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Abstract. First proposed in CryptoNote, a collection of popular
privacy-centric cryptocurrencies have employed Linkable Ring Signature
and a corresponding Key Derivation Mechanism (KeyDerM) for keep-
ing the payer and payee of a transaction anonymous and unlinkable. The
KeyDerM is used for generating a fresh signing key and the corresponding
public key, referred to as a stealth address, for the transaction payee. The
stealth address will then be used in the linkable ring signature next time
when the payee spends the coin. However, in all existing works, including
Monero, the privacy model only considers the two cryptographic primi-
tives separately. In addition, to be applied to cryptocurrencies, the secu-
rity and privacy models for Linkable Ring Signature should capture the
situation that the public key ring of a signature may contain keys created
by an adversary (referred to as adversarially-chosen-key attack), since in
cryptocurrencies, it is normal for a user (adversary) to create self-paying
transactions so that some maliciously created public keys can get into
the system without being detected .

In this paper, we propose a new cryptographic primitive, referred to
as Linkable Ring Signature Scheme with Stealth Addresses (SALRS),
which comprehensively and strictly captures the security and privacy
requirements of hiding the payer and payee of a transaction in cryptocur-
rencies, especially the adversarially-chosen-key attacks. We also propose
a lattice-based SALRS construction and prove its security and privacy
in the random oracle model. In other words, our construction provides
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strong confidence on security and privacy in twofolds, i.e., being proved
under strong models which capture the practical scenarios of cryptocur-
rencies, and being potentially quantum-resistant. The efficiency analysis
also shows that our lattice-based SALRS scheme is practical for real
implementations.

Keywords: Lattice-Based · Linkable ring signature ·
Stealth Address · Cryptocurrency · Privacy

1 Introduction

Conventional cryptocurrencies such as Bitcoin or Ethereum support the
pseudonym level of anonymity, namely, the wallet addresses and the real identi-
ties are delinked while transactions are linked. For privacy coins, such as Monero
or Zcash, one of the objectives in terms of anonymity is to keep both the payer
and payee of a transaction anonymous and unlinkable.

For example, in CryptoNote [25], Linkable Ring Signature (LRS) [20] and Key
Derivation Mechanism [25] (KeyDerM) are employed. When a payer, say Alice,
wants to pay Bob (the payee) through a transaction, Alice uses KeyDerM to
generate a derived public key DPK from Bob’s master public key MPK, and uses
DPK as Bob’s address in the transaction. As MPK never appears, transactions
involving Bob as the receiver cannot be identified. KeyDerM is also referred
to as the Stealth Address (SA) [27] mechanism. When Bob wants to spend his
coins on the derived public key DPK, i.e. acting as the payer of a transaction
TX, he generates a linkable ring signature σ on the transaction TX (as the
message) under a set (referred to as a ‘ring’) of derived public keys R such that
DPK ∈ R. Anyone can verify σ without being able to find out the actual signer is
corresponding to DPK. The linkability is used for detecting any double-spending
attempt, namely if two signatures are generated by Bob corresponding to DPK,
they will be detected as linked as the coin corresponding to DPK is supposed to
be used only once.

LRS and SA have attracted much attention recently in the community, for
example, [5,8,9,11,21,22,26,28], and in cryptocurrencies, for example, Monero
[24], which uses LRS and CryptoNote’s KeyDerM as its underlying building
blocks, and has a market capitalization valued at more than 1 billion USD [10].
However, as shown in Table 1, all the existing works [1–3,14–16,19,20,29–31]
either only consider LRS or SA in the setting of standard signature schemes
[11,21] rather than both of these primitives. Even in CrypotNote [25] and Monero
[24], LRS and SA are both considered, but still separately rather than being
analyzed under a unified security model, despite that LRS and SA are used in
a tightly-coupled fashion in both CryptoNote and Monero. In particular, the
signing keys and public keys used in LRS are generated by the SA mechanism.
It is not known whether the security and privacy properties still hold when keys
used by LRS are generated by the SA mechanism, while the SA mechanism does
not generate keys independently.
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The linkability of LRS requires that if two signatures are generated under
the same key pair, these signatures can be linked publicly. Another feature of
LRS, referred to as non-slanderability, requires that an adversary cannot frame a
user by creating a signature that is linked to a signature of the user. Anonymity
requires that for a signature with respect to ring R, no one can identify the
real signer’s public key out of R. When considering these security and privacy
requirements of LRS, we investigate under the assumption that each key pair is
generated independently. However, this is no longer the fact when LRS is used in
CryptoNote or Monero as keys are generated using the SA mechanism. For SA,
the master-public-key-unlinkability [21] property requires that given a derived
public key and the corresponding (standard) signatures, an adversary cannot tell
the master public key, from which the derived public key is generated, out of a
set of known master public keys. Another requirement called derived-public-key-
unlinkability [21] captures that given two derived public keys and corresponding
(standard) signatures, an adversary cannot tell whether the two derived public
keys are from the same master public key.

As Linkable Ring Signature and Stealth Address are used in practical scenar-
ios, i.e., cryptocurrencies, another concern is whether the security and privacy
models, under which they are analyzed, capture the scenarios well. In particu-
lar, in cryptocurrencies, an attacker may create some public keys maliciously
and issue transactions using these public keys as payee’s addresses. As long as
these malicious created keys are well-formed, they will get into the blockchain
as the normal ones and a user may include these malicious created keys in their
rings to sign their transactions. As a result, to be practical, the security and
privacy models must consider the attacks in such a scenario, which referred to
as adversarially-chosen-key attacks. However, as shown in Table 1, the existing
linkability models either do not consider the adversarially-chosen-key attacks or
consider them but do not capture the application scenarios of cryptocurrencies.

1.1 Our Results

To address the above concerns, in this paper, we propose a new cryptographic
primitive, named Linkable Ring Signature Scheme with Stealth Addresses
(SALRS), which comprehensively and strictly captures the security and pri-
vacy requirements of hiding the payer and payee of a transaction in cryp-
tocurrencies. Particularly, all the security models (namely strong unforge-
ability, signer-linkability, and signer-non-slanderability) and privacy models
(namely signer-anonymity, master-public-key-unlinkability, and derived-public-
key-unlinkability) are defined under SALRS, rather than under Linkable Ring
Signature or Stealth Address separately. Also, all the models strictly capture the
practical requirements of cryptocurrencies, especially the adversarially-chosen-
key attacks.

