Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

9-2019

Puncturable proxy re-encryption supporting to group messaging
service

Tran Viet Xuan PHUONG
University of Wollongong

Willy SUSILO
University of Wollongong

Jongkil KIM
University of Wollongong

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Dongxi LIU
CSIRO

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

Cf Part of the Information Security Commons

Citation

PHUONG, Tran Viet Xuan; SUSILO, Willy; KIM, Jongkil; YANG, Guomin; and LIU, Dongxi. Puncturable proxy
re-encryption supporting to group messaging service. (2019). Computer Security: 24th European
Symposium on Research in Computer Security, ESCORICS 2019, Luxembourg, September 23-27:
Proceedings. 11735, 215-233.

Available at: https://ink.library.smu.edu.sg/sis_research/7412

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7412&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7412&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

®

Check for
updates

Puncturable Proxy Re-Encryption
Supporting to Group Messaging Service

Tran Viet Xuan Phuong'2®, Willy Susilo!, Jongkil Kim', Guomin Yang!,
and Dongxi Liu?

! Institute of Cybersecurity and Cryptology School of Computing and Information
Technology, University of Wollongong, Wollongong, Australia
{txuan,wsusilo, jongkil,gyang}@uow.edu.au
2 Data61, CSIRO, Syndey, Australia
Dongxi.Liu@data6l.csiro.au

Abstract. This work envisions a new encryption primitive for many-
to-many paradigms such as group messaging systems. Previously, punc-
turable encryption (PE) was introduced to provide forward security for
asynchronous messaging services. However, existing PE schemes were
proposed only for one-to-one communication, and causes a significant
overhead for a group messaging system. In fact, the group communi-
cation over PE can only be achieved by encrypting a message multiple
times for each receiver by the sender’s device, which is usually suit-
able to restricted resources such as mobile phones or sensor devices. Our
new suggested scheme enables to re-encrypt ciphertexts of puncturable
encryption by a message server (i.e., a proxy) so that computationally
heavy operations are delegated to the server who has more powerful
processors and a constant power source. We then proposed a new Punc-
turable Proxy Re-Encryption (PPRE) scheme. The scheme is inspired
by unidirectional proxy re-encryption (UPRE), which achieves forward
secrecy through fine-grained revocation of decryption capability by inte-
grating the PE scheme. This paper first presents a forward secure PPRE
in the group messaging service. Our scheme is IND-CCA secure under
3-weak Decision Bilinear Diffie-Hellman Inversion assumption.

Keywords: Puncturable encryption *+ Proxy Re-Encryption -
Group messaging service + CCA security

1 Introduction

Green and Miers introduced Puncturable Encryption (PE) [15] to produce effi-
cient forward-secure encryption for asynchronous communication with low over-
head. Forward secrecy is a crucial trend on secure communication. For example,
a new version of TLS v1.3 mandates forward secrecy for its key exchange. The
protocols that do not support forward secrecy will be gradually deprecated in
the near future. PE enables users to utilize forward secure asynchronous com-
munication such as a messaging service.

© Springer Nature Switzerland AG 2019
K. Sako et al. (Eds.): ESORICS 2019, LNCS 11735, pp. 215-233, 2019.
https://doi.org/10.1007/978-3-030-29959-0_11

216 T. V. X. Phuong et al.

A group messaging service in real-world applications such as Snapchat and
Whatsapp is essential since the communication between users is not always one-
to-one. Many-to-many communication (e.g., a group messaging service) has a
capability to boost customer convenience in the business/private conversation
for a group of users. Therefore, supporting group messaging service makes a con-
versation more specific and focused. Forward secrecy and asynchronous proper-
ties that PE offers are still important in a group messaging service. However,
messages in group communication are not always synchronized. Participants who
are traveling or on-the-go will receive the messages with a significant delay. Fur-
thermore, in the event that a user key in group communication is compromised;
the confidentiality of past messages will fail.

In the existing work, the proposed PE schemes are constructed only for one-
to-one communication between a sender and a receiver. How to use those PE
schemes for many-to-many communication such as a group messaging service
remains daunting. One of the most trivial ways is a participant of a group com-
munication encrypts a message for all other participants in the communication
one-by-one using PE, but this requires significant computation overhead to the
sender. Particularly, if a message is sent from resource-constraint devices such
as mobiles and sensor devices, this causes a substantial amount of battery con-
sumption and delay as the number of participants grows.

To mitigate the delay time or support messaging for individuals who are
away, we revisit the Proxy Re-Encryption (PRE) [2,3,17]. Suppose that Alice
makes a group chatting room and invites multiple users, every time a new user
joins in the group chatting, Alice computes the re-encryption key for this user
by his public key and uploads to a messaging server, which is considered as a
proxy. If anyone sends a message in this room, the message is encrypted only
for Alice and send to the message server. The message server re-encrypts the
encrypted message for all participants one-by-one using the re-encryption keys
that Alice uploaded, then delivers it to the participants. Because the message
server has more powerful processors and constant power source, it will reduce the
delay caused by multiple encryptions. Moreover, each participant will encrypt
the message only once as a general PE scheme; it prolongs the battery life of
participant devices, significantly.

Contribution: Motivated by the aforementioned scenario, we investigate the
fine-grained revocation of decryption capability only for specific messages while
all other messages are decryptable in [15], then incorporate the unidirec-
tional proxy re-encryption (UPRE) to firstly propose Puncturable Proxy Re-
Encryption (PPRE). In a nutshell, PPRE scheme has both PE and UPRE
scheme; however, it is not straightforward to deploy both schemes into the
typical proxy re-encryption. At a high-level idea, each message is attached to
a tag t € {t1,...,tq}, which can be time stamps or message identifiers. The
ciphertext also includes the set of tags corresponding to the stamped messages.
The delegator applies the puncture algorithm to puncture her secret key by
tag t € {t1,...,tq} if she wants to revoke the capability of decryption tag ¢.
This addressing issue is achieved the forward secrecy in the messaging system.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 217

Next to delegate the decryption right, the delegator sends the template of punc-
ture key TK and the re-encryption key Rp._ 4 to the proxy server, then the
proxy uses the Rp._4 to re-encrypt the ciphertext. The proxy will delegate TK
and ciphertext to the delegatee. From the template key TK, the delegatee can
derive his/her own puncture keys. The decryption of delegatee is input of the
puncture key and his secret key. The proposed scheme first achieve IND-CCA
security, which is a considerable security assumption to provide a more realis-
tic adversarial model. We are inspired by the papers of [7,9,17] which present
scheme to apply a strongly unforgeable one-time signature to bind ciphertext
components altogether and offer a secure against chosen ciphertext attacks in
the manner of [8].

