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Abstract. As a widely used privacy-preserving technique for cryptocur-
rencies, Stealth Address constitutes a key component of Ring Confiden-
tial Transaction (RingCT) protocol and it was adopted by Monero, one of
the most popular privacy-centric cryptocurrencies. Recently, Liu et al.
[EuroS&P 2019] pointed out a flaw in the current widely used stealth
address algorithm that once a derived secret key is compromised, the
damage will spread to the corresponding master secret key, and all the
derived secret keys thereof. To address this issue, Liu et al. introduced
Key-Insulated and Privacy-Preserving Signature Scheme with Publicly
Derived Public Key (PDPKS scheme), which captures the functionality,
security, and privacy requirements of stealth address in cryptocurren-
cies. They further proposed a paring-based PDPKS construction and
thus provided a provably secure stealth address algorithm. However,
while other privacy-preserving cryptographic tools for RingCT, such as
ring signature, commitment, and range proof, have successfully found
counterparts on lattices, the development of lattice-based stealth address
scheme lags behind and hinders the development of quantum-resistant
privacy-centric cryptocurrencies following the RingCT approach.

In this paper, we propose the first lattice-based PDPKS scheme and
prove its security in the random oracle model. The scheme provides
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(potentially) quantum security not only for the stealth address algo-
rithm but also for the deterministic wallet. Prior to this, the existing
deterministic wallet algorithms, which have been widely adopted by most
Bitcoin-like cryptocurrencies due to its easy backup/recovery and trust-
less audits, are not quantum resistant.

Keywords: Lattice-based · Signature · Privacy preservation · Stealth
address

1 Introduction

The past decade has witnessed the rapid development of cryptocurrencies since
the invention of the Bitcoin [20]. Bitcoin had been regarded as an innovative pay-
ment network with high anonymity, and its emergence brings the prosperity of
blockchain technology and cryptocurrency. However, as shown by [17,26], Bitcoin
is not truly “anonymous” but only “pseudonymous”. In Bitcoin-like cryptocur-
rency systems, digital signature schemes are used to authorize and authenticate
transactions. Each coin is assigned a public key and a value, where the pub-
lic key specifies the ownership of the coin. When a user wants to spend a coin
(pkin, v) and transfer the value to another owner with public key pkout, he issues
a transaction tx that takes in (say, consumes) the coin (pkin, v) and outputs (say,
generates) a new coin (pkout, v), and associate the transaction with a signature
σ which is valid with respect to the transaction (as the signed message) and the
spent coin’s public key pkin. Bitcoin achieves only pseudonym since information
including the sender, the receiver, and the amount of the transactions are public
and accessible to all participants.

Note that privacy preservation is one of the top desired features for cryptocur-
rencies, since the privacy weakness in Bitcoin was identified [17,26], enhancing
user’s privacy in cryptocurrencies has attracted much attention from commu-
nity [6,13,19,27]. Among the proposed privacy-preserving technologies, Stealth
Address [28,29], provides a simple yet efficient way to enhance privacy by hiding
the receiver of transactions. Roughly speaking, stealth address is a key-derivation
mechanism. In a cryptocurrency system with the stealth address, each user pub-
lishes his long-term master public key MPK, and if a payer, say Alice, wants to
transfer funds to a payee, say Bob, she can generate a fresh derived public key
dpk from Bob’s master public key MPKB and use dpk to specify the receiver of
the transaction, without any interaction with Bob. On the other side, to spend
the coin on such a dpk, Bob can generate a corresponding derived secret key
dsk use his long term master secret key MSKB, and then generate a signature
that can be verified using dpk only. In such a mechanism, the receiver’s mas-
ter public key (referred to as ‘address’ in cryptocurrency) never appears in the
transactions or on the blockchain, and neither the derived public key or the sig-
nature leaks any information about the master public key. Due to its simplicity
and convenience (i.e., each coin is assigned a fresh derived public key, and no
interaction between the payer and payee) and privacy-preserving virtues, stealth
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address has been widely adopted by many cryptocurrencies. Particularly, stealth
address is a core component of RingCT protocol for Monero [21], which is one
of the most popular privacy-centric cryptocurrencies and ranks the 14th in all
cryptocurrencies in terms of market capitalization [9].

Recently, Liu et al. [16] have pointed out the current widely used stealth
address algorithms [28,29] suffers a security flaw in designs. In particular, once
a derived secret key was compromised, the damage would spread to the corre-
sponding master secret key, and all the derived secret keys thereof. To address
this problem, Liu et al. [16] introduced and formalized the concept of Signature
Scheme with Publicly Derived Public key (PDPKS), capturing the functional-
ity, security, and privacy requirements that steal address should satisfy when
applied in cryptocurrencies in practice. Liu et al. also proposed a pairing-based
construction, with provable security and privacy based on the discrete logarithm
assumption. It is worth mentioning that, as shown by Liu et al. [16], a PDPKS
scheme does not only implies a secure stealth address algorithm, but also implies
a secure deterministic wallet [31] algorithm, supporting the promising applica-
tions such as easy backup and recovery, trustless audits, treasurers allocating
funds to departments.

On the other side, due to the advance of quantum computing technologies,
quantum-resistant cryptography, especial lattice-based cryptography has been
attracting much attention and making significant progress. Cryptocurrency is
also developing towards post-quantum cryptocurrencies. However, to the best of
our knowledge, as so far, quantum-resistant stealth address algorithm satisfying
the functionality, security, and privacy requirements captured by Liu et al.’s work
[16] has not been proposed yet. This lags behind other privacy-preserving cryp-
tographic primitives for cryptocurrencies. In particular, in the RingCT approach
for building privacy-centric cryptocurrencies, linkable ring signature, stealth
address, and commitment with range proof are used to hide the transaction’s
sender, receiver, and amount, respectively. While lattice-based linkable ring sig-
nature schemes [15,30] and lattice-based commitment with range proof schemes
[10,32] have been proposed, the lack of lattice-based stealth address schemes is
hindering the development of quantum-resistant privacy-centric cryptocurrencies
following the RingCT approach.

1.1 Our Results

In this paper, we propose a lattice-based PDPKS construction, and prove the
security and privacy in the random oracle model, based on the hardness of the
Learning With Errors (LWE) problem [25]. As our construction satisfies the
definitions and models on functionality, security, and privacy by Liu et al. [16],
our lattice-based PDPKS construction provides potential quantum-resistance for
both the stealth address algorithm and the deterministic wallet scheme.

As for many LWE-based cryptographic constructions with advanced features,
the public key and signature sizes of our construction are still too large for
practical use. We do not want to oversell our results, but take this as a stepping-
stone towards the goal of practical and quantum-resistant stealth address, as
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this is the first concrete instantiation of PDPKS scheme that has the potential
to be resistant against quantum computers.