We also propose a lattice-based SALRS construction and prove its secu-
rity and privacy in the random oracle model. In other words, our construction
provides strong confidence on security and privacy in twofolds: being proved
under strong models which capture the practical scenarios of cryptocurrencies,



A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 729

Table 1. Comparison with existing LRS and SA schemes

Consider LRS and SA
together

Capture adversarially
chosen-key attacks in
linkability model

Potentially quantum
resistant

[1,29,30] ×, only LRS ×, have flawsa ×
[2,3,8,19,20,26,31] ×, only LRS × ×
[14–16] ×, only LRSb √b ×
[24,25] ×, LRS and SA

separately
× ×

[32] ×, only LRSc × √

[5,9,28] ×, only LRS × √

[22] ×, only LRS ×, have flaws a √

[11,21] ×, only SA NA ×
this work

√ √ √
aThe linkability models of [1,22,29,30] have flaws, as an adversary can trivially succeed, by
outputting two signatures which are obtained by querying the signing oracle on two different
public keys.

b[14–16] proposed Traceable Ring Signature, which is similar to Linkable Ring Signature.
The linkability model in [14–16] captures the adversarially-chosen-key attacks, but requires
that all the signatures use the same ring.

cIn [32], a key derivation mechanism for generating one-time public keys for the payees is
proposed, but the derived public keys’ anonymity (unlinkability to the payee’s long-term
key) is not considered.

and being potentially quantum-resistant. The efficiency analysis also shows that
our lattice-based SALRS scheme is practical for real implementations. Table 1
shows a comparison between our results in this work and the existing works on
Linkable Ring Signature and Stealth Address. It is worth noting that although
lattice-based Linkable Ring Signature schemes [5,22,28,32] have been proposed
recently, to the best of our knowledge, no lattice-based Stealth Address scheme
has been introduced so far. Also, although some lattice-based ring signature
schemes [13,18] can achieve logarithmic signature size in terms of the number of
signers in the ring, these schemes are mainly of theoretical interest since they will
produce much larger signatures for a normal ring size in real scenarios. In other
words, our construction is the first practical and potentially quantum-resistant
solution that hides the payers and payees of transactions in cryptocurrencies.

1.2 Outline

In Sect. 2 we propose and formalize the primitive Linkable Ring Signature
Scheme with Stealth Addresses (SALRS), including the algorithm definitions and
the security and privacy models. In Sect. 3 we propose a lattice-based SALRS
construction, and prove its security and privacy in Sect. 4. The paper is con-
cluded in Sect. 5.



730 Z. Liu et al.

2 Definitions of SALRS

In this section, we first define the SALRS system, which captures the cryp-
tographic functionalities that a cryptocurrency needs to hide the payers and
payees of the transactions. Then we formalize the security and privacy models
that strictly capture the practical scenarios in cryptocurrencies.

2.1 Algorithm Definition

A Linkable Ring Signature Scheme with Stealth Addresses (SALRS) consists of
the following algorithms:

– Setup(λ) → PP. This is a probabilistic algorithm. On input a security param-
eter λ, the algorithm outputs system public parameters PP.
The system public parameters PP are common parameters used by all partic-
ipants in the system, for example, the message space M, the hash functions,
etc. In the following, λ and PP are implicit input parameters to every algorithm.

– MasterKeyGen() → (MPK,MSK). This is a probabilistic algorithm. The algo-
rithm outputs a (master public key, master secret key) pair (MPK,MSK).
Each user runs MasterKeyGen algorithm to generate his (master public key,
master secret key) pair.

– DerivedPublicKeyGen(MPK) → DPK. This is a probabilistic algorithm. On
input a master public key MPK, the algorithm outputs a derived public key
DPK.
Anyone can run this algorithm to generate a fresh derived public key from a
master public key.

– DerivedPublicKeyOwnerCheck(DPK,MPK,MSK) → 1/0. This is a determinis-
tic algorithm. On input a derived public key DPK and a (master public key,
master secret key) pair (MPK,MSK), the algorithm outputs a bit b ∈ {0, 1},
with b = 1 meaning that DPK is a valid derived public key generated from
MPK and b = 0 otherwise.
The owner of a master public key can use this algorithm to check whether a
public key is derived from his master public key. In a cryptocurrency, a payee
can use this algorithm to check whether he is the intended receiver of a coin
on the public key.

– DerivedPublicKeyPublicCheck(DPK) → 1/0. This is a deterministic algorithm.
On input a derived public key DPK, the algorithm outputs a bit b ∈ {0, 1},
with b = 1 meaning that DPK is a well-formed derived public key and b = 0
otherwise.
Anyone can use this algorithm to check whether a derived public key is well-
formed. In a cryptocurrency, a payer can use this algorithm to check whether
the derived public keys owned by others are well-formed so that he can use
them as ring numbers for his ring signature generation.
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– Sign(M,R,DPK, (MPK,MSK)) → σ. On input a message M , a ring of well-
formed derived public keys R = (DPK1, . . . ,DPKr)1, a derived public key
DPK ∈ R, and the master key pair (MPK,MSK) for DPK, the algorithm out-
puts a signature σ on the message M with respect to the ring R.
The derived public keys DPK1, . . . ,DPKr may be generated from different mas-
ter public keys.

– Verify(M,R, σ) → 1/0. This is a deterministic algorithm. On input a message
M , a ring of well-formed derived public keys R, and a purported signature
σ on the message M with respect to the ring R, the algorithm outputs a bit
b ∈ {0, 1}, with b = 1 meaning valid and b = 0 otherwise.

– Link(M0, R0, σ0,M1, R1, σ1) → 1/0. This is a deterministic algorithm. On
input two valid signatures (M0, R0, σ0), (M1, R1, σ1), the algorithm outputs
a bit b ∈ {0, 1}, with b = 1 meaning linked and b = 0 meaning unlinked.

Correctness. The scheme must satisfy the following correctness property: Let
PP ← Setup(λ),

– for any (MPK,MSK) ← MasterKeyGen(), DPK ← DerivedPublicKeyGen
(MPK), it holds that DerivedPublicKeyOwnerCheck(DPK,MPK,MSK) = 1 and
DerivedPublicKeyPublicCheck(DPK) = 1.

– for any message M ∈ M, any ring of well-formed derived public keys R,
and any DPKs ∈ R such that DerivedPublicKeyOwnerCheck(DPKs,MPK,
MSK) = 1 for some master key (MPK,MSK), it holds that
Verify(M,R,Sign(M,R,DPKs, MPK,MSK)) = 1.

– for any messages M0,M1 ∈ M, any well-formed derived public key rings
R0, R1, and any DPKs0 ∈ R0,DPKs1 ∈ R1 such that
DerivedPublicKeyOwnerCheck(DPKsi

,MPKi, MSKi) = 1 for some master key
(MPKi, MSKi) (i = 0, 1), let σi ← Sign(Mi, Ri,DPKsi

, MPKi,MSKi) (i =
0, 1). It holds that Link(M0, R0, σ0,M1, R1, σ1) = 1 if DPKs0 = DPKs1 , and
Pr[Link(M0, R0, σ0,M1, R1, σ1) = 0] ≥ 1 − negl(λ) if DPKs0 �= DPKs1 , where
negl is a negligible function.

Remark: Note that it is open on whether the Sign algorithm is probabilistic or
deterministic, which may depend on the concrete constructions.

