
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

6-2021

Non-equivocation in blockchain: Double-authentication-preventing Non-equivocation in blockchain: Double-authentication-preventing

signatures gone contractual signatures gone contractual

Yannan LI

Willy SUSILO

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Yong YU

Tran Viet Xuan PHUONG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
LI, Yannan; SUSILO, Willy; YANG, Guomin; YU, Yong; PHUONG, Tran Viet Xuan; and LIU, Dongxi. Non-
equivocation in blockchain: Double-authentication-preventing signatures gone contractual. (2021).
Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security, Virtual
Conference, June 7-11. 859-871.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7404

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7404&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Yannan LI, Willy SUSILO, Guomin YANG, Yong YU, Tran Viet Xuan PHUONG, and Dongxi LIU

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7404

https://ink.library.smu.edu.sg/sis_research/7404

Non-Equivocation in Blockchain:
Double-Authentication-Preventing Signatures Gone Contractual

Yannan Li
Institute of Cybersecurity and

Cryptology, School of Computing
and Information Technology,
University of Wollongong,

Australia.
yl738@uowmail.edu.au

Willy Susilo
Institute of Cybersecurity and

Cryptology, School of Computing
and Information Technology,
University of Wollongong,

Australia.
wsusilo@uow.edu.au

Guomin Yang
Institute of Cybersecurity and

Cryptology, School of Computing
and Information Technology,
University of Wollongong,

Australia.
gyang@uow.edu.au

Yong Yu
School of Computer Science,

Shaanxi Normal University, China.
yuyong@snnu.edu.cn

Tran Viet Xuan Phuong
Institute of Cybersecurity and

Cryptology,School of Computing
and Information Technology,
University of Wollongong,

Australia.
tran@uow.edu.au

Dongxi Liu
Data61, CSIRO, Australia.
Dongxi.Liu@data61.csiro.au

ABSTRACT

Equivocation is one of the most fundamental problems
that need to be solved when designing distributed protocols.
Traditional methods to defeat equivocation rely on trusted
hardware or particular assumptions, which may hinder their
adoption in practice. The advent of blockchain and decentral-
ized cryptocurrencies provides an auspicious breakthrough
paradigm to resolve the problem above. In this paper, we
propose a blockchain-based solution to address contractual
equivocation, which supports user-defined fine-grained policy-
based equivocation. Specifically, users will be de-incentive
if the statements they made breach the predefined access
rules. The core of our solution is a newly introduced primitive
named Policy-Authentication-Preventing Signature (PoAPS),
which combined with a deposit mechanism allows a signer
to make conflict statements corresponding to a policy to
be penalized. We present a generic construction of PoAPS
based on Policy-Based Verifiable Secret Sharing (PBVSS)
and demonstrate its practicality via a concrete implementa-
tion in the blockchain. Compared with the existing solutions
that only handle specific types of equivocation, our proposed
approach is more generic and can be instantiated to deal
with various kinds of equivocation.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
c○ 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3437516

CCS CONCEPTS

∙ Information systems → Distributed database transac-
tions; ∙ Security and privacy → Digital signatures.

KEYWORDS

Equivocation; Blockchain; Digital signatures; Verifiable secret
sharing

ACM Reference Format:

Yannan Li, Willy Susilo, Guomin Yang, Yong Yu, Tran Viet Xuan
Phuong, and Dongxi Liu. 2021. Non-Equivocation in Blockchain:

Double-Authentication-Preventing Signatures Gone Contractual.
In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security (ASIA CCS ’21), June 7–11, 2021,

Hong Kong, Hong Kong. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3433210.3437516

1 INTRODUCTION

Equivocation, which refers to dishonest parties convey-
ing conflicting statements in a protocol, could cause various
disasters, such as errors and attacks, to occur in a system.
Typical examples of equivocation include double-spending in
cryptocurrencies, issuing multiple certificates for an identity
in public-key infrastructure, etc. Equivocation is one of the
essential issues in designing protocols for distributed systems
since it could cause Byzantine faults [9]. Traditional solutions
involve a trusted party (or trusted hardware) [4], which can
be effectively designed and implemented but unfortunately,
is impractical. Other solutions rely on the assumptions of an
honest majority or the synchrony of the system. Equivoca-
tion is also the main reason Byzantine agreement in general
requires 𝑁 = 3𝑓 + 1 nodes for at most 𝑓 nodes failure [35].
Publicly verifiable append-only logs can adequately detec-
t equivocation in a system. As a revolutionary technology,
blockchain [8, 25, 26] provides a remedy to realize an im-
mutable and decentralized public ledger that securely records

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

859

https://doi.org/10.1145/3433210.3437516
https://doi.org/10.1145/3433210.3437516

all the transactions in the system, and hence paves a revolu-
tionary mechanism for detecting and handling equivocation
without relying on any trusted party. As an example, to pre-
vent the typical multi-spending equivocation in a payment
system, Bitcoin, the first blockchain-based cryptocurrency,
allows users to sign multiple transactions, but only one of
these transactions will be appended into the blockchain un-
der the UTXO mechanism. Nevertheless, Bitcoin does not
offer any solution to penalize or terminate equivocation and
the panacea is not generally applicable in other application
domains.