To enable the signature scheme with publicly derived public key, where the
compromising of a derived secret key will not impact other secret keys, we resort
to the techniques of lattice basis delegation [1,2,8]. We noticed that the delega-
tion algorithm by Agrawa et al. [1] has the property that the delegated lattice
conceals the original one. Note that when PDPKS is applied in cryptocurrency,
to achieve that no attackers can learn the master public key from the derived
public key and corresponding signatures, we have to make sure that only the
payee who owns the corresponding master secret key can know the secret infor-
mation that was used by the payer to create a derived public key. To achieve
this, we resort to the key-private public key encryption introduced by Bellare
et al. [5]. Due to the adversary’s adaptively querying of derived public keys in
the privacy game, an adaptive key-indistinguishable PKE scheme is needed in
our scheme. However, to the best of our knowledge, no explicit construction of
quantum-resistant key-indistinguishable PKE has been proposed prior to us. To
construct such PKE scheme, We start the passive key-indistinguishable Regev’s
LWE-based PKE scheme and prove the Fujisaki-Okamoto transformation [11]
transforms a passively key-indistinguishable PKE scheme to an adaptively key-
indistinguishable one.

1.2 Related Work

Liu et al. [15] proposed a lattice-based linkable ring signature scheme with stealth
address, but the security model does not consider the case that derived secret
keys are generated and compromised, while all the signatures are generated
using the master secret key. The setting increases the risk of the master key
being compromised and cannot support the applications of deterministic wallet,
such as treasurers allocating funds to departments.

2 Preliminary

In this section, we review the definition of PDPKS by Liu et al. [16] and some
lattice-based background as well as the definition of PKE with key-privacy [5].

2.1 Definition of Publicly Derived Public Key Scheme

Syntax. A PDPKS scheme consists of the following polynomial-time algorithms:

– Setup(1λ) → PP. On input the security parameter 1λ, the algorithm outputs
the public parameter PP.

– MasterKeyGen(PP) → (mpk,msk). On input the public parameter PP, the
algorithm outputs a master public-secret key pair (mpk,msk).

– DpkDerive(PP,mpk) → dpk. On input the public parameter PP and a master
public key mpk, the algorithm outputs a derived public key dpk. We say such
a dpk is linked to mpk.
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– DpkCheck(PP,mpk,msk, dpk) → 1/0. On input the public parameter PP, a
master key pair (mpk,msk), and a derived public key dpk, the algorithm
outputs a bit b ∈ {0, 1}, with b = 1 meaning that dpk is linked to mpk and
b = 0 otherwise.

– DskDerive(PP,mpk,msk, dpk) → dsk. On input the public parameter PP, a
master key pair (mpk,msk), and a derived public key dpk that is linked to
mpk, the algorithm outputs a derived secret key dsk corresponding to dpk.

– Sign(PP, dpk, μ, dsk) → s. On input the public parameter PP, a derived public
key dpk, a message μ, and a derived secret key dsk corresponding to dpk, the
algorithm outputs a signature s.

– Verify(PP, dpk, μ, s) → 1/0. On input the public parameter PP, a derived
public key dpk, a message μ, and a signature s, the algorithm outputs a bit
b ∈ {0, 1}, with b = 1 meaning valid and b = 0 meaning invalid.

For a cryptocurrency system with PDPKS scheme, it runs the PP ←
Setup(1λ) and publish PP to all participants. Each participant can run the
(mpk,msk) ← MasterKeyGen(PP) to obtain his long-term master key pair and
publish mpk. When a payer, say Alice, wants to pay the payee, say Bob,
Alice runs dpk ← DpkDerive(PP,mpkB) where mpkB is Bob’s master public
key, and assigns dpk to the output coin. For Bob, when a new coin appears
in the system, he runs b ← DpkCheck(PP,mpkB ,mskB , dpk) where mskB is
his master secret key and dpk is the coin’s (derived) public key, Bob puts
such a coin into his wallet only if b = 1. To spend such a coin, Bob runs
dsk ← DpkCheck(PP,mpkB ,mskB , dpk) to obtain the derived secret key dsk
corresponding to dpk, then he runs the sign algorithm Sign to sign a transaction
spending the coin. For a transaction that consumes a coin with (derived) public
key dpk, anyone can run the Verify algorithm to check whether the associated
signature is valid, only using the dpk, without needing the corresponding master
public key.

Correctness. The scheme must satisfy the following correctness proper-
ties: for any PP ← Setup(1λ), (mpk,msk) ← MasterKeyGen(PP), dpk ←
DpkDerive(PP,mpk), dsk ← DskDerive(PP,mpk,msk, dpk), and any message μ,
it holds that

Pr [DpkCheck(PP,mpk,msk, dpk) = 1] = 1 − negl(n), and
Pr [Verify(PP, dpk, μ,Sign(PP, dpk, μ, dsk)) = 1] = 1 − negl(n).

Security. We define the existentially unforgeable (EUF) security of PDPKS
scheme below:

Definition 1. We say a PDPKS scheme is existentially unforgeably (EUF)
secure, if all probabilistic polynomial time (PPT) adversaries A win the following
game Gameeuf with negligible probabilities.
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– Setup. PP ← Setup(1λ) and (mpk,msk) ← MasterKeyGen(PP) are run. PP
and mpk are given to A. An empty set Ldpk = ∅ is initialized.1

– Probing Phase. A can adaptively query the following oracles:
• Derived Public Key Check Oracle ODpkCheck(·):

On input a derived public key dpk, this oracle returns c ← DpkCheck(PP,
mpk,msk, dpk) to A. If c = 1, set Ldpk = Ldpk ∪ {dpk}.

• Derived Secret Key Corruption Oracle ODskCorrupt(·):
On input a derived public key dpk ∈ Ldpk, this oracle returns dsk ←
DskDerive(PP,mpk, msk, dpk) to A.

• Signing Oracle OSign(·, ·): On input a derived public key dpk ∈ Ldpk and
a message μ, this oracle returns σ ← Sign(PP, dpk, μ, dsk) to A, where
dsk ← DskDerive(PP,mpk,msk, dpk).

– Output Phase. A outputs a derived public key dpk∗ ∈ Ldpk, a message μ∗,
and a signature σ∗.

A succeeds if Verify(PP, dpk∗, μ∗, s∗) = 1 under the restrictions that (1)
ODskCorrupt(dpk∗) is never queried, and (2) OSign(dpk∗, μ∗) is never queried.

Privacy. The definition captures the fact that derived public keys and corre-
sponding signatures do not leak the corresponding master public key.

Definition 2. A PDPKS scheme is master public key unlinkable (MPK-UNL),
if for all PPT adversaries A, the advantage of A in the following game
Gamempkunl, denoted by Advmpkunl

A , is negligible.

– Setup. PP ← Setup(λ) is run and PP is given to A.
(mpk0,msk0) ← MasterKeyGen(PP) and (mpk1,msk1) ← MasterKeyGen(PP)
are run, and mpk0,mpk1 are given to A. Two empty sets Ldpk,0 = Ldpk,1 = ∅
are initialized.2

– Challenge Phase. A random bit b ← {0, 1} is chosen.
dpk∗ ← DpkDerive(PP, mpkb) is given to A.

– Probing Phase. A can adaptively query the following oracles:
• Derived Public Key Check Oracle ODpkCheck(·, ·):

On input a derived public key dpk �= dpk∗ and an index i ∈ {0, 1}, this
oracle returns c ← DpkCheck(PP,mpki,mski, dpk) to A. If c = 1, set
Ldpk,i = Ldpk,i ∪ {dpk}.

• Derived Secret Key Corruption Oracle ODskCorrupt(·):
On input a derived public key dpk ∈ Ldpk,0 ∪ Ldpk,1, this oracle returns
dsk ← DskDerive(PP,mpki,mski, dpk) to A, with i = 0 if dpk ∈ Ldpk,0,
and i = 1 if dpk ∈ Ldpk,1.

