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Abstract. Vector commitment and its variants have attracted a lot of
attention recently as they have been exposed to a wide range of appli-
cations in blockchain. Two special extensions of vector commitments,
namely subvector commitments and mercurial commitments, have been
proposed with attractive features that are desirable in many applica-
tions. Nevertheless, to the best of our knowledge, a single construction
satisfying all those attractive features is still missing. In this work, we
analyze those important properties and propose a new primitive called
mercurial subvector commitments, which are efficiently updatable, mer-
curial hiding, position binding, and aggregatable. We formalize the sys-
tem model and security model for such a primitive and present a con-
crete construction with security proofs to show that it satisfies all of the
properties. Moreover, we also illustrate some applications of mercurial
subvector commitments, including zero-knowledge sets and blockchain
with account-based models.

Keywords: Vector commitments · Blockchain · Aggregation ·
Zero-knowledge sets

1 Introduction

Vector commitments (VC) allow a user to commit to a set of ordered messages,
which can be opened at a specific position. Normally, a vector commitment is
updatable, position binding and concise. Specifically, a VC is updatable, which
means it enabling a committer to efficiently update the committed message at
some positions after the committing phase. Position binding is a basic require-
ment generalized from the binding property of normal commitments [24], mean-
ing one cannot find two different and valid messages in a position in a vector
c© Springer Nature Switzerland AG 2021
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commitment in polynomial time. The concise property requires the size of the
commitment and the opening proof are independent of the number of the com-
mitted message. Thanks to the above desirable properties, vector commitments
contribute to many applications such as accumulators, cloud storage and so forth
[4,11,12]. Subsequently, a series of follow-up works have been proposed, such as
polynomial commitments [19] and functional commitments [21]. One of the most
noticeable work is mercurial commitments (MC), which is a special kind of VC.
An MC has two ways to commit, namely hard commitment and soft commit-
ment. Hard commitments are the same as normal VC while soft commitments do
not have the binding property to the committed messages. A committer needs to
choose a preferred way of commitment at the beginning of a commitment phase.
There are two options in the opening phase as well, namely the hard opening
and soft opening. Hard opening is only for hard commitments and can generate
a proof to open the committed message at a specific position. Meanwhile, soft
opening is for both hard commitments and soft commitments. Soft opening for
hard commitment at a position cannot be different from the committed value,
whereas soft opening for soft commitment enables the committer to open to
a message in a position at his/her choice. Besides, a mercurial commitment is
mercurial hiding, meaning that hard commitments are indistinguishable from
soft ones. The special property of MC is promising to enable membership and
non-membership proofs in a set without revealing any information of the set
including its cardinality, i.e. zero-knowledge set (ZKS).

Subvector commitments (SVC) are another important extension of VC, which
were initially presented for supporting stateless cryptocurrencies in blockchain
[13]. SVC allows a user to open a vector commitment at a set of positions at the
same time. Compared to VC, SVC has a stronger requirement that the opening
proof to a subset of position is independent of not only the size of the committed
messages, but also the size of the chosen subset. With the wide applications in
blockchain, many research works on SVC have been proposed [15,15,17].

Related work. The concept of VC was proposed by Catalano and Fiore [10].
In that seminal work, they also presented two concrete constructions based on
CDH and RSA assumptions, respectively. A similar notion to VC is polynomial
commitment (PC), proposed in [19], which enables a user to commit to a polyno-
mial so that a verifier can later be convinced to a claimed evaluation at a point.
The size of a polynomial commitment is independent of the degree of the poly-
nomial, so is the opening proof at a point. Besides, it supports batch verification
due to the basic polynomial quotient theory, in which the size of the opening
proof for multiple evaluations is the same as that for a single point. Libert et
al. [21] generalized the concept to a functional commitment (FC) that can open
to a function of the committed messages. Specifically, the commitment can be
opened to (f, y) such that y = f(m), where m is the committed messages. They
provided a construction on linear function f based on a composite order groups,
where y =

∑n
i=1 ximi. Chepurnoy et al. [13] presented a new algebraic vector

commitment scheme based on multilinear polynomial and applied the new con-
struction to EDRAX, a stateless verification for account-based cryptocurrencies
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[2], where the miners do not necessarily store the current state, but validate the
transactions by accessing the latest block to check the balance in the relevant
accounts.

Mercurial commitments (MC), proposed by Chase et al. [11], are a special
kind of vector commitment supporting hard and soft commitments as outlined
above. Catalano et al. [9] presented a more efficient construction on trapdoor
mercurial commitments (TMC) based on one-way function with weaker assump-
tion. In their construction, the size of the soft opening is much shorter, while the
size of the hard opening is still linear with the number of messages. Libert and
Yung [22] proposed the concept of mercurial vector commitment (MVC) and
devised a construction based on broadcast encryption [5] with compact proofs
for both hard opening and soft opening.