Equivocations in blockchain. As mentioned earlier, non-
equivocation is a basic security requirement for computing
systems, especially decentralized systems. Some early research
works have indicated that it is impossible to deal with equiv-
ocation without trusted parties (trusted hardware) [24] or
strong assumptions (high replication factors) [9]. The emer-
gence of blockchain promises a breakthrough to address the
issue based on a much weaker and more realistic assumption.
Unfortunately, blockchain itself is a decentralized system,
and hence, detecting and dealing with equivocation in the
blockchain is also challenging. Recently, there have been sev-
eral proposals that aim to identify equivocation effectively in
the blockchain. Blockstack [1] uses a simple Kademlia-based
Distributed Hash Table (DHT) as a discovery layer to ascer-
tain the equivocation. Such Bitcoin witnessing approaches
reduce the difficulty of equivocation to the hard problem
of forking a chain. Still, they are inefficient as a user is re-
quired to download a large number of transactions to find
out an equivocation. To efficiently verify the Bitcoin witness-
es, Tomescu et al. [36] proposed Catena, a tamper-evident
log built on Bitcoin blockchain. The new statement in their
design is included via the OP-RETURN scripts. Aspegren [3]
modified Catena and proposed a scalable non-equivocation
based on b verify for verifiable data management. Other so-
lutions to blockchain-based non-equivocation contracts are
based on the deposit mechanism with the help of the built-
in time-lock script of Bitcoin [2, 6, 23]. It is also suggested
that using Turing-complete smart contracts can also achieve
non-equivocation contracts. Ruffing et al. [32] proposed a
new primitive named accountable assertions to deal with the
equivocation in distributed protocols such as Bitcoin [26], in
which two conflict statements within one context are suffi-
cient to extract a secret publicly. The existing solutions for
handling equivocation mainly focused on specific issues (e.g.,
double spending/authentication), which significantly limits
their application domains. Designing a contractual solution
that can be instantiated to handle more general, e.g. user-
defined policy-based equivocation is of both theoretical and
practical interest. However, this remains an elusive research
problem.

Contribution. In this paper, we propose a policy-based
non-equivocation supporting general pre-defined policy as a
solution to this proceeding problem. In summary, the contri-
bution of this work is three-fold:

∙ We propose a Policy-Authentication-Preventing Signa-
ture (PoAPS) which allows the extraction of a sign-
er’s secret key when he/she signs messages violating
a pre-defined policy. We formalize the definition and
the security model of PoAPS and present a generic
construction. The design is with the help of a new
primitive named Policy-based Verifiable Secret Sharing
(PBVSS), in which a secret can be shared based on
general policies and each share supports public verifi-
ability. We show an instantiation of the construction
based on ECDSA together with a concrete PBVSS,
and prove its security.
∙ We achieve policy-based non-equivocation in blockchain
by integrating PoAPS with a blockchain-based deposit
mechanism. Users who produce signatures for conflict-
ing messages that violate a pre-defined policy will be
penalized by the loss of the deposit. We propose a
generic construction for this new primitive and then
extend PoAPS from public extractability to supporting
a designated beneficiary.
∙ We evaluate the proposed algorithms to test the time
consumption off-chain. We also implement the system
in a test net of blockchain to check the gas cost on-
chain. Both implementation results demonstrate high
efficiency and practicality.

Related works. One of the main contributions of this
paper is PoAPS, the idea of which is inspired by a similar
notion named double-authentication-preventing signatures
(DAPS). DAPS was proposed by Poettering and Stebila
[29, 30], in which the data to be signed is split into a subject
and a message. If a signer signed two conflict messages for the
same subject, the signing key of the signer would be revealed.
Poettering et al. [29] presented a generic construction by
involving the extractable two-to-one trapdoor function, which
can be achieved by the group of quadratic residues modulo a
Blum integer. Subsequently, Bellare et al. [5] proposed two
highly efficient DAPS constructions based on identification
trapdoor schemes. Subsequently, Derler et al. [13] generalized
this notion into𝑁 -times-authentication-preventing signatures
based on secret sharing schemes, where 𝑁 signatures issued
by the same signer within a subject are required to extract
the signing key. Poettering et al. [28] put forward a shorter
DAPS, which not only beats the signature size in [13], but
also reduces the key size from linear to constant based on
the identification scheme different from that of Fiat and
Shamir [17]. Derler et al. modified the protocol in [13] and
proposed a generic DAPS construction with constant keys
and signatures size based on symmetric-key primitives [12].
Boneh et al. [7] proposed the notion of lattice-based DAPS
and presented the first post-quantum DAPS system based on
broadcast encryption [16]. Furthermore, they generalized the
primitive by proposing predicate-authentication-preventing
signatures without showing a concrete construction. The
original source of the concept of DAPS actually dates back to
leakage-deterring signatures from [22], which de-incentivizes
the sharing of a signing key in whatever form, by embedding

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

860

a secret to it. In this paper, we inherit this basic idea and
design solutions to more generalized cases.