2.2 Security and Privacy Models of SALRS

Below we define the security and privacy for SALRS. The security includes
unforgeability, signer-linkability, and signer-non-slanderability, while the privacy
includes signer-anonymity, master-public-key-unlinkability and derived-public-
key-unlinkability. Unforgeability captures that only the user knowing the secret
key for some public key in a ring can generate a valid signature with respect

1 Below, we regard the public key ring as an ordered set, namely, it consists of a set
of public keys, and when it is used in Sign and Verify algorithms, the public keys are
ordered and each one has an index.
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to the ring. Signer-linkability captures that with respect to one derived public
key, if the key owner generates two or multiple valid signatures, these signatures
will be detected to be linked, and this captures the security requirement of pre-
venting double-spending in cryptocurrencies. Signer-non-slanderability captures
that no one can frame other users by creating a signature that is linked to a
signature of the target user. Signer-anonymity captures that given a valid sig-
nature with respect to a ring of derived public keys, no one can identify the
signer’s derived public key out of the ring. Master-public-key-unlinkability cap-
tures that given a derived public key and the corresponding signatures, no one
can tell which master public key, out of a set of known master public keys,
is the one from which it was derived. Derived-public-key-unlinkability captures
that given two derived public keys and the corresponding signatures, no one
can tell whether they are derived from the same master public key. Signer-
anonymity captures the privacy-protection requirement in cryptocurrency of
hiding the payer, while master-public-key-unlinkability and derived-public-key-
unlinkability captures the privacy-protection requirements of hiding the payee
and cutting the link between the payees of different transactions, respectively.

With these security and privacy models, SALRS captures the security and
privacy-protection requirements of cryptocurrencies in the most practical set-
ting. Especially, the rings are allowed to contain the derived public keys that
an adversary generated from his own master public keys. This reflects the sit-
uations in practice that, an attacker may generate some derived public keys
from his own master public keys, and issue transactions among these keys,
attempting to launch some attacks, such as double-spending, or to compromise
other users’ security and/or privacy. On the other side, we show that signer-
linkability and signer-non-slanderability together implies unforgeability, and
master-public-key-unlinkability implies derived-public-key-unlinkability. Thus,
for a SALRS construction, we only needs to focus on its signer-linkability, signer-
non-slanderability, signer-anonymity, and master-public-key-unlinkability.

Definition 1 (Strong Unforgeability). A SALRS scheme is strongly
unforgeable if for any probabilistic polynomial time (PPT) adversary A and for
any polynomial n(·), the advantage of A in the following game Gameeuf , denoted
by Adveuf

A , is negligible.

1. Setup. PP ← Setup(λ;ω) is run, where ω is the randomness used in Setup().
PP and ω are given to A.
{(MPKi,MSKi) ← MasterKeyGen()}n(λ)

i=1 are run and {MPKi}n(λ)
i=1 are given

to A.
An empty set Ldpk = ∅ is initialized, which will be used to store the valid
derived public keys derived from the target master public keys. Note that Ldpk

captures the scenarios that the valid derived public keys are stored on the
blockchain and are publicly accessible.
Note that giving to A the randomness ω, which is used by the Setup algorithm,
implies the setup is public. This is to capture that the security does not rely on
a trusted setup which may incur concerns on the existing of trapdoors.
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2. Probing Phase. A can adaptively query the following oracles:
– Derived Public Key Adding Oracle ODPKAdd(·, ·):

On input a derived public key DPK and a master public key MPKi, this
oracle returns b ← DerivedPublicKeyOwnerCheck(DPK,MPKi, MSKi) to
A. If b = 1, set Ldpk = Ldpk ∪ {DPK}.
This captures that A can try and test whether the derived public keys gen-
erated by him are accepted by the owner of the corresponding master public
key.

– Signing Oracle OSign(·, ·, ·):
On input a message M ∈ M, a ring of well-formed derived public keys
R, and a derived public key DPK ∈ R ∩ Ldpk, this oracle returns σ ←
Sign(M,R,DPK, MPKi,MSKi) to A, where (MPKi,MSKi) is the master
key pair for DPK.
Note that it only requires that the derived public key DPK is in Ldpk, i.e.,
the attacking targets for which the master secret keys are unknown to the
adversary, without requiring R ⊆ Ldpk. This captures that A can obtain the
signatures for messages, derived public key ring, and derived public key of
its choice, where the ring may contain deprived public keys which are
created by the adversary even from the master public keys which are
also created by the adversary (referred to as adversarially-chosen-key
attack).

3. Output Phase. A outputs a message M∗ ∈ M, a ring of well-formed derived
public keys R∗, and a signature σ∗.

Let Sso = {(M,R,DPK, σ)} be the query-answer tuples for OSign(·, ·, ·). A suc-
ceeds if (1) Verify(M∗, R∗, σ∗) = 1, and (2) R∗ ⊆ Ldpk, and (3) (M∗, R∗, ?, σ∗) /∈
Sso, where ‘?’ means wildcard, i.e. (M∗, R∗, σ∗) is not a (message, derived public
key ring, signature) tuple obtained by querying OSign(·, ·, ·). The advantage of A
is Adveuf

A = Pr[A succeeds].

Remark : In the above model, as the adversarially-chosen-key attacks are con-
sidered, i.e., the adversary is allowed to specify the derived public key ring to
contain well-formed derived public keys generated from the master public keys
created by himself, it is not necessary to provide an oracle of corrupting the
master secret keys in {MSK}n(λ)i=1 . The situations for the following models are
similar.

Definition 2 (Signer-linkability). A SALRS scheme is signer-linkable if for
any PPT adversary A, the advantage of A in the following game Gamesnlink,
denoted by Advsnlink

A , is negligible.

1. Setup. PP ← Setup(λ;ω) is run, where ω is the randomness used in Setup().
PP and ω are given to A.

2. Output Phase. A outputs k(≥ 2) (message, ring of well-formed derived
public keys, signature) tuples (M∗

i , R∗
i , σ

∗
i ) (i = 1, . . . , k).
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A succeeds if (1) Verify(M∗
i , R∗

i , σ
∗
i ) = 1 (i = 1, 2, . . . , k),

and (2) Link(M∗
i , R∗

i , σ
∗
i ,M∗

j , R∗
j , σ

∗
j ) = 0 ∀i, j ∈ [1, k] s.t. i �= j, and (3) | ∪k

i=1

R∗
i | < k. The advantage of A is Advsnlink

A = Pr[A succeeds].

Remark: Note that the adversary’s target is to attack the linkability property of
the system, rather than attacking other users, thus we do not need to consider
the target master public keys or derived public keys. Also, as the adversary is
allowed to create the master public keys and derived public keys of its choice,
we do not need to consider the signing oracles, corruption oracles, etc.

Definition 3 (Signer-non-slanderability). A SALRS scheme is signer-non-
slanderable if for any PPT adversary A and for any polynomial n(·), the advan-
tage of A in the following game Gamesnnsl, denoted by Advsnnsl

A , is negligible.

1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase. Same as that of Gameeuf in Def. 1.
3. Output Phase. A outputs two (message, ring of well-formed derived public

keys, signature) tuples (M̂, R̂, σ̂) and (M∗, R∗, σ∗).

