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The Wiener Attack on RSA Revisited:
A Quest for the Exact Bound

Willy Susilo, Joseph Tonien(B), and Guomin Yang

Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology,
University of Wollongong, Wollongong, Australia

{willy.susilo,joseph.tonien,guomin.yang}@uow.edu.au

Abstract. Since Wiener pointed out that the RSA can be broken if the
private exponent d is relatively small compared to the modulus N (using
the continued fraction technique), it has been a general belief that the

Wiener attack works for d < N
1
4 . On the contrary, in this work, we

give an example where the Wiener attack fails with d =
⌊

1
2
N

1
4

⌋
+ 1,

thus, showing that the bound d < N
1
4 is not accurate as it has been

thought of. By using the classical Legendre Theorem on continued frac-
tions, in 1999 Boneh provided the first rigorous proof which showed

that the Wiener attack works for d < 1
3
N

1
4 . However, the question

remains whether 1
3
N

1
4 is the best bound for the Wiener attack. Addi-

tionally, the question whether another rigorous proof for a better bound
exists remains an elusive research problem. In this paper, we attempt
to answer the aforementioned problems by improving Boneh’s bound
after the two decades of research. By a new proof, we show that the
Wiener continued fraction technique works for a wider range, namely,

for d ≤ 1
4√18

N
1
4 = 1

2.06...
N

1
4 . Our new analysis is supported by an exper-

imental result where it is shown that the Wiener attack can successfully
perform the factorization on the RSA modulus N and determine a pri-

vate key d where d =
⌊

1
4√18

N
1
4

⌋
.

Keywords: RSA · Continued fractions · Wiener technique ·
Small secret exponent

1 Introduction

The RSA cryptosystem is one of the most popular and de facto public-key sys-
tems used in practice today. It is among the most common ciphers used in the
SSL/TLS protocol which allows sensitive information transmitted securely over
the Internet.

c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-21548-4_21
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A simplified version of the RSA encryption algorithm works as follows. Two
large primes of the same size p and q are selected to form a product N = pq –
which is called the RSA modulus. Two integers e and d are chosen so that

ed = 1 (mod φ(N)),

where φ(N) = (p−1)(q−1) is the order of the multiplicative group Z
∗
N . The num-

ber e is called the encryption exponent and d is called the decryption exponent.
This is because to encrypt a message m ∈ Z

∗
N , one calculates the exponentiation

c = me (mod N), and to decrypt a ciphertext c ∈ Z
∗
N , one performs the expo-

nentiation m = cd (mod N). The pair (N, e) is called the public key and so that
anyone can encrypt, whereas d is called the private key and only the owner of d
can perform the decryption operation.

Since the modular exponentiation m = cd (mod N) takes O(log d) time,
to reduce decryption time, one may wish to use a relatively small value of d.
However, in 1991, Wiener [20] showed that if the bit-length of d is approximately
one-quarter of that of the modulus N , then it is possible to determine the private
exponent d from the public-key (N, e), hence, a total break of the cryptosystem.
Wiener’s attack is based on continued fractions and the idea is as follows. Since
ed = 1 (mod φ(N)), we have ed − kφ(N) = 1 for some integer k, and thus,

k

d
≈ e

φ(N)
≈ e

N
.

Now one knows that the convergents of the continued fraction expansion of
a number provide rational approximations to the number, so it is natural to
search for the private fraction k

d among the convergents of the public fraction
e
N . Given Wiener’s approximation analysis [20], it has been a general belief that
the Wiener attack works for d < N

1
4 (see [1,4,13,17]). On the converse, in 2005,

Steinfeld-Contini-Wang-Pieprzyk [17] showed that for any positive number ε,
with an overwhelming probability, Wiener’s attack will fail for a random choice
d ≈ N