We should note that the new primitive we propose in this
paper, namely PoAPS, is a generalization of the previous ap-
proaches. The extraction policy in our proposal is a tree-based
multi-level structure. Thus the schemes mentioned above can
be regarded as special cases of our proposal. To be more specif-
ic, the schemes with double-authentication/double-spending
extractability correspond to a simple 2-ary structure in our
scheme, and the 𝑁 -times-authentication-preventing signa-
tures are equivalent to our solution for a single-level tree with
𝑁 leaf nodes. A typical application of the proposed prim-
itive in this paper is to prevent contractual (policy-based)
spending, which is a generalization of double-spending in e-
cash and cryptocurrencies. More details and further potential
applications are provided in Sect. 6.

Organization. The rest of the paper is organized as fol-
lows. We provide some preliminaries used through the paper
in Sect. 2. The details of PoAPS are illustrated in Sect. 3. We
present non-equivocation contracts in blockchain in Sect. 4.
Implementation results and potential applications are shown
in Sect. 5 and 6, respectively. We conclude the paper in Sect.
7.

2 PRELIMINARIES

In this section, we review some necessary tools used in
policy-based non-equivocation in blockchain.

2.1 Digital signature

Digital signatures are cryptographic tools to authenticate
an entity or check the integrity of a signed message. A digital
signature Σ consists of the following 3 algorithms [21].

∙ DKeyGen(1𝜆). On input a security parameter 𝜆, this
algorithm setups the system and returns a key pair
(𝑠𝑘, 𝑝𝑘).
∙ DSign(𝑠𝑘,𝑚). This algorithm takes a message 𝑚 and
the secret key 𝑠𝑘 as input, it outputs a digital signature
𝜎.
∙ DVerify(𝑝𝑘,𝑚, 𝜎). On input the message signature pair
(𝑚,𝜎), this algorithm outputs 0/1 to indicate the va-
lidity.

Elliptic curve digital signature algorithm (ECDSA) [21]
(ECDSA = (EKeyGen, ESign, EVerify)) is a secure digital
signature that widely used in many applications due to its
short signature size, such as signing Bitcoin transactions.

A digital signature should be unforgeable under chosen-
message attack, in which an attacker can learn the signatures
on arbitrary messages of its choice. A formal definition is
shown as follows.

Definition 2.1. A digital signature Σ is existentially un-
forgeable under chosen message attack (EUF-CMA), if for
all PPT adversaries 𝒜, we have,

AdvEUF-CMA
Σ,𝒜 = Pr[ExpEUF-CMA

Σ,𝒜 (𝜆) = 1] ≤ 𝑛𝑒𝑔𝑙(𝜆),

where the experiment ExpEUF-CMA
Σ,𝒜 (𝜆) is shown in Figure 1.

ExpEUF-CMA
Σ,𝒜 (𝜆):

(𝑠𝑘𝜎, 𝑝𝑘𝜎)← DKeyGen(1𝜆).
𝒬 ← ∅
(𝑚*, 𝜎*)← 𝒜DSign’(𝑠𝑘,·)(𝑝𝑘)

where DSign’ on input 𝑚:
𝜎 ← DSign(sk,m), 𝒬 ← 𝒬∪𝑚
return 𝜎

return 1, if DVerify(𝑝𝑘,𝑚*, 𝜎*) = 1 ∧𝑚* /∈ 𝒬
return 0

Figure 1: EUF-CMA security

2.2 Elliptic curve digital signature
algorithm

Elliptic curve digital signature algorithm (ECDSA) [21] is
widely used due to its short length of the generated signa-
ture. ECDSA is also the default signature algorithm to sign
transactions in Bitcoin [26] system.

∙ EKeyGen(1𝜆). Let 𝐺 be an elliptic curve group, with a
prime order 𝑝. 𝑔 is the generator of 𝐺. Choose 𝑥 ∈ 𝑍*

𝑝

and compute 𝑦 = 𝑔𝑥. Return the key pair as (𝑠𝑘, 𝑝𝑘) =
(𝑥, 𝑦).
∙ ESign(𝑠𝑘,𝑚). On receiving a message 𝑚, execute the
following steps to generate a signature.
- choose a random 𝑘 ∈ 𝑍*

𝑝 and compute 𝑅 = 𝑔𝑘, where
𝑅 = (𝑅𝑥, 𝑅𝑦).
- define 𝑟 = 𝑅𝑥 𝑚𝑜𝑑 𝑝. If 𝑟 = 0, go back to step 1.
- let 𝑠 = 𝑘−1(𝐻(𝑚) + 𝑟𝑥)𝑚𝑜𝑑𝑝. If 𝑠 = 0, go to step 1.
- return 𝜎 = (𝑟, 𝑠).
∙ EVerify(𝑝𝑘,𝑚, 𝜎). On receiving (𝑚,𝜎), check if 𝑟 = 0
or 𝑠 = 0, return ⊥. Otherwise, run the following steps.
- compute 𝑧 = 𝐻(𝑚).
- let 𝑢1 = 𝑧𝑠−1 and 𝑢2 = 𝑟𝑠−1

- compute �̃� = (𝑅𝑥, 𝑅𝑦) = 𝑔𝑢1𝑦𝑢2 .