1 This set serves only to describing the game easier. It stores the derived public keys
that have been checked and accepted as being linked to the target master public key,
where are all known to the adversary.

2 The two sets are defined only for describing the game easier. Ldpk,i(i = 0, 1) stores
the derived public keys that have been checked and accepted as being linked to the
target master public key mpki. The two sets are known to the adversary.
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• Signing Oracle OSign(·, ·): On input a derived public key dpk ∈ Ldpk,0 ∪
Ldpk,1∪{dpk∗} and a message μ, this oracle returns σ ← Sign(PP, dpk, μ,
dsk) to A, where dsk ← DskDerive(PP,mpki,mski, dpk), with i = 0 if
dpk ∈ Ldpk,0, i = 1 if dpk ∈ Ldpk,1, and i = b if dpk = dpk∗.

– Guess. A outputs a bit b′ ∈ {0, 1} as its guess to b.

2.2 Lattice Backgrounds

Notations. We denote matrices by bold capitals, e.g., A, and column vectors
by bold small letters e.g., x. For a matrix A, denote its transpose by AT . For
two matrices, A and B, we denote their concatenation by [A|B]. We denote
the inner product of two vectors a,b by 〈a,b〉 = aTb. For an ordered vector
set T = {t1, · · · , tm}, we denote its Gram-Schmidt orthogonalization by T̃ =
{t̃1, · · · , t̃m}; we also denote the matrix [t1| · · · |tm] by T. We denote the identity
matrix of order m by Im and omits m without ambiguity. We denote the �2 norm
of a vector x by ‖x‖ and define ‖T‖ := max ‖ti‖. For a matrix R ∈ Z

m×m
q , define

the parameter sR = supx∈Rm\{0}
‖Rx‖
‖x‖ .

For a randomized algorithm or a distribution A, we denote its once execution
(or sampling) output x by x ← A. Let S be a finite set, we abuse the notion to
denote the uniform distribution over S by S. We say a function ε : R+ → R+ is
negligible if for any polynomial p, it holds that ε(n) < 1/p(n) for sufficient large
n. We denote an arbitrary negligible function by negl(n). We say a function
g : R+ → [0, 1] is overwhelming if g(n) = 1 − negl(n). For x ∈ R, we define
�x� = �x + 1

2. For an integer m ∈ Z+, we denote {1, 2, · · · ,m} by [m].
We denote m-dimensional lattice generated by a basis T by L(T). Denote

integer lattice {z ∈ Z
m : Az = 0 mod q} by Λ⊥

q (A) and omits q without
ambiguity. Denote the discrete Gaussian distribution on lattice Λ, with Gaussian
parameter s and center c by DΛ,s,c.

For Gaussian Distribution we have the following Lemma 1 and Lemma 2,
where Lemma 2 is obtained by combining the smoothing lemma [18] and “the
new bound of smoothing parameter” in [12].

Lemma 1 ([18]). Let q ≥ 2 and A ∈ Z
n×m
q . Let T be a basis of Λ⊥(A), s ≥

‖T̃‖ · ω(
√

log m). Then for any c ∈ Z
m
q ,

Pr
x←D

Λ⊥(A),s,c

[‖x − c‖ > s
√

m] = negl(n).

Lemma 2 ([12,18]). For any m-dimensional lattice Λ, define

b̃l(Λ) = min
T:Λ=L(T)

‖T̃‖.

Let A ∈ Z
n×m
q be a matrix whose columns generate Z

n
q , s ≥ b̃l(Λ⊥(A)) ·

ω(
√

log m) be a real number. Then for a x ← DZm,s, the distribution of u = Ax
mod q is statistically close to the uniform distribution over Z

n
q .
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Assumptions. The security and privacy of our PDPKS construction will be
based on the following Short Integer Solution (SIS) assumption and LWE
assumption.

Definition 3 (SIS Assumption) ([3,12,18,22]). Let q, β,m be functions of
n. Define SISn,q,β,m problem as: Given a matrix A ← Z

n×m
q , find a non-zero

integer vector z ∈ Z
m s.t. Az = 0 mod q and ‖z‖ ≤ β.

For m,β = poly(n), q ≥ β · Õ(
√

n), no (quantum) algorithm can solve
SISn,q,β,m problem in polynomial time.

Definition 4 (LWE Assumption) ([22,25]). Let m, q be functions of n, q > 2,
χ be a distribution on Zq called the error distribution, defines the LWE distribu-
tion As,χ as: Choose a vector a ← Z

n
q and an error e ← χ, output (a, 〈a, s〉+ e).

Defines the Search-LWEn,q,χ,m problem as: fix an s ← Z
n
q , given at most m sam-

ples from As,χ, work out s. Define the Decision-LWEn,q,χ,m problem as: For a
uniformly chosen s ← Z

n
q , given the oracle to be (1) As,χ or (2) the uniform

distribution over Z
n+1
q , decide which is the case with at most m oracle calls.

For parameters m = poly(n), q ≤ 2poly(n), r = 2
√

n and χ be the (discrete)
Gaussian distribution with Gaussian parameter r, no (quantum) algorithm can
solve the (Search/Decision)-LWEn,q,χ,m problem in polynomial time.

Lemma 3 ([24]). With such parameters in SIS assumption and LWE assump-
tion, SIS assumption implies LWE assumption for β ≤ q/r.

Algorithms on Lattices. Our construction will use the following SamplePre
and TrapGen algorithms.

Lemma 4 (SamplePre Algorithm [12]). There exists a PPT algorithm
SamplePre that, on input a matrix A ∈ Z

n×m
q , a basis T ∈ Z

m×m
q of Λ = Λ⊥(A),

a Gaussian parameter s ≥ ‖T̃‖·ω(
√

log m) and a vector u ∈ Z
n
q , outputs a vector

x such that Ax = u mod q and the distribution of x is statistically close to the
distribution of x′ ← DZm,s conditioned on Ax′ = u mod q. The short basis T
is called the trapdoor of A.

Lemma 5 (TrapGen Algorithm, [4,7]). For fixed constant δ > 0, there is a
PPT algorithm TrapGen that, on input n (in unary), an odd prime q = poly(n),
and m ≥ (5 + 3δ)n log q, outputs a statistically (m · q−δ0n/2)-close to uniform
matrix A ∈ Z

n×m
q and a basis T of Λ⊥(A) such that with overwhelming proba-

bility ‖T̃‖ ≤ O(
√

n log q).

Note that we can set δ = 1/3, then we have m ≥ 6n log q and output matrix A
by the above TrapGen algorithm distributes statistically (6n ·q−n/6 log q)-close to
the uniform distribution over Z

n×m
q . In addition, the following Lemma 6 shows

that the output matrix A by the above TrapGen algorithm generates Z
n
q with

overwhelming probability.

Lemma 6 ([12]). Let m ≥ 2n log q, then for all but q−n fractions of A ∈ Z
n×m
q ,

the columns of A generate Z
n
q .



A Lattice-Based PDPKS Scheme 365

Trapdoor Delegation Algorithms. On the basis/trapdoor delegation, we
have the following Lemma 7, 8, and 9.