1
4+ε. Thus, the bound d < N

1
4 has since been believed to be the optimal

bound for the Wiener attack.
There are other variants of Wiener’s attack [8,10,11,18] that allow the RSA

cryptosystem to be broken when d is a few bits longer than N
1
4 . In 1997, Verheul

and van Tilborg [18] proposed a method that works for d < DN
1
4 using an

exhaustive search of about 2 log D + 8 bits. This method was later improved by
Dujella [10,11]. In the Verheul and van Tilborg attack [18], the secret exponent
is of the form d = rbm+1 + sbm, where the bi are the denominators of the
convergents of the continued fraction. Calculation of the convergents needs a
complexity of O(log N), and so searching through all possible pairs (r, s) at each
convergent makes the running time increased by a factor of O(D2A2), where
A is the maximum of the partial quotients xm+1, xm+2, xm+3 of the continued
fraction. The first Dujella method [10] improved this extra running time factor
to O(D2 log A) and O(D2 log D), and the second Dujella method [11] improved it
further to O(D log D) (with the space complexity of O(D)). In 2017, Bunder and
Tonien [8] proposed another variant of Wiener’s attack. Instead of considering the
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continued fraction of e
N as in the original Wiener’s attack, the Bunder and Tonien

method uses the continued fraction of e
N ′ , where N ′ is a number depending on

N . This new attack works for d < 2(n+3−t)/2N
1
4 where n = log N , t = log e, and

the running time is O(log N).
There are yet other variants of Wiener’s attack that utilise more than just

the public information (N, e). For example, the Weger attack [19] exploited the
small distance between the two RSA’s secret primes: if |p− q| = Nβ and d = N δ

then d can be recovered if 2 − 4β < δ < 1 −
√

2β − 1
2 or δ < 1

6 (4β + 5) −
1
3

√
(4β + 5)(4β − 1). The Blömer and May attack [2] assumed a linear relation

between e and φ(N): ex + y = 0 mod φ(N) with either 0 < x < 1
3N

1
4 and

y = O(N− 3
4 ex) or x < 1

3

√
φ(N)

e
N

3
4

p−q and |y| ≤ p−q

φ(N)N
1
4
ex. The Nassr et al.

attack [15] required an approximation po ≥ √
N of the prime p.

In 1999, Boneh and Durfee [4] showed the first significant improvement over
the Wiener’s result. Based on the Coppersmith technique [9], exploiting a non-
linear equation satisfied by the secret exponent, the Boneh-Durfee method can
break the RSA when d < N0.292. Using a somewhat more optimized lattice,
Herrmann and May [13] also derived the same bound d < N0.292, although their
proof is more elementary. This bound d < N0.292 remains as the best bound to
date.

Our Contributions. In this paper, we revisit Wiener’s original attack based on
continued fraction technique. In research literature, there have been two different
bounds reported for this attack, one is d < N

1
4 (for example, in [1,4,13,17])

and another one is d < 1
3N

1
4 (for example, in [3,5–8]). The second bound is due

to Boneh [3]. Our main contributions in this paper are twofold: on one hand,
we show that the first bound d < N

1
4 is not accurate, and on the other hand,

we can improve the Boneh bound from d < 1
3N

1
4 to d ≤ 1

2.06...N
1
4 . Since many

attacks on RSA based on the original Wiener attack, it is important to revisit
this attack and provide an accurate analysis.

Our First Contribution. Based on the implementation of the Wiener algorithm
and its execution, we have discovered that the Wiener attack fails for many
values of d < N

1
4 . This contradicts to the general belief about the Wiener

attack where it has been reported that the Wiener attack works for all d < N
1
4

(see [1,4,13,17]). Obviously, to disprove this bound d < N
1
4 , one only needs to

show one counterexample, i.e. a value of d < N
1
4 where the Wiener attack fails.

We do that in Sect. 4, where it is shown that the Wiener attack fails for a certain
value of N and d with

d =
⌊

1
2
N

1
4

⌋
+ 1 < N

1
4 .

Therefore, the bound d < N
1
4 for the Wiener attack is not accurate as it has

been believed to date. At least, we can see that it fails at the halfway point of the
range. This raises a natural question: what is the correct bound for the Wiener
attack? And this comes to our second contribution.
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Our Second Contribution. Boneh [3] provided the first and only rigorous proof
which showed that the Wiener attack works for

d <
1
3
N

1
4 .