The primitive of subvector commitment (SVC) was proposed by Lai and
Malavolta [20]. They presented two concrete constructions [20] under variants
of the root assumption and the CDH assumption based on [10]. The construc-
tion supports batch proof generation, meaning that it can generate proofs for
multiple positions at one-time. However, the proofs can not be aggregated after
generation. Boneh et al. [4] proposed an accumulator with batch verification,
which can be used to design a VC with aggregatable proofs for both member-
ship and non-membership. The primitive of aggregatable subvector commitment
(aSVC) was proposed [15] to enable aggregation of multiple opening proofs into
a single SVC proof and hence reduce the verification overhead. Campanelli et
al. [8] proposed an incrementally aSVC (iaSVC), which can aggregate the open-
ing for an unbounded number of times to further improve the efficiency. It also
ensures fast generation of the opening by leveraging preprocessing. Gorbunov et
al. [17] proposed Pointproofs (PP), which can aggregate proofs generated by mul-
tiple commitments by any entity non-interactively. Agrawal et al. [1] proposed a
new VC named key-value commitment (KVC), whose committed messages are
key-value maps. The setting can generally link to the blockchain-based cryp-
tocurrency, where the key is the account address and the value is the account
balance.

We summarize all the existing works on VC and its variants mentioned above
based on the properties they provide. The result is shown in Table 1. We can see
from the table that none of the works mentioned above provides all the promising
features. In this paper, we fill this gap by presenting a vector commitment enjoy-
ing the nice features including efficient update, aggregation, mercurial properties
and privacy.

Contributions. In this paper, we propose a new primitive named mercurial
subvector commitments, which enjoy the desirable features for both mercurial
commitments and subvector commitments. To be more specific, the contributions
of this paper are three-fold as follows.

– We put forward a new primitive of mercurial subvector commitments
(MSVC), which support two ways to commit and open the messages and
also enjoy efficient update and aggregation in the opening proofs.
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Table 1. Summary of the existing vector commitments

Schemes Updatable Aggregatable Mercurial Hiding

VC [10] � × × ×
PC [19] × × × �
FC [21] × × × �
EDRAX [13] � × × ×
MC [11] × × � �
TMC [9] × × � �
MVC [22] × × � �
SVC [4] � � × �
aSVC [15] � � × ×
iaSVC [8] � � × ×
PP [17] � � × �
KVC [1] � � × ×
Our scheme � � � �

– We formalize the system model and security models of MSVC and propose a
concrete construction. We prove the security of the proposal.

– We present theoretical analysis of the proposal to show its practicality. We
also show the possible applications of MSVC in blockchain-based cryptocur-
rencies with account-based model.

Organization. The rest of the paper is organized as follows. We provide some
preliminaries used through the paper in Sect. 2. The system model and security
model are illustrated in Sect. 3. We present a concrete construction in Sect. 4.
Potential applications are shown in Sect. 5. We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we introduce preliminaries that used throughout this paper,
including bilinear maps, weak bilinear Diffie-Hellman exponent assumption and
algebraic group model.

2.1 Bilinear Groups

Let G1, G2, GT be multiplication groups of large prime order p. g1 and g2 are the
generators of groups G1 and G2, respectively. ψ is a computable isomorphism
from group G2 to G1

1, which means ψ(g2) = g1. A non-degenerate bilinear
pairing e : G1 × G2 → GT is denoted, which satisfies e(ga

1 , gb
2) = e(g1, g2)ab, for

random a, b ∈ Zp.

1 This setting is only used in the security proof rather than the proposed scheme.
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2.2 Diffie-Hellman Exponent Assumption

The Diffie-Hellman exponent (l-DHE) problem [7] defined in G = (G1, G2, GT ,
p, e) is as follows. On input

((
gα
1 , gα2

1 , · · · , gαl

1

)
,
(
gαl+2

1 , · · · , gα2l

1

)
,
(
gα
2 , gα2

2 , · · · , gαl

2

) )

for a random α ∈ Zp, output gαl+1

1 . The l-Diffie-Hellman exponent assumption
in G says that no efficient algorithm can solve the aforementioned problem in G

with non-negligible probability.
Following [7,22], the problem is not easier than bilinear Diffie-Hellman expo-

nent (BDHE) problem defined in [3,5], in which with the same input and an
additional h ∈ G, it outputs e(g, h)l+1.

2.3 Algebraic Group Model

The algebraic group model (AGM) [16] is a model lying in between the standard
model and generic group model (GGM). It is proposed to overcome the limitation
of GGM that GGM does not cover group-specific algorithms to use the repre-
sentation of a group. GGM model proves security in reduction, which is same as
the standard model. In the AGM model, algebraic adversaries are considered,
that is allowed to compute the elements in the target group and can use the
representation in binary. To be more specific, suppose L = (L0, · · · ,Lm) ∈ G
be a list of group elements in group G. An algebraic adversary can output a
vector −→z = (z1, · · · , zm) ∈ Zp such that Z =

∏
i L

zi
i .

3 System Model and Security Model

A mercurial subvector commitment comprises the following algorithms.

Setup(λ,N) → (param). This is a probabilistic algorithm run by a trusted party.
On input a security parameter λ and the length of the messages N , it generates
the public parameter param.