Table 1. Performance comparison between our proposed scheme and [17] scheme.

Scheme|Level 1 - ciphertext Level 2 - ciphertext Level 1 dec|Level 2 dec|Attack
[17] |2 Sig + 4|G| + 1G] 2 Sig + 2|G| + 1|Gx| ip 1p IND-CCA
PPRE |2 Sig + (7 + d)|G| + 1|Gr||2 Sig + (2 + d)|G| + 1|G||tp tp IND-CCA

We highlight a detailed computation of our Puncturable Proxy Re-
Encryption and typical Unidirectional PRE of [17]. The schemes are compared in
terms of the order of the underlying group, ciphertext size, decryption cost, and
security assumption. We use d to denote the number of tags, and ¢ the number
of puncture tags.

Related Work. In the early concept presented in [18], the original recipient
must be available for re-encrypting ciphertexts when needed, which is not always
feasible. Later, [4] first proposed a proxy re-encryption, which establishes an
actual notion with the elegance of the construction. This scheme is based on
Elgamal, and it is constructed upon a group G of prime order p. [2,3] proposed
the first unidirectional PRE scheme, based on bilinear pairings. These schemes
are also the first to present the idea of multiple ciphertext space. Apart from
[2,3,9] presents the first CCA-secure bidirectional scheme in the standard model,
while the unidirectional case, [16,17] achieve the chosen ciphertext security in
the standard model. [24] then proposed bidirectional schemes without pairings
under CCA-secure in the random oracle model. [14] proposed a new fashion of
PRE scheme as the first identity-based encryption proxy encryption (IBPRE)
scheme. Using the identity-based, this scheme uses the identities of the delegator
and delegatee as their public keys. Another interesting proposal proposed by [1]
defines the notion of key privacy in the context of PRE, which prevents the proxy
to derive the identities of both sender and receiver from a re-encryption key.
As the new variances of IBPRE, [10] presented IB-PRE scheme built upon the
reductions to the security of IBE [22]. [19] proposed Hybrid proxy re-encryption,
which ciphertext encrypted by public key encryption scheme can be re-encrypted
to ciphertexts under an identity-based encryption scheme. Recently, [20] intro-
duces proxy re-encryption with the scenario of key rotation of data stored on the

218 T. V. X. Phuong et al.

cloud to reduce the rotating cost. Several works proposed as condition [23], type-
based proxy re-encryption [21] to produce the diversity for PRE. In addition,
PRE is appropriate to deploy in the cloud services. [13] proposed the variant
of proxy re-encryption schemes in the dropbox, and [5] produced efficient and
secure shared storage.

2 Preliminaries

2.1 Bilinear Map

Let G and Gt be two multiplicative cyclic groups of same prime order p, and g a
generator of G. We define e : G x G — Gp be a bilinear map with the following
properties: (1) Bilinearity : e(u?,v?) = e(u®,v%) = e(u,v)® for all u,u € G and
a,b € Z,. (2) Non-degeneracy : e(g,g) # 1. Notice that the map e is symmetric
since (g, &") = e(g,9)*" = e(¢, g°).

2.2 The 3-Weak Decision Bilinear Diffie-Hellman Inversion
(3-WDBDHI)

The Decision 3-wDBDHI problem is the intractability of a variant of Decisional
Bilinear Diffie-Hellman [6] assumption, which consider the indistinguishable
computational of e(g,¢)?/® from tuple of random elements (g,g“,g“2,g“q,gb).
There is a distinguisher At,e- breaks the assumption if it runs in poly-
nomial ¢ time and [Pr[A(g,¢% 9%, 9%, g% e(g,9)"*) = 1la,b €g Zy] —
PrA(g, 9% 9%, 9%, g% e(g,9)?) = 1la,b,z €g Zy| < e(k). In the works of
[12,17], the 3-wDBDHI problem is shown obviously that it is not easier than
the (q-DBDHI) problem [6] for ¢ < 3, which is to recognize e(g,g)"/* given
(g,9%...,9%") € GI+1,

2.3 One-Time Signatures

We apply the CHK method [8] to use one-time signatures, which consist of a
triple of algorithms Sig = (G, S, V). The algorithm inputs of a security param-
eter A, G generates a one-time key pair (ssk, svk) while, for any message M,
V(o, svk, M) outputs 1 whenever 0 = S(ssk, M) and 0 otherwise. The strongly
unforgetable one-time signatures are presented [8], which means that no PPT
adversary can create a new signature for a previously signed message.

Definition 1. Sig= (G,S,V) is a strong one time signature if the probability is
negligible for any PPT forger F

Adv®TS = Pr(ssk, svk) — G(\); (M, St) — F(svk); o — S(ssk, M); (M',o")
— F(M,o,svk,St) : V(o' , sk, M') = 1A (M',0") # (M,0)],

where St denotes F’s state information across stages.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 219

2.4 Lagrange Polynomial and Interpolation

Suppose that a polynomial of degree d is uniquely defined by a set of points
(z0,90), (1,Y1), -+, (Td+1,Yd+1)- The Lagrange form of the polynomial allows
the computation of a point x on the polynomial using only d+1 points as follows:

d
q(z) = L(x, zc, yc) Z yelj) - Uz, j, zc)),
J=

where, zc = [x0,...,2q+1] and ye = [yo, . . ., Y4+1] and the Lagrange basis poly-
nomial £(...) is:

Wegeey= [—Smeml

0<m,m#j<d xclj] — we[m]

Applying the Lagrange polynomial form, a random degree d polynomial g(x)
is selected, which consists of sampling d random values 71....,7rq4 from Z,,
setting points (1,71),(2,r2),...,(d,rq) and setting the final point to (0,5) to
guarantee ¢(0) = (. Lagrange interpolation can compute V(x) without knowl-
edge of the polynomial coefficients by only the public values ¢g9(9), ..., ¢9(®) as:

, d

V(z) = g1 = gZ}i=o vit@gwe) — TT (gaW))t@7¢) where (x, j, zc) is already
7=0

defined.

3 Model and Security Notions

3.1 Puncturable Proxy Re-Encryption

Puncturable Proxy Re-Encryption scheme has Global-setup, KeyGeneration,
Re-KeyGen, Puncture, Encryption; (is not re-encrypt-able), Encryptions, Re-
Encryption, and Decryption;, Decryptiony algorithms defined in the following.