The remaining question is whether this bound is the best bound for the Wiener
attack. Additionally, we are wondering whether there exists another rigorous
proof for a better bound. As the second contribution of this paper, we answer
this question affirmatively by improving Boneh’s bound.

Boneh’s result does not say anything about the case d ≥ 1
3N

1
4 . So the Wiener

attack may work or it may fail for d ≥ 1
3N

1
4 . Our first result already shows an

instance where the Wiener attack fails at d =
⌊
1
2N

1
4

⌋
+ 1 � 1

2N
1
4 . This raises

an open question: does the Wiener attack work or fail in the following interval
1
3
N

1
4 ≤ d <

1
2
N

1
4 ?

As the second contribution of this paper, using exactly the same setting as that
of Boneh [3], we prove that the Wiener attack is always successful for all values
of d in the larger interval

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

With this improvement of Boneh’s bound from d < 1
3N

1
4 to d ≤ 1

2.06...N
1
4 ,

we show that the Wiener attack works for all value of d in the interval
1
3
N

1
4 ≤ d ≤ 1

2.06...
N

1
4 .

Thus, the undecided interval has been narrowed down to
1

2.06...
N

1
4 < d <

1
2
N

1
4

and it is unknown if the Wiener attack fails or succeeds in this narrow interval.
Nevertheless, we conjecture that our new bound 1

2.06...N
1
4 is indeed the best

bound for the Wiener attack. We conjecture that, for any 1
2.06... < α ≤ 1

2 , there
is always a value of d in the interval 1

2.06...N
1
4 < d < αN

1
4 that makes the Wiener

attack fail.

Our Experimental Results. In this paper, we show two experimental results.
In Sect. 4, we show an example where the Wiener attack fails with

d =
⌊

1
2
N

1
4

⌋
+ 1 < N

1
4 ,

this is a counterexample to disprove the first bound d < N
1
4 . In Sect. 6, we show

an example that the Wiener attack works with

d =
⌊

1
4
√

18
N

1
4

⌋
=

⌊
1

2.06...
N

1
4

⌋
,

this is an illustration to our new improved bound d ≤ 1
2.06...N

1
4 .
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Roadmap. The rest of this paper is organized as follows. The next section gives
a brief introduction to the continued fractions. We revisit Boneh’s version of
Wiener’s attack in Sect. 3 for clarity and completeness. In Sect. 4, we demonstrate
our first experimental result showing an example that the Wiener attack fails
at d =

⌊
1
2N

1
4

⌋
+ 1. In Sect. 5, we give a new rigorous proof which shows that

the Wiener continued fraction technique works for d ≤ 1
4√18

N
1
4 = 1

2.06...N
1
4 . Our

new bound is verified experimentally in Sect. 6, where we show an example that
the Wiener attack works with d =

⌊
1

4√18
N

1
4

⌋
. Finally, we conclude our paper

and discuss open problems in Sect. 7.

2 Preliminaries

In this section, we list several well-known results about continued fractions which
can be found in [12,16].

A continued fraction expansion of a rational number u
v is an expression of

the form
u

v
= x0 +

1

x1 +
1

. . . +
1
xn

,

where the coefficient x0 is an integer and all the other coefficients xi for i ≥
1 are positive integers. The coefficients xi are called the partial quotients of
the continued fraction. Continued fraction expansion also exists for irrational
numbers although it runs infinitely. In cryptography, finite continued fraction
for rational numbers suffices our purpose.

There is a standard way to generate a unique continued fraction from any
rational number. By the Euclidean division algorithm, one can efficiently deter-
mine all the coefficients x0, x1, . . . , xn of the continued fraction. For clarity, we
present the following example to show how to construct the continued fraction
for 2000

2019 .
By the Euclidean division algorithm, we have

2000 = 2019 × 0 + 2000
2019 = 2000 × 1 + 19
2000 = 19 × 105 + 5

19 = 5 × 3 + 4
5 = 4 × 1 + 1
4 = 1 × 4

and thus, we can see that the coefficients 0, 1, 105, 3, 1, 4 determined by the above
Euclidean division algorithm become the coefficients for the continued fraction
as follows,
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2000
2019

= 0 +
2000
2019

= 0 +
1

2019
2000

= 0 +
1

1 +
19

2000

= 0 +
1

1 +
1

2000
19

= 0 +
1

1 +
1

105 +
5
19

= 0 +
1

1 +
1

105 +
1
19
5

= 0 +
1

1 +
1

105 +
1

3 +
4
5

= 0 +
1

1 +
1

105 +
1

3 +
1
5
4

= 0 +
1

1 +
1

105 +
1

3 +
1

1 +
1
4

.

