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Abstract. We first propose a 2D Location Based Encryption (LBE)
scheme, where the setting includes a geography center system and the 2D
triangle area including the set of locations. A user joining in the system
is provided with a pre-arranged key, which belongs to her/his location.
If the user’s location is belonging to this area, he/she can decrypt the
message. Our proposed scheme achieves a constant ciphertext size in
encryption algorithm and decryption cost. Beyond the 2D-LBE scheme,
we explore the 3D-LBE scheme; whereby the location is set up in the 3D
dimensions. This proposed scheme is an extension of 2D-LBE scheme,
which the ciphertext is also constant. Both two schemes are proved in
the selective model under the decisional �−wBDHI assumption.

Keywords: 2D/3D · Location based encryption ·
Constant ciphertext size · w-lBDHI

1 Introduction

We consider the scenario where there is a geography center system and the
2D triangle area including the set of locations. Each location comprises the X
and Y coordinator. When a user joining in the system, he/she is provided a
pre-arranged key, which belongs to her/his location. At some point, the center
wants to broadcast a message to a specific triangle area, which user’s location
belonging to this area can decrypt the message. In such a way, any other users
located outside specific area cannot learn the information. In addition, according
to Fig. 1, we require the user’s X and Y coordinate to belong to the distance
NE, NW respectively, in the NEWS triangle area if the decryption of message
is processed.

The solution is that the center encrypts the message by embedding the set of
locations from N to E, and from N to W, then it broadcast the ciphertext to the
area NEWS. However, when the broadcasting is adjusted to cover larger area
of triangle NESW, the size of the ciphertext will be increased. This requires a

c© Springer Nature Switzerland AG 2019
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Fig. 1. Broadcasting encrypted message in the triangle area NESW. (Color figure
online)

center system generating a ciphertext, which can reduce the size even the area of
triangle is rescaled. Likewise, the ciphertext size is constant if the set of locations
is increased or decreased.

Motivated from the above scenario, we present a solution which produces a
constant ciphertext size. Even the set of locations is increased, the ciphertext size
is constant. We also aim that the scheme should be computationally efficient.
According Fig. 1, let’s assume that the user is located in the red location p1. If
p1 belongs to [N,E], and [N,W ], he/she can decrypt the broadcasted message.
There is an obvious solution from [9], which we consider the distance [N,E],
[N,W ] as the range queries, and the user location as the query. This approach
can not deal with the reduce the ciphertext size, since the proposed scheme
considers each encrypted data stored in the (d × l) matrix, and encrypts each
data producing in each components in the ciphertext. In another approach, our
scenario can be applied directly the Attribute-based encryption [1,5] and Pred-
ication Encryption [7]. In fact, a class of policies in Attribute Based Encryption
expresses the distance [N, E], [N, W], attributes express user’s location, and with
the center system playing the role of attribute authority. However, in [1,5,7], the
access policy embedded in ciphertext cannot be aggregated into one components,
then ciphertext size increase linearly depending on the size of access policy gen-
erating by set of attributes. In order to construct a constant size of ciphertext
even the resizing of the set of locations, we need to aggregate the ciphertext
components corresponding to each location. Moreover, the scheme should guar-
antee that the successful decryption of one satisfied location belongs to the set
of locations embedded in the ciphertext.

Contributions: We first propose a 2D Location Based Encryption (2D-LBE)
scheme, which achieves the constant ciphertext size. We apply the Time Specific
Encryption (TSE) scheme [6,8] to exploit the time interval properties to con-
struct our idea. In TSE scheme, the decryption is processed when a time t falls
into the specific distance time [t1, t2]. Consequently, we consider each distance
[p1, p2] as the interval [t1, t2] in TSE scheme. We then produce our scheme by
evaluating the location p belonging to the [p1, p2], and [p3, p4]; achieving the
constant ciphertext size in encryption algorithm and decryption cost. Beyond
the 2D-LBE scheme, we explore the 3D-LBE scheme, where there are a center
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system and a 3D triangle area including the set of locations. Each location com-
prises the X, Y, and Z coordinator. Hence, the decryption is processed when a
location p is belonging to the specific distance [p1, p2], [p3, p4], and [p5, p6]. This
proposed scheme is an extension of the 2D-LBE scheme, which the ciphertext
size is also constant.

We give a detailed comparison between the aforementioned obvious solution
of Multi-Search Range Queries [9] and our proposed schemes in Table 1. The
schemes are compared in terms of the order of the underlying group, ciphertext
size, decryption cost, and security assumption. In the table, p denotes the pairing
operation, (d, l) the dimension of the matrix.

Table 1. Performance comparison

Scheme Ciphertext size Decryption cost Assumption

MQRED [9] (6× d × l)|G|+ 1|GT | 5dp D-BDH

2D-LBE 5|G|+ 1|GT | 5p l �−wBDHI

3D-LBE 7|G|+ 1|GT | 7p l �−wBDHI

Related Works: In 2009, Chandran et al. [4] proposed a Position Based Cryp-
tography scheme, which utilizes the geographic location to derive the user’s
identity. In addition, the scheme is position-secured to hide the user’s position,
however, the verifier still authenticates the location of the user. Buhrman et al.
[2] constructed the position based cryptography in the quantum setting, which
uses the geographical position of a party as its only credential. Extension in
the mobile environment, You et al. [11] proposed a novel location-based encryp-
tion model based on a fuzzy vault scheme to protect the sensitive data and the
location data. Recently, Yang et at. [10] constructed a secure positioning pro-
tocol with location privacy in the bounded retrieval model deploying in a fog
computing environment.