Let Sso = {(M,R,DPK, σ)} be the query-answer tuples for OSign(·, ·, ·).
A succeeds if (1) Verify(M∗, R∗, σ∗) = 1, and (2) (M̂, R̂, ˆDPK, σ̂) ∈
Sso for some ˆDPK ∈ R̂ ∩ Ldpk, and (3) (M∗, R∗, ˆDPK, σ∗) /∈ Sso, and
(4) Link(M∗, R∗, σ∗, M̂ , R̂, σ̂) = 1. The advantage of A is Advsnnsl

A =
Pr[A succeeds].

Definition 4 (Signer-Anonymity). A SALRS scheme is signer-anonymous
if for any PPT adversary A and for any polynomial n(·), the advantage of A in
the following game Gamesnano, denoted by Advsnano

A , is negligible.

1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase 1. Same as the Probing Phase of Gameeuf in Def. 1.
3. Challenge Phase. A outputs a message M∗, a ring of well-formed derived

public keys R∗, and two distinct indices 1 ≤ i0, i1 ≤ n(λ), such that
(1) DPKi0 ,DPKi1 ∈ R∗ ∩ Ldpk, and
(2) none of OSign(·, ·,DPKi0), OSign(·, ·,DPKi1) was queried. A random bit
b ∈ {0, 1} is chosen, and A is given the signature σ ← Sign(M∗, R∗,
DPKib ,MPK,MSK), where (MPK,MSK) is the master key pair for DPKib .

4. Probing Phase 2. Same as the Probing Phase 1, but with the restriction
that none of OSign(·, ·,DPKi0), OSign(·, ·,DPKi1) is queried.

5. Output Phase. A outputs a bit b′ as its guess to b.

The advantage of A is Advsnano
A = |Pr[b′ = b] − 1

2 |.
Definition 5 (Master-Public-Key-Unlinkability). A SALRS scheme is
Master Public-Key-Unlinkable if for any PPT adversary A and for any poly-
nomial n(·), the advantage of A in the following game Gamempkunl, denoted by
Advmpkunl

A , is negligible.
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1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase 1. Same as the Probing Phase of Gameeuf in Def. 1.
3. Challenge. A outputs two distinct indices 1 ≤ i0, i1 ≤ n(λ). A random bit

b ∈ {0, 1} is chosen, and DPK∗ ← DerivedPublicKeyGen(MPKib) is given to
A. Set Ldpk = Ldpk ∪ {DPK∗}.

4. Probing Phase 2. Same as Phase 1, except that ODPKAdd(DPK∗,MPKij )
(for j ∈ {0, 1}) cannot be queried.

5. Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b.

The advantage of A is Advmpkunl
A = |Pr[b′ = b] − 1

2 |.

Remark: Note that OSign(·, ·,DPK∗) can be queried. This captures that neither
the derived public key or the signatures leak the corresponding master public
key.

Definition 6 (Derived-Public-Key-Unlinkability). A SALRS scheme is
Derived Public-Key-Unlinkable if for any PPT adversary A and for any poly-
nomial n(·), the advantage of A in the following game Gamedpkunl, denoted by
Advdpkunl

A , is negligible.

1. Setup. Same as that of Gameeuf in Def. 1.
2. Probing Phase 1. Same as the Probing Phase of Gameeuf in Def. 1.
3. Challenge. A outputs two distinct indices 1 ≤ i0, i1 ≤ n(λ).

A random bit c ∈ {0, 1} is chosen.
Compute DPK∗

0 ← DerivedPublicKeyGen(MPKic).
A random bit b ∈ {0, 1} is chosen.
If b = 0, compute DPK∗

1 ← DerivedPublicKeyGen(MPKic),
otherwise, compute DPK∗

1 ← DerivedPublicKeyGen(MPKi1−c
).

(DPK∗
0,DPK

∗
1) are given to A. Set Ldpk = Ldpk ∪ {DPK∗

0,DPK
∗
1}.

4. Probing Phase 2. Same as Probing Phase 1, except that
ODPKAdd(DPK∗

j , MPKik) (for j, k ∈ {0, 1}) can be queried on at most one
j ∈ {0, 1}.

5. Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b, i.e., guess whether DPK∗
0

and DPK∗
1 are from the same master public key.

The advantage of A is Advdpkunl
A = |Pr[b′ = b] − 1

2 |.

Remark : Note that OSign(·, ·,DPK∗
j ) (for j = 0, 1) can be queried, and this

captures that neither the derived public keys or the corresponding signatures
leak whether they are from the same master public key.

As the above models captures the security and privacy requirements that the
practice imposes on SALRS, the following two theorems show that for a SALRS
scheme, we only need to consider its signer-linkability, signer-non-slanderability,
signer-anonymity, and master-public-key-unlinkability.

Theorem 1. If a SALRS scheme is signer-linkable and siner-non-slanderable,
then it is strongly unforgeable.
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Proof. The proof resembles that for a similar conclusion in the setting of Trace-
able Ring Signature in [16]. We give the proof in Appendix A.

Theorem 2. If a SALRS scheme is master-public-key-unlinkable, then it is
derived-public-key-unlinkable.

Proof. Observe Gamempkunl and Gamedpkunl, it is easy to see that, if there exists
an adversary A that wins Gamedpknul with non-negligible advantage, we can con-
struct an algorithm B that interacts with A for game Gamedpknul, and makes use
of A’s output to win Gamempkunl with non-negligible advantage. We defer the
proof details to the full version.

3 Our Construction

In this section, we first present some preliminaries in Sect. 3.1, including the
concept of key-privacy in Key-Encapsulation Mechanism (KEM), which we will
use as a building block for our SALRS construction, and some background of
lattice. Then we propose a lattice-based SALRS construction in Sect. 3.2 and
give the concrete parameters and building blocks in Sect. 3.3.

3.1 Preliminaries

3.1.1 Key-Privacy in KEM
Our construction will use KEM as a building block, but requires the underlying
KEM to have an additional property, referred to as key-privacy, which asks that
an adversary in possession of a ciphertext not be able to tell which specific public
key, out of a set of known public keys, is the one under which the ciphertext
was created, meaning the receiver is anonymous from the point of view of the
adversary. It is worth mentioning that Bellare et al. [6] considered a similar
concept on the setting of Public Key Encryption (PKE). Below we extend the
usual KEM and formalize the concept of KEM with key-privacy.

Syntax. To capture the practice better, we augment the usual formalization of
KEM to cover the cases that users may share some fixed “global” information.

A key-encapsulation mechanism (KEM) scheme is a tuple of probabilistic
polynomial-time algorithms (Setup,KeyGen,Encaps,Decaps) such that:

– Setup(λ) → GP. On input a security parameter λ, the algorithm outputs sys-
tem global parameters GP.
The system global parameters GP are common parameters used by all partic-
ipants in the system, which may be just the security parameter λ, or include
some additional information, for example, the key space, the ciphertext space,
the hash functions, etc. As we will consider the key-privacy, here we require
that GP include the key space K and ciphertext space C.