Given the above continued fraction of u
v , by truncating the coefficients, we

obtain (n + 1) approximations of u
v :

c0 = x0, c1 = x0 +
1
x1

, c2 = x0 +
1

x1 +
1
x2

, . . . , cn = x0 +
1

x1 +
1

. . . +
1
xn

.

The number cj is called the jth convergent of the continued fraction and these
convergents provide good approximations for u

v . To write the continued frac-
tion expansion for a number u

v , we use the Euclidean division algorithm, which
terminates in O(log(max (u, v))) steps. As a result, there are O(log(max (u, v)))
number of convergents of u

v . Thus, the Wiener continued fraction technique runs
very efficiently.

The convergents c0, c1, . . . , cn of the continued fraction of u
v give good approx-

imation to u
v , however, an approximation to u

v is not always a convergent. The
following classical theorem due to Legendre gives a sufficient condition for a
rational number a

b to be a convergent for the continued fraction of u
v .

Theorem 1 (The Legendre Theorem [14]). Let a ∈ Z and b ∈ Z
+ such

that ∣∣∣u
v

− a

b

∣∣∣ <
1

2b2
.

Then a
b is equal to a convergent of the continued fraction of u

v .
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The following Euler-Wallis Theorem gives us the recursive formulas to cal-
culate the convergent sequence {ci} efficiently based on the coefficients x0,
x1, . . . , xn.

Theorem 2 (The Euler-Wallis Theorem [12]). For any j ≥ 0, the jth con-
vergent can be determined as cj = aj

bj
, where the numerator and the denominator

sequences {ai} and {bi} are calculated as follows:

a−2 = 0, a−1 = 1, ai = xi ai−1 + ai−2, ∀i ≥ 0,

b−2 = 1, b−1 = 0, bi = xi bi−1 + bi−2, ∀i ≥ 0.

Based on the Euler-Wallis Theorem, the following identity involving the
numerator ai and the denominator bi of the convergent ci can be easily obtained
by mathematical induction.

Theorem 3. [12] The numerator ai and the denominator bi of the convergent
ci satisfy the following identity

biai−1 − aibi−1 = (−1)i, ∀i ≥ 0. (1)

3 Boneh’s Version of the Wiener Attack

In this section, for clarity and completeness, we recall here Boneh’s version of
the Wiener attack result [3]. Boneh provided the first and only rigorous proof
which showed that the Wiener attack works for

d <
1
3
N

1
4 .

Theorem 4 (The Wiener-Boneh Theorem [3]). If the following conditions
are satisfied

(i) q < p < 2q
(ii) 0 < e < φ(N)
(iii) ed − kφ(N) = 1
(iv) d < 1

3N
1
4

then k
d is equal to a convergent of the continued fraction of e

N .

Remark. Since ed − kφ(N) = 1, we have gcd(k, d) = 1. By the identity (1) in
Theorem 3, we also have gcd(ai, bi) = 1. Therefore, if k

d is equal to a convergent
of the continued fraction of e

N ,

k

d
= ci =

ai

bi
,

then we must have k = ai and d = bi. In that case, using the equation ed −
kφ(N) = 1, we have ebi − aiφ(N) = 1, and φ(N) = ebi−1

ai
.
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From here, we obtain

S = p + q = N − φ(N) + 1,

and with N = pq, we can solve for p and q from the quadratic equation

x2 − Sx + N = 0.