Lemma 7 ([1,7]). There exists a PPT algorithm DeleRight′ that, on input a
matrix A ∈ Z

n×m
q , a matrix B ∈ Z

n×m
q whose columns generate Z

n
q , a trapdoor

TB of B s.t. ‖T̃B‖ ≤ L, and a matrix R ∈ Z
m×m
q , outputs a trapdoor T′

F for
F = [A|AR + B] s.t. ‖T̃′

F‖ ≤ L · (sR + 1).

Lemma 8 ([8]). There exists a PPT algorithm DeleLeft′ that, on input a matrix
A ∈ Z

n×m
q whose columns generate Z

n
q , a matrix C ∈ Z

n×m
q , and a trapdoor TA,

outputs a trapdoor T′
F for F = [A|C] s.t. ‖T̃′

F‖ = ‖T̃A‖.
Lemma 9 ([8]). There exists a PPT algorithm RandBasis that, on input a basis
T′ of an m-dimensional integer lattice Λ s.t. ‖T̃′‖ < L, a real number s ≥
‖T̃′‖ · ω(

√
log m), outputs a basis T of Λ s.t. ‖T̃‖ ≤ s

√
m. Moreover, for any

two basis T1,T2 of Λ, let s ≥ max{‖T̃1‖, ‖T̃2‖} · ω(
√

log m), then the outputs
of RandBasis(T1, s) and RandBasis(T2, s) are statistically close.

With the parameter A ← Z
n×m
q , R ← {−1, 1}m×m as chosen in [1], applying

the above Lemma 7, 8, and 9, we have the following DeleRight and DeleLeft
algorithms as shown by Theorem 1 and Theorem 2 respectively. Our PDPKS
construction will be based on the DeleRight algorithm, while the proofs will be
based on the DeleLeft algorithm.

Theorem 1 (DeleRight Algorithm). Let q > 2 be a prime, fix some sR =
O(

√
m). There exists a PPT algorithm DeleRight that, on input a matrix A ←

Z
n×m
q , a matrix B ∈ Z

n×m
q whose columns generate Z

n
q , a trapdoor TB of B s.t.

‖T̃B‖ ≤ L, and a matrix R ← {−1, 1}m×m, a real number s ≥ L·sR ·ω(
√

log m),
outputs a trapdoor TF for F = [A|AR + B] such that F distributes statistical
close to the uniform distribution over Z

n×2m
q and ‖T̃F‖ ≤ s · √

2m.
Moreover, for any two trapdoors T1,T2 of B s.t. ‖T̃1‖ ≤ L and ‖T̃2‖ ≤ L,

the distribution of DeleRight(A,B,T1,R, s) and DeleRight(A,B,T2,R, s) are
statistically close.

Theorem 2 (DeleLeft Algorithm). Let q > 2 be a prime. There exists a PPT
algorithm DeleLeft that, on input a matrix A ∈ Z

n×m
q s.t. columns of A generate

Z
n
q , a trapdoor TA of A s.t. ‖T̃A‖ ≤ L, a matrix C ∈ Z

n×m
q and a real number

s ≥ L · ω(
√

log m), outputs a trapdoor TF for F = [A|C] s.t. ‖T̃F‖ ≤ L · √
2m ·

ω(
√

log m).
Moreover, for A ← Z

n×m
q and R ← {−1, 1}m×m, let C = AR+B for some

B ∈ Z
n×m
q , sR be such parameter in Theorem 1, if columns of B generate Z

n
q and

TB be a trapdoor of B s.t. ‖T̃B‖ ≤ L, then the outputs of DeleLeft(A,TA,C, L ·
sR · ω(

√
log m)) and DeleRight(A,B,TB,R, L · sR · ω(

√
log m)) are statistically

close.
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2.3 Key-Privacy in Public Key Encryption

Our construction is based on public key encryption (PKE) with key-privacy,
which was introduced by Bellare et al. [5]. In particular, key-privacy requires
that an adversary in possession of a ciphertext is not able to tell which specific
public key, out of a set of known public keys.

Syntax. A public-key encryption scheme is a tuple of four PPT algorithms
(Setup,KeyGen,Enc,Dec):

– Setup(1λ) → GP. On input a security parameter 1λ, the algorithm outputs
the common global public parameters GP, that all users in the system will
share, including the security parameter, the message space M, the ciphertext
space C, etc.

– KeyGen(GP) → (pk, sk). On input GP, the algorithm outputs a public-secret
key pair (pk, sk).

– Enc(GP, pk, μ) → c ∈ C: On input GP, a public key pk and a plaintext μ ∈ M,
the algorithm outputs a ciphertext c ∈ C.

– Dec(GP, c, pk, sk) → μ′/ ⊥. On input GP, a secret key sk and a ciphertext
c ∈ C, the algorithm outputs the a plaintext μ′ ∈ M or ⊥.

Correctness and Security. The correctness, CPA-Security, and CCA2-security
are identical to that of conventional PKE, and we omit the details here.

Key-Privacy. The key-privacy is captured by the following “indistinguishable
of keys under adaptive chosen-ciphertext attack” (IK-CCA) property [5]:

Definition 5 (IK-CCA). A PKE scheme is IK-CCA secure if for any PPT
adversary A, the advantage in the following IK-CCA game Gameikcca, denoted by
Advikcca

A , is negligible.

1. Setup. GP ← Setup(1λ) is computed and given to A.
(pk0, sk0) ← KeyGen(GP) and (pk1, sk1) ← KeyGen(GP) are run, and pk1 and
pk2 are sent to adversary A.

2. Probing Phase 1. A can adaptively query the decryption oracle ODec(·, ·):
On input a ciphertext c ∈ C and an index i ∈ {0, 1}, this oracle returns
μ ← Dec(GP, c, pki, ski) to A.

3. Challenge Phase. A chooses a challenge plaintext μ∗ ∈ M. A uniform coin
b ← {0, 1} is tossed. c∗ ← Enc(GP, pkb, μ

∗) is given to A.
4. Probing Phase 2. A can adaptively query the decryption oracle ODec(·, ·),

but cannot make query on (c∗, 0) or (c∗, 1).
5. Output Phase. A outputs a bit b′ ∈ {0, 1} as its guess to b.

3 Our Lattice-Based PDPKS Construction

• Setup(1λ) → PP. The algorithm takes λ (in unary) as input. Let n be a
polynomial of λ, q > 2 be a prime, and m ≥ 6n log q. Fix some ω1 = ω(

√
log m)
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and ω2 = ω(
√

log 2m), let sR = O(
√

m), σB = L ·sR ·ω1 and σF = σB ·√2m ·ω2

for some L ≥ O(
√

n log q).
Let Πpke = (Setup,KeyGen,Enc,Dec) be a lattice-based CCA2 secure and IK-