– KeyGen(GP) → (PK,SK). This is a probabilistic algorithm. On input GP, the
algorithm outputs a (public key, secret key) pair (PK,SK).
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– Encaps(GP,PK) → (C, κ). This is a probabilistic algorithm. On input GP and
a public key PK, the algorithm outputs a ciphertext C ∈ C and a key κ ∈ K.

– Decaps(GP, C,PK,SK) → κ/⊥. This is a deterministic algorithm. On input
GP, a ciphertext C ∈ C, and a (public key, secret key) pair (PK,SK), the
algorithm outputs a key κ ∈ K or a special symbol ⊥ to indicate rejection.

Correctness. It is required that with all but negligible probability over
GP ← Setup(1λ), (PK,SK) ← KeyGen(GP), and the random coins of Encaps,
if Encaps(GP, PK) outputs (C, κ), then Decaps(GP, C, PK,SK) outputs κ.

Security and Key-Privacy. Below we formalize the security and key-privacy
models.

Definition 7 (CCA-Security of KEM). A KEM scheme is CCA-secure if
for any PPT adversary A, the advantage of A in the following game Gameccasec,
denoted by Advccasec

A , is negligible.

1. Setup. GP ← Setup(λ;ω) is run, where ω is the randomness used in Setup().
GP and ω are given to A. (PK,SK) ← KeyGen(GP) is run and PK is given
to A.
Note that giving to A the randomness ω, which is used by the Setup algorithm,
implies the setup is public. This is to capture that the security does not rely on
a trusted setup which may incur the concerns on the existing of trapdoors.

2. Challenge Phase. (C∗, κ) ← Encaps(GP,PK) is run. A random bit b is
chosen. If b = 0, set κ∗ := κ, otherwise choose a uniformly random κ∗ R← K.
A is given (C∗, κ∗).

3. Probing Phase. A can adaptively query an oracle ODecaps(·), which takes
a ciphertext C ∈ C and returns κ ← Decaps(GP, C,PK,SK) to A, with the
restriction that A cannot query ODecaps(·) on the challenge C∗.

4. Output Phase. A outputs a bit b′.

The advantage of A is Advccasec
A = |Pr[b′ = b] − 1

2 |.
Definition 8 (CCA-Key-Indistinguishability of KEM). A KEM scheme
is CCA-key-indistinguishable if for any PPT adversary A, the advantage of A
in the following game Gameccaki, denoted by Advccaki

A , is negligible.

1. Setup. Same as that of Gameccasec.
2. Challenge Phase. (C, κ∗) ← Encaps(GP,PK) is run. A random bit b is

chosen. If b = 0, set C∗ := C, otherwise choose a uniformly random C∗ R← C.
A is given (C∗, κ∗).

3. Probing Phase. Same as that of Gameccasec.
4. Output Phase. A outputs a bit b′.

The advantage of A is Advccaki
A = |Pr[b′ = b] − 1

2 |.
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3.1.2 Lattice Background
Rings, Norms and Invertible Ring Elements. Let q be an even (resp.
odd) positive integer, and denote by Zq the integers modulo q, which will be
represented in the range (− q

2 , q
2 ] (resp. [− q−1

2 , q−1
2 ]). Let n be an positive integer,

and let R and Rq be the rings Z[X]/(Xn +1) and Zq[X]/(Xn +1), respectively.
For w = a0 + a1X + . . . + an−1X

n−1 ∈ R, define the l∞, l1 and l2 norms of w as
follows:

‖w‖∞ = max
i

|ai|, ‖w‖1 =
∑

i

|ai|, ‖w‖2 =
√

|a0|2 + . . . + |an−1|2.

Similarly, for w = (w1, . . . , wk) ∈ Rk, define:

‖w‖∞ = max
i

‖wi‖∞, ‖w‖1 =
∑

i

‖wi‖1, ‖w‖2 =
√

‖w1‖22 + . . . + ‖wk‖22.

Let Sη denote the set of all elements w ∈ R such that ‖w‖∞ ≤ η. As shown
in [23], for prime q > 220 such that q = 17 mod 32, and for η < 1√

8
· q1/8, all

non-zero elements of Sη are invertible in Rq.
Let Bθ denote the set of all elements in Rq such that have θ coefficients

that are either −1 or 1 and the rest are 0. Again, for prime q > 220 such that
q = 17 mod 32, all elements of Bθ are invertible and the difference of any two
distinct elements from Bθ is also invertible in Rq.

(Inhomogeneous) Module-SIS. The Inhomogeneous Module-SIS problem
with parameters (n, q, k, �, β) consists in finding x ∈ Rk+� such that ‖x‖2 ≤ β
and [A | I] · x = t, for uniformly random A ∈ Rk×�

q , t ∈ Rk
q and k × k identity

matrix I. The problem can be adapted straightforwardly into its infinity-norm
version, where x must satisfy ‖x‖∞ ≤ β. The homogeneous version is defined
with t = 0 and x �= 0.
Module-LWE. The Module-LWE problem with parameters (n, q, k, �, η) is as
follows. Let A ∈ Rk×�

q be a uniformly random matrix. Let b = As + e ∈
Rk

q , where s ∈ S�
η, e ∈ Sk

η have entries chosen according to some distribution
over Sη (e.g., the uniform distribution or a Gaussian distribution). The search
variant of Module-LWE asks to recover s given (A,b). The decision variant
(decision-Module-LWE) asks to distinguish (A,b) from a uniformly random pair
over Rk×�

q × Rk
q . In this paper, similar to [5], we use a transformed version of

the decision-Module-LWE problem, which is to distinguish (A,As) from (A, r)
where A ← Rk×l

q , s ← Sl
η and r ← Rk

q .
As shown in [17], the Module-SIS and Module-LWE problems enjoy worst-

case to average-case reductions from hard problems in module lattices. Concrete
parameters of these problems that provide high post-quantum security against
the best known attacks are given in Dilithium [12] and Kyber [7].
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3.2 Construction

– Setup(1λ) → PP. On input a security parameter λ, the algorithm sets the
parameters n, q, k, l,m, η, γ, θ as specified in Sect. 3.3 below. Let Πkem be
a lattice-based KEM scheme which is CCA-secure and CCA-key indistin-
guishable, and let Ckem and Kkem denote Πkem’s ciphertext space and key
space, respectively. Let HA : {0, 1}∗ �→ Rk×l

q , ExpandV : Kkem �→ Sl
η,

Hθ : {0, 1}∗ �→ Bθ, and Hm : Rk
q �→ Rm×l

q be functions that will be viewed as
random oracles in the analyses. The algorithm does:
1. Choose a random string cstr ∈ {0, 1}∗, and set A := HA(cstr).
2. Run GPkem ← Πkem.Setup(1λ;ω), where ω is the randomness used in

Πkem.Setup().
3. Output the public parameters

PP =
(
n, q, k, l,m, η, γ, θ, (HA, cstr,A), (Πkem, ω,GPkem),

ExpandV,Hθ,Hm

)
.