Algorithm 1. Factorisation Algorithm Based on Continued Fraction
Input: e, N
Output: (d, p, q) or ⊥

1: Run the Euclidean division algorithm on input (e, N) to obtain the coefficients
x0, x1, . . . , xn of the continued fraction of e

N
.

2: Use the Euler-Wallis Theorem to calculate the convergents

c0 =
a0

b0
, c1 =

a1

b1
, . . . , cn =

an

bn
.

3: for 0 ≤ i ≤ n do
4: if ai|(ebi − 1) then

5: λi =
ebi − 1

ai
� λi = φ(N) if ai

bi
= k

d

6: S = N − λi + 1 � S = p + q if λi = φ(N)
7: Find the two roots p′ and q′ by solving the quadratic equation

x2 − Sx + N = 0

8: if p′ and q′ are prime numbers then
9: return (d = bi, p = p′, q = q′) � Successfully factorise N

10: end if
11: end if
12: end for
13: return ⊥ � Fail to factorise N

In the Algorithm 1, we can see that if k
d is equal to a convergent of the

continued fraction of e
N as asserted in Theorem 4, then the secret information

p, q, d, k can be recovered from the public information (e,N). By the Euclidean
division algorithm, we obtain O(log(N)) number of convergents of the continued
fraction of e

N , so the Wiener algorithm will succeed to factor N and output
p, q, d, k in O(log(N)) time complexity.

Our experiments confirm that the Wiener algorithm runs very efficiently. In
Sects. 4 and 5, we use 1024-bit primes p and q, and with the Euclidean division
algorithm, the continued fractions of e

N give us less than 2000 convergents ci.

4 An Experimental Result

In this section, we give an example where the Wiener attack fails with

d =
⌊

1
2
N

1
4

⌋
+ 1,
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thus, showing that the bound d < N
1
4 is not accurate as it has been generally

believed [1,4,13,17].
This result came as a total surprise to us. As we implemented the Wiener

algorithm and run it, we found out that the Wiener attack failed for many values
of d < N

1
4 . The example here clearly shows that it fails at the halfway point

of the range. This raises a natural question: what is the correct bound for the
Wiener attack? Attempting to answer this question has been the motivation of
this work, and hence the quest for the exact bound.

Below, we choose 1024-bit primes p and q which give 2047-bit modulus N .
We set the private key

d =
⌊

1
2
N

1
4

⌋
+ 1

which is a 511-bit number and the corresponding public key e is 2047-bit. Using
the Euclidean division algorithm, we determine the continued fraction expansion
of e

N . This continued fraction has 1179 convergents: c0, c1, . . . , c1178. Using the
Algorithm 1 to search through these 1179 convergents, we found no factorization
of N , so the Wiener algorithm failed in this case.

Here are the experimental values:

p = 1491527899 5477760590 2728010071 6980981660 1258222662
2431819289 1225141694 5753993233 4134597092 2789813803
2123071118 7456841568 6244681095 6494959013 6209617496
4856101327 5715997217 9803365696 1960828527 8759316539
7375676105 8838761560 3738626761 6351893514 2444493175
0194503087 8223260165 3356278700 2338989328 5059210806
959842047 (1024 bits)

q = 9111167064 7390707425 7779057216 8580155934 8047103723
9509013689 9393941503 6663226117 3483046733 6435253791
0245424858 8231334271 0003745035 1560880167 0686028666
9368653851 4065809046 6070550773 1596277357 7225073326
8667388642 6946395521 3055868264 9615090699 8451255847
8563387800 1084724118 4269448761 8873870285 9133249777
21380459 (1024 bits)
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N =1358955987 4499142355 7513414060 3539768425 5014057126
0741075421 2867822612 0805968144 4708819214 5518842119
9958881804 7937878622 4112295347 5325559673 5996725202
8633553360 3757756220 1871004594 8076611030 2567765384
0026153784 2770613729 4329327237 0569653405 5424667619
2238028495 4841783632 6958663905 5958512318 1193434612
0315768395 7219446440 1318651117 5563726203 4345904525
9443782456 6436078112 6077167607 7739231458 9205427377
2268437286 4735492393 2750716520 2984412539 2729934943
9305127634 2706564766 5583235029 4396813965 7917910935
3031271720 0339494884 0018966371 3447510835 9275849868
6562766142 9910164397 0677468356 5904851307 0086539066
0235916943 2359573 (2047 bits)