CCA secure PKE scheme. The algorithm runs GP ← Πpke.Setup(1λ). Let Mpke

and Cpke be the message space and ciphertext space in GP respectively. Let k
be polynomials of λ, and let G1 : Mpke × Cpke → Z

n×m
q , G2 : Mpke × Cpke →

{−1, 1}m×m, and H : {0, 1}∗ × {0, 1}k → Z
n
q be functions that will be modeled

as random oracles in the proofs. The algorithm produces as output the public
parameter PP = (1λ, n,m, q, sR, σB , σF , k,GP, (G1, G2,H),Πpke).
• MasterKeyGen(PP) → (mpk,msk). On input PP, the algorithm runs
(B,TB) ← TrapGen(1n) to generate a random B and its trapdoor TB. It runs
(epk, esk) ← Πpke.KeyGen(GP) to generate a PKE public-secret key pair. It out-
puts the master public key and master secret key as mpk = (B, epk),msk =
(TB, esk).
• DpkDerive(PP,mpk) → dpk. On input PP, a master public key mpk = (B, epk),
the algorithm samples t ← Mpke and computes τ ← Πpke.Enc(GP, epk, t), A =
G1(t, τ) and R = G2(t, τ). It then sets F = [A|AR+B] and outputs the derived
public key dpk = (F, τ).
• DpkCheck(PP,mpk,msk, dpk): On input PP, a master key pair (mpk =
(B, epk), msk = (TB, esk)), and a derived public key dpk = (F = [A|C], τ),
the algorithm computes t ← Πpke.Dec(GP, τ, epk, esk) and A′ = G1(t, τ),
R′ = G2(t, τ). It outputs 0 if A′ �= A or C �= A′R′ + B. Otherwise, it out-
puts 1.
• DskDerive(PP,mpk,msk, dpk) → dsk. On input PP, a master key pair (mpk =
(B, epk),msk = (TB, esk)), and a derived public key dpk = (F = [A|C], τ),
the algorithm computes t ← Πpke.Dec(GP, τ, epk, esk), A′ = G1(t, τ) and R′ =
G2(t, τ). It outputs ⊥ if A′ �= A or C �= A′R′ +B. Otherwise (i.e., A′ = A and
C = AR′ +B), it runs TF ← DeleRight(A,B,TB, R′, σB) to sample a trapdoor
TF for F, then outputs the derived secret key dsk = TF for dpk.
• Sign(PP, dpk, μ, dsk) → s. On input PP, a derived public key dpk = (F, τ), a
message μ ∈ {0, 1}∗, and the derived secret key dsk = TF corresponding to dpk,
the algorithm samples a random string r ← {0, 1}k and computes u = H(μ, r).
It runs z ← SamplePre(F,TF,u, σF ), and outputs s = (z, r) as a signature for
μ.
• Verify(PP, dpk, μ, s) → 1/0. On input PP, a derived public key dpk = (F, τ),
a message μ, and a signature s = (z, r), the algorithm outputs 1 (accepts) if
‖z‖ ≤ √

2m · σF and Fz = H(μ, r) mod q, otherwise, it outputs 0 (rejects).

3.1 Correctness

Correctness of DpkCheck(). Due to the correctness of Πpke, for a derived pub-
lic key dpk = (F = [A|C], τ), the t under τ can be recovered correctly with
overwhelming probability. This implies that the recovered A′ = G1(t, τ) and
R′ = G2(t, τ) will pass the checks A′ = A and C = AR′ + B.
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Correctness of Verify(). For (B,TB) ← TrapGen(1n), recall Lemma 5 and
Lemma 6, we have that ‖T̃B‖ ≤ L, the distribution of B is statistically close to
the uniform distribution over Zn×m

q , and the columns of B generate Zn
q with over-

whelming probability. Thus, for the B, A, and R in the construction, the distri-
bution of F is statistically close to the uniform distribution over Zn×2m

q . And this
implies that the columns of F generate Z

n
q with overwhelming probability. For

dsk ← DskDerive(PP,mpk,msk, dpk), due to Theorem 1, we have that dsk = TF

is a basis of Λ⊥(F) and ‖T̃F‖ ≤ σB · √2m. For s ← Sign(PP, dpk, μ, dsk) where
s = (z, r), due to Lemma 4, we have that the distribution of z is statistically
close to z′ s.t. z′ ← DZ2m,σF

conditioned on Fz′ = u = H(μ, r) mod q. This
implies that with overwhelming probability, z satisfies ‖z‖ ≤ σF · √

2m, i.e.,
the Verify algorithm accepts such (μ, s) as valid (message, signature) pair with
overwhelming probability.

3.2 Proof of Security

Theorem 3. If the SISn,q,2β,2m assumption holds with β =
√

2m · σF , then the
PDPKS scheme is secure in the random oracle model.

Proof. Let F be a forger of the PDPKS scheme that wins the game Gameeuf
(w.r.t. Definition 1) with non-negligible probability ε(n). We construct an SIS
solver S that invokes F as a subroutine and solves the SISn,q,2β,2m problem with
non-negligible probability.

Setup. S is given an instance of SIS problem SISn,q,2β,2m with β =
√

2m · σF ,
i.e., F = [A|C] ∈ Z

n×2m
q , where A,C ∈ Z

n×m
q . S samples z ← DZ2m

q ,σF
and

computes u = Fz mod q.
S setups PP ← Setup(1λ) as in the construction and gives PP to F , We

assume WLOG that F queries G1, G2 and H for at most Q1, Q2 and QH times
respectively and set QG = max{Q1, Q2}. S chooses k ← [QG] and � ← [QH ].
S initializes empty lists L1, L2, LH to record the oracle query-results of G1, G2,
and H respectively.

S samples R ← {−1, 1}m×m and runs (epk, esk) ← Πpke.KeyGen(GP). S then
sets B = C−AR,mpk = (B, epk) and gives mpk to F . Note that B distributes
statistically close to that in the real game. S initializes an empty list L̂dpk to
record the derived public keys linked to mpk and corresponding information.

Probing Phase. F can adaptively query the following oracles:
• For the j-th distinct query to G1 on (tj , τj): If j �= k, S runs (Aj ,TAj

) ←
TrapGen(1λ1), samplesRj ← {−1, 1}m×m, stores (tj , τj ,Aj ,TAj

) and (tj , τj ,Rj)
into L1 and L2 respectively, and replies with Aj . If j = k, S stores (tj , τj ,A,�)
and (tj , τj ,R) into L1 and L2 respectively, and replies with A.
• For a query to G2 on any (t, τ): If (t, τ,R′) exists in L2 with some R′, S
replies with R′, otherwise S makes a query to G1 on (t, τ), which triggers a new
(t, τ,R′) to be put into L2, then replies with the corresponding R′.
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• For j-th distinct query to H on (μj , rj): If j �= �, S chooses zj ← DZ2m,σF
, sets

uj = Fzj mod q, stores (μj , rj ,uj , zj) into LH , and replies with uj . If j = �, S
stores (μj , rj ,u, z) into LH , and replies with u.
• For a query to ODpkCheck(·) on dpk′ = (F′ = [A′|C′], τ ′): S runs t′ ←
Πpke.Dec(GP, τ ′, epk, esk), and makes query to G1 and G2 on (t′, τ ′) respectively.
Let A′′ = G1(t′, τ ′), R′′ = G2(t′, τ ′). If A′ = A′′ and C′ = A′′R′′ +B, S replies
with 1 and sets L̂dpk = L̂dpk ∪ {(dpk,A′′,R′′)}, otherwise replies with 0.
• For a query to ODskCorrupt(·) on dpk′ = (F′ = [A′|C′], τ ′) ∈ Ldpk: S
finds dpk′ ∈ L̂dpk, let (A′,R′) be the corresponding matrices. We have that
there is a tuple (t′, τ ′,A′, T′

A) ∈ L1 and a tuple (t′, τ ′,R′) ∈ L2, where
t′ = Πpke.Dec(GP, τ ′, epk, esk). If A′ = A, note that TA′ = �, S aborts the
game. Otherwise, S computes TF′ ← DeleLeft(A′,A′R′+B,TA′ , σB) and replies
with TF′ .
• For a query to OSign(·, ·) on (dpk′ = (F′, τ ′), μ′) such that dpk′ ∈ Ldpk:
If F′ = F, S samples r′ ← {0, 1}k and makes a query to H on (μ′, r′).
With (μ′, r′,u′, z′) in LH , S replies with s′ = (z′, r′). If F′ �= F, S runs
t′ ← Πpke.Dec(GP, τ ′, epk, esk). Let (t′, τ ′,A′,TA′) ∈ L1 be the tuple corre-
sponding to (t′, τ ′), S computes TF′ ← DeleLeft(A′,A′R′ + B,TA′ , σB) and
sets dsk′ = TF′ , then replies with s′ ← Sign(PP, dsk′, dpk′, μ′).