Note that including (HA, cstr) and ω in PP is to ensure that no one knows
any trapdoor for matrix A and GPkem respectively.
In the following, PP are implicit input parameters to every algorithm.

– MasterKeyGen() → (MPK,MSK). On input the implicit inputs, namely, the
public parameters PP, the algorithm does:
1. Run (PKkem,SKkem) ← Πkem.KeyGen(GPkem).
2. Choose a uniformly random s R← Sl

η, and set t ← As.
3. Output master public key MPK and master secret key MSK

MPK :=
(
PKkem, t

)
, MSK :=

(
SKkem, s

)
.

– DerivedPublicKeyGen(MPK) → DPK. On input a master public key MPK =(
PKkem, t

)
, the algorithm does:

1. Run (C, κ) ← Πkem.Encaps(PKkem).
2. Set s′ := ExpandV(κ) ∈ Sl

η, t′ ← As′, and set t̂ ← t + t′.
3. Output a derived public key DPK := (C, t̂).

– DerivedPublicKeyOwnerCheck(DPK,MPK,MSK) → 1/0. On input a derived
public key DPK and a (master public key, master secret key) pair (MPK,MSK)
with MPK = (PKkem, t), and MSK = (SKkem, s), the algorithm does:
1. Check whether DPK ∈ Ckem × Rk

q holds. If it does not hold, return 0,
otherwise, parse DPK to DPK := (C, t̂) ∈ Ckem × Rk

q .
2. Run κ ← Πkem.Decaps(C,PKkem,SKkem).
3. Set s′ := ExpandV(κ) and t′ ← As′.
4. If t̂ ?= t + t′ holds, return 1, otherwise return 0.

– DerivedPublicKeyPublicCheck(DPK) → 1/0. On input a derived public key
DPK, the algorithm checks whether DPK ∈ Ckem × Rk

q holds. If it holds,
return 1, otherwise return 0.
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– Sign(M,R,DPK, (MPK,MSK)) → σ. On input a message M , a ring of well-
formed derived public keys R = (DPK1, . . . ,DPKr), a derived public key
DPK ∈ R, and the master key pair (MPK,MSK) for DPK where MPK =
(PKkem, t) and MSK = (SKkem, s), the algorithm does:
1. For i = 1 to r, parse DPKi := (Ci, t̂i) ∈ Ckem ×Rk

q and set Hi := Hm(t̂i).
2. Let ī be the index of DPK in R, i.e. DPK = DPKī = (Cī, t̂ī).

Run κ ← Πkem.Decaps(Cī,PKkem, SKkem). Set s′̄
i

:= ExpandV(κ) and
ŝī ← s + s′̄

i
. Note that it holds that t̂ī = Aŝī.

3. Set I ← Hīŝī.
4. Choose a uniformly random y R← Sl

γ .
5. Set wī ← Ay, vī ← Hīy.
6. For i = ī + 1, . . . , r, 1, . . . , ī − 1, do

(a) Set ci ← Hθ(M,R,wi−1,vi−1, I).2

(b) Choose a uniformly random zi ← Sl
γ−2θη.

(c) Set wi ← Azi − cit̂i, vi ← Hizi − ciI.
7. Set cī ← Hθ(M,R,wī−1,vī−1, I).
8. Set zī ← y + cīŝī.
9. If zī ∈ Sl

γ−2θη, output σ := (c1, {zi}r
i=1, I) ∈ Bθ × (Sl

γ−2ηθ)
r × Rm

q ,
otherwise go to Step 4.

– Verify(M,R, σ) → 1/0. On input a message M , a ring of well-formed derived
public keys R = (DPK1, . . . ,DPKr), and a signature σ = (c1, {zi}r

i=1, I), the
algorithm does:
1. If (c1 /∈ Bθ) ∨ (∃i ∈ {1, . . . , r} s.t. zi /∈ Sl

γ−2θη), then return 0.
2. For i = 1, 2, . . . , r, do

(a) Parse DPKi to DPKi := (Ci, t̂i) ∈ Ckem × Rk
q and set Hi := Hm(t̂i).

(b) Set wi ← Azi − cit̂i,vi ← Hizi − ciI.
(c) Set ci+1 ← Hθ(M,R,wi,vi, I).

3. If cr+1
?= c1 holds, return 1, otherwise return 0.

– Link(M0, R0, σ0,M1, R1, σ1) → 1/0. On input two valid (message, derived
public key ring, signature) tuples (M0, R0, σ0), (M1, R1, σ1) where σ0 =
(c(0)1 , {z(0)i }r0

i=1, I
(0)), σ1 = (c(1)1 , {z(1)i }r1

i=1, I
(1)), if I(0) ?= I(1) holds, the algo-

rithm returns 1, otherwise returns 0.

3.3 Correctness and Concrete Parameters

This section analyzes the correctness of the proposed lattice-based SALRS
scheme, specifies the parameters achieving 128 bits of security and evaluates
the efficiency of the scheme.
Correctness. We first note that, the validity and well-formedness of a derived
public key DPK, as verified by algorithms DerivedPublicKeyOwnerCheck and
DerivedPublicKeyPublicCheck respectively, follows directly from the construction
of DPK, the correctness of the underlying KEM scheme Πkem and the fact
that t̂ = t + As′ = t + t′ ∈ Rk

q . Next, for an honestly generated signature

2 Note that 1 is regarded as r + 1, i.e., c1 ← Hθ(M, R,wr,vr, I).
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σ = (c1, {zi}r
i=1, I), it holds that c1 ∈ Bθ and zi ∈ Sl

γ−2θη for all i ∈ {1, . . . , r}.
Furthermore, by construction, the value cr+1 computed at Step 2 of algorithm
Verify satisfies cr+1 = c1. Therefore, σ is accepted by Verify.

We next analyze the correctness of algorithm Link. Let σ0 =
(c(0)1 , {z(0)i }r0

i=1, I
(0)) and σ1 = (c(1)1 , {z(1)i }r1

i=1, I
(1)) be generated by Sign(M0,

R0,DPK0, (MPK0,MSK0)) and Sign(M1, R1,DPK1, (MPK1,MSK1)), respec-
tively. For i = 0, 1, let DPKi = (Ci, t̂i) and note that I(i) = Hm(t̂i)ŝi, where
ŝi = si + s′

i and si, s′
i are generated as specified by the scheme. Note that, if

DPK0 = DPK1, then we have ŝ0 = ŝ1 and thus, I(0) = I(1). In this case, algo-
rithm Link outputs 1.

