2. for any PPT adversary A, Advrake-2
AKE,A(k) is negligible.

Strong Corruption. So far we only consider the so called “weak corruption
model”. To define strong corruption in our models, we follow the approach of
Canetti and Krawczyk [13] and introduce a new query called RevealState query.

procedure RevealState(U, i)
If (U /∈ U ∨ i /∈ TU ) then return Invalid
Timer ← Timer + 1 ; Time[RevealState, (U, i)] ← Timer
return St i

U

Now an additional restriction to the adversary A is that A cannot ask the
RevealState query to the instance Πi∗

U∗ or its partner Πj∗
V ∗ (if the latter exists).
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procedure Finalize(b′)
· · ·
If (Time[Reveal, (U∗, i∗)]∨Time[RevealState, (U∗, i∗)])

return false

· · ·
If (Time[Reveal, (V ∗, j∗)]∨Time[RevealState, (V ∗, j∗)])

return false

· · ·

It is also worth noting that by adding the RevealState query, our Reset-2 model
can be considered as Resettable CK model.

4 Resettable Security of Existing AKE Protocols

It is obvious to see that many widely deployed AKE protocols such as ISO [24],
SIGMA [27,14], JFK [2] and SKEME [28] are insecure in the Reset-1 model since
for these protocols, the secrecy of the session key solely relies on the secrecy
of the ephemeral secrets. Some of these protocols are insecure in the Reset-
2 model either. As we have briefly mentioned before, for SIG-DH protocols,
if they are implemented using DSS (or any signature scheme under the Fiat-
Shamir paradigm [20]), then they are insecure in either of our reset models as
the adversary can retrieve the long-lived signing key of an honest user by letting
the user sign two different messages using the same randomness.

The HMQV protocol, proposed by Krawczyk in [26], is currently one of the
most prominent AKE protocols. Besides achieving proven security and high ef-
ficiency, the HMQV protocol has several extra features, such as resilience to
leakage of the DH exponents. However, according to a recent result by Menezes
and Ustaoglu [31], an adversary can derive the long-lived secret key of an honest
user if the adversary can make the user use the same randomness in different
sessions, which indicates HMQV is insecure in either of our reset models.

5 From Reset-2 Security to Reset-1 and Reset-2 Security

In this section, we show that though the Reset-1 and Reset-2 models are incom-
parable, we can do a simple transformation on a Reset-2 secure AKE protocol
to derive a new protocol that is secure in both Reset-1 and Reset-2 models.

The Transformation. Given a protocol Π = (SKG, P) that is secure in the
Reset-2 model, and a pseudo-random function family F = {FK : {0, 1}ρ(k) →
{0, 1}�(k)|K ∈ {0, 1}δ(k)} where ρ(k), �(k) and δ(k) are all polynomials of k,
and �(k) denotes the maximum number of random bits needed by a party in an
execution of P, we construct a new protocol Π ′ = (SKG′, P′) as follows:

– SKG′(1k): run SKG(1k) to generate (pk, sk), select K ←$ {0, 1}δ(k). Set pk′ =
pk and sk′ = (sk, K).

– P′: get a ρ(k)-bit random string r, then compute r′ ← FK(r) and run P with
random coins r′.



Authenticated Key Exchange under Bad Randomness 123

Theorem 1. If Π is a secure AKE protocol in the Weak-Corruption (Strong-
Corruption, resp.) Reset-2 model, and F is a secure pseudo-random function
family, then Π ′ is a secure AKE protocol in the Weak-Corruption (Strong-
Corruption, resp.) Reset-1 model.

The detailed proof is deferred to the full paper.
The pseudo-random function (PRF) family F is the central tool for our trans-

formation. However, the security of a pseudo-random function FK(·) relies on
the secrecy of the key K. When the key is known to the adversary, then we can-
not assume the output of the function is still computationally indistinguishable
from truly random strings. So a problem arises regarding our transformation:
the resulting protocol “seems” no longer secure in the Reset-2 model. Recall
in the Reset-2 model, the adversary is allowed to corrupt the long-lived key
sk′U∗ = (skU∗ , KU∗) of the user U∗ that output by the adversary in the Test
query, then even given a truly random string r, we cannot guarantee FKU∗ (r) is
random from the viewpoint of the adversary who knows KU∗ .

Fortunately, this problem can be resolved, but we need an extra requirement
on F, that is, we require F to be a Strong Randomness Extractor (SRE) [17]. In
[15], Chevassut et al. showed that those very strong (i.e. the adversary has very
small winning advantage) pseudo-random function families are also good strong
randomness extractors. For real implementation, the HMAC function [5], which
is widely used in the real practice (e.g., TLS and IKE), is a good candidate for
our purpose [3,18,33].

Theorem 2. If Π is a secure AKE protocol in the Weak-Corruption (Strong-
Corruption, resp.) Reset-2 model, and F is a pseudo-random function family
and a strong randomness extractor, then Π ′ is secure in the Weak-Corruption
(Strong-Corruption, resp.) Reset-2 model.

The proof is deferred to the full paper.

6 A New SIG-DH Protocol

In this section, we modify the ISO protocol [24,13] to obtain a new SIG-DH
protocol that is secure in both Reset-1 and Reset-2 models.

We first construct a variant of the ISO protocol, denoted by ISO-R2 (Fig. 3),
that is secure in the Reset-2 model. The protocol uses a digital signature scheme
DS = (DS.SKG, DS.Sign, DS.Vf) that is deterministic (i.e., the signing algo-
rithm DS.Sign is deterministic) and existentially unforgeable under adaptive
chosen-message attack (uf-cma) [21].

Theorem 3. The ISO-R2 protocol is secure in the Strong Corruption Reset-2
model if DS is a uf-cma secure deterministic digital signature scheme, and the
DDH assumption holds in the underlying group.

The proof is deferred to the full paper.
Given the ISO-R2 protocol, we can then apply the transformation in Sec. 5

to obtain a new protocol that is secure in both Reset-1 and Reset-2 models. We
omit the transformed protocol here.
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A B

(pkA, skA) ←$ DS.SKG(1k) (pkB , skB) ←$ DS.SKG(1k)

x ←$ Zq, α ← gx

A, α
�

y ←$ Zq, β ← gy, sid ← α‖β
σB ← DS.Sign(skB , α, β, A, 0)

ssk ← gxy

B, β, σB�
sid ← α‖β

σA ← DS.Sign(skA, β, α, B, 1)

ssk ← gxy
A, σA �

Fig. 3. The ISO-R2 Protocol
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