» Global-setup(1¥,d). On input a security parameter k, a maximum number of
tags per ciphertext d, the algorithm outputs the public parameter param, and
initial puncture key PSKj.

» Key-Generation(param, PSKy). On input the public parameter param and an
initial puncture key PSKg, the algorithms generates the public/secret key
pair for a user A, then combines the secret key A and PSKq to produce new
puncture key PSKg.

» Puncture(param, TK,PSK;_1,¢). On input an existing key PSK;_; as
{PSK{,PSKj,...,PSK;_1}, and a tag t, the algorithm outputs PSK;.

» Re-KeyGen(param, ska, pkg). On input the public parameter param, secret key
A, and public key B. A first generates a template puncture key TK by the
param and ska. Then A then publicly delegates to user B a re-encryption key
Re—a, and encrypted form Encp, (TK).

220 T. V. X. Phuong et al.

» Encryption; (param, pka, M, t1,...,tq). On input the param, public key of the
user A, a message M, and a set of tags (t1,...,tq), the algorithm outputs the
first level ciphertext CT; along with the tags (¢1,...,tq).

» Encryptiona(param, pk, M, t1,...,tq). On input the param, public key of user
A, a message M, and a set of tags (t1,...,tq), the algorithm outputs the
second level ciphertext CTo along with the tags tq,..., 4.

» Re-Encryption(CT2,Rg—a). On input the second level ciphertext CTy along
with the tags t1,...,tq, are-key R4 pg. The algorithm first checks the validity
of CTy. If CTy is well-formed, the algorithm computes from CTy by the re-
encryption key Rg.a, and produce the ciphertext CTy, along with the tags
t1,...,tq. Otherwise, CT5 is declared ‘invalid.’

» Decryption; (param,skg, CT1,t1,...,t4). On the input param, the secret key
of user B, punctured key PSK; ,ciphertext CTy along with (¢1,...,tq), the
algorithm outputs message M or ‘invalid.’

» Decryptions(param, ska, PSK;, CTa,t1,...,tq). On the input param, the secret
key of user A, punctured key PSK;, second ciphertext CTs along with
(t1,...,tq), the decryption outputs message as M or ‘invalid.’

Correctness. For any common public parameters param, for any message m €

{0, 1}* and any couple of public/secret key pair (pky,ska), (pkg,skg) these algo-
rithms should satisfy the following conditions:

Decryption, (param, ska, PSK;, CT;) = M;
Decryption,(param, ska, PSK;, CT2) = M;
Decryption, (param, skg, Re-Encryption(CTs, Rg_a),
Re-KeyGen(param, ska, pkg), PSK;) = M.

We use the standard security notions of proxy re-encryption schemes
[2,3,11,17], which initializes empty lists of corrupted users CU and honest users
HU. In addition, we define two empty sets P, C', a counter n, a targeted user z*,
and a set of tags t7,...,t5. Then, A Puncturable Proxy Re-Encryption scheme
is replayable chosen-ciphertext attack (RCCA) secure at level 2 ciphertexts for
any PPT adversary A if the probability

Pr[param «— Global-setup(lk, d); (pkgx, skg*) < Key-Generation, . (param);
{(pky;skz) « Key-Generationy (param)}; {(pk,, sky) < Key-Generationc (param)};
{Rzp—ga* < Re-KeyGen(sky«, pk,)}, {Ry*—sz < Re-KeyGen(skg, pky«)};

{Ry/ 4 — Re-KeyGen(skz, pk),)}, {Re—y «— Re-KeyGen(sky, pk,)};

{n + +, PSK,, = Puncture,« (param, TK, PSK/ t),P «—t};

n—1»
{n + +,PSK,, = Puncturepy(param, TK,PSK/,_;,t), P — t};
{n + +,PSK;, = Puncturecy(param, TK,PSK/,_1,t), P + t}; Corrupt();

(m17m07 St) - Aol_demoreenc (pkz*) {(pkz’Skx)}v
{Ram—x*}, {Raﬂ—m* }7 {Rx’<—x}u {R:C<—y}7 (tlv s 7td)7 (tT’ s 7t2));
p & {0, 1}, CT} = Encryption, (my,, ke, (8, ., 13));
1
W O -deeOreene (CT3, 50) : ! =] — 1 < e(k),

with St is the state information, {z’} are honest users.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 221

— Corrupt()is invoked in the first time; the adversary issues this query. Then,
the challenger returns the most recent punctured key PSK,, to the adversary,
and sets C' < P. All subsequent queries return L.

— O(reenc): Responding a re-encryption query from user pk, to user pk,, PSK,
and tags (t1,...,tq) for a second level ciphertext CTy, this oracle returns
‘invalid’ if CTy is not encrypted by pk,, (t1,...,tq). It returns L if pk, €
CU and (pk,.,CT5, (¢5,...,t5)) = (pky, CTa, (t1,...,tq)). Otherwise, CT; =
Re-Encryption(CTy, sk., pk,) is returned to A.

— O(1-dec): Given pk,.,CTyq, (t1,...,tq), this oracle returns ‘invalid’ if CT;
is not belongs to pk, and (t1,...,tq). If the condition in ‘guess’ stage
occurs similarly in the ‘queries’ stage, B outputs L. If (pk,/, CT1, (t1,...,tq))
is Derivative of challenge pair (pk,.,CT7,(¢,...,t5)) as CTy is the first
level ciphertext and pk, = pk,. or @’ € HU, it returns L. If Decryp-
tiony (param, sk, CT1, PSK;, t1,...,tq) € {mo,m1}, it returns L. Otherwise,
m = Decryption; (param, sk,, PSK;, CTy,.

A Puncturable Proxy Re-Encryption scheme is also replayable chosen-ciphertext
attack (RCCA) secure at level 1 ciphertexts. In fact, the adversary is guaran-
teed to access to re-encryption keys. Since first level ciphertexts cannot be re-
encrypted, the attackers is not equipped to obtain the honest-to-corrupt re-
encryption keys. The O,cene oracle is unusable since all re-encryption keys are
available to A, Oy_ge. is also unnecessary. Finally, Derivative of the challenge
ciphertext is simply defined as encryptions of either mg or m; with the target
public key pk-.

4 Puncturable Proxy Re-Encryption Under Chosen
Ciphertext Attack

The main construction of Puncturable Proxy Re-Encryption (PPRE) applies
the inherent Unidirectional Proxy Re-Encryption (UPRE) [3], where the second
ciphertext is ((g%)%, M - e(g,9)*®); g is public key of Alice. Then the proxy re-
encrypts the second ciphertext into the first ciphertext as (e((g%)*,g*/¢), M -
e(g,9)°) = (e(g,9)", M - e(g,9)*), which g*/¢ is the re-encryption key between
Alice and Bob.