In the case DPK0 �= DPK1, we will demonstrate that, with overwhelming
probability, algorithm Link outputs 0. Indeed, if t̂0 �= t̂1, then Hm(t̂0),Hm(t̂1)
are uniformly random and distinct, ŝ0 and ŝ1 are also distinct. Hence, the prob-
ability that I(0) = Hm(t̂0)ŝ0 = Hm(t̂1)ŝ1 = I(1) is negligible (this is true if small
elements of Rq are invertible). Now, suppose that t̂0 = t̂1 and C0 �= C1. Then,
unless one accidentally finds a collision where ŝ0 �= ŝ1 and Aŝ0 = Aŝ1 (which
happens only with negligible probability), we must have ŝ0 = ŝ1. The latter may
occur in two scenarios:

– s0 �= s1 and s′
0 �= s′

1, but s0 + s′
0 = s1 + s′

1. Due to the randomness of
the generations of s0, s1, s′

0, s
′
1, this scenario only happens with negligible

probability.
– s0 = s1 and s′

0 = s′
1. Note that, if s0, s1 are obtained by two different execu-

tions of algorithm MasterKeyGen, then s0 = s1 only happens with negligible
probability. Furthermore, two different executions of algorithm DerivePub-
licKeyGen with C0 �= C1 should produce distinct s′0, s

′
1 with overwhelming

probability.

The above analysis shows that the given SALRS scheme is correct with over-
whelming probability.
Lattice-Based Instantiation of the KEM Scheme Πkem. We employ
Kyber [7] to instantiate Πkem, by setting GPkem contains only the parame-
ters (n, k, q, η, du, dv, dt) and the hash function. Note that, the ciphertext in the
CPA version of Kyber is pseudorandom based on the Decision Module-LWE
(D-MLWE) assumption, and it hides not only the plaintext but also the public
key. The CCA version of Kyber thus can be easily shown to satisfy not only
CCA-security but also CCA-key-indistinguishability. For concreteness, we will
use the Kyber variant Kyber768, which features public key size 1184 bytes and
ciphertext size 1088 bytes.
Signing Trials. At Step 9 of the signing algorithm, if zī = y + cīŝī �∈ Sl

γ−2θη,
then the signer has to go back to Step 4. Let us compute the probability of such
restarting for uniformly random y R← Sl

γ , cī ∈ Bθ and ŝī = s + s′̄
i
∈ Sl

2η. First,

we have x := cīŝī ∈ Sl
2θη. For each entry yj

R← [−γ, γ] of y, and each entry
xj ∈ [−2θη, 2θη] of x, the probability that yj + xj falls into the “safe zone”
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[−(γ − 2θη), γ − 2θη] is exactly the ratio between the cardinalities of the range
[−(γ − 2θη), γ − 2θη] and the range [−γ, γ]. Therefore, we have:

Pr
[
zī ∈ Sl

γ−2θη

]
=

|Sl
γ−2θη|
|Sl

γ | =
(
1 − 2θη

γ + 1/2
) ≈ e−2nlθη/γ ,

where we use the fact that parameter γ is set to be large compared to 1/2. As
a result, the probability of restarting is approximately close to 1 − e−2nlθη/γ . In
particular, if we set parameters n, l, θ, η, γ so that 2nlθη/γ < loge(3) (see below),
then, on average, the signer has to run Step 4-Step 9 of the signing algorithm
less than 3 times.
Concrete Parameters and Efficiency. To set parameters that yield a scheme
with at least 128 bits of security, we rely on the parameters and analyses of
Dilithium [12], Kyber [7,23] and [4]. In particular, modulus q is set so that every
element of Rq with infinity norm less than 1√

8
·235/8 is invertible, and parameters

n, l, θ, η, γ are set so that the number of signing trials is less than 3 on average.
Similar to [12], we can use SHAKE-256 to implement the functions HA,ExpandV,
and Hm, and use the SampleInBall algorithm in [12, Fig. 2] to implement Hθ.
Table 2 shows the concrete parameters and efficiency of the proposed lattice-
based SALRS.

Table 2. Concrete parameters and efficiency of the proposed lattice-based SALRS.

Parameter Value

Dimension n 256

Modulus q Prime q ≈ 235 and q = 17 mod 32

Module SIS/LWE parameters (k, l, m) (3, 5, 1)

Bounds (θ, η, γ, γ − 2θη) (60, 3, 699453, 699093)

Master public key (MPK) size 4.44 KB

Master secret key (MSK) size 2.97 KB

Derived public key (DPK) size 4.34 KB

Signature size (r = 8) 27.4 KB

Signature size (r = 16) 53.6 KB

Signature size (r = 32) 106.1 KB

Signature size (r = 64) 211.1 KB

4 Proofs of Security and Privacy

Theorem 3. The SALRS scheme is signer-linkable in the random oracle model.

Proof. We prove that the SALRS scheme is signer-linkable under the Module-
SIS (MSIS) assumption. Due to space limitation, we defer the proof details to
the full version.
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Theorem 4. The SALRS scheme is signer-anonymous in the random oracle
model.

Proof. We prove that the SALRS scheme has signer-anonymity under the Deci-
sion Module-LWE (D-MLWE) assumption. Due to space limitation, we defer the
proof details to the full version.

Theorem 5. The SALRS scheme is signer-non-slanderable in the random ora-
cle model.

Proof. We prove that the SALRS scheme is signer-non-slanderable under the
Module-SIS (MSIS) and Decision Module-LWE (D-MLWE) assumptions. Due
to space limitation, we defer the proof details to the full version.

Theorem 6. The SALRS scheme is master-public-key-unlinkable in the random
oracle model.

Proof. Suppose the underlying KEM scheme is CCA secure and CCA Key Indis-
tinguishable, we prove that the SALRS scheme is master-public-key-unlinkable
under the Decision Module-LWE (D-MLWE) assumption. Due to space limita-
tion, we defer the proof details to the full version.

5 Conclusion

In this paper, we proposed a new cryptographic primitive, referred to as Linkable
Ring Signature Scheme with Stealth Addresses (SALRS), which comprehensively
and strictly captures the security and privacy requirements of hiding the payer
and payee of the transactions in cryptocurrencies. We also proposed a lattice-
based SALRS construction and proved its security and privacy in the random
oracle model. As a result, our construction provides strong confidence on security
and privacy in twofolds, being proved under strong models which capture the
practical scenarios of cryptocurrencies, and being potentially quantum-resistant.
The efficiency analysis also shows that our lattice-based SALRS scheme is prac-
tical for real implementations.

A A Proof of Theorem 1

Proof (Sketch). Due to page limitation, below we give the proof sketch and defer
the proof details to the full version.

Suppose there exists an adversary A that breaks the strong unforgeability,
i.e. succeeds in Gameeuf with non-negligible advantage. We can construct an
algorithm B that either succeeds Gamesnlink with non-negligible advantage or
succeeds Gamesnnsl with non-negligible advantage.

B is offered two challengers C0 and C1, which will interact with B for Gamesnlink
and Gamesnnsl respectively. On the other side, B interacts with A for Gameeuf ,
making use of C0 or C1 behind, while it is indistinguishable from the view of A.
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At the Output Phase of Gameeuf , A outputs a (message, derived public key
ring, signature) tuple (M∗, R∗, σ∗), such that (1) Verify(M∗, R∗, σ∗) = 1, and
(2) R∗ ⊆ Ldpk, and (3) (M∗, R∗, σ∗) is not returned by OSign(·, ·, ·).