2 Preliminaries

2.1 Bilinear Map on Prime Order Groups

Let G and GT be two multiplicative cyclic groups of same prime order p, and
g a generator of G. Let e : G × G → GT be a bilinear map with the following
properties:

1. Bilinearity: e(ua, vb) = e(ub, va) = e(u, v)ab for all u,v ∈ G and a, b ∈ Zp.
2. Non-degeneracy: e(g, g) �= 1

Notice that the map e is symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).
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2.2 The Decisional �−wBDHI Assumption

The Decision �-wBDHI problem in G is defined as follows: Let � ∈ N, and G

be a bilinear group of prime order p, and g, h two independent generators of
G. Denote −→y g,α,� = (g1, g2, . . . , g� ∈ G

� where gi = gαi

for some unknown
α ∈ Z

∗
p. We say that the �-wBDHI assumption holds in G if for any probabilistic

polynomial-time algorithm A

|Pr[A(g, h,−→y g,α,�, e(g�+1, h)) = 1] − Pr[A(g, h,−→y g,α,�,W ) = 1]| ≤ ε(k)

where the probability is over the random choive of g, h in G, the random choice
α ∈ Z

∗
p, the random choice W ∈ GT , and ε(k) is negligible in the security

parameter k.

2.3 Location Based Encryption

A Location Based Encryption (LBE) scheme consists of the following four prob-
abilistic polynomial-time algorithms:

• Setup(1k, T = 2� − 1): on input a security parameter 1n, and the maximum
T = 2� − 1, the algorithm outputs a public key PK and a master secret key
MSK.

• Encrypt(PK, [t1N , t2E ], [t2N , t2W ],M): on input a public key PK, a message
M , two distances [t1N , t2E ], [t2N , t2W ], the algorithm outputs a ciphertext CT .

• KeyGen(MSK, [t1, t2]): on input a master secret key MSK, a location
[t1, t2], the algorithm outputs a decryption key SK.

• Decrypt(CT, SK): on input a ciphertext CT and a secret key SK, the algo-
rithm outputs either a message M if [t1, t2] belongs to [t1N , t2E ], [t2N , t2W ],
or a special symbol ⊥.

2.4 Security Model

The security model for an LBE scheme is defined via the following game between
an adversary A and a challenger B.

• Setup: The challenger B run Setup(1k, T = 2� −1) to generate the PK and
MSK. PK is then passed to A.

• Query Phase 1: The challenger answers all location extraction queries t1i
, t2i

by generating SKt1i
,t2i

as in the KeyGen algorithm.
• Challenge: A submits two equal-length messages M0 and M1, challenge

X-Y [t∗1N , t∗1E ][t∗2N , t∗2W ] such that t1i
/∈ [t∗1N , t∗1E ], t2i

∈ [t∗2N , t∗2W ] or t1i
∈

[t∗1N , t∗1E ], t2i
/∈ [t∗2N , t∗2W ] that has been queried in Phase 1. The challenger

then flips a coin β ← {0, 1} and computes the challenge ciphertext CT ∗,
which is given to A.

• Query Phase 2: same as Query Phase 1
• Output: A outputs a bit β′ as her guess for β.
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Define the advantage of A as AdvLBE
A (k) = |Pr[β′ = β] − 1/2|.

Selective Security. In the selective security model, the adversary A is required
to submit the target challenge X-Y [t∗1N , t∗1E ][t∗2N , t∗2W ] before the game setup,
and A is only allowed to make private key queries for any t1i

/∈ [t∗1N , t∗1E ], t2i
∈

[t∗2N , t∗2W ] or t1i
∈ [t∗1N , t∗1E ], t2i

/∈ [t∗2N , t∗2W ] throughout the game.

3 2D Location Based Encryption

In this section, we propose a 2D Location Based Encryption scheme. Let � ∈ N,
we consider the binary tree B with T = 2�−1 nodes, where T will be the number
of segments between the location N and E. By using the transformation [3], we
map the distance location [N.E] to the binary tree as the following:

We present the vector dXt
and set {Xt}. dXt

be a vector consisting of the
indices corresponding to the root node of B as 2T + 1.

Suppose that we balance a binary tree of depth T = 2� −1, which T segments
in the specific distance from N and E. The root node is installed with 2T + 1,
and each node is labeled with a string in {0, 1}≤�. In addition, the left and the
right children of a node is assigned 0 and 1, Without loss of generality, from the
root to E we view a binary string of length m ≤ � as an N-tuple of length m
as dXt1E+1 = {N0, . . . , Nm}, and from the root to N we view a binary string of
length n ≤ � as an E-tuple of length n as dX2T −t1N

= {E0, E1, . . . En}. Therefore,
when encrypting a message with a distance [N,E], the algorithm will associate
the [N,E] into a binary tree, and construct the path way from the root tree to
the [N,E] by indexing two binary strings (N0, . . . , Nm), (E0, . . . , En). Then to
retrieve t ∈ [N,E], the algorithm invoke as:

For t ∈ [1, 2T ], Xt = {dXt
}, XT+1 = {dXT+1}. Recursively, for t ∈

[1, 2T ]\{1, T + 1}, Xt+1 is computed on Xt as: Let s = min{u : Xu ∈ Xt}.
If dXs

is a leaf node, then Xt+1 is retrieved by removing the vector dXs
from

the set Xt. Otherwise, let αl, αr be the index of the left, right node of node s
respectively. Xt+1 is the set obtained by removing dXs

and adding dXαl
, dXαr

to the set Xt (1). Hence, the setting of segments between the location N and W
is similarly to the location N and E.