Hence, [16,17] employs the CHK transform [8] to product the re-encrypted
ciphertext by the following fashion. The proxy replaces g*® by a randomized pair
(g*/e7, g?"#), for a blinding random 7 € Zy. All components in second ciphertext
remain in G. Bob can eventually decrypt the message M -e(g, g)*/(e(g, g)**)/°.
Firstly, we are inspired [17]’s method incorporating the Puncturable Encryption
(PE) and URPE schemes. The global setup algorithm initially shares a master
secret key a as a1, as, which are used as the master secret keys of PE, UPRE
schemes respectively. In order to recover a;y, ais in decryption process, we produce
a delegation key DK = g*27"2 and puncture key PSK = g®1 771772 a5 the mode of
[15]. The second ciphertext is generated to ((DK®)*, M -e(g, g)(*1122)s F(t)%), in
which F(t) is the arbitrary formula to compute the tags in Puncturable Encryp-
tion. Secondly, the component of ciphertext includes the F(t)®, then the first

222 T. V. X. Phuong et al.

ciphertext should have F(¢)"*. Consequently, the proxy should replace DK*® by
a randomized pair (DKY ¥ garsk) for “double blinding randoms” r,k € Z,. By
this way, e(DK%* garsk) — ¢(DK, g)""* can be cancel out with the exponent’s
components including rs. In this manner, Bob can recover the e(g, g)(®1+22)s to
read message M by computing the a1, s in term of puncture key, re-encryption
form, respectively. In addition, we produce (ctio,ct)y,ctly) = (g",g%"™*, g*) in
order to check whether the safety of ciphertext is, meanwhile the verifying step
is required to achieve the IND-CCA security. We will elaborate PPRE scheme
in the next description.

4.1 Description

We elaborate the Global-setup, Key-Generation, Puncture, Re-KeyGen, Encryption;
(is not re-encryptable), Encryptions, Re-Encryption, Decryption;, and Decryptiongy
algorithms defined in the following.

» Global-setup(1¥,d). On input a security parameter k, a maximum number

of tags per ciphertext d, the algorithm firstly chooses a group G of prime
order p, a bilinear map e : G x G — Gy, a generator g,w,v, a hash
function H : {0,1}* — Z,, and a strongly unforgeable one-time signature
scheme Sig = (G,S,V). Then the algorithm randomly selects exponents
r1,T2, 00,00 € Zp. It samples polynomial ¢(z) of degree d. From ¢ = 1 to
d, it computes ¢(i), subjects to the constraint that ¢(0) = 1.
Secondly, the algorithms defines V(z) = ¢9%), and let t, be a distin-
guished tag not used during normal operation. Next, it computes the initial
puncture key using the master key aj, and distinguished tag to: PSKq =
(PSKOl, PSKOQ, PSK03, PSK04) = (galJﬂ‘lirQ,V(H(to))rl,grl R to). Using the
master key «s, the algorithm generates the global key for user key genera-
tion: DK = g*27"2. Finally, it outputs the public parameter: param = (g,Y =
e(g, g™ t°2),Sig,DK, g?M ... g9(4 t4), and initial puncture key PSK.

» Key-Generation(param, PSKy). To generate the public/secret key pair for
a user A, the algorithm randomly picks a €r Z,. Then, it sets the
public key, the secret key, and new initial puncture key from SK, to
be: pkn = DK% ska = a,PSK, = (PSKj;,PSKj,,PSKjs, PSKy,) =
(g +r=r2) o (V(H (ty))™) /g7),

» Re-KeyGen(param, DK, PSK;). A user A delegates to B as follows:

e B chooses and stores a random value u € Z,, then publishes (g%, DK").

A creates (Rga = DK“/“).

A create TK = {g'/e gtM/a gald)/a}

A uses public key B to encrypt A’s puncture keys as Encpy, (PSK;).

A then delegates (Rg—a, Encpr, (TK)) to B.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 223

» Puncture(param, TK,PSK!,#). On input an existing key PSK; ; as
{PSKg, PSKj,...,PSK;_1}, the algorithm chooses X', 7/, r; randomly from Z,,,
and computes:

PSKG) = (PSKiy - (9"/*)" =, PSKGy - (V(H (80))/)", PSK - 9™ to)
PSK; = ((g"/)™ (V(H(1))Y*)™, g™ 1).

Then it outputs: PSK; = (PSKj, PSKy, ..., PSK;_1, PSK;).

» Encryption; (param, pka, M, t1,...,tq). On input the param, public key of user
A, a message M, and a set of tags t1,...,tq € {0,1}*\{to}, the algorithm
first randomly chooses s,r,k in Z,. Secondly, the algorithm selects a one-
time signature key pair (ssk, svk) randomly from G(A). It outputs:

CTy = (ctyg, Ctyy, Ctyg, Ctiy, CtYy, ctlhy, ctys, Ctyy, Ctys,, Ctig, 0)
= (SU]{I, M - YTS7 gaTS7 gTy ga?”k’ gaka DKl/k7 gakT‘S7 {V(H(ti))rs}ie{l,..‘7d}7
(usvk -0)"% S(ssk, (ctq1, ctys,, Ctig)))

along with the tags t1,...,%4. In such a way, the ciphertext can be decrypted
by only the user A.

» Encryptiong(param, pka, M, t1,...,t4). On input the param, public key of user
A, a message M, and a set of tags t1,...,tq € {0,1}*\{to}, the algorithm
first randomly chooses s in Z,. Secondly, the algorithm selects a one-time
signature key pair (ssk, svk) randomly from G(A). It outputs:

CT2 = (ctzo, cta1, ctog, ctag, , ct24, o)

= (svk, M - Y*, g% {V(H (1) Vicqr,....ap» (@ - 0)°, S(ssk, (ctar, ctas, , ctaa,),

.....

along with the tags t1,...,%4. In such a way, the ciphertext can be decrypted
by user A and her delegatees.