HCommit(m, param) → (C, aux). This is a probabilistic algorithm run by the
committer. On input a group of messages m and the public parameter param,
it generates a hard commitment C and some auxiliary information aux.

HProve(i,m[−i], aux) → (πi). This is a deterministic algorithm run by the com-
mitter. On input the position i, message m[−i]2 and the auxiliary information
aux, it outputs a proof πi to prove that mi is committed in the hard commit-
ment.

HVerify(C, i,mi, πi) → (0/1). This is a deterministic algorithm run by the veri-
fiers. On input the commitment C, the position i and message mi and proof πi,
it outputs 0 or 1 to indicate whether πi is a valid proof.
2 This is the message group without the i-th message.
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HUpdate(C,S,m[S],m′[S], aux) → (C ′, aux′). This is a deterministic algorithm
run by the committer. On input the commitment C, the set of positions S, the
original messages m[S], the updated messages m[S′] and the auxiliary informa-
tion aux, it outputs the new hard commitment C ′ and corresponding auxiliary
information aux′.

SCommit(param) → (C, aux). This is a probabilistic algorithm run by the com-
mitter. On input the public parameter param, it generates a soft commitment
C, which is not bound to any specific messages, and auxiliary information aux.

SProve(i,mi,F, aux) → (πi). On input the position i and message mi, it outputs
a proof πi to mi at position i in the commitment. F ∈ {H,S} states the auxiliary
information aux corresponds to a hard commitment or a soft commitment. If
F = H and mi is not the originally committed value, the algorithm aborts and
outputs ⊥.

SVerify(C, i,mi, πi) → (0/1). This is a deterministic algorithm run by verifiers.
On input the commitment C, the position i, the message mi and proof πi, it
outputs 0 or 1 to indicate whether πi is a valid proof.

Aggregate(F, C, S,m[S], {πi : i ∈ S}) → (Π̂). This is a probabilistic algorithm
run by the committer. On input a flag F to indicate whether this is an aggregation
for soft commitment or hard commitment, the commitment C, the position set
S, the messages m[S] and the proofs {πi, i ∈ S}, it outputs a proof Π̂ as an
aggregated proof.

AggreVerify(F, C, S,m[S], Π̂) → (0/1). This is a deterministic algorithm run by
verifier. On input the flag F to indicate this is the verification for soft aggregation
or hard aggregation, the commitment C, the position set S, the messages m[S]
and the proof Π̂, it outputs 0 or 1 to indicate whether Π̂ is a valid aggregated
proof.

Correctness. The correctness of an MSVC applies in several cases. Specifically,
for all λ,N , an ordered group of messages m and a set S ∈ [N ], (param) ←
Setup(λ,N), the following conditions must hold with an overwhelming probabil-
ity.

– For a hard commitment (C, aux) ← HCommit(m, param), a hard opening
(πi[H])← HProve (i,m[−i], aux) and a soft opening for hard commitment
(πi[S])← SProve(mi, i,H, aux), we have

HVerify(C, i,mi, πi[H]) = 1, SVerify(C, i,mi, πi[S]) = 1.

– For a soft commitment (C, aux) ← HCommit(param), a soft opening for soft
commitment (πi)← SProve(mi, i,S, aux), we have

SVerify(C, i,mi, πi) = 1.

– For an aggregate proof (Π̂)← Aggregate(F, C, S,m[S], {πi : i ∈ S}), we have

AggreVerify(F, C, S,m[S], Π̂) = 1,
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where C = HCommit(m, param), if F = H and C = SCommit(param), if
F = S.

– For an updated messages m′, such that m[N \ S] = m′[N \ S], we have

HUpdate(C,S,m[S],m′[S]) = HCommit(m′, param),

where C = HCommit(m, param).

An MSVC needs to satisfy Mercurial binding and Mercurial hiding, which are
defined as follows.

Mercurial Binding [22]: Compared to normal commitments, the mercurial
binding applies for both hard commitments and soft commitments to the mes-
sages for some positions. For hard commitments, no adversary can generate an
MSVC C such that it can be opened into two different messages in a specific
position. For soft commitments, no adversary can generate an MSVC C such
that it can be opened to a single value but partially decommitted (teased) to
another value.

Specifically, given the system parameters param, it is computationally infea-
sible to output a commitment C and the pairs (m0[S0], π0) and (m1[S1], π1) that
satisfy the following equations, where S0 and S1 denote the subsets of [1, N ].

AggrVerify(H, C, S0,m0[S0], Π0) = 1,AggrVerify(H, C, S1,m1[S1], Π1) = 1,

AggrVerify(H, C, S0,m0[S0], Π0) = 1,AggrVerify(S, C, S1,m1[S1], Π1) = 1,

m0[S0 ∩ S1] �= m1[S0 ∩ S1]

If the size of the set is one, it implies the following equation holds with negligible
probability.