In addition, we should face another problem of a key generation when using
master key gαβ to generate the user key securely. Hence, our idea is to share αβ,
we re-generate r, z by randomly choosing and obtaining the re-share (αβ + r −
r), (z,−z), which r, z are also blinding factors. As a result, the extract keys are
computed by the master key completely obviousness.

We elaborate the Setup, Encryption, Key Extraction, Decryption algorithms
defined above. Let G,GT, e be bilinear maps, and T = 2� − 1 (� ∈ N) be a
polynomial that indicates the segments of X and Y coordinate. Our 2D Location
based scheme is presented in the following:

� Setup(1k, T = 2� −1): The algorithm first chooses randomly α, β ∈ Zp, and
chooses uniformly g1N , g1E , g2N , g2W , h0, . . . , h� ∈ G. Then it computes:

MSK = gαβ ,

MPK = (g, g1, g1N , g1E , g2N , g2W , h0, . . . , h�, Y = e(gα, gβ)),
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and returns MPK,MSK.
� Encryption(MPK, [t1N , t2E ], [t2N , t2W ],M): Firstly, let

dXt1E+1 = (N0, N1, . . . Nm), dX2T −t1N
= (E0, E1, . . . En),

dYt2W +1 = (N̂0, N̂1, . . . N̂m), dY2T −t2N
= (W0,W1, . . . Wn),

with fixed numbers m,n. The algorithm then chooses randomly s ∈ Zp, and
computes:

C0 = Y s · M,

C1 = gs,

C2 = (
m∏

i=0

hNi
i · g1N )s, C3 = (

n∏

i=0

hEi
i · g1E)s

C4 = (
m∏

i=0

hN̂i
i · g2N )s, C5 = (

m∏

i=0

hWi
i · g2W )s,

and returns CT = (C0, C1, C2, C3, C4, C5, [t1N , t1E ], [t2N , t2W ]).
� Extract(MSK, [t1, t2]): The algorithm chooses randomly r, z ∈ Zp.

• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1+1, the algorithms picks randomly
r1N ∈ Zp, and computes:

dX1 = (gαβ+r · (
m∏

i=0

hNi
i · g1N )r1N , gr1N , hr1N

m+1, . . . , h
r1N

� ).

• For each X2 = (E0, E1, . . . , En) ∈ X2T−t1 , it picks randomly r1E ∈ Zp.
and computes:

dX2 = (g−r · (
n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

� ).

• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, it picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N )r2N , gr2N , hr2N

m+1, . . . , h
r2N

� ).

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , it picks randomly r2W ∈ Zp.
and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W )r2W , gr2W , hr2W

n+1, . . . , h
r2W

� ).

Finally, it sets:

SKt1,1N
= {dX1}X1∈Xt1+1 , SKt1,1E

= {dX2}X2∈X2T −t1

SKt2,2N
= {dY1}Y1∈Yt2+1 , SKt2,2W

= {dY2}Y2∈Y2T −t2
,

and returns SKt1,t2 = {SKt1,1N
, SKt1,1E

, SKt2,2N
, SKt2,2W

, {t1, t2}}.
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� Decryption(SKt1,t2 , CT ): If {t1, t2} /∈ ([t1N , t1E ], [t2N , t2W ]) return ⊥. Oth-
erwise, the algorithm retrieves:

dXt1E+1 = (N1, N2, . . .), dX2T −t1N
= (E1, E2, . . .),

dYt2W +1 = (N̂1, N̂2, . . .), dY2T −t2N
= (W1,W2, . . .),

Then, it computes:

C0 · e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5)
e(dX11 · dX21 · dY11 · dY21 , C1)

Let:

A = e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5)

= e(gr1N , (
m∏

i=0

hNi
i · g1N )s) · e(gr1E , (

n∏

i=0

hEi
i · g1E)s)

· e(gr2N , (
m∏

i=0

hN̂i
i · g2N )s) · e(gr2W , (

m∏

i=0

hWi
i · g2W )s)

B = e(dX11 · dX21 · dY11 · dY21 , C1)

= e(gαβ+r · (
m∏

i=0

hNi
i · g1N )r1N · g−r · (

n∏

i=0

hEi
i · g1E)r1E

· gz · (
m∏

i=0

hN̂i
i · g2N )r2N · g−z · (

n∏

i=0

hWi
i · g2W )r2W , gs)

To recover message M :

Y s · M · A

B
= M

4 Security Proof

Theorem 1. Assume that the �-wBDHI assumption holds, then no polynomial-
time adversary against our 2D Location based Encryption scheme can have a
non-negligible advantage over random guess in the Selective IND-CPA security
game.

We assume our our 2D Location based Encryption with the size of X-Y coor-
dinate which is polynomial in the security parameter k. We consider the selective
adversary the decides the challenge X-Y [t∗1N , t∗1E ][t∗2N , t∗2W ] at the beginning of
the IND-CPA game.