e =1330419030 5540874988 5376069329 7084174518 7260177538
5866925366 2997366672 3493599969 0390276038 0919368940
1864701342 9310242427 8833742509 7494436400 5403659294
0555161192 1972457828 7339053358 7614588496 6324498356
6363071098 8205134167 5000847275 0988164806 4636099774
1181379056 1319572282 3672568352 1298430680 1201814131
9604052114 8335594185 3173571813 7624310228 5349453986
0737412659 9608417423 2546667689 2033178326 5130304082
6314383724 2740893126 4550856662 5119551763 4091295935
2191957179 9876282943 3381372125 9047810743 6224521388
6861509236 7407065451 7584476965 4348997529 8178870165
9669410312 1497394053 8763499800 1901681249 3233425747
4891365832 5046931 (2047 bits)

d =
⌊

1
2
N

1
4

⌋
+ 1 =5398478203 0311651626 6068367829 8945738486 9044874575

7958435010 7981488386 1130096080 6180756651 2262828961
6340636130 6706635548 8922382801 5381181990 9555989039
3235 (511 bits)

k =5285114605 3829091397 9620556948 0145234187 5641719964
7496242061 4986547849 9915220055 9741796430 2523466970
5824394524 5600033207 6486525013 4460390163 5991230680
7438 (511 bits)
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In the Algorithm 1, the continued fraction of e
N has 1179 convergents ci, so

n = 1178.

In line 4 of the Algorithm1, there are only 2 values of i that ai | (ebi − 1):

i = 1, a1 = 1, b1 = 1,

and
i = 3, a3 = 47, b3 = 48.

With these two cases: i = 1 and i = 3, the quadratic equation in line 7 of
the Algorithm 1 does not produce prime number roots. So the Wiener algorithm
fails in this example.

We can explain the reason for the Wiener algorithm fails in this example.
This is because among 1179 convergents of the continued fraction of e

N , none of
them is equal to k

d as required in Theorem 4.

5 Improving Boneh’s Bound on the Wiener Attack

By using the classical Legendre Theorem on continued fractions, Boneh provided
the first rigorous proof [3] which showed that the Wiener attack works for

d <
1
3
N

1
4 .

In this section, we establish an improved bound on the Wiener’s attack.
We extend the well-known Boneh’s bound and show that the Wiener continued
fraction technique works for a wider range, namely, for

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

Below is our new theorem which is an improvement of the Wiener-Boneh
Theorem (i.e., Theorem 4). Additionally, our new proof is also based on the
Legendre Theorem.

Theorem 5. If the following conditions are satisfied

(i) q < p < 2q
(ii) 0 < e < φ(N)
(iii) ed − kφ(N) = 1
(iv) d ≤ 1

4√18
N

1
4 = 1

2.06...N
1
4

then k
d is equal to a convergent of the continued fraction of e

N . Thus, the
secret information p, q, d, k can be recovered from public information (e,N) in
O(log (N)) time complexity.
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Proof. As we want to use the Legendre Theorem (Theorem 1) to prove that k
d is

equal to a convergent of the continued fraction of e
N , we consider the following

inequality

∣∣∣∣
e

N
− k

d

∣∣∣∣ =
|kN − ed|

Nd
=

|k(N − φ(N)) − (ed − kφ(N))|
Nd

=
k(p + q − 1) − 1

Nd
<

k(p + q)
Nd

.

Since ed − kφ(N) = 1 and e < φ(N), we have k < d. Therefore,
∣∣∣∣

e

N
− k

d

∣∣∣∣ <
p + q

N
.

It follows from q < p < 2q that 1 <
√

p
q <

√
2, and since the function

f(x) = x + 1
x is increasing on [1,+∞), we have

p + q

N
1
2

=
√

p

q
+

√
q

p
<

√
2 +

1√
2

=
3√
2
.