Output Phase. F outputs a forge (dpk∗, μ∗, s∗ = (z∗, r∗)). S outputs z∗ − z as
its solution to the SIS problem.

Analysis. Before analyzing the reduction, we prove the following claims.

Claim 1. G2 is perfectly simulated, and the responses of G1,H are statistically
close to such in the real game.

Proof. Due to Lemma 5, the output of G1 simulated by S is statistical close to
uniform. Recall that by Lemma 2 the output of H simulated by S is statistically
close to uniform.

Claim 2. The replies of ODpkCheck(·) simulated by S is statistical close to those
in the real game.

Proof. The only difference between the ODpkCheck(·) simulated by S and such
in the real game is that whether the simulated or the real G1, G2 are used. Due
to Claim 1, the claim holds.

Claim 3. With negligible probability, F adds some dpk′ = (F′ = [A|C′], τ ′) for
C′ �= C to Ldpk.

Proof. If dpk′ = (F′ = [A|C′], τ ′) is added to Ldpk, then τ ′ �= τ . Since F′ is
determined by τ ′, but distributes uniform before making queries to G1, G2 on
(t′, τ ′) where t′ = Dec(GP, τ ′, epk, esk), this happens with negligible probability
due to the limited query times.

Claim 4. F produces a forgery with regards to A with probability ε(n)/QG −
negl(n).
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Proof. To facilitate the analysis, suppose that there is an imaginary compu-
tational unbounded S ′ that behaves identical to S except when F queries
ODskCorrupt on (F, τ), where F is the SIS instance to solve and τ is arbitrary.
Upon such a query, S ′ computes a trapdoor TA of A s.t. ‖T̃A‖ ≤ L and replies
with the trapdoor delegated from TA. Then S ′ never aborts. In the game simu-
lated by S ′, the view of F is statistically close to such in the real game. Since F
outputs a forge in the real game with probability larger than ε(n), F outputs a
forge with probability ε(n)−negl(n) in the game simulated by S ′. If F output a
forge, there exists some keys in Ldpk that hasn’t been queried to ODskCorrupt.
Due to the uniformity of A, any such key has probability at least 1/QG regards
to A. Then with probability larger than ε(n)/QG − negl(n), F does not query
ODskCorrupt with keys regard to A. Since before S abort, the view of F in the
game simulated by S is identical to such in the game simulated by S ′, then with
probability ε(n)/QG − negl(n), F produces a forgery with regards to A.

With probability larger than ε(n)/QG − negl(n), F produces a forgery with
regards to A, also under this case, the probability that the forgery happens on
u is 1/QH , so the total probability is ε(n)/(QG · QH) − negl(n). If F produces
a forgery with regards to A, S will not abort. Since the view of F in the game
simulated by S is statistically close to such in the real game, then if S does not
abort, F outputs a valid forge s∗ = (z∗, r∗) for some message with probability
ε(n) − negl(n). If F outputs a valid forge (z∗, r), then ‖z∗‖ < σF · √

2m with
overwhelming probability. If such z is forged with F, then Fz∗ = u mod q. Due
to min-entropy of Gaussian distribution shown in [12,23], z has min-entropy at
least O(m), z �= z∗ with overwhelming probability. With all the above events
happen, ‖z − z∗‖ ≤ 2σF · √

2m, z − z∗ is a solution to the SIS problem.
In conclusion, S outputs a valid solution z−z∗ of the given SIS instance will

probability large than ε(n)2/(QH · Q2
G) − negl(n), which is non-negligible.

3.3 Proof of Privacy

Theorem 4. If the CCA2-security and IK-CCA security of Πpke holds, the
PDPKS scheme is MPK-UNL privacy-preserving in random oracle model.

Proof. Suppose there exists a PPT adversary A that breaks the privacy of the
PDPKS scheme with non-negligible probability ε(n), we construct a PPT adver-
sary B that breaks the IK-CCA security of Πpke with non-negligible probability.

Setup. B is given the global public parameter GP of Πpke, and two pub-
lic keys epk0, epk1. B simulates the MPK-UNL game for A as follows: B
sets n,m, q, sR, σB , σF , k,G1, G2,H as in the construction, and gives PP =
(1λ, n,m, q, sR, σB , σF , k,GP, (G1, G2,H),Πpke) to A. B runs (B0,T0) ←
TrapGen(1n) and (B1,T1) ← TrapGen(1n), and gives mpk0 = (B0, epk0) and
mpk1 = (B1, epk1) to A.

B initializes empty lists L1, L2, LH to record the oracle query-results of
G1, G2, and H respectively. B initializes two empty lists L̂dpk,i(i = 0, 1) to record
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the derived public keys linked to mpki and the corresponding information. B
samples t∗ ← Mpke and submits t∗ to his challenge in the IK-CCA game, and
obtains a challenge ciphertext τ∗ ← Πpke.Enc(GP, epkb, t

∗). B simulates dpk∗ by
running (A∗,TA∗) ← TrapGen(1n), sampling C∗ ← Z

n×m
q and then setting the

challenge derived public key as dpk∗ = (F∗ = [A∗|C∗], τ∗) and sending dpk∗

to A.

Probing Phase. B then answers A’s oracle queries as follows:
• For the j-th distinct query to G1 on (tj , τj), if tj = t∗, B aborts the game;
otherwise, B samples Aj ← Z

n×m
q and stores (tj , τj ,Aj) into L1, then replies

with Aj .
• For the j-th distinct query to G2 on (tj , τj), if tj = t∗, B aborts the game;
otherwise, B samples Rj ← {−1, 1}m×m and stores (tj , τj ,Rj) into L2, then
replies with Rj .
• For the j-th distinct query to H on (μj , rj), B samples uj ← Z