Let A be any IND-CPA adversary that attacks our proposed scheme. We then
build an algorithm B that solves the decisional �-wBDHI problem in (G,GT , e)
by using A.

Let g, h choose uniformly in G, randomly α ∈ Zp, and sets yi = gαi+1
. B is

given as input (g, h, y0, y1, . . . , y�, Y ), where Y is e(g, h)αl+2
or a random value

in GT . B interacts with A as follows:
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– Setup: A outputs the challenge X [t∗1N , t∗1E ], and Y [t∗2N , t∗2W ]. Then lets:

dXt∗
1E

+1
= (N∗

0 , N∗
1 , . . . N∗

m), dX2T −t∗
1N

= (E∗
0 , E∗

1 , . . . E∗
n),

dYt∗
2W

+1
= (N̂∗

0 , N̂∗
1 , . . . N̂∗

m), dY2T −t∗
2N

= (W ∗
0 ,W ∗

1 , . . . W ∗
n),

B picks randomly γ, γ0, γ1, . . . , γ�, αN , αE , αN̂ , αW ∈ Zp, and g1 = y0, then
computes:

g1N = gαN ·
m∏

i=0

y
N∗

i

�−1g1E = gαE ·
n∏

i=0

y
E∗

i

�−1

g2N = gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1g2W = gαW ·
n∏

i=0

y
W ∗

i

�−1

hi = gγi · y�−i = gγi−α�−i+1
Y = e(y0, y�g

γ),

where α�+1 + γ is implicitly setting as β. B then sets MPK =
(g, g1, g1N , g1E , g2N , g2W , h0, . . . , h�, Y = e(gα, gβ)), and gives it to A.

– Phase 1: If A submits a location extraction query t1i
, t2i

, B responds to each
query by generating SKt1i

,t2i
as follows:

• Case 1: t1i
< t∗1N , t2i

∈ [t∗2N , t∗2W ]
B implicitly sets r′ = α�+2 + r, where r, z is chosen randomly from Zp,
and r′ is distributed uniformly in Zp. Then:

∗ For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i
+1, B picks r1N randomly

in Zp, and computes:

dX1 =

(
yγ
0 gr′

(
m∏

i=0

gγi−α�−i+1
gαN ·

m∏
i=0

y
N∗

i
�−1)

r1N , gr1N , hr1N
m+1, . . . , h

r1N
�

)

=

(
gα�+2+γα · gr′−α�+2 · (

m∏
i=0

hNi
i · g1N )r1N , gr1N , hr1N

m+1, . . . , h
r1N
�

)

=

(
gαβ+r · (

m∏
i=0

hNi
i · g1N )r1N , gr1N , hr1N

m+1, . . . , h
r1N
�

)
.

∗ We consider the secret keys of X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . ,
E∗

d−1, Ed, . . . , En). B then generates the secret key of (E∗
0 , . . . ,

E∗
d−1, Ed), and use this secret key to derive the secret key of X2. B

picks randomly r′
1E , which implicitly sets r′

1E =αd+1+r1E(E∗
d −Ed).

B computes:

dX2 =

(
gr′ · gα�−d+1r′

1E ·
{(

d−1∏
i=0

y
γiE∗

i
d · yγdEd

d · yαE
d ·

n∏
j=d+1

y
E∗

i
�−j+d+1

)

·
(

d−1∏
i=0

gγiE∗
i · gγdEd · gαE ·

n∏
j=d+1

(gα�−j+d+1
)E

∗
i

)−r′
1E

} 1
E∗

d
−Ed

,
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(gr′
1E · y−1

d )
1

E∗
d

−Ed , (gγd+1r′
1E · y−γd+1

d · y
r′
1E

�−d−1 · y�)
1

E∗
d

−Ed ,

hr1E

d+2, . . . , h
r1E

�

)

=

(
g−r′ · gα�+2 · gα�−d+1(E∗

d−Ed)r1E ·
(

d−1∏

i=0

gγiE
∗
i · gγdEd · gαE ·

n∏

j=d+1

(gα�−j+d+1
)E∗

i

)r1E

,

g
r′
1E−αd+1

E∗
d

−Ed , (gγd+1−α�−d

)
r′
1E−αd+1

E∗
d

−Ed , hr1E

d+2, . . . , h
r1E

�

)

=

(
g−r′+α�+2 ·

(
d−1∏

i=0

g(γi−α�−i+1)E∗
i · g(γd−α�−d+1)Ed · gαE

·
n∏

j=0

(gα�−j+1
)E∗

i

)r1E

,

gr1E , hr1E

d+1, h
r1E

d+2, . . . , h
r1E

�

)

=

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)

∗ For each Y1 = (N̂0, N̂1, . . . , N̂m)∈Yt2+1, B picks randomly r2N ∈Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N )r2N , gr2N , hr2N

m+1, . . . , h
r2N

� ).

∗ For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , B picks randomly r2W ∈
Zp. and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W )r2W , gr2W , hr2W

n+1, . . . , h
r2W

� ).