» Re-Encryption(CT2, Rg—a). On input the second level ciphertext CTs, a re-key
Ra—p, and a set of tags t1,...,tq € {0,1}*\{to}. The algorithm first checks
the validity of CTs by verifying the following conditions:

e(ctag, u - w) z e(g®, ctas), (1)
?
V(Ctgo, o, (Ct21, ctog,, Ct24)) =1. (2)
If CT; is well-formed, the algorithm chooses r,k randomly from Z,, then
computes from CT, :
CT, = (Ct1()7 cty1, ctig, Ct/12, Ctlllg, Ctlllé, cti3, ctig, ctys,, Ctig, O’)
= (S’Uk, M - YTS, gllTS7 gT7 garkv gakv (DKu/a)l/k7 gakTSa {V(H(tz))rs}le{l AAAAA d}s
(u®* - v)"*, S(ssk, (cti1, ctis,, ctig))),
along with the tags t1,...,t4. Otherwise, CTs is declared ‘invalid’.

» Decryption; (param, skg, Encyi, (PSK;), CTy,t1,...,t4). On the input param, the
secret key of user B, encrypted form Ency, (PSK;) , re-encrypted ciphertext

224 T. V. X. Phuong et al.

CT; along with {t1,...,t4}, the algorithm first checks the validity of CT; by
verifying the following conditions:

e(ctly, ctig) = e(DKY, ct)y), (3)
6(Ct13, ucto . w) ; G(Ct/{Q, Ctlg), (4)
?
V(Ctlo, o, (Ctll, ctys,, Ct]_ﬁ)) =1. (5)

If (3)-(5) hold, then for j = 0,...,7, the punctured key PSK; is parsed
as (PSK;1,PSK;2, PSK;3,PSK;4). Next, it computes a set of coefficients

d
wy, ..., wg,w* such that: w* - ¢(H(PSKi4)) + . (wg - ¢(H(tg))) = q(0) =1
k=1

Finally, it computes:

‘ e(PSKjl,Ctlg)
A= H d
7=0 €(PSKJ'37 H Ct’lwg,k) . e(PSKjQ, Ctlg)w*

6((ga1+r177‘2+7"7)\/)1/a’ gars)

d
elgrt', TLV(H())=) - el (V (H(to)" o)1/, gors)e”
e(gk'-i-rt , grs)

e(g”v,}i[l V(H(tx))r) - e(V(H(#)™, g7)"

_elgyg) ettt oA g(g, g)(ret A

e(g, g)rstmt) o elg,g)e
B = 6(Ct13,Ct14) _ e(g(a2+r2)u/ak7garks) — e(g’g)(a2+r2)rus,

(g —r2)rs

=e(9,9)

and outputs message as: M = <21

» Decryptions(param, ska, PSK;, CTa, 1, ...,t4). On the input param, the secret
key of user A, puncture key PSK;, ciphertext CTy along with {¢1,...,tq}, ¢,
the decryption algorithm first computes: for j = 0, ..., 4, the punctured key

PSK; is parsed as (PSK;1, PSK;2, PSK;3, PSK;4). Next, it computes a set of

d

coefficients wq, . .., wq, w* such that w* - ¢(H(PSK;4)) + > (wi - q(H (tx))) =
k=1

q(0) = 1. Finally, it computes:

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 225

G(PSKjl, Ct22)

A= H d
J=0 B(PSK]‘?,, H Ct;}?ik) : €(PSKj2,Ct22)w*

e((gal-l-rl—rz—i-r/—)\/)l/a’ gas)

elgm ™, ,}i V(H (t5))) - e((V (H (1)) +70) 1/, gos)o”

e(g¥ 7, g%)

e(g”’zﬁl V(H (tx))r) - e(V(H()™, g°)"

e(g’g)(a1+r17r2+r'7)\')s ' e(g’g)(rt+>\l)TS

= .. — ais
e(g, g)*(r+r) e(g,g)" e(9,9)*'*e(9,9)

B = e(cta, DK) = e(g"", g ""),

—Tra2s

ctia
A-Bl/a:

and outputs message as: M =

4.2 Security

Theorem 1. Assuming the strong unforgebility of the one-time signature, our
Puncturable Proxy Re-Encryption scheme is RCCA—secure at level 2 under the
3—wDBDHI assumption.

Proof. Let (g,A_1 = g'/* A = g% Ay = g“Q,B = ¢°,T) be modified 3 —
wDBDHTI instance. We build an algorithm B deciding if T' = (g, g)b/“2 out of a
successful RCCA adversary A.

We define an event Fots and bound its probability to occur. Let CT3 =
(ct3g, cthy, Ctyy, Ctys , Ctsy, 0*) be the challenge ciphertext received by A, and
the set (¢7,...,t;) be the target set initially output by A. At some points
in the process, Fors is the even that A issues a decryption query for a first
level ciphertext CT; = (svk*, ctyy, ctyo, Ct/12, Ct/1/2, Ct/{é, ctyg3, ctyg, ctys,, Ctyg, 0')
or a re-encryption query RC* = (svk*,rcy,rca,res,, rcy,0) where (ctyg,ctys,,
Ctig,0) # (cty,ctys ,ctyy,0") but V(o,svk, (ctin,ctis;, ctig)) = 1 (resp.
V(o, svk, (ct11, ctis,,ctig)) = 1). In the queries stage, A has simply no infor-
mation on svk*. Therefore, the probability of a pre-challenge occurrence of FoTs
does not exceed qq - d if qg is the overall number of oracle queries and § denotes
the maximal probability. In the guess stage, FoTs is enhanced to an algorithm
breaking the strong unforgeability of the one-time signatures. Therefore, the
probability Pr[Fots] < qo/p + AdvOT>, where qo/p + Adv®T> must be negligible
by assumption.

Global Setup Phase. BB generates a one-time signature key pair (ssk*, svk*) —
G(A\) and provides A with public parameters including w = Afl(alJrO‘Z) and
v = Agfﬁlsvk Jantaz)) A'262(a1+a2) for random f31, 82, 1,2 in Z,. Observe

that w and v define a hash function F(svk) = w®F . v = A‘f](svk_s”k*) - AS?,

226 T. V. X. Phuong et al.

and computes g*1, g*2. B chooses d+ 1 points 6y, 01, . .., 0, uniformly at random
from Z,, in which 6 is a distinguished value not used normal simulation. Then
it implicitly sets ¢(0) = 1, while ¢(¢;) = 6;, then V(H(t;)) = Ag(ti) = ¢g¥0 B
continuously initializes two empty sets P, C and a counter 7 = 0.

B generates the initial puncture key as PSKy = (PSKp1, PSKga, PSKos, PSKos) =
(AP Y (H (t))™, g™, to), and the global key for user key generation DK =
g2t with r1, 72, €g Zy.