HVerify(C, i,mi, πi) = 1,HVerify(C, i,m′
i, π

′
i) = 1,mi �= m′

i

HVerify(C, i,mi, πi) = 1,SVerify(C, i,m′
i, π

′
i) = 1,mi �= m′

i

Mercurial Hiding [9]: We now define the mercurial hiding, which has the
following requirements. (1) No probabilistic polynomial time (PPT) adversary
can learn whether C is a soft commitment or hard commitment. (2) For hard
commitments, no PPT adversary can learn the committed values m; (3) For a
soft commitment, it cannot be teased to any value before partially de-committed.

We define the simulation-based statistical security to depict the mercurial
hiding property above, in which there exists a simulator executing the algorithms
Setup*(λ,N), Commit*(param, tk), HProve*(i,m, aux) and SProve*(i,mi, aux)
defined as follows.

– Setup*(λ,N) → (param, tk). On input a security parameter λ and the size of
a group N , it outputs the system parameter param and a trapdoor key tk.

– Commit*(param, tk) → (C, aux). This is a randomized algorithm that takes
as input the system parameter param and a trapdoor tk. It outputs a fake
commitment C and auxiliary information aux. However, C doesn’t bind to
any group of messages.
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– HProve*(i,m, aux) → (πi). This is the equivocal hard opening (hard equivoca-
tion) algorithm. Given (C, aux) generated by Commit*(param, tk), it outputs
a fake proof of hard decommitment πi on position i for C.

– SProve*(i,mi, aux) → (πi). This is the equivocal soft opening (soft equivoca-
tion) algorithm. Given (C, aux) generated by Commit*(param, tk), it outputs
a fake proof of soft decommitment πi on position i for C.

The basic idea of the simulation-based game is that the commitments and
the proofs generated by the real protocol and the simulator are statistically
indistinguishable, even given the commitments, in which the committed messages
are chosen by the adversary. From the algorithms listed above, we can tell that
there is no message in a fake commitment and the proofs only involve the message
to be committed, thus the fake commitment and the fake proofs do not leak any
information of the other committed values. The formal process of the security
game is defined as follows.

Equivocation Game. The simulator C executes Setup*(λ,N) to get the security
parameters param and a trapdoor tk. In the game, A interacts with C to distin-
guish whether it is the real-world setting or the ideal one. To be more specific,
the setting of the game is determined by C by flipping a coin b ∈ {0, 1}. If b = 0,
the game is with the real commitment and opening proof. Otherwise, it is with
a fake commitment. A is allowed to make queries to C. At the end of the game,
A needs to guess the bit b. The detailed setting is shown as follows.

– HHEquivocation. A chooses a message tuple (m1, · · · ,mN ). C flips a coin
b. If b = 0, C computes (C, aux) ← HCommit(m, param) and if b = 1,
(C, aux) ← Commit*(param, tk). Then A is provided C by the challenger
C. A is allowed to make queries on his choices of S ∈ [N ]. If b = 0, C
returns πi ← HProve(i,m[−i], aux). Otherwise if b = 1, C replies with πi ←
HProve*(i,m, aux).

– HSEquivocation. A chooses a message tuple (m1, · · · ,mN ). C flips a coin
b. If b = 0, C computes (C, aux) ← HCommit(m, param) and if b = 1,
(C, aux) ← Commit*(param, tk). Then A is provided C by the challenger
C. A is allowed to make queries on his choices of S ∈ [N ]. If b = 0, C
returns πi ← SProve(i,mi,H, aux). Otherwise if b = 1, C replies with πi ←
SProve*(i,mi, aux).

– SSEquivocation. C flips a coin b. If b = 0, C computes (C, aux) ← SCom-
mit(param) and if b = 1, (C, aux) ← Commit*(param, tk). Then A is pro-
vided C by the challenger C. A is allowed to make queries on his choices of
S ∈ [N ]. If b = 0, C returns πi ← SProve(i,mi,S, aux). Otherwise if b = 1, C
replies with πi ← SProve*(i,mi, aux).

4 Proposed MSVC

In this section, we put forward the detailed construction of an MSVC. Then
we show the correctness of the proposal. In the construction, we borrow the
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idea from both mercurial commitments [22] and subvector commitments [17]
to achieve all the desirable properties, which advances the performance of tra-
ditional applications in each field. For mercurial property, we follow the tech-
niques in [22] to lose the binding in the verification. The involvement of C is
the key point achieving soft commitment and opening. Privacy is fulfilled via
the commitment forms similar to Pedersen commitments. For the aggregation,
we include the idea in [17] to add a new scalar for each individual proof. The
detailed construction is shown as follows.

Setup(λ,N) → (param). On input a security parameter λ, it generates G =
(p,G1, G2, GT , e), where G1, G2, GT are cyclic multiplicative groups of prime
order p. g1 and g2 are the generators in the corresponding groups. H is a cryp-
tographic hash function mapping from {0, 1}∗ to Zp. e : G1 × G2 → GT denotes
a bilinear mapping. Select a random α ← Z

∗
p and compute a = (α1, · · · , αN ),

where αi = αi. Compute ga1 = {gα
1 , · · · , gαN

1 }, ga2 = {gα1

2 , · · · , gαN

2 } and g
a[−1]·αN

1

= {gαN+2

1 , · · · , gα2N

1 }. The public parameters are generated as param = (G,H,

ga1 , ga2 , g
a[−1]·αN

1 ). α is discarded after initializing the system.