When simulating dX2 , the components hr1E

d+2, . . . , h
r1E

� are not
involved a α�+2, then B can simulate these components simi-
larly as in the main construction. Finally, B sets SKt1i

,t2i
=

{SKt1i,1N
, SKt1i,1E

, SKt2i,2N
, SKt2i,2W

, {t1i
, t2i

}, and sends the SKt1i
,t2i

to A.
– Case 2: t2i

> t∗1E , t2i
∈ [t∗2N , t∗2W ]

B chooses r, z is chosen randomly from Zp. Then:
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• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i
+1, we consider the secret keys

of X1 ∈ Xt1i
+1. For X1 = (N∗

0 , . . . , N∗
d−1, Nd, . . . , Nm). B then generates

the secret key of (E∗
0 , . . . , E∗

d−1, Ed), and use this secret key to derive
the secret key of X1. B picks randomly r′

1N , which implicitly sets r′
1N =

αd+1 + r1N (E∗
d − Ed). B computes:

dX1 =

(
yγ
0 g

r · gα�−d+1r′
1N ·

{(
d−1∏
i=0

y
γiN∗

i
d · yγdNd

d · yαN
d ·

m∏
j=d+1

y
N∗

i
�−j+d+1

)

·
(

d−1∏
i=0

gγiN∗
i · gγdNd · gαN ·

m∏
j=d+1

(gα�−j+d+1
)N

∗
i

)−r′
1N

} 1
N∗

d
−Nd

,

(gr′
1N · y−1

d )
1

N∗
d

−Nd , (gγd+1r′
1N · y−γd+1

d · yr′
1N

�−d−1 · y�)
1

N∗
d

−Nd , h
r1N
d+2, . . . , h

r1N
�

)

• For X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . , E∗
d−1, Ed, . . . , En). B picks ran-

domly r1E , then computes:

dX2 =

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)

• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, B picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N )r2N , gr2N , hr2N

m+1, . . . , h
r2N

� ).

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , B picks randomly r2W ∈ Zp.
and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W )r2W , gr2W , hr2W

n+1, . . . , h
r2W

� ).

– Case 3: t1i
∈ [t∗1N , t∗1E ], t2i

< t∗2N

B chooses r, z is chosen randomly from Zp. Then:
• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i

+1, B picks r1N randomly in Zp,
and computes:

dX1 =

(
yγ
0 gr(

m∏

i=0

gγi−α�−i+1
gαN ·

m∏

i=0

y
N∗

i

�−1)
r1N , gr1N , hr1N

m+1, . . . , h
r1N

�

)

• For X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . , E∗
d−1, Ed, . . . , En). B picks ran-

domly r1E , then computes:

dX2 =

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)
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• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, B picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N )r2N , gr2N , hr2N

m+1, . . . , h
r2N

� ).

• We consider the secret keys of Y2 ∈ Y2T−t2i
. For Y2 =

(W ∗
0 , . . . ,W ∗

d−1,Wd, . . . ,Wn). B then generates the secret key of
(W ∗

0 , . . . ,W ∗
d−1,Wd), and use this secret key to derive the secret key of Y2.

B picks randomly r′
2W , which implicitly sets r′

2W = αd+1+r2W (W ∗
d −Wd).

B computes:

dY2 =

(
g−z · gα�−d+1r′

2W ·
{(

d−1∏

i=0

y
γiW

∗
i

d · yγdWd

d · yαW

d ·
n∏

j=d+1

y
W ∗

i

�−j+d+1

)

·
(

d−1∏

i=0

gγiW
∗
i · gγdWd · gαW ·

n∏

j=d+1

(gα�−j+d+1
)W ∗

i

)−r′
2W

} 1
W ∗

d
−Wd

,

(gr′
2W · y−1

d )
1

W ∗
d

−Wd , (gγd+1r′
2W · y−γd+1

d · y
r′
2W

�−d−1 · y�)
1

W ∗
d

−Wd ,

hr2W

d+2 , . . . , hr2W

�

)

=

(
g−z · (

n∏

i=0

hWi
i · g2W )r2W , gr2W , hr2W

n+1, . . . , h
r2W

�

)

– Case 4: t1i
∈ [t∗1N , t∗1E ], t2i

> t∗2W

B chooses r, z is chosen randomly from Zp. Then:
• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1i

+1, B picks r1N randomly in Zp,
and computes:

dX1 =

(
yγ
0 gr(

m∏

i=0

gγi−α�−i+1
gαN ·

m∏

i=0

y
N∗

i

�−1)
r1N , gr1N , hr1N

m+1, . . . , h
r1N

�

)

• For X2 ∈ X2T−t1i
. For X2 = (E∗

0 , . . . , E∗
d−1, Ed, . . . , En). B picks ran-

domly r1E , then computes:

dX2 =

(
g−r · (

n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

�

)

• We consider the secret keys of Y1 ∈ Yt2i
+1. For Y1 =

(N̂∗
0 , . . . , N̂∗

d−1, N̂d, . . . , N̂m). B then generates the secret key of
(N̂∗

0 , . . . , N̂∗
d−1, N̂d), and use this secret key to derive the secret key of Y1.

B picks randomly r′
2N̂

, which implicitly sets r′
2N̂

= αd+1 + r1N̂ (N̂∗
d − N̂d).