Thus,

p + q <
3√
2
N

1
2 . (2)

It follows that

∣∣∣∣
e

N
− k

d

∣∣∣∣ <

3√
2
N

1
2

N
=

3√
2N

1
2

Finally, since d ≤ 1
4√18

N
1
4 , we have

∣∣∣∣
e

N
− k

d

∣∣∣∣ <
1

2d2
.

By the Legendre Theorem (Theorem 1), k
d is equal to a convergent of the con-

tinued fraction of e
N and the theorem is proved. �

6 The Second Experimental Result

In Sect. 5, we improve the Boneh bound [3]:

d <
1
3
N

1
4 .
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We show that the Wiener continued fraction technique works for a wider range,
namely, for

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

In this section, we provide an experimental result to support our new bound.
We choose a private key d =

⌊
1

4√18
N

1
4

⌋
and show that the Wiener attack indeed

works, which confirms our new bound.
Here, we select a 2048-bit modulus N . We set the private key d =

⌊
1

4√18
N

1
4

⌋

which is a 511-bit number. The corresponding public key e is 2048-bit.
Using the Euclidean division algorithm, we determine the continued fraction

expansion of e
N . This continued fraction has 1219 convergents: c0, c1, . . . , c1218.

We run the Wiener algorithm through these 1219 convergents. At the 289th

convergent c289 = a289
b289

, we found the correct factorization of the modulus N
into two 1024-bit primes p and q. Hence, the Wiener algorithm is successful in
this case which confirms our new bound in Theorem5.

Here are the experimental values:

p =1753651555 7959285985 8389246962 5666004143 2631322905
3792511376 1823387899 6863875472 8500338195 6106187059
8979790786 3900938931 7295752778 9842328060 3224176903
6697007530 6302349794 5882100113 2594934722 2701276857
3702925327 3032617922 5592387182 1655023312 3781280062
3318071860 0703325676 9316877525 0029640840 1329310468
563365517 (1024 bits)

q =1302246063 5244450969 8486520987 6835312123 3825549540
4590911663 0930183138 4524166515 2217429150 6917508540
1229882549 1643140442 7317286012 5333646913 8593238275
0954632799 2092626902 5564720911 8376898712 1336228332
6412475983 8782926026 4681550732 7524640686 1898664920
0982675880 5711531846 6818868729 5634599558 9465454245
497973799 (1024 bits)
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N =2283685835 3287668091 9203688162 8641577810 3964252589
2829513042 0474999022 9966219821 6666459658 1454018899
4842992237 6560732622 7548715380 4387435627 0300826321
1665057256 4937978011 1813943886 7926552494 0467869924
8547365003 8355720409 4262355848 3358418844 9224331698
6356990029 6911605460 6455811765 2232596722 1393273906
6967318845 7131381644 1207877832 1534284874 4792830245
0180559814 0668893320 3072001361 9079413832 5132168722
1421794347 4001731747 8227015966 3404029234 2194986951
9455164666 8806852454 0063123724 1365869202 7515557841
4144066123 2146905186 4313571125 6653677066 9381756925
3817941547 8954522854 7119685992 7901448206 0579354284
5523886372 6089083 (2048 bits)

e =1716081930 8904585327 7890161348 9791423576 2203050367
3463267958 5567058963 9956759654 2803490663 7374660531
6475059968 7461192166 4245059192 9370601129 3378320096
4337238276 6547546926 5356977528 0523991876 7190684796
2650929866 9049485976 1183156661 2687168184 7641670872
5889507391 9139366379 9018676640 7654053176 5577090231
6720982183 2859747419 6583443634 6658489531 6847817524
2470325739 2651850823 5172974203 8213894377 0358904660
5944230019 1228592937 2517345927 3262320732 4742303631
3243627441 4264865868 0285278401 0248376241 4082363751
8720861263 2105886502 3936481567 7633023698 7329249988
1142950825 6124902530 9574993383 3690395192 4035916501
5366161007 0010419 (2048 bits)

d =
⌊

1
4
√

18
N

1
4

⌋
=5968166949 0793605552 2026899285 2191823920 0238114742

8873867437 0592596189 5174438877 8002365303 1793516493
8064621142 4818137141 6016184480 4216409734 3986334607
9123 (511 bits)