Phase 1. A can repeatedly issue any of the following queries: Hereafter, we
call HU the set of honest parties, including user z* that is assigned the target
public key pk,., and CU the set of corrupt parties. Throughout the game, A’s
environment is simulated as follows:

— Key-Generation: public keys of honest users x € HU\z* are defined as pk, =
A7 = ¢** for a randomly chosen z in Z,, also implicitly sets sk, = z. In
addition, user x will generate the PSK{:

PSK] = (PSK.,, PSKhy, PSKhg, PSKh,) = (Al H71m21/w gforsl/e oy gy

The target user’s public key is set as Ag* = ggc*“z7 also implicitly sets sk, =
az* with 2* €g Z,. User z* generates the key PSK(,

PSKE) = (PSK61> PSK62> PSK63> PSK64> = (Agaﬁrﬁ STt ’ A?ohl/x*) gh) tO)'

The key pair of a corrupted user x € CU is set as (g%, z), for a random
x €r Zp. The key PSK{, of corrupted user is generated

PSK{, = (PSK{y, PSK{y, PSKs, PSKp,) = (A 77t/ qforsl/e g 4y,

So that all pairs of keys can be given to A.
To generate re-encryption keys from player z to player y, B has to distinguish
several situations:

o If z € HU\{z*} and y = z*, B returns Ry, = (go2*t2)*"a’/(az) —

Agaﬁm)m*/m, and TK = {91/9579‘12‘91'/95],~7 which is a valid re-encryption
key.

o If x = z* and y € HU\{z*}, B responds with R+, = (goatra)en/a”a® =
A(ffwz)w/w*. and TK = {g!/®", g®*%:/="} that also has the correct distri-
bution.

e If 2,y € HU\{z*}, B returns R,._, = (go2F72)(a)/(ax) = gloztr2)y/z anq
TK = {gl/w7ga29¢/m}7.

o If z € HU\{z*} and y € CU, B outputs R,, = (g*2*"2)¥/(a2) =
A(ffﬁé)y/z, and TK = {gl/m,gagei/z}, which is also computable.

e Finally, B uses public key y to encrypt Encpky (TK) a’s puncture key.

— Puncture: B increments n, and computes: PSK,, = Puncture(param,
PSK/ TK,t), and adds ¢ to set P, we consider:

n—1»

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 227

Corrupt() query and {¢],...,t5}NC = (. B now chooses randomly 7/, r,, A €
Zyp. Thus, it outputs the following:

PSK{ = ((PSKpy - A7 ~N)1/ PSKy, - (Al)Y/= PSKy, - g7, to),
PSK; = (A)Y (V(H(X)™)V, g™ 1) = (AN +”>1/%A§t””%grmt>

Corrupt() is invoked at the first time; the adversary issues this query. Then,
the challenger returns the most recent punctured key PSK,, to the adversary
and sets C' «— P. All subsequent queries return L.

— Re-Encryption queries: Responding to a re-encryption query from user z to
user y for a second level ciphertext CTo = (ctag, Cta1, Ctog, Ctos,, ctas, o), B
returns ‘invalid’ if the following testing is not bypassed (1)—(2)

o If x # z* or if z = «* and y € HU\{2*}, B simply re-encrypts using the
re-encryption key which is available in either case.
o If x =2*, and y € CU,

x If ctog = svk™, B encounters an occurrence of FoT1s and halts. Indeed,
re-encryptions of the challenge ciphertext towards corrupt users
are disallowed in the ‘guess’ stage. Therefore, (ctar,ctas,,Ctag,) #
(ct3y, ctss,, ctyy, 0*) since we would have CTy # CT; and z # z* if
(Ctgl, Ctggi y Ct247 O') # (Ct;l7 Ct§3i s C‘t§47 O'*).

* With the case ctyg # svk*™, = 2™ and y € CU. Given ctéém* = A3,

_ (Aéi(svk—suk*).AgQ)S

from ctyg = ctoy = F(svk)® , B can compute:

1
S _ a8 __ Ctog B1(svk—svk®)
f=g _(Bz/z*),@l(su SvR¥) |
ctys

* Knowing ¢ and user y’s private key, B picks r,k €r Z, to com-
pute: ctip = AJ® = g9 ct), = g",ct)y = g¥F ctfh = g% cty3 =
(A_l)((l2+7"2)y/x*k — (gy/x*)(a2+r2)/kctl4 _ Arek _ gare ctis, =
Agisr, and return CT; = (Ctlo,Ctll,Ctm,CtlQ, t12, t/{é,ctlg,ctu,

Ctys,, Ctig, o) which has the proper distribution.

— First level decryption queries: A may ask the decryption of a first level cipher-
text CTy = (ctyg, Cty1, Ctia, Cthy, Ctly, ctlh, ctis, ctig, ctys,, Ctig, o) under the
public key ¢*. For such a request, B returns ‘invalid’ if (3)—(5) do not hold.
We assume y € HU since B can decrypt using the known private key,
then B can decrypt Decg, (Encpk, (PSK;)) to receive the PSK;. In the next
step, let us first assume that ctig = ctj, = svk™. If (ctyy,ctys,,ctig, o) #
(ctiy,ctis,, ctig,0), B is presented with occurrence of Fors and halts. If
(cty1, ctys,, ctig,0) = (ctiy,ctys,, ctig, o), B outputs L which deem CT; as
a derivative of the challenge pair of CT*,z*. Additionally, we reduce the

computation of e(ctiz, cti4) = e(DK,,g)"™ to simulate conveniently in the
next step. Lets ctip # svk™, we assume that y = 2%, then we pk, = a*e”

since B can decrypt using the known private key y. The validity of the
ciphertext guarantees : e(ctis,ctis) = e(DK,g)* ¥ ct1g = F(svk)™ =
gﬁlars(svk—svk*)(a1+a2) . gazrﬁz(al-&-az).

228 T. V. X. Phuong et al.

G(PSKjl,Ctlg)x*
d
Jj=0 6(PSKj3, H Ct;ﬂsk)k) . e(PSKjQ,Ctlg)x*w*

A=

%

e((A(lxl—i-n —7‘2-&-7'/—/\/)1/:5* , gars)x*

d
e(grl+7"/7 H (Ago)rswk) . e(A‘iorll/w’gars)z*w*
k=1

e(gkl-i-rt , gars)w*

= c(g,g)" (T
i Oyr1l/x gy ’ ’
e(th»kH V(H(tk))wk) . e(AI” ’gars)x w
=1

Next, B computes:

I S
— ars(ai+oas) _ 6(Ct16,g) B1(svk—svk*)
v e(gag) <Aﬁ2 . (Ctlg,Ct14)ﬂ2/y(a2+r2) .