B computes:
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dY1 =

(
gz · gα�−d+1r′

2N̂ ·
{(

d−1∏

i=0

y
γiN̂

∗
i

d · yγdN̂d

d · y
αN̂

d ·
m∏

j=d+1

y
N̂∗

i

�−j+d+1

)

·
(

d−1∏

i=0

gγiN̂
∗
i · gγdN̂d · gαN̂ ·

m∏

j=d+1

(gα�−j+d+1
)N̂∗

i

)−r′
2N̂

} 1
N̂∗

d
−N̂d

,

(gr′
2N̂ · y−1

d )
1

N̂∗
d

−N̂d , (gγd+1r′
2N̂ · y−γd+1

d · y
r′
2N̂

�−d−1 · y�)
1

N̂∗
d

−N̂d ,

h
r2N̂

d+2, . . . , h
r2N̂

�

)

=

(
gs · (

m∏

i=0

hN̂i
i · g2N̂ )r2N̂ , gr2N̂ , h

r2N̂
m+1, . . . , h

r2N̂

�

)

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2i
, B picks randomly r2W ∈ Zp.

and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W )r2W , gr2W , hr2W

n+1, . . . , h
r2W

� ).

– Challenge: When A decides that Phase 1 is over, it outputs the challenge
plaintexts M0,M1. B picks a random bit b ∈U {0, 1}, and computes the
challenge ciphertext by

CT ∗ = (Mb · T · e(y0, hγ), h, h
αN+

m∑

i=0
N∗

i γi

, h
αE+

n∑

i=0
E∗

i γi

, h
αN̂+

m∑

i=0
N̂∗

i γi

,

h
αW +

n∑

i=0
NW∗iγi

, [t∗1N , t∗1E ][t∗2N , t∗2W ])

If T = e(g, h)α�+2, then CT ∗ is of the following form by letting logg h = s

CT ∗ = (Mb · e(g, h)α�+2s · e(g, g)αγs, gs, (gαN ·
m∏

i=0

y
N∗

i

�−1)
s, (gαE ·

n∏

i=0

y
E∗

i

�−1)
s,

(gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1)
s, (gαW ·

n∏

i=0

y
W ∗

i

�−1)
s)

B sends the following challenge ciphertext to A:

CT ∗ = (MbT,C1, C2, C3, C4, C5, [t∗1N , t∗1E ][t∗2N , t∗2W ]).

– Phase II: Same as Phase I.
– Guess: A outputs b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(g, h)α�+2
, then the simulation is the same as in the real

game. Hence, A will have the probability 1
2 + ε to guess b correctly. If T is a

random element of GT , then A will have probability 1
2 to guess b correctly.

Therefore, B can solve the Decision�-wBDHI assumption also with advan-
tage ε. 	
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5 3D Location Based Encryption

We extend the 2D-LBE scheme to 3D-LBE scheme, where each location com-
prises the X, Y, and Z coordinator. Hence, the decryption is processed when
a location t is belonging to the specific distance [t1, t2], [t3, t4], and [t5, t6]. In
order to share αβ, we re-generate r, z, k by randomly choosing and obtaining the
re-share (αβ + r − r), (z,−z), (k,−k), which r, z, k are also blinding factors. We
elaborate the Setup, Encryption, Key Extraction, Decryption algorithms defined
above.

Let G,GT, e be bilinear maps, and T = 2� − 1 (� ∈ N) be a polynomial
that indicates the segments of X,Y and Z coordinate. Our 3D Location Based
scheme is presented in the following:

� Setup(1k, T = 2� −1): The algorithm first chooses randomly α, β ∈ Zp, and
chooses uniformly g1N , g1E , g2N , g2W , h0, . . . , h� ∈ G. Then it computes:

MSK = gαβ ,

MPK = (g, g1, g1N , g1E , g2N , g2W , g3N , g3E , h0, . . . , h�, Y = e(gα, gβ)),

and returns MPK,MSK.
� Encryption(MPK, [t1N , t1E ], [t2N , t2W ], [t3N , t3E ],M): Firstly, let

dXt1E+1 = (N0, N1, . . . Nm), dX2T −t1N
= (E0, E1, . . . En),

dYt2W +1 = (N̂0, N̂1, . . . N̂m), dY2T −t2N
= (W0,W1, . . . Wn),

dZt3E+1 = (N ′
0, N

′
1, . . . N

′
m), dZ2T −t3N

= (E′
0, E

′
1, . . . E

′
n),

with fixed numbers m,n. The algorithm then chooses randomly s ∈ Zp, and
computes:

C0 = Y s · M,

C1 = gs,

C2 = (
m∏

i=0

hNi
i · g1N )s, C3 = (

n∏

i=0

hEi
i · g1E)s

C4 = (
m∏

i=0

hN̂i
i · g2N )s, C5 = (

m∏

i=0

hWi
i · g2W )s,

C6 = (
m∏

i=0

h
N ′

i
i · g3N )s, C7 = (

m∏

i=0

h
E′

i
i · g3E)s,

and returns CT = (C0, C1, C2, C3, C4, C5, C6, C7, [t1N , t1E ], [t2N , t2W ], [t3N ,
t3E ]).
� Extract(MSK, [t1, t2, t3]): The algorithm chooses randomly r, z, k ∈ Zp.

• For each X1 = (N0, N1, . . . , Nm) ∈ Xt1+1, the algorithms picks randomly
r1N ∈ Zp, and computes:

dX1 = (gαβ+r · (
m∏

i=0

hNi
i · g1N )r1N , gr1N , hr1N

m+1, . . . , h
r1N

� ).
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• For each X2 = (E0, E1, . . . , En) ∈ X2T−t1 , it picks randomly r1E ∈ Zp.
and computes:

dX2 = (g−r · (
n∏

i=0

hEi
i · g1E)r1E , gr1E , hr1E

n+1, . . . , h
r1E

� ).