Wlog., let R∗ = (DPK∗
1, . . . ,DPK

∗
k), B can obtain k (message, derived public

key ring, signature) tuples {(Mi, R
∗, σi)}k

i=1 by making use of C0 or C1, such that
(1) Verify(Mi, R

∗, σi) = 1 (i = 1, 2, . . . , k), and (2) Link(Mi, R
∗, σi,Mj , R

∗
j , σj) =

0 ∀i, j ∈ [1, k] s.t. i �= j, where σi corresponds to DPK∗
i . Consider these k + 1

signatures, we have that either the following Case I or the Case II happens:

– Case I: Link(M∗, R∗, σ∗,Mj , R
∗, σj) = 0 ∀j ∈ {1, . . . , k},

– Case II: ∃î ∈ {1, . . . , k} s.t. Link(M∗, R∗, σ∗,Mî, R
∗, σî) = 1.

If Case I happens, these k+1 signatures can be used to win Gamesnlink, otherwise,
the two signatures (M∗, R∗, σ∗), (Mî, R

∗, σî) can be used to win Gamesnnsl.

References

1. Au, M.H., Chow, S.S.M., Susilo, W., Tsang, P.P.: Short linkable ring signatures
revisited. EuroPKI 2006, 101–115 (2006). https://doi.org/10.1007/11774716 9

2. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size id-based linkable and
revocable-iff-linked ring signature. INDOCRYPT 2006, 364–378 (2006). https://
doi.org/10.1007/11941378 26

3. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-
iff-linked ring signature with constant-size construction. Theor. Comput. Sci. 469,
1–14 (2013). https://doi.org/10.1016/j.tcs.2012.10.031

4. Baum, C., Damg̊ard, I., Lyubashevsky, V., Oechsner, S., Peikert, C.: More efficient
commitments from structured lattice assumptions. SCN 2018, 368–385 (2018).
https://doi.org/10.1007/978-3-319-98113-0 20

5. Baum, C., Lin, H., Oechsner, S.: Towards practical lattice-based one-time linkable
ring signatures. ICICS 2018, 303–322 (2018). https://doi.org/10.1007/978-3-030-
01950-1 18

6. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

7. Bos, J.W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM.
In: EuroS&P 2018. pp. 353–367 (2018). DOI: https://doi.org/10.1109/EuroSP.
2018.00032

8. Boyen, X., Haines, T.: Forward-secure linkable ring signatures from bilinear maps.
Cryptography 2(4), 35 (2018). https://doi.org/10.3390/cryptography2040035

9. Branco, P., Mateus, P.: A code-based linkable ring signature scheme. ProvSec 2018,
203–219 (2018). https://doi.org/10.1007/978-3-030-01446-9 12

10. CoinMarketCap: Top 100 cryptocurrencies by market capitalization. https://
coinmarketcap.com. Accessed 27 Apr 2019

11. Courtois, N.T., Mercer, R.: Stealth address and key management techniques
in blockchain systems. ICISSP 2017, 559–566 (2017). https://doi.org/10.5220/
0006270005590566

12. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018). https://doi.org/
10.13154/tches.v2018.i1.238-268



A Lattice-Based Linkable Ring Signature Supporting Stealth Addresses 745

13. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-
out-of-many proofs and applications to ring signatures. IACR Cryptol. ePrint Arch.
2018, 773 (2018)

14. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. CT-
RSA 2011, 393–415 (2011). https://doi.org/10.1007/978-3-642-19074-2 25

15. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles.
IEICE Trans. 95–A(1), 151–166 (2012). https://doi.org/10.1587/transfun.E95.A.
151

16. Fujisaki, E., Suzuki, K.: Traceable ring signature. PKC 2007, 181–200 (2007).
https://doi.org/10.1007/978-3-540-71677-8 13

17. Langlois, A., Stehle, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-
014-9938-4

18. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: EUROCRYPT 2016 Part II. pp. 1–31 (2016). DOI: https://doi.org/
10.1007/978-3-662-49896-5 1

19. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Linkable ring signature with uncondi-
tional anonymity. IEEE Trans. Knowl. Data Eng. 26(1), 157–165 (2014). https://
doi.org/10.1109/TKDE.2013.17

20. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signa-
ture for ad hoc groups (extended abstract). ACISP 2004, 325–335 (2004). https://
doi.org/10.1007/978-3-540-27800-9 28

21. Liu, Z., Yang, G., Wong, D.S., Nguyen, K., Wang, H.: Key-insulated and privacy-
preserving signature scheme with publicly derived public key. EuroS&P 2019, to
appear https://eprint.iacr.org/2018/956

22. Lu, X., Au, M.H., Zhang, Z.: Raptor: a practical lattice-based (link-
able) ring signature. IACR Cryptol. ePrint Archive 2018, 857 (2018).
https://eprint.iacr.org/2018/857

23. Lyubashevsky, V., Seiler, G.: Short, invertible elements in partially splitting cyclo-
tomic rings and applications to lattice-based zero-knowledge proofs. In: EURO-
CRYPT 2018 Part I. pp. 204–224 (2018). DOI: 10.1007/978-3-319-78381-9 8

24. Noether, S., Mackenzie, A.: Ring confidential transactions. Ledger 1, 1–18 (2016)
25. van Saberhagen, N.: Cryptonote v 2.0 (2013). https://cryptonote.org/whitepaper.

pdf
26. Sun, S., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-

based (linkable ring signature) protocol for blockchain cryptocurrency monero. In:
ESORICS 2017 Part II. pp. 456–474 (2017). DOI: https://doi.org/10.1007/978-3-
319-66399-9 25

27. Todd, P.: Stealth addresses. https://lists.linuxfoundation.org/pipermail/bitcoin-
dev/2014-January/004020.html

28. Torres, W.A.A., et al.: Post-quantum one-time linkable ring signature and applica-
tion to ring confidential transactions in blockchain (lattice ringct v1.0). In: ACISP
2018. pp. 558–576 (2018). DOI: https://doi.org/10.1007/978-3-319-93638-3 32

29. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and
attestation. ISPEC 2005, 48–60 (2005). https://doi.org/10.1007/978-3-540-31979-
5 5

30. Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable
linkable threshold ring signatures. INDOCRYPT 2004, 384–398 (2004). https://
doi.org/10.1007/978-3-540-30556-9 30



746 Z. Liu et al.

31. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or
threshold ring signature without random oracles. Comput. J. 56(4), 407–421
(2013). https://doi.org/10.1093/comjnl/bxs115

32. Zhang, H., Zhang, F., Tian, H., Au, M.H.: Anonymous post-quantum cryptocash.
IACR Cryptol. ePrint Archive 2017, 716 (2017). http://eprint.iacr.org/2017/716


	A lattice-based linkable ring signature supporting stealth addresses
	Citation

	tmp.1665640577.pdf.NqB_w