n
q and stores

(μj , rj ,uj) into LH , then replies with uj .
• For a query to ODpkCheck(·, ·) on (dpk, i) where i ∈ {0, 1} and dpk = (F, τ) �=
dpk∗: If τ �= τ∗, B make a query to ODec(·, ·) on (τ, i) and obtain a t ∈ Mpke.
Then B make a query to G1 on (t, τ) and a query to G2 on (t, τ), and sets A =
G1(t, τ),R = G2(t, τ). If F = [A|AR+Bi], B sets L̂dpk,i = L̂dpk,i∪{(dpk,A,R)}
and replies with 1, otherwise replies with 0. If (τ = τ∗) ∧ (F �= F∗), B returns 0.
• For a query to ODskCorrupt(·) on dpk = (F, τ) ∈ Ldpk,i s.t. i ∈ {0, 1}: as
dpk ∈ Ldpk,i, B can find the corresponding (A,R) from L̂dpk,i such that F =
[A|AR + Bi], then B computes TF ← DeleRight(A,Bi,Ti,R, σB) and replies
with dsk = TF.
• For a query to OSign(·, ·) on a dpk = (F, τ) ∈ Ldpk,0 ∪ Ldpk,1 ∪ {dpk∗}
and a message μ: If dpk ∈ Ldpk,i for i ∈ {0, 1}, B can find the corre-
sponding (A,R) from L̂dpk,i such that F = [A|AR + Bi], then B computes
TF ← DeleRight(A,Bi,Ti,R, σB), and runs s ← Sign(PP, dpk, μ, dsk = TF)
and replies with s. If dpk = dpk∗, B computes TF∗ ← DeleLeft(A∗,TA∗ ,C∗, σB),
samples r ← {0, 1}k, and computes u = H(μ, r). Then B runs z ← SamplePre
(F∗,TF∗ , σF ) and outputs s = (z, r) as the signature.

Output Phase. B outputs whatever A outputs.

Analysis. We prove the following claims.

Claim 5. If A does not query G1, G2 on t∗, the simulated F∗ is statistical indis-
tinguishable to the original MPK-UNL game.

Proof. If A does not query G1, G2 on t∗, then R∗ = G2(t∗, τ∗) is undefined
and uniformly distributed, which means F∗ = [A∗|A∗R∗ + B∗

b ] is statistically
indistinguishable from F∗ = [A∗|C∗] (Theorem 1).

Claim 6. If A does not query G1, G2 on t∗, the simulation of DpkCheck,
DskDerive and OSign queries is statistically close to that in the real game.

Proof. The only difference between the simulation and the real game is caused
by the use of DeleLeft and DeleRight, which produces statistically close results.
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Claim 7. A queries G1, G2 on t∗ with negligible probability if ΠPKE is IND-
CCA2 secure and Mpke has super-polynomial size.

Proof. If A queries G1 or G2 on t∗ with non-negligible probability, then we can
construct B′ to break the CCA2 security of ΠPKE with non-negligible probability.

B′ is given a public key epk. B′ then picks two random messages t∗0, t
∗
1 from

Mpke and obtains a challenge ciphertext τ∗ ← Πpke.Enc(GP, epk, t∗b′) where b′

is chosen by the IND-CCA2 challenger. B′ sets up the game for A as follows:
B′ tosses a coin b and sets epkb = epk and randomly generates (epk1−b, esk1−b).
B′ simulates F∗ as B does and then gives epk0, epk1 and dpk∗ = (F∗, τ∗) to
A. B′ answers all the queries as B does except that B′ simulates all the queries
related to epk1−b honestly using esk1−b. If in the game, A queries G1 or G2 on
t∗c for c ∈ {0, 1}, then B′ outputs c as his guess for b′ in the IND-CCA2 game,
otherwise, B′ outputs a random bit. Since Mpke has super-polynomial size and
t∗1−b′ is never used in the simulation for A, the chance that A outputs t∗1−b′ in a
query to G1 or G2 is negligible. On the other hand, by the assumption, t∗b′ will
appear in a query to G1 or G2 with a non-negligible probability, hence B′ can
win the IND-CCA2 game with a negligible probability.

If A does not query G1 or G2 on t∗, then B does not abort and the simulation
is statistical close to the real game. If A can guess b correctly in the Gamempkunl

with non-negligible advantage, B can break the IK-CCA security of Πpke with
non-negligible advantage.

3.4 Parameter Choosing

We fix the parameter n = λ. The other parameters can be instantiated in various
ways. For a typical choice, we fix k = n and ε > 0 to some constant, choose
m = n1+ε and set L =

√
m. We fix ω1 = ω2 = ω(

√
log m) and set σF =

O(m3/2) · ω(
√

log m)2. To ensure the security of our SIS problem, we set β =√
2m · σF = O(m2) · ω(

√
log m)2. According to the SIS assumption, we set

q = Õ(m5/2) · ω(
√

log m)2.

3.5 Lattice-Based Key-Private Public Key Encryption

In this section, we construct a (quantumly) CCA2-secure and IK-CCA secure
PKE based on the hardness of LWE. We states the theorem here and leave the
construction of such PKE scheme and the proof to Appendix A.

Theorem 5. Let q > 2 be a prime, m be some polynomial of n, χ be an effi-
ciently sampleable distribution over Zq. Assume that the LWEn,q,χ,m problem is
hard, there exists PKE scheme π that is IND-CCA2 secure and IK-CCA secure.

4 Conclusion

Unlike other cryptographic components for RingCT (e.g., ring signature, com-
mitment, and range proof) for which lattice-based constructions are known, we
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did not know any lattice based stealth address schemes, which hinders the devel-
opment and deployment of quantum-resistant RingCT-based privacy-centric
cryptocurrencies. In this paper, we fill this gap by proposing the first lattice-
based PDPKS scheme and proving its security in the random oracle model.
Our construction offers (potentially) quantum security not only for the stealth
address algorithm but also for the deterministic wallet algorithm. Previously,
deterministic wallet algorithms, despite their popularity in Bitcoin-like cryp-
tocurrencies, were not quantum resistant.

A Construct Quantumly CCA2-Secure PKE Scheme
with CCA2 with IK-CCA Security

The IK-CPA Privacy of PKE Schemes. The definition of IK-CPA privacy
of PKE schemes follows [5].

Definition 6. A PKE scheme is Key-Indistinguishable in Chosen-Plaintext-
Attack (IK-CPA) secure if for any PPT adversary A, the advantage in the following
CCA-key-distinguish game Gameikcpa, denoted by Advikcca

A , is negligible.

1. Setup. GP ← Setup(1λ), (pk0, sk0) ← KeyGen(GP), (pk1, sk1) ←
KeyGen(GP) are run. GP, pk0, pk1 are sent to the adversary A.

2. Challenge Phase. A choose a challenger ciphertext μ∗ ∈ M. A uniform
coin b ← {0, 1} is tossed. c∗ ← Enc(GP, pkb, μ

∗) is given to A.
3. Output Phase. A outputs a bit b′ ∈ {0, 1} as its guess to b and wins if

b′ = b.

Let n, q,m, χ be the parameters in Theorem 5. Regev’s PKE scheme [25]
LWEPKE = (Setup,KeyGen,Enc,Dec) is a tuple of PPT algorithms.

– LWEPKE.Setup(1λ): The algorithm computes n = poly(n), m = poly(n), fixes
the error distribution χ according to n and outputs GP = (1n, q, χ,m).

– LWEPKE.KeyGen(GP): The algorithm samples s ← Z
n
q , A ← Z

n×m
q , and

e ← χm. It then computes b = AT s + e and outputs secret key sk = s and
public key pk = (AT ,b).