• For each Y1 = (N̂0, N̂1, . . . , N̂m) ∈ Yt2+1, it picks randomly r2N ∈ Zp.
and computes:

dY1 = (gz · (
m∏

i=0

hN̂i
i · g2N )r2N , gr2N , hr2N

m+1, . . . , h
r2N

� ).

• For each Y2 = (W0,W1, . . . ,Wn) ∈ Y2T−t2 , it picks randomly r2W ∈ Zp.
and computes:

dY2 = (g−z · (
n∏

i=0

hWi
i · g2W )r2W , gr2W , hr2W

n+1, . . . , h
r2W

� ).

• For each Z1 = (N ′
0, N

′
1, . . . , N

′
m) ∈ Z ′

t3+1, the algorithms picks randomly
r3N ∈ Zp, and computes:

dZ1 = (gk · (
m∏

i=0

h
N ′

i
i · g3N )r3N , gr3N , hr3N

m+1, . . . , h
r3N

� ).

• For each Z2 = (E′
0, E

′
1, . . . , E

′
n) ∈ Z ′

2T−t3
, it picks randomly r3E ∈ Zp.

and computes:

dZ2 = (g−k · (
n∏

i=0

h
E′

i
i · g3E)r3E , gr3E , hr3E

n+1, . . . , h
r3E

� ).

Finally, it sets:

SKt1,1N
= {dX1}X1∈Xt1+1SKt1,1E

= {dX2}X2∈X2T −t1

SKt2,2N
= {dY1}Y1∈Yt2+1SKt2,2W

= {dY2}Y2∈Y2T −t2
,

SKt3,3N
= {dZ1}Z1∈Xt3+1SKt3,3E

= {dZ2}Z2∈X2T −t3

and returns SKt1,t2 = {SKt1,1N
, SKt1,1E

, SKt2,2N
, SKt2,2W

, SKt3,3N
, SKt3,3E

,
{t1, t2, t3}}.
� Decryption(SKt1,t2,t3 , CT ): If {t1, t2, t3} /∈ ([t1N , t1E ], [t2N , t2W ], [t3N , t3E ])
return ⊥. Otherwise, the algorithm retrieves:

dXt1E+1 = {N1, N2, . . .}, dX2T −t1N
= {E1, E2, . . .},

dYt2W +1 = {N̂1, N̂2, . . .}, dY2T −t2N
= {W1,W2, . . .},

dZt3E+1 = {N ′
1, N

′
2, . . .}, dZ2T −t3N

= {E′
1, E

′
2, . . .},
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Then, it computes:

C0 · e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5) · e(dZ12 , C6) · e(dZ22 , C7)

e(dX11 · dX21 · dY11 · dY21 · dZ11 · dZ21 , C1)

Let:

A = e(dX12 , C2) · e(dX22 , C3) · e(dY12 , C4) · e(dY22 , C5) · e(dZ12 , C6) · e(dZ22 , C7)

= e(gr1N , (
m∏

i=0

hNi
i · g1N )s) · e(gr1E , (

n∏
i=0

hEi
i · g1E)s)

· e(gr2N , (

m∏
i=0

hN̂i
i · g2N )s) · e(gr2W , (

m∏
i=0

hWi
i · g2W )s)

· e(gr3N , (
m∏

i=0

h
N′

i
i · g3N )s) · e(gr3E , (

n∏
i=0

h
E′

i
i · g3E)s)

B = e(dX11 · dX21 · dY11 · dY21 · dZ11 · dZ21 , C1)

= e(gαβ+r · (
m∏

i=0

hNi
i · g1N )r1N · g−r · (

n∏
i=0

hEi
i · g1E)r1E

· gz · (
m∏

i=0

hN̂i
i · g2N )r2N · g−z · (

n∏
i=0

hWi
i · g2W )r2W

· e(gk · (
m∏

i=0

h
N′

i
i · g3N )r3N · g−k · (

n∏
i=0

h
E′

i
i · g3E)r3E , gs)

To recover message M :

Y s · M · A

B
= M

Security Proof

Theorem 2. Assume that the �-wBDHI assumption holds, then no polynomial-
time adversary against our 3D Location Based Encryption scheme can have a
non-negligible advantage over random guess in the Selective IND-CPA security
game.

We assume our 3D Location Based Encryption with the size of X,Y,
and Z coordinate which is polynomial in the security parameter k. We
consider the selective adversary the decides the challenge X,Y, and Z
[t∗1N , t∗1E ][t∗2N , t∗2W ][t∗3N , t∗3E ] at the beginning of the IND-CPA game.