- if 𝑅𝑥 = 𝑟 mod 𝑝, return 1. Otherwise, return ⊥.
The ECDSA satisfies EUF-CMA if the elliptic curve dis-

crete logarithm assumption [21] holds.

2.3 Verifiable secret sharing

Secret sharing schemes, as put forth by Shamir [34], are
a secure mechanism to store sensitive information among
multiple users. A (𝑡, 𝑛) secret sharing scheme includes 𝑛 play-
ers 𝑃1, · · · , 𝑃𝑛 and a dealer. The dealer generates 𝑛 secret
shares and distributes them to each player a unique share.
Any subsets of the players containing 𝑡 or more players can
reconstruct the secret 𝑠, while less than 𝑡 pieces of secret
shares gather no information about the secret. Verifiable
secret sharing schemes (VSSS) [10] can resist against a mali-
cious dealer from distributing an invalid share, which allows
the participants to verify the received secret shares without
knowing the secret. A typical (𝑡, 𝑛) verifiable secret sharing
consists of the following phases.

∙ SShareGen (𝑠) →(𝑠𝑖, 𝑎𝑢𝑥𝑖): On input a secret 𝑠, the
dealer generates 𝑛 shares and distributes the shares 𝑠𝑖

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

861

to each player together with an auxiliary information
𝑎𝑢𝑥𝑖 for verification.
∙ SVerify(𝑠𝑖, 𝑎𝑢𝑥𝑖)→ (0/1). On input a secret share and
the auxiliary information, this algorithm outputs 1 to
indicate this is a valid share, and otherwise, outputs 0.
∙ SReconstruct({(𝑥𝑖, 𝑠𝑖)}𝑡𝑖=1)→(𝑠): If a set of players 𝑆 ⊂
𝑃 , where |𝑆| ≥ 𝑡, are collecting their shares 𝑠𝑖 together
as input, this algorithm outputs the original secret 𝑠.

A verifiable secret sharing is supposed to satisfy secrecy and
verifiability [18, 27]. Secrecy depicts the confidentiality of the
secret based on a share and verifiability allows players to
check the consistency of the shares. Formal definitions are
provided as follows.

Definition 2.2. (Secrecy). The secret shares reveal no
information about the secret 𝑠. Less than 𝑡 shares disclose
no information about the secret 𝑠.

Definition 2.3. (Verifiability). If a share 𝑠𝑖 generated by
a dealer with a secret 𝑠 can pass the SVerify algorithm with
the help of the auxiliary information 𝑎𝑢𝑥𝑖, this share must
be valid. Specifically, if such 𝑡 shares are collected, the secret
𝑠 can be recovered.

3 POLICY-AUTHENTICATION-
PREVENTING SIGNATURES

In this section, we present technical descriptions of the
proposed PoAPS. Firstly, we introduce policy-based verifi-
able secret sharing (PBVSS) as a building block to design
PoAPS. Then we formalize PoAPS by introducing the system
components and security model. Finally, we provide a generic
construction together with an instantiation.

3.1 Policy-based verifiable secret sharing

Before diving into the details of PoAPS, we first introduce
PBVSS as a main building block, which is a generalization
of the verifiable secret sharing schemes to that with a policy-
based extract structure. Specifically, a PBVSS allows a secret
to be shared among several users, in which each share can be
verified publicly and individually without the help of other
shares. Only the shares satisfying a specific extract structure
can recover the secret.

3.1.1 Concrete construction of PBVSS. We show a concrete
construction based on Shamir’s secret sharing scheme [34]
and the tree-based access structure [20]. Define the extract
policy based on a tree structure, which is built in a top-down
manner. Each non-leaf node is a threshold gate containing
a unique polynomial, whose degree is the threshold value
minus 1. The secret is embedded in the root node, as the
constant term of the polynomial in the root. Each child node
contains the shares of the secret in the parent node. The leaf
nodes store the final secret shares.

We first introduce some notations in the construction. 𝐺
is a multiplicative cyclic group of a large prime order 𝑝 and
𝑔 is the generator of 𝐺. For a node 𝑁 , 𝑝𝑟𝑡(𝑁) is the parent
of the node 𝑁 . 𝑛𝑢𝑚(𝑁) denotes the number of children of a
node 𝑁 . 𝑖𝑛𝑑𝑒𝑥(𝑁) is the specific number with the node 𝑁 .

𝑘𝑁 is the threshold number of node 𝑁 . 𝑑𝑁 is the degree of
the polynomial embedded in this node 𝑁 . We now present
the detailed constructions.