HCommit(m, param) → ((C, V ), aux). On input a set of messages m, it generates
the commitment pair as follows.

V = gγ
1 ·

N∏

j=1

g
mjαj

1 , C = gθ
1 ,

where γ and θ are randomness and mj is the message of the j-th position in m.
The commitment is (C, V ) and the auxiliary information is (m1, · · · ,mN , γ, θ).

HProve(i,m[−i], aux) → (πi). On input the messages and the auxiliary informa-
tion, generate the proof on position i as follows.

Wi =

⎛

⎝gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

⎞

⎠

αN+1−i/θ

Finally, the proof is generated as πi = (Wi, θ).

HVerify((C, V ), i,mi, πi) → (0/1). On input the commitment, the messages,
check whether the following equation holds to validate an opening proof.

e
(
V, gαN+1−i

2

)
= e(C,Wi) · e(g1, g2)αN+1mi (1)

If it holds, it outputs 1 to indicate it is a valid proof. Otherwise it outputs 0.

HUpdate(C, V , S,m[S],m′[S], aux) → ((C ′, V ′), aux′). On input the commit-
ment, parse the messages m[S] and m′[S], and compute the following equation
to update the messages in position set S in the commitment.

V ′ = V ·
∏

i∈S

g
(m′

i−mi)α
i

1 , C ′ = C
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The updated commitment is (C ′, V ′) and the updated auxiliary information is
(m′, γ, θ), where m[S] is replaced by m′[S] in position set S.

SCommit(param) → (C, aux). On input the security parameter param, it chooses
random θ and γ, and generates the commitment pair as follows.

V = (gα
1 )γ

, C = (gα
1 )θ

Output (C, V ) as the soft commitment pair and the auxiliary information is
aux = (θ, γ).

SProve(i,mi,F, aux) → (πi). If F = H, parse the auxiliary information as aux =
(m1, · · · ,mN ). The algorithm outputs ⊥ if mi is not the same message as that
in aux. Otherwise, the algorithm computes

Wi =

⎛

⎝gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

⎞

⎠

αN+1−i/θ

.

If F = S, parse the auxiliary information and generate the proof as follows.

Wi =
(
gαN−iγ
2 g

αN (−mi)
2

)1/θ

Finally, the proof is generated as πi = Wi. The auxiliary information is based
on the flag bit.

SVerify((C, V ), i,mi, πi) → (0/1). On input the message, the commitment and
the proof, check if the Eq. (1) in HVerify ((C, V ), i,mi, πi) holds. If it satisfies,
it outputs 1. Otherwise, output 0.

Aggregate(F, (C, V ), S,m[S], {πi : i ∈ S}) → (Π̂). On input the flag bit as H or
S, aggregate the proofs in position set S, compute

Ŵ =
∏

i∈S

W ti
i

where ti = H(i, (C, V ), S,m[S]), Wi is either a proof for hard opening or soft
opening based on F. The aggregated proof is π̂ = (θ, Ŵ ).

AggrVerify(F, (C, V ), S,m[S], Π̂) → (0/1). To validate an aggregated proof with
flag H or S, check the following equation.

e

(

V, g

∑

i∈S

αN+1−iti

2

)

= e
(
C, Ŵ

)
· e (g1, g2)

αN+1 ∑

i∈S

miti

Output 1 to indicate this is a valid proof. Otherwise, output 0.
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4.1 Correctness

We show the correctness of the proposal from the following aspects.

Correctness of Hard Opening. In hard commitments, given V = gγ
1 ·

N∏

j=1

g
mjαj

1 , C = gθ
1 , and Wi =

(
gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

)αN+1−i/θ

, we have

e
(
V, gαN+1−i

2

)

e(C,Wi)
=

e

(

gγ
1 ·

N∏

j=1

g
mjαj

1 , gαN+1−i

2

)

e

(

gθ
1 ,

(
gγ
2 ·

N∏

j=1,j �=i

g
mjαj

2

)αN+1−i/θ
)

=

e

(

gγ
1 ,

N∏

j=1,j �=i

g
mjαj

2

)

· e
(
gγ
1 , gαN+1−i

2

)

e
(
g1, g

γαN+1−i

2

)
· e

(

g1,
N∏

j=1,j �=i

g
mjαj

2

)

= e(g1, g2)αN+1mi

Thus the correctness of hard opening holds.

Correctness of Soft Opening. In soft opening, given V = gγ
1 , C = (gα

1 )θ and

Wi =
(
gαN+1−iγ−αN+1mi

2

)1/θ

, we have

e(C,Wi) · e(g1, g2)αN+1mi = e

(

(gα
1 )θ,

(
gαN−iγ−αNmi

2

)1/θ
)

· e(g1, g2)αN+1mi

= e
(
g1, g

αN+1−iγ−αN+1mi

2

)
· e(g1, g2)αN+1mi

= e
(
g1, g

αN+1−iγ
2

)
· e(g1, g2)−αN+1mi · e(g1, g2)αN+1mi

= e
(
V, gαN+1−i

2

)

Thus the correctness of soft opening holds.