B continually computes: e(ctig, A_1) = e(ctig, g*/*) = e(g, g)P17s(svk—svk™)(ar+az) .

1
Bi(suk—svk¥)
tig,A_
6(g7g)ars[32(a1+a2)' ~ uncovers: e(g7g)TS((X1+a2) — (W) ,

and the plaintext m = cty; /e(g, g) (@1 +e2),

In the next phases, B must check that m differs from messages mg, my
involved in the challenge query. If m € {mg,m1}. B returns L according to
the RCCA-security rules.

Challenge. A chooses messages mg,my. At this stage, B flips a coin pu* €g
{0, 1}, and generates the challenge ciphertext ct} as:

ctyy = svk™, ety = my- - T2 ctyy = BY [cthy, = BY% ct}, = B”,

and 0" = S(ssk™, (ct3, cthz, cty,.)). With pk, = ¢°"%’ B =g’ and the random
exponent s = b/a?.

Phase 2. It is identical to Phase 1 with the following restrictions: (1) Cor-
rupt() returns L if {¢},...,t5} N P = 0; (2) Re-Encryption queries if (1)—(2) is
bypassed and CTy # CT3Ax # x*. (3) Decrypty (param, sk, PSK;, CT1, 1, ..., tq)
is queried.

Guess. CT; is a valid encryption of m,- if T = e(g,g)b/ag. In contrast, if T

is random in G, CT5 perfectly hides m,~ and A cannot guess p* with better
probability than 1/2. When A eventually outputs her result p/ € {0, 1}, B decides

T= e(g,g)b/‘12 if p’ = p and that T is randomly chosen. O

Theorem 2. Assuming the strong unforgebility of the one-time signature, Punc-
turable Proxy Re-Encryption scheme is RCCA—secure at level 1 under the
3—wDBDHI assumption.

Proof. The proof of Theorem 2 will be provided in Appendix A. O

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 229

5 Conclusion

We present a Puncturable Proxy Re-Encryption Scheme supporting forward
secrecy for asynchronous communication. Particularly, the proposed scheme is
well-suited to many-to-many communication such as a group messaging service
since a participant securely delegates computational demand operations to com-
municate with multiple parties to a proxy (i.e. a message server). Therefore, it
allows many participants to exchange messages efficiently in group communi-
cation. One opening problem is the transformation of these schemes to obtain
adaptive security. We leave it as our future work.

A Proof of Theorem 2

Let (g, A_1 = g"/%, A} = g% Ay = 9" B = g°,T) be modified 3 —wDBDHI
instance. We build an algorithm B deciding if T' = (g, g)b/ @* out of a successful
RCCA adversary A.

In this proof, our simulator B simply halts and outputs a random bit if
Fots ever occurs. Let CT] = (svk*, ct}y, ct]y, ctis, ctiy, ctis,, ctig,0*) denotes
the challenge ciphertext at the first level received by A, and the set (¢},...,t})
be the target set initially output by A.

Global setup phase. BB generates a one-time signature key pair (ssk*, svk*) «—
G(A) and provides A with public parameters including w = A’fl and v =
Al_gl‘svk* ~Agz for random (3,82 in Z,. Observe that w and v define a hash
function F(svk) = w**% . v = A?l(svk_svk*) - AR,

B also selects randomly oy, s € Zjp, and computes g*', g*2. B chooses d + 1
points g, 61, ..., 84 uniformly at random from Z,, in which 6, be a distinguished
value not used normal simulation. Then, B implicitly sets ¢(0) = 1, while ¢(¢;) =
0:,, then V(H(¢;)) = gA(f(ti) = ¢*:. B continuously initializes two empty sets
P,C and a counter 7 = 0.

B generates the initial puncture key as PSKy = (PSKo1, PSKo2, PSKos, PSKos) =
(AgTHH72 V(H (o)™, g™, to), and the global key for user key generation DK =
g*2t"2 with r, 72, €g Zy.

Phase 1. A can repeatedly issue any of the following queries: we call HU the
set of honest parties, including user x* that is assigned the target public key
pk,«, and CU the set of corrupt parties. Throughout the game, A’s environment
is simulated as follows:

— Key-Generation: public keys of honest users x € HU\z* and corrupt users
2 € CU are defined as pk, = ¢g* for a randomly chosen x in Z,. In addition,
user x will generate the PSK{:

PSK{, = (PSK{y, PSK{y, PSKy3, PSKp,) = (A7l gforsl/e g),

a

The target user’s public key is set as A% = g°.
PSK{, = (PSK{,, PSK{,, PSK{,, PSK{,) = (gl@1+7172) gbori gm 4).

230 T. V. X. Phuong et al.

For corrupt users ¢ € CU, public key and secret key are both disclosed To
generate re-encryption keys from player x to player y, all re-encryption keys
are computed:

o Ifw,y#a* Ry y = gloztray/e

° Ify 7& .T*, R;c*<—y — A(_(¥12+7“2)y and Ry«—x* _ A§a2+r2)l/y.

— Puncture: . B increments n, and computes: PSK, = Puncture(param,
PSK!,_;,TK,t), and adds t to set P, we consider: Corrupt() is queried and
{t},...,t;} N C = 0. B now chooses randomly r’, 7, X € Z,. Thus it outputs
the following:

PSK{ = (PSK{y - (A7 ~) /= PSKy, - (V(H (t)")%, PSKps - 9" . to)
= (PSKj, - (A7 ~)1/% PSK{, - (A™)1/* PSKys - g, o),
PSK; = ((Ay T)/, (Afme)te g t).

Corrupt() is called at the first time; the adversary issues this query. Then
the challenger returns the most recent punctured key PSK,, to the adversary
and sets C' «— P. All subsequent queries return L.