∙ PSSPolicyGen(𝑠, desc)→(Γ, 𝑝𝑝). On input the descrip-
tion of a policy, the dealer generates a tree-based struc-
ture. And then formalize the tree with the help of the
secret 𝑠 to get the extract policy Γ. To be more spe-
cific, insert the detailed parameters of the tree in a
top-down manner as follows. Choose a random poly-
nomial 𝑞𝑅(𝑧) for the root 𝑅 by setting 𝑞𝑅(0) = 𝑠.
The degree of 𝑞𝑅(𝑧) is 𝑑𝑅 = 𝑘𝑅 − 1. The other coef-
ficients of 𝑞𝑅(𝑧) are some randomness chosen by the
dealer. Then for non-leaf nodes, generate the embed-
ded polynomials level by level recursively. Specifically,
choose a random polynomial 𝑞𝑁 (𝑧) for each non-leaf
node 𝑁 , whose degree is 𝑑𝑁 = 𝑘𝑁 − 1, by setting
𝑞𝑁 (0) = 𝑞𝑝𝑟𝑡(𝑁)(𝑖𝑛𝑑𝑒𝑥(𝑁)) and the other coefficients

with random numbers 𝑎
(𝑁)
𝑖 (1 ≤ 𝑖 ≤ 𝑑𝑁). And then

compute 𝑔𝑎
(𝑁)
𝑖 , where {𝑎(𝑁)

𝑖 }(1 ≤ 𝑖 ≤ 𝑑𝑁) are the co-
efficients in each polynomial. Finally publish all the{︀
𝑔𝑎

(𝑁)
𝑖

}︀
and 𝑔𝑠 as the public parameters 𝑝𝑝 in the

system and outputs the policy Γ.
∙ PSSShareGen(𝑠,Γ) →(𝑠𝑖, 𝑎𝑢𝑥𝑖). On input the secret 𝑠
and the policy Γ, the dealer computes the shares, which
are only contained in the leaf nodes of a policy Γ. For
each leaf node 𝑁 , the dealer selects a random 𝑥𝑖 ∈ 𝑍𝑝,
and computes the value of the polynomial embedded in
the parent node, that is, 𝑠′𝑖 = 𝑞𝑝𝑟𝑡(𝑁)(𝑥𝑖). The share 𝑠𝑖
is returned as (𝑥𝑖, 𝑠

′
𝑖). The auxiliary information 𝑎𝑢𝑥𝑖

is the subset of the public parameters related to the
polynomials of the nodes on the path from the current
leaf node to the root (Detailed instantiation is shown
in sec. 3.6).
∙ PSSVerify(𝑠𝑖, 𝑎𝑢𝑥𝑖,Γ)→ (0/1). The verifier holding the
secret share in node 𝐶 and the corresponding auxiliary
information (𝑠𝑖, 𝑎𝑢𝑥𝑖) validates the share as follows.

First parse 𝑥𝑖 and 𝑠′𝑖 from 𝑠𝑖 and check 𝑔𝑠
′
𝑖 with the help

of the auxiliary information. Specifically, the verifier
computes

𝑔𝑠
′
𝑖 =

𝑑𝑝𝑟𝑡(𝐶)∏︁
𝑗=0

𝑔𝑎
(𝑝𝑟𝑡(𝐶))
𝑗 𝑥

𝑗
𝑖 , (1)

where 𝑔𝑎
(𝑝𝑟𝑡(𝐶))
𝑗 (1 ≤ 𝑗 ≤ 𝑑𝑝𝑟𝑡(𝐶)) are in 𝑎𝑢𝑥𝑖 and

𝑔𝑎
(𝑝𝑟𝑡(𝐶))
0 can be expressed by calling the polynomi-

als in the upper-level nodes till 𝑔𝑠 in root 𝑅.
∙ PSSReconstruct({(𝑥𝑖, 𝑠𝑖)}𝑖⊆𝑆 ,Γ): If a set of players 𝑆 ⊆
𝑃 , where 𝑆 satisfies the policy, want to recover the
secret 𝑠 with {(𝑥𝑖, 𝑠𝑖)}, they are able to reconstruct 𝑠
iteratively by computing

𝑞𝑁 (𝑧) =
∑︁
𝑃𝑖∈𝑆

∆𝑥𝑖,𝑠(𝑧)𝑠𝑖, (2)

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

862

until 𝑞𝑅(0) = 𝑠, where

∆𝑥𝑖,𝑠(𝑧) =
∏︁

𝑃𝑖∈𝑆,𝑗 ̸=𝑖

𝑧 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

denotes the Lagrange coefficient.

3.1.2 Security analysis of PBVSS. In this part, we briefly
analyze the security of the proposed PBVSS. To be more
specific, we show the proposed PBVSS satisfies secrecy and
verifiability.