Correctness of Aggregation. The aggregation works for both hard opening
and soft opening witnesses. From the previous analysis, we have

e(C,Wi) · e(g1, g2)αN+1mi = e
(
V, gαN+1−i

2

)

for both hard opening and soft opening. For each position i in a set S, the
above equation holds. Multiplying these equations for i ∈ S, we will get

e

(

V, g

∑

i∈S

αN+1−iti

2

)

= e(C, Ŵ ) · e(g1, g2)
αN+1 ∑

i∈S

miti
.

Thus the correctness of soft opening holds.
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Correctness of Update. For update of a commitment for some position set

S, given V = gγ
1 ·

N∏

i=1

gmiαi
1 and from the definition of a commitment, we have

V ·
∏

i∈S

g
(m′

i−mi)α
i

1 = gγ
1 ·

N∏

i=1

gmiαi
1 ·

∏

i∈S

g
(m′

i−mi)α
i

1

= gγ
1 ·

N∏

i=1,i/∈S

gmiαi
1 ·

∏

i∈S

g
(m′

i−mi+mi)α
i

1

= gγ
1 ·

N∏

i=1,i/∈S

gmiαi
1 ·

∏

i∈S

g
m′

iα
i

1 = V ′

Thus the correctness of update holds.

4.2 Mercurial Binding

Our construction satisfies mercurial binding in the AFM and ROM model if
l-wBDHE assumption holds.

Theorem 1. If there is an adversary A who breaks the mercurial binding of the
proposed scheme, then we can construct another algorithm B to solve l-wBDHE
problem with overwhelming probability.

Proof. The proof is conducted with a game between a challenger C and an alge-
braic adversary A.

Setup. C sets up the system by generating G = (p,G1, G2, GT , e). On input
the instance ga1 = {gα1

1 , · · · , gαN

1 }, ga2 = {gα1

2 , · · · , gαN

2 } and g
a[−1]·αN

1 =
{gαN+2

1 , · · · , gα2N

1 } as the system parameters param, C forwards the system
parameters param to A. Since A is algebraic, it can output z and γ such that

V = gγ
1 gz

�a
1 , C = gθ

1 .

Hash query. A is allowed to make qH hash queries on its choices. C maintains
a hash table with entry H(i, C, V, S,m[S]), and chooses ti uniformly at random
as the response. Repeated queries will get the same response. We note that for
z[S] �= m[S], we have

Pr [z[S] �≡p m[S] and z[S]t ≡p m[S]t] = 1/p.

We call this an H-lucky query. If this happens, the proofs aborts. The probability
for A to make an H-lucky query is at most qH/p.

Output. A outputs
(C, V ), {Sb,mb[Sb], Ŵ b}b=0,1,
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where V = gγ
1 gz

�a
1 and C = gθ

1 .
Now we show how to work out g

αN+1
1 Since m0[S0 ∩S1] �= m1[S0 ∩S1], then

we have either m0[S0] �= z[S0] or m1[S1] �= z[S1]. Define (S∗,m∗, Ŵ ∗) such
that

m∗[S∗] �= z[S∗] and AggrVerify(F, (C, V ), S∗,m∗[S∗], Ŵ ∗) = 1.

Thus we have

e(V, g

∑

i∈S∗
αN+1−iti

2 ) = e(C, Ŵ ∗) · e(g1, g2)αN+1m∗[S∗]�t .

As we may recall,

e

(

V, g

∑

i∈S∗
αN+1−iti

2

)

= e(C, Ŵ ) · e(g1, g2)αN+1z [S∗]�t .

With these two equations, we have

e(C, Ŵ ∗) · e(g1, g2)αN+1m∗[S∗]�t = e(C, Ŵ ) · e(g1, g2)αN+1z [S∗]�t .

We can obtain
g

αN+1·(z [S∗]−m∗[S∗])�t
2 = (Ŵ ∗/Ŵ )θ.

Recall that z[S∗] �= m∗[S∗] and that there is no H-lucky queries, thus, z[S∗] −
m∗[S∗])�t �≡p 0. We can easily get its inverse modulo p and get

gαN+1

2 =
[(

Ŵ ∗/Ŵ
)θ

](z [S∗]−m∗[S∗])�t

.

With g1 = ψ(g2) and the above equation, we can easily work out gαN+1

1 .

4.3 Mercurial Hiding

It is shown in [9] that mercurial hiding is implied in the equivocation games. Thus
in this subsection, we prove the security of our proposal under HH Equivocation,
HS Equivocation and SS Equivocation.

Theorem 2. Our construction satisfies HH Equivocation, HS Equivocation and
SS Equivocation.