– LWEPKE.Enc(GP, pk = (AT ,b), μ ∈ {0, 1}): The algorithm samples r ←
{0, 1}m, computes and outputs c = (aT = rTAT , b = rTb+� q

2�) as ciphertext.
– LWEPKE.Dec(GP, c = (aT , b), pk, sk = s): The algorithm decrypts 0 if b −

〈a, s〉 is closer to 0 than to q
2 . Otherwise decrypts to 1.

Lemma 10. LWEPKE is IK-CPA private.

Proof. We define the following games for a hybrid argument:

– Game0: This is the original kd-cpa game of LWEPKE for A.
– Game1: A0 ← Z

n×m
q and b0 ← Z

m
q are sampled. Based on Game0, (AT

0 ,b0) is
sent to A instead of pk0. The rest of the game remains unchanged.
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– Game2: A1 ← Z
n×m
q and b1 ← Z

m
q are sampled. Based on Game1, (AT

1 ,b1) is
sent to A instead of pk1. The rest of the game remains unchanged.

Due to the LWE assumption, the views of A in Game0 and Game1 are compu-
tational indistinguishable, as are the views of A in Game1 and Game2. The rest
of the proof can be done by showing that any PPT adversary A achieves only
negligible advantage in Game2 by using left-over hash lemma [14].

From IK-CPA to IK-CCA. We introduce Fujisaki-Okamoto transformation
that transforms a CPA-secure PKE scheme to a CCA2-secure one [11] and prove
it transforms a IK-CPA private PKE scheme to a IK-CCA private PKE scheme.

Let λ be the security parameter and n,N, � be polynomials of λ. Let PKE =
(Setup,KeyGen,Enc,Dec) be a PKE scheme with message space {0, 1}n. Denote
the process “under global parameter GP, encrypts plaintext μ under public key
pk with randomness r” by Enc(GP, pk, μ; r). Assume the algorithm Enc takes at
most � random bits and let G : {0, 1}n → {0, 1}N ,H : {0, 1}N+n → {0, 1}	, be
random oracles. The PKE2 = (Setup2,KeyGen2,Enc2,Dec2) scheme is defined as:

– PKE2.Setup2(1λ): The algorithm runs GP ← PKE.Setup(1λ) and sets � =
poly(λ), N = poly(λ). Let fix G,H and outputs GP2 = (GP, �,N,G,H).

– KeyGen2(GP2): The algorithm runs (pk′, sk′) ← KeyGen(GP). It outputs pk =
pk′ as public key, outputs sk = sk′ as secret key.

– Enc2(GP2, pk, μ): For a public key pk = pk′ and a plaintext μ ∈ {0, 1}N ,
the algorithm chooses σ ← {0, 1}n. It computes w = G(σ) ⊕ μ, d ←
PKE.Enc(GP, pk′, σ;H(μ, σ)) and outputs c = (d,w) as ciphertext.

– Dec2(GP2, c, pk, sk): For a public key pk = pk′, a secret key sk = sk′ and
a ciphertext c = (d,w), the algorithm computes σ ← Dec(GP2, sk′, d) and
μ = G(σ) ⊕ w. It outputs μ if d = Enc(GP, pk′, σ;H(μ, σ)), otherwise it
outputs ⊥.

Theorem 6. Let PKE be a PKE scheme with CPA-security and IK-CPA pri-
vacy, PKE2 is IK-CCA private.

Proof. We prove by reduction. Let A be any PPT algorithm that breaks the IK-
CCA private of PKE2, we construct a PPT algorithm B with A as a subroutine
breaks the IK-CPA privacy of PKE.

On receiving the challenge keys GP, pk′
0, pk′

1 s.t (pk′
0, sk

′
0) ← PKE.KeyGen(GP)

and (pk′
1, sk

′
1) ← PKE.KeyGen(GP), B computes and sends GP2, pk0 = pk′

0, pk1 =
pk′

1 to A. In the Gameikcca of A for PKE2, the decryption oracles of A
are ODec2(·, ·), which equal to Dec2(GP2, ·, pki, ski) respectively. A query to
ODec2(·, ·) on cj = (dj , wj) defines values σj = PKE.Dec(GP, ki, dj), μj =
G(σj) ⊕ wj , where i ∈ {0, 1}. We define the following events:
•invj : For j-th query to ODec2(·, ·) on (i, cj = (dj , wj)), it replies ⊥.
•guej : Before the j-th query to ODec2(·, ·) on (i, cj = (dj , wj)), G(σj) and
H(μj , σj) are not queried, where σj = Dec(GP, dj , pk′

j , sk
′
i) and μj = wj ⊕G(σj).
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•expj : Defined to be the event guej ∧ invj .
•exp: Any of expj happen in the whole kd-cca game.

We prove that exp occurs with negligible probability. Assume that expj

occurs, then cj decrypts to μj . Without querying on G(σj), wj = G(σj) ⊕ μj

is uniformly random to A. In order to achieve invj , A has to guess wj right,
but this happens with negligible probability. If A has queried G(σj), then it
hasn’t queried H(μj , σj). The randomness H(μj , σj) in the encryption pro-
cess PKE.Enc(GP, pki, μj) is uniformly random. Then A has to compute dj =
Enc(GP, pk′

i, μj ;H(μj , σj)) right with a uniformly random string rj ← {0, 1}	

instead of H(μj , σj). This happens with negligible property, otherwise in the
cpa game, one could try to encrypts the challenge plaintext to ciphertext with
uniform randomness to break the CPA-security of PKE. The union bound of
expj shows exp happens with negligible probability. Therefore, it holds that

Pr[A wins] = Pr[A wins ∧ exp] + Pr[A wins ∧ exp] ≤ Pr[A wins ∧ exp] + Pr[exp]

= Pr[A wins ∧ exp] + negl(n)

Assume Advikcca
A,PKE2 = |Pr[A wins] − 1

2 | is non-negligible, then |Pr[A wins ∧
exp] − 1

2 | is non-negligible. B is committed to win its kd-cpa game when
[A wins ∧ exp] happens. B simulates the oracles G,H by uniformly sampling
and recording to list LG, LH , similar to the strategy of G1, G2 in the proof
of Theorem 4. When B receives the challenge plaintext μ∗ ∈ {0, 1}N from
A, it samples a σ∗ ← {0, 1}n as its challenge plaintext. On receiving chal-
lenge ciphertext d∗ = PKE.Enc(GP, pk′

b, σ
∗; r∗) for some r∗ ← {0, 1}	, B sends

c∗ = (d∗, w∗) to A as challenge ciphertext, where w∗ = G(σ∗) ⊕ μ∗. For A’s
j-th query to ODec2(·, ·) on cj = (dj , wj), B scans the whole LG, LH . If B finds
some (σj , G(σj)) ∈ LG and (μj , σj ,H(μj , σj)) ∈ LH s.t. G(σj) ⊕ μj = wj and
dj = PKE.Enc(GP, pki, μj ,H(μj , σj)), it replies with μj , otherwise replies ⊥.

When A outputs its guess b′ to b, B outputs b′. Conditioned on that
exp occurs, B can answer all the decryption queries, and the view of A
in the reduction is identical to that in the real game. Therefore, we have
Pr[B wins] ≥ Pr[A wins ∧ exp] − negl(n). Then Advikcpa

B,PKE = |Pr[B wins] − 1
2 | =

|Pr[A wins ∧ exp] − 1
2 | − negl(n), which is non-negligible if Advikcca

A,PKE is non-
negligible.
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