— First level decryption queries: A may ask the decryption of a first level cipher-
text CTy = (ctyg, Cty1, Ctya, Cthy, ctlsy, ctlh, , ctis, Ctig, Ctis,, Ctig, o) under the
public key ¢g”. For such a request, B returns ‘invalid’ if (3) —(5) do not hold. We
assume y € HU since B can decrypt using the known private key, then B can
decrypt Decsk, (Encpk, (PSK;)) to receive the PSK;. In the next step, let us first
assume that ctjg = ctj, = svk™. If (cty1,ctys,, ctig, o) # (ctiy,ctis,, ctig, o),
B is presented with occurence of Fpts and halts. If (ctqq,ctys,,ctig,0) =
(ctiy,ctis,, ctig, o), B outputs L which deem CT; as a derivative of the chal-
lenge pair of CT*, z*. We have to compute:

Ctig = A71‘s _ garsvct/12 _ gT,Ctll/Q _ ga'rk,ctlllé _ gak,Ctlg _ (A,l)(aerTQ)y/k
_ (gl/y)(a2+r2)/l€’ctl4 = Ayrsk = gars,ctlsi — Agisr’

for unknown exponents r, k € g Z,. We reduce the computation of e(cty3, ct14)
equals to e(DKy, g)" to simulate conveniently in the next step. Lets ctyp #
svk™, we assume that y = z*, then we pk, = ¢g“ since B can decrypt using
the known private key y. The validity of the ciphertext guarantees

e(cty3, ct14) = (DK,)%™,
Ctig = F(SU]C)TS — gﬁlars(skasvk*)(aﬁ»ozz) . ga27“/32(0q+0¢2).

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 231

Then,

A:

‘ B(PSKjl,ChQ)z*

d
J=0 e(PSKJg, kljl Ctiuff,k) . e(PSKjg, Ctlg)x*w*
e((ga1+r17r2+r'7)\')1/x* ’ gars)m*

d
e(grl+r/7 kH (A?O)rswk) . e(georll/x’ gars)r*w*
=1

P ars)x*
b

e(g
d * *
e(g”f,kH V(H(tg))wr) - e(ghemt/e, gars)zrw

=1

9

a(ag—r2)rs

=e(9,9)

1
Bi(suk—svk¥)
. rs(ar+as) _ e(ctig,A_1)
B computes: e(g,g) = (AﬂQ.(ct137ctl4)ﬁ2/y<a2+r2> , and

recovers the plaintext m = cty; /e(g, g)"s(@1+e2),
o If e(ctis.ctya) = e(Ctisy:4), B returns L meaning that CTy is simply a
re-randomization of the challenge ciphertext.
e We require (ctii,ctys,,ctig,0) # (ctjj,ctis ,ctig,0), which is an
occurence of FoT1s and implies B’s termination.

In the next phases, B must check that m differs from messages mg, m; involved
in the challenge query. If m € {mg, m1}. B returns L according to the RCCA-
security rules.

Challenge. A chooses messages mg, my. At this stage, B flips a coin u* €g
{0,1}, and generates the challenge ciphertext ct] as:

* * * a1 tag * _ pyz* Ik oA 1x a4k x4k
Ct10 = S’Uk‘ 7Ct11 = Mpy* - T ,Ctlg =B ,Ctlg = Al N Ct12 = A2 ,Ctlg = A17

k .
CtTS = A_<32+T2)7 CtT4 = Bk’Y7CtI5i = B97,"/7 CtTG = B/BQ,

and 0" = S(ssk,(ctjy,ct]y,,ctis, cti)). With pk, = g* % B = ¢* and r =
av, k,s = b/a® with the random numbers v, k € L.

Phase 2. This phase is identical to Phase 1 with following restrictions:
(1) Corrupt() returns L if {¢tj,...,t5} N P = 0. (2) Decrypty(param,ska,
PSK“ CThtl, e ,td) returns L lf (CTl,tl, e ,td) 7£ (CTT, T, e ,t;)

Guess. CT7 is a valid encryption of m,- if T' = e(g,g)b/GQ. In contrast, if T
is random in Gp, CT] perfectly hides m,~ and A cannot guess p* with better
probability than 1/2. When A eventually outputs her result p/ € {0, 1}, B decides

T = e(g,g)b/‘12 if p’ = p and that T is randomly chosen.

232 T. V. X. Phuong et al.
References
1. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption.

10.

11.

12.

13.

14.

15.

16.

17.

In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279-294. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_19

Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9, 1-30 (2006)

Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2015)

Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. Adv. Cryptol. - EUROCRYPT 1403, 127-144 (1998)

Blazy, O., Bultel, X., Lafourcade, P.: Two secure anonymous proxy-based data
storages. In: Proceedings of the 13th ICETE. pp. 251-258 (2016)

Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24, 659-693 (2011)

Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255—271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based
encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207-222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3-13

Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM CCS (2007)

Chu, C.-K., Tzeng, W.-G.: Identity-based proxy re-encryption without random
oracles. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 189-202. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75496-1_13

Derler, D., Krenn, S., Loriinser, T., Ramacher, S., Slamanig, D., Striecks, C.: Revis-
iting proxy re-encryption: forward secrecy, improved security, and applications. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 219-250. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_8

Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Proceedings of the 8th PKC. pp. 416-431 (2005)

Ge, C., Susilo, W., Fang, L., Wang, J., Shi, Y.: A cca-secure key-policy attribute-
based proxy re-encryption in the adaptive corruption model for dropbox data shar-
ing system. Des. Codes Crypt. 86(11), 2587-2603 (2018)

Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288-306. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72738-5_19

Green, M.D., Miers, 1.: Forward secure asynchronous messaging from puncturable
encryption. In: Proceedings of the 2015 IEEE S and P, pp. 305-320. IEEE Com-
puter Society (2015)

Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inf. Theor. 57(3), 1786-1802 (2011)

Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360-379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1_21

18.

19.

20.

21.

22.

23.

24.

Puncturable Proxy Re-Encryption Supporting to Group Messaging Service 233

Mambo, M., Okamoto, E.: Proxy cryptosystems: delegation of the power to decrypt
ciphertexts. IEICE Trans. Fundam. 80—A, 54-63 (1997)

Matsuo, T.: Proxy re-encryption systems for identity-based encryption. In:
Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS,
vol. 4575, pp. 247-267. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73489-5_13

Myers, S., Shull, A.: Efficient hybrid proxy re-encryption for practical revocation
and key rotation. Cryptology ePrint Archive, Report 2017/833 (2017). https://
eprint.iacr.org/2017/833

Tang, Q.: Type-based proxy re-encryption and its construction. In: Proceedings of
the 9th INDOCRYPT. pp. 130-144. Berlin, Heidelberg (2008)

Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114-127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639_7

Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: Proceedings of the 4th ASTACCS. pp.
322-332 (2009)

Weng, J., Deng, R.H., Liu, S., Chen, K.: Chosen-ciphertext secure bidirectional
proxy re-encryption schemes without pairings. Inf. Sci. 180(24), 5077-5089 (2010)

	Puncturable proxy re-encryption supporting to group messaging service
	Citation

	tmp.1665640598.pdf.WZR7Q