Proof. C setups the system and obtains the system parameter param =
(G,H, ga1 , ga2 , g

a[−1]·αN

1 ) as in the real setup algorithm. α is set as the trapdoor
tk.

C flips a coin b ∈ {0, 1}. If b = 1, C calls Commit*(param, tk) to generate a
fake commitment as (C, V ) = (gθ

1 , g
γ
1 ). To answer a query for the decommitment
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proof on position i, C runs HProve*(i,m, aux) and gets the corresponding hard
equivocation on position i to mi as

πi =
(

θ,Wi =
(
gαN+1−iγ
2 g−αN+1mi

2

)1/θ
)

.

If b = 0, for a group of messages m, C calls HCommit(m, param) to get the
commitment as

(C, V ) =

⎛

⎝gθ
1 , g

γ̃
1 ·

N∏

j=1

g
mjαj

1

⎞

⎠

for some randomly chosen γ̃. Then to answer the query by A, C generates the
corresponding hard opening as

π̃i =

⎛

⎝θ, W̃i =
(
gγ̃
2 ·

N∏

j=1,j �=i

g
mjαj

2

)αN+1−i/θ

⎞

⎠ .

It is easy to find that the fake commitment and hard equivocations have the same
distribution as the hard commitments and the hard openings for any random
param, i,m.

The HSEquivocation follows the same arguments as above.
For SSEquivocation, if b = 1, C calls Commit*(param, tk) to generate a

fake commitment as (C, V ) =
(
gθ, gγ

)
. If b = 0, the soft commitment is set

as (C, V ) =
(
gθ′

, gγ′
)

for some random θ′ and γ′. It is easy to tell the soft
commitment and the fake commitment has the same distribution since θ′ = θ/α
and γ′ = γ/α. The equivocal soft opening

Wi =
(
gαN+1−iγ
2 g

αN+1(−mi)
2

)1/θ

also has the same distribution since it can be written as

Wi =
(
gαN−iγ′
2 g

αN (−mi)
2

)1/θ′

.

With the theorem shown above and the claim in [9] (Sect. 2.3), our construc-
tion satisfies mercurial hiding.

4.4 Performance Analysis

In this subsection, we present the theoretical analysis of the algorithms. The
detailed result is shown in Table 2. n is the number of the maximum messages in
the commitments and l is the size of the subset S. We only count the expensive
group operations and ignore the cheap ones such as hash and the operation
in Zp. mult is the multiplication and exp is short for the exponentiation. The
footnote of the operations represents those in the corresponding groups. The



Concise Mercurial Subvector Commitments 367

Table 2. Theoretical analysis of the proposal

Algorithm HCommit HProve HVerify

Time (n+2)exp1+n mult1 (n+1)exp2+(n-1)mult2 2 pair+1multT+1expT

size 2 |G1| 1 |G2| –

Algorithm SCommit SProve (F) SVerify

Time 2 exp1 3 exp2+1 mult2 2 pair+1multT+1expT

size 2 |G1| 1 |G2| –

Algorithm HUpdate Aggregate AggrVerify

Time lexp1+ lmult1 (l − 1) mult1 2 pair+1multT+

1expT+1exp2

Size 2 |G1| 1 |G2| –

cost of generating a hard commitment is linear with the size of the messages.
However, this is a one-time phase. After generating the commitment, one can
update the messages with HUpdate, which is only linear with the number of the
updated positions. In all the verification algorithm, e(g1, g2)αN+1

is known in the
param, thus this part does not require any pairing operations. For the storage
size, we can observe that the commitments are only two elements and the proofs
for whichever kind of opening are only one element in the corresponding groups.

5 Applications of Mercurial Subvector Commitments

In this section, we show applications of the proposed mercurial subvector com-
mitments.

5.1 Zero-Knowledge Elementary Database with Batch Verification

Zero-knowledge sets, proposed by Micali et al. [25], enable an entity to commit
to a set S confidentially and later prove whether a random element x is in the set
or not without leaking any information of the set. Zero-knowledge elementary
database (ZK-EDB) is a follow-up work where data are stored in the form of
key-value pairs. If the queried key x is in the database, the value v corresponding
to x is responded, where v = D(x). Otherwise, ⊥ is responded. It is shown that
the commitments with mercurial properties can be leveraged to build ZKS and
ZK-EDB [11,22]. In this section, following the framework in [11,22], we show
the proposed MSVC can be used to construct ZK-EDB, so as ZKS.

Normally, there are two phases in the process, the committing phase and
proving phase. In the committing phase, an N -ray commitment tree is built in
the following way. The leaf nodes of the tree are the values in the queried set with
the keys as the indices and the root of this tree is the commitment for the set. in
order to reduce the size and enhance the efficiency, we can do as follows. Firstly,
the subtree is pruned if the keys in all the leaf nodes are not in the database.
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After that, only the subtrees with at least one leaf node in the database is kept.
To build the tree, for a leaf node, if the embedded D(x) �= ⊥, it contains a
hard commitment of the hash of D(x) as the message. Otherwise, if x is not in
the database, it contains a soft commitment of empty message. The remaining
nodes of the tree have commitments to the hash of all the children nodes. The
commitment in the root node is the final commitment to the set. In the proving
phase, to prove x is in the database with D(x) = v, the prover generates a proof
of the hard opening, from the specific position where D(x) is embedded, to the
root. At each level in the tree, the proof for the commitment is with respect to
the position in the commitment. While for a key x that is not in the database,
the prover firstly patches up the missing subtree (which is pruned before) and
generates a tease opening for the soft commitments.