Secrecy. Our construction of PBVSS is based on Shamir’s
secret share scheme [34], which satisfies perfect secrecy. We
generalize the basic construction into a multi-level tree-
structured construction, in which the secret is shared level
by level from the root node to the leaf nodes. The root n-
ode contains the secret to be shared. For each intermediate
node in each level as a threshold gate, the constant of the
embedded polynomial is a secret share of its parent node
and will be distributed to multiple secret shares in the next
level. For each node, the mechanism is degenerated to the
basic secret share scheme, in which the shares reveal nothing
about the secret in the upper level, including the original
secret in the root and thus the secrecy of the secret in the
upper level is naturally achieved. The shares in the leaf nodes
are recursively generated and the secrecy of the proposed
PBVSS is satisfied.

Verifiability. Verifiability can be easily checked by the
correctness of PSSVerify. Specifically, equation 3.1.1 can be

validated with the public parameters {𝑔𝑎
(𝑁)
𝑖 } and the poly-

nomials embedded in the nodes from the specific leaf to the
root by the substitution of 𝑞𝑁 (0) = 𝑞𝑝𝑟𝑡(𝑁)(𝑖𝑛𝑑𝑒𝑥(𝑁)).

3.2 System components of PoAPS

A PoAPS is a signature scheme with an extraction algo-
rithm that can extract the secret key when the pre-defined
policy is broken. The formal system components containing
four algorithms are as follows.

Definition 3.1. (PoAPS). A policy-authentication-preventing-
signature (PoAPS) on a message space ℳ and a policy 𝒮
consists of the following PPT algorithms.

∙ PKeyGen(1𝜆)→(𝑝𝑘, 𝑠𝑘). On input a security parame-
ter 𝜆, this algorithm outputs a secret-public key pair
(𝑠𝑘, 𝑝𝑘) for a signer.
∙ PPolicyGen(𝑠𝑘, desc)→(Γ, 𝑝𝑝). On input the user’s se-
cret key and the description of a policy, this algorithm
outputs an extract policy Γ, to express the policy to
reveal the signer’s secret key, and public parameters 𝑝𝑝
for public verifiablity. The leaf node of Γ is embedded
with some subject to express the corresponding rules.
∙ PSign(𝑠𝑘,𝑚,Γ)→(𝜎). On input a secret key 𝑠𝑘, a mes-
sage 𝑚 ∈ℳ and the policy Γ, this algorithm outputs
a signature 𝜎. Note that in the original DAPS [29], 𝑚
is composed of a subject (𝑠𝑢𝑏𝑗) and a payload (𝑚𝑠𝑔).
In this model, we follow this setting and the 𝑠𝑢𝑏𝑗 of a
message is bound with Γ.

∙ PVerify(𝑝𝑘,𝑚, 𝜎,Γ)→(1/0). On input the public key
𝑝𝑘, the message 𝑚 ∈ℳ, a signature 𝜎 and the policy
Γ, this algorithm outputs a bit 0/1 to indicate the
signature is valid or not.
∙ PExtract(𝑝𝑘, {𝑚𝑖}, {𝜎𝑖},Γ)→(𝑠𝑘). On input a public
key 𝑝𝑘 and a set of message {𝑚𝑖} ∈ ℳ, the correspond-
ing signature set {𝜎𝑖} and the policy Γ, this algorithm
outputs the secret key 𝑠𝑘 of the signer, if the messages
satisfy the policy 𝒮.

Definition 3.2. (Correctness). A PoAPS is correct if for
all 𝜆 ∈ N, for all (𝑠𝑘, 𝑝𝑘) ← PKeyGen(1𝜆), for all (Γ, 𝑝𝑝) ←
PPolicyGen(𝑠𝑘, desp), for all messages 𝑚 ∈ {0, 1}* and for all
signatures 𝜎 ← PSign(𝑠𝑘,𝑚,Γ), we have PVerify(𝑝𝑘,𝑚, 𝜎,Γ) =
1 with an overwhelming probability.

3.3 Security model

We now introduce the security properties, in which we
mainly consider the most critical properties named unforge-
ability and extractability. We describe the ability of an at-
tacker and the detailed security model between an adversary
and a challenger.

Compromising set. Before presenting the other security
properties, we first introduce the notion of a compromising set
of messages. A compromising set is a set containing message-
signature pairs that break the pre-defined policy. The formal
definition of a compromising set is as follows.

Definition 3.3. (Compromising set). Let Γ be an ex-
tract policy defined on 𝑘 messages. We say a set of 𝑘 message-
signature pairs {(𝑚𝑖, 𝜎𝑖)}𝑖∈[𝑘] are Γ-compromising for some
specific 𝑝𝑘 and Γ, if each signature 𝜎𝑖 is valid on 𝑚𝑖 and the
𝑘 messages-signature pairs satisfy the extract policy Γ.