In the Algorithm 1, the continued fraction of e
N has 1219 convergents ci, and

the 289th convergent c289 produces the correct factorization of the modulus N .

i = 289,
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a289 =4484795282 8757963262 4661693174 9335120861 3264690597
1711725983 1381808371 6124351193 7219275062 5936785513
3802411458 7021923657 4897458445 0198267245 3098232091
5377

b289 =5968166949 0793605552 2026899285 2191823920 0238114742
8873867437 0592596189 5174438877 8002365303 1793516493
8064621142 4818137141 6016184480 4216409734 3986334607
9123

λ289 =2283685835 3287668091 9203688162 8641577810 3964252589
2829513042 0474999022 9966219821 6666459658 1454018899
4842992237 6560732622 7548715380 4387435627 0300826321
1665057256 4937978011 1813943886 7926552494 0467869924
8547365003 8355720409 4262355848 3358418844 9224331698
6356990029 6911605460 6455811765 2232596722 1393273906
6967318815 1541619712 0834182263 3957489849 4661203580
4493315230 2326589392 7714897548 0275215025 3355434091
9052234345 3034398192 3819078520 2100150082 4597489533
7713646790 3642819470 0565454009 6683766693 0332214401
0393547122 0606774068 2759176222 9259885575 1415357068
5823443304 8879748790 5633933631 4326822749 4155314376
6047414966 4749768

The quadratic equation in line 7 produces two correct prime roots p and q.
Hence, the Wiener algorithm is successful in this example.

We can see that the Wiener algorithm works because the convergent

c289 =
a289

b289
=

k

d

as confirmed in our Theorem 5.

7 Conclusion

In this paper, we show a certain belief about the Wiener attack on the RSA
is not accurate. It has been a general belief that the Wiener attack works for
d < N

1
4 (see [1,4,13,17]), and on the converse, Steinfeld-Contini-Wang-Pieprzyk

[17] showed that Wiener’s attack fails with an overwhelming probability for a
random choice d ≈ N

1
4+ε for any positive number ε. Thus, as depicted in Fig. 1(i),
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Fig. 1. (i) Old belief: Wiener attack works for d < N
1
4 . Boneh’s rigorous proof covers

d < 1
3
N

1
4 . (ii) Our research shows that Wiener attack fails at d = � 1

2
N

1
4 �+1. Our new

rigorous proof covers d ≤ 1
4√18

N
1
4 = 1

2.06...
N

1
4 .

the bound d < N
1
4 has since been believed to be the optimal bound for the

Wiener attack.
On the contrary, in this paper, we show that the bound d < N

1
4 for the

Wiener attack on the RSA is not accurate. We give an example where the Wiener
attack fails with

d =
⌊

1
2
N

1
4

⌋
+ 1.

By using the Legendre Theorem on continued fractions, Boneh provided the
first rigorous proof which showed that the Wiener attack works for

d <
1
3
N

1
4 .

As depicted in Fig. 1(ii), in this paper, we improve Boneh’s bound by showing
that the Wiener continued fraction technique actually works for a wider range,
namely, for

d ≤ 1
4
√

18
N

1
4 =

1
2.06...

N
1
4 .

Our new result is supported by an experimental result where it is shown that
the Wiener attack succeeds with d =

⌊
1

4√18
N

1
4

⌋
.

It is an open problem to determine the exact optimal bound for the Wiener
attack. Suppose that

d < ωN
1
4
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is this exact optimal bound, then by the two main results of this paper, it follows
that

1
4
√

18
≤ ω ≤ 1

2
,

where 4
√

18 = 2.06... We are yet to find the exact value of ω and we conjecture
that ω = 1

4√18
(Fig. 2).

Fig. 2. Open problem. Undecided interval: it is unknown if the Wiener attack fails or

succeeds in the interval 1
4√18

N
1
4 < d ≤ 1

2
N

1
4 .
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