The advantage to using the proposed MSVC in ZK-EDB is that it guarantees
privacy and leaks no information of the database even the size of the set, at the
same time, it enhances the efficiency due to the aggregation of the opening,
which supports batch verification for the opening proofs of the commitments in
the structure.

5.2 Mercurial Subvector Commitments in Blockchain

Blockchain [27] is a public ledger that records transactions in the system. In
blockchain-based cryptocurrencies, there are two models in general, namely
UTXO (unspent transaction output) model by Bitcoin [27] and account-based
model by ethereum [14,29]. In UTXO model, a list of all the unspent accounts
are maintained. A transaction includes input accounts and output accounts, and
a confirmed transaction results in the input accounts removed from the UTXO
list and output accounts added to the UTXO list with some specific amount.
Regarding privacy, e.g. hiding the amount in the account, Miers et al. [26] and
Sasson et al. [28] presented frameworks and solutions to well-address the issue in
UTXO model. In comparison, the account-based model is similar to the financial
system in the real world. When a user spends some money in the system, the
corresponding amount of coins is deducted from the balance and when receiv-
ing money, the amount is added to the balance of the account. However, in the
account-based model, it remains an open problem to build either stateful verifi-
cation or stateless verification [13]. Several existing works considered this prob-
lem. Guan et al. [18] proposed a privacy-preserving account-based blockchain
based on heavy zero-knowledge Succinct Non-interactive Arguments of Knowl-
edge (zk-SNARKs) [6]. Ma et al. [23] enhanced the privacy of the transactions in
account-based model based on non-interactive zero-knowledge proof and homo-
morphic encryption. In [17], Gorbunov et al. briefly mentioned their construction
is promising to be extended to enjoy hiding property, but there are no formal
construction or security proofs. In this section, we introduce a model to apply
Mercurial subvector commitments in Blockchain. We provide two frameworks,
for public blockchains and consortium blockchains, respectively, which are shown
as follows. Compared to the existing protocols [13,17], we protect the privacy of
the accounts in the commitments and the proofs.
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In public blockchain, we consider the account-based model cryptocurrencies,
such as Ethereum [29]. Without losing generality, let’s assume that each user
in this network has multiple accounts, and the user can generate a vector com-
mitment (C, aux) by calling HCommit(m, param) and publish the commitment
on blockchain. In the commitments, the messages m are the balance of the
accounts and the account addresses can be the indices in the commitments. To
publish transaction T , the user computes a proof πi = HProve(i,m[−i], aux),
proving the spending account is one of the committed messages in the com-
mitment. If more accounts are involved in a transaction, the user can aggre-
gate the individual proofs {πi}(i ∈ S) into a single one by calling Aggre-
gate(H, (C, V ), S,m[S], {πi : i ∈ S}) for efficient verification, where S is the
involved accounts. The (aggregated) proof is included as part of the transaction,
which can be validated with HVerify(C, i,mi, πi) or AggreVerify(F, C, S,m[S], Π̂).
Upon the transaction being proved and logged on the blockchain, the user
updates the balance in the corresponding positions in the commitment C with
HUpdate(C, V , S,m[S],m′[S], aux). For consortium blockchain, we assume there
are many organizations forming a consortium blockchain. For example, the
blockchain is for a financial union, which is composed of many banks. Each
bank has its own users and possesses their accounts. The bank sets the largest
number of users and generates a commitment with the current users’ accounts.
For the vacant positions, the messages are set to be zero on the exponent. When
a new user is registered, the corresponding position is updated with the infor-
mation of the new user. There is a block generator that manages the system and
produces new blocks by validating the transaction and logging valid blocks on
the chain. In this case, when a transaction is conducted, the bank coordinator
generates a transaction and computes a proof on behalf of the user. The block
generator can validate the transaction and produce the block.

The advantage to using the proposed MSVC in blockchain with the account-
based model is that it not only reduces the space size to store a large number of
accounts, but also it guarantees the privacy of the accounts. The commitments
leak no information of the accounts and the proofs only involve the related
accounts and get zero knowledge of the rest of the accounts for external observers.

6 Conclusion

Vector commitments are effective tools to reduce the storage space and to
enhance the efficiency, and hence, they have a great many potential applica-
tions. In this paper, we proposed a new primitive of MSVC with a concrete
construction based on [22] with all the desired properties a vector commitment
is supposed to enjoy. We formalize the system model and security model and
prove the security under the proposed model. We provided possible applica-
tions with MSVC in ZKS and stateless blockchain. The future work includes
generating vector commitments with hiding properties and aggregation across
commitments.
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