Let A be any IND-CPA adversary that attacks our proposed scheme. We then
build an algorithm B that solves the decisional �-wBDHI problem in (G,GT , e) by
using A as in Theorem 1. Let g, h choose uniformly in G, randomly α ∈ Zp, and
sets yi = gαi+1

. B is given as input (g, h, y0, y1, . . . , y�, Y ), where Y is e(g, h)αl+2

or a random value in GT . B interacts with A as follows:
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– Setup: A outputs the challenge X [t∗1N , t∗1E ], and Y [t∗2N , t∗2W ]. Then lets:

Xt∗
1E+1 = (N∗

0 , N∗
1 , . . . N∗

m),X2T−t∗
1N

= (E∗
0 , E∗

1 , . . . E∗
n),

Yt∗
2W +1 = (N̂∗

0 , N̂∗
1 , . . . N̂∗

m), Y2T−t∗
2N

= (W ∗
0 ,W ∗

1 , . . .W ∗
n),

Zt∗
3E+1 = (N ′∗

0 , N ′∗
1 , . . . N ′∗

m), Z2T−t∗
3N

= (E′∗
0 , E′∗

1 , . . . E′∗
n ),

B picks randomly γ, γ0, γ1, . . . , γ�, αN , αE , αN̂ , αW , α′
N , α′

E ,∈ Zp, and g1 =
y0, then computes:

g1N = gαN ·
m∏

i=0

y
N∗

i

�−1g1E = gαE ·
n∏

i=0

y
E∗

i

�−1

g2N = gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1g2W = gαW ·
n∏

i=0

y
W ∗

i

�−1

g3N = gα′
N ·

m∏

i=0

y
N ′∗

i

�−1g3E = gα′
E ·

n∏

i=0

y
E′∗

i

�−1

hi = gγi · y�−i = gγi−α�−i+1
, Y = e(y0, y�g

γ),

where α�+1 + γ is implicitly setting as β. B then sets MPK =
(g, g1, g1N , g1E , g2N , g2W , h0, . . . , h�, Y = e(gα, gβ)), and gives it to A.

– Phase 1: If A submits a location extraction query t1i
, t2i

, t3i
, B responds to

each query by generating SKt1i
,t2i

as follows:
• Case 1: t1i

< t∗1N , t2i
∈ [t∗2N , t∗2W ], t3i

∈ [t∗3N , t∗3E ]
• Case 2: t1i

> t∗1E , t2i
∈ [t∗2N , t∗2W ], t3i

∈ [t∗3N , t∗3E ]
• Case 3: t1i

∈ [t∗1N , t∗1E ], t2i
< t∗2N , t3i

∈ [t∗3N , t∗3E ]
• Case 4: t1i

∈ [t∗1N , t∗1E ], t2i
> t∗2W , t3i

∈ [t∗3N , t∗3E ]
• Case 5: t1i

∈ [t∗1N , t∗1E ], t2i
∈ [t∗2N , t∗2W ], t3i

< t∗3N

• Case 6: t1i
∈ [t∗1N , t∗1E ], t2i

∈ [t∗2N , t∗2W ], t3i
> t∗3E

This query phase 1 is simulated similarly as in Phase 1.
– Challenge: When A decides that Phase 1 is over, it outputs the challenge

plaintexts M0,M1. B picks a random bit b ∈U {0, 1}, and computes the
challenge ciphertext by

CT ∗ = (Mb · T · e(y0, h
γ), h, h

αN+
m∑

i=0
N∗

i γi

, h
αE+

n∑

i=0
E∗

i γi

, h
α

N̂
+

m∑

i=0
N̂∗

i γi

,

h
αW +

n∑

i=0
NW∗iγi

, h
α′

N+
m∑

i=0
N′∗

i γi

, h
α′

E+
n∑

i=0
E′∗

i γi

, [t∗
1N , t∗

1E ][t∗
2N , t∗

2W ][t∗
3N , t∗

3E ])

If T = e(g, h)α�+2, then CT ∗ is of the following form by letting logg h = s

CT ∗ = (Mb · e(g, h)α�+2s · e(g, g)αγs, gs, (gαN ·
m∏

i=0

y
N∗

i

�−1)
s, (gαE ·

n∏

i=0

y
E∗

i

�−1)
s,

(gαN̂ ·
m∏

i=0

y
N̂∗

i

�−1)
s, (gαW ·

n∏

i=0

y
W ∗

i

�−1)
s, (gα′

N ·
m∏

i=0

y
N ′∗

i

�−1)
s, (gα′

E ·
n∏

i=0

y
E′∗

i

�−1)
s)
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B sends the following challenge ciphertext to A:

CT ∗ = (MbT,C1, C2, C3, C4, C5, C6, C7, [t∗1N , t∗1E ][t∗2N , t∗2W ][t∗3N , t∗3E ]).

– Phase II: Same as Phase I.
– Guess: A outputs b′ ∈ {0, 1}. If b′ = b then B outputs 1, otherwise outputs 0.

Analysis: If T = e(g, h)α�+2
, then the simulation is the same as in the real

game. Hence, A will have the probability 1
2 + ε to guess b correctly. If T is a

random element of GT , then A will have probability 1
2 to guess b correctly.

Therefore, B can solve the Decision�-wBDHI assumption also with advan-
tage ε. 	


6 Conclusion

This work is the first endeavor to develop Location Based Encryption with
constant ciphertext size. We proposed two new schemes, called 2D Location
Based Encryption and 3D Location Based Encryption. Both of them are con-
stant ciphertext size and are proven under in the selective model under the
decisional �−wBDHI assumption. In future work, we will consider the privacy of
the area purposed for encryption, since the ciphertext component can disclose
the area information. This leads to a privacy preserving location scheme to pro-
tect the information encryption, and guarantee the user’s location. Furthermore,
we will deploy our proposed schemes on IoT devices to analyze the efficiency of
transmitting message protocol in the practical scenario.
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