Unforgeability. Unforgeability prohibits an adversary (not
a signer, but can be any observers) from generating some
valid signatures to pass the verification. In this case, the
signer is honest and the observers are the attackers. The
observers are intended to forge some signatures to complete a
compromising set and extract the secret. The unforgeability
of PoAPS is much similar to that of the standard signature
with one difference. Specifically, 𝒜 specifies policy description
desc, and the challenger 𝒞 generates the key pairs and details
the policy according to desc. It also maintains a signing list.
The adversary 𝒜 is allowed to make some queries for the
signatures. The difference is, for a fixed secret key 𝑠𝑘 and
policy Γ, 𝒜 can make queries to only non-compromising sets
of messages. If the current queried message together with the
previous queried messages satisfies Γ, 𝒞 aborts. The concrete
definition of existential unforgeability for PoAPS is shown as
follows.

Definition 3.4. (Unforgeability). A PoAPS is existen-
tially unforgeable if for all PPT adversaries 𝒜, we have

AdvEUFPoAPS,𝒜 = Pr[ExpEUFΣ,𝒜(𝜆) = 1] ≤ 𝑛𝑒𝑔𝑙(𝜆),

where ExpEUFΣ,𝒜(𝜆) is defined in Fig. 2.

Extractability. Extractability states that as long as enough
valid message-signature pairs satisfying a policy are collected,

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

863

ExpEUF
PoAPS,𝒜(𝜆):

(𝑠𝑘, 𝑝𝑘)← PKeyGen(1𝜆).
(Γ, 𝑝𝑝)← PPolicyGen(𝑠𝑘, desc).
𝒬 ← ∅, 𝒫 ← ∅.
(𝑚*, 𝜎*)← 𝒜𝒪PSign(𝑠𝑘,·)(𝑝𝑘).

where 𝒪PSign is on input 𝑚 = (𝑠𝑢𝑏𝑗,𝑚𝑠𝑔) by 𝒜:
if Γ(𝒫 ∪ 𝑠𝑢𝑏𝑗) = 1, return ⊥
else
𝜎 ← PSign(𝑠𝑘,𝑚,Γ),
𝒬 ← 𝒬∪ (𝑚,𝜎), 𝒫 ← 𝒫 ∪ 𝑠𝑢𝑏𝑗

return 𝜎
return 1, if the following conditions hold.

PVerify(𝑝𝑘,𝑚*, 𝜎*,Γ) = 1, (𝑚*, 𝜎*) /∈ 𝒬
return 0.

Figure 2: EUF security for PoAPS

the secret is able to be recovered. In this case, the signer
is the attacker that is going to break the pre-defined policy
but avoid being traced. Specifically, the signer is intended
to generate signatures and the shares that can pass the
verification while even if the policy is satisfied, the secret
key still cannot be recovered. In the following formal security
definition, two cases are considered. In the trusted setup, 𝒜
signs the message and publishes the policy with a secret key
𝑠𝑘 generated by 𝒞. 𝒜 succeeds if enough message-signature
pairs are collected, but extract a secret key 𝑠𝑘′ different from
the secret key 𝑠𝑘 used in signing messages. In the untrusted
setup, the signer can manipulate valid signatures that pass the
verification with 𝑝𝑘. 𝒜 succeeds if enough message-signature
pairs are collected, but extract a secret key 𝑠𝑘′ which is not
corresponding to the public key. The concrete definition of
extractability for PoAPS is shown as follows.

Definition 3.5. (Extractability). A PoAPS is extractable
(PSE) (resp. PSE* with untrusted setup), if for all PPT
adversary 𝒜, we have,

AdvPSEPoAPS,𝒜 = Pr[ExpPSEΣ,𝒜(𝜆) = 1] ≤ 𝑛𝑒𝑔𝑙(𝜆),

where ExpPSEΣ,𝒜(𝜆) (resp. ExpPSE
*

Σ,𝒜 (𝜆)) is defined in Fig. 3 (resp.
Fig. 4).

3.4 Generic constructions of PoAPS

In this section, we show that a PoAPS can be obtained in
a generic way by using a secure digital signature scheme with
a PBVSS scheme. The basic idea is as follows. The policy
is described in the tree-based extract structure, whose leaf
nodes are bound with some subjects and non-leaf nodes are
threshold gates. The signer first inserts the parameters to
detail the policy with the secret key. When signing a message,
the message-signature pair (𝑚𝑖, 𝜎𝑖) with a secret share of the
secret key will be bound to the leaf node. If sufficient shares
are collected, which means the extracting condition is met,
the secret key can be revealed via the extract algorithm.

ExpPSE
PoAPS,𝒜(𝜆):

(𝑠𝑘, 𝑝𝑘)← PKeyGen(1𝜆).
(Γ, 𝑝𝑝)← PPolicyGen(𝑠𝑘, desc).
(𝜎1, · · · , 𝜎𝑘)← 𝒜(𝑠𝑘, 𝑝𝑘,Γ).
𝑠𝑘′ ← Extract(𝑝𝑘, (𝜎1, · · · , 𝜎𝑘),Γ).
return 1, if for 𝑖 ∈ 𝑘, the followings hold.

PVerify(𝑝𝑘,𝑚𝑖, 𝜎𝑖,Γ) = 1
(𝑚𝑖, 𝜎𝑖) are compromising
𝑠𝑘′ ̸= 𝑠𝑘

return 0.

Figure 3: PSE security for PoAPS

ExpPSE*

PoAPS,𝒜(𝜆):

(𝑝𝑘,Γ, 𝜎1, · · · , 𝜎𝑘)← 𝒜(1𝜆, desc).
𝑠𝑘′ ← Extract(𝑝𝑘, (𝜎1, · · · , 𝜎𝑘),Γ).
return 1, if for 𝑖 ∈ 𝑘, the followings hold.

PVerify(𝑝𝑘,𝑚𝑖, 𝜎𝑖,Γ) = 1
(𝑚𝑖, 𝜎𝑖) are compromising
𝑠𝑘′ is not the secret key corresponding to 𝑝𝑘

return 0.

Figure 4: PSE* security for PoAPS

To be more specific, let DSig = (DKeyGen, DSign, DVerify)
be a EUF-CMA digital signature and PBVSS = (PSSPolicy-
Gen, PSSShareGen, PSSVerify, PSSReconstruct) be a secure
PBVSS scheme. The detailed construction of PoAPS = (P-
KeyGen, PPolicyGen, PSign, PVerify, PExtract) is shown in
Fig. 5.

Remark: We note that, in the current construction, a signer
can insert more than one signature for one leaf node in Γ, if
DSign(𝑠𝑘,𝑚′) is a normal secure signature scheme. If some
applications require only one signature in one leaf node, the
double-authentication-preventing signature scheme [29] can
be applied.

3.5 Security analysis of PoAPS

Theorem 3.6. If there is an adversary 𝒜 who can break
the unforgeability of our proposed PoAPS scheme, then the
challenger 𝒞 can construct another algorithm 𝒮 ′ to break
the unforgeability of the underlying digital signature or the
secrecy of the PBVSS with an overwhelming probability.

Proof. We show our proof in the selective-policy model,
where the challenged policy is defined in advance. W.l.o.g, 𝒜
selects a specific Γ to challenge upon, which is a tree-based
structure with the subject embedded in the leaf nodes. We
describe our proof in a sequence of games shown as follows.
Game 0. Game 0 is the same as the original game defined in
section 3.3.
Game 1. Game 1 is the same as Game 0 with one difference.
𝒞 maintains a singed list 𝒬 for ever issued queries by 𝒜. If 𝒜

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

864

PKeyGen(1𝜆)→(𝑝𝑘, 𝑠𝑘). Call DKeyGen(1𝜆) to setup the

system and return the public and secret key pair (𝑝𝑘, 𝑠𝑘).

PPolicyGen(𝑠𝑘, desc)→(Γ, 𝑝𝑝). On input the application-

based policy description desc, call PSSPolicyGen(𝑠𝑘, desc)
to generate the structure Γ and public parameters 𝑝𝑝.

PSign(𝑠𝑘,𝑚,Γ)→(𝜎). To sign a message 𝑚 =

(𝑠𝑢𝑏𝑗,𝑚𝑠𝑔), firstly check which subject in the leaf n-
ode of tree, 𝑚 is related to. Then, to generate a secret
share in the corresponding leaf node, the signer calls
PSSShareGen(𝑠𝑘,Γ) with 𝑠𝑢𝑏𝑗 as the random input1, and
returns the share 𝑠 and the corresponding 𝑎𝑢𝑥. Then
with 𝑚′= 𝑠𝑢𝑏𝑗‖𝑚𝑠𝑔‖𝑠‖𝑎𝑢𝑥, call DSign(𝑠𝑘,𝑚′) to re-
turn 𝜎′. The final signature is 𝜎 = 𝜎′‖𝑠𝑢𝑏𝑗‖𝑚𝑠𝑔‖𝑠‖𝑎𝑢𝑥.
PVerify(𝑝𝑘,𝑚, 𝜎,Γ)→(0/1). The verifier first

parses 𝑚′=𝑠𝑢𝑏𝑗‖𝑚𝑠𝑔‖𝑠‖𝑎𝑢𝑥 from 𝜎 and calls
DVerify(𝑝𝑘,𝑚′, 𝜎′) to check the validity of the signature.
If the signature is invalid, return 0 and aborts. Other-
wise, parse 𝑠 and 𝑎𝑢𝑥 in the signature and check the
validity of the shares 𝑠 by calling PSSVerify(𝑠, 𝑎𝑢𝑥,Γ).
If both callings return 1 simultaneously, this algo-
rithm outputs 1; otherwise, it outputs 0 and aborts.

PExtract(𝑝𝑘,{(𝑚𝑖, 𝜎𝑖,Γ)})→(𝑠). If the message-
signature pairs satisfy the policy, then with the
shares embedded in the signatures, call PSSRecon-
struct({(𝑥𝑖, 𝑠

′
𝑖)}𝑖⊆𝑆 ,Γ) to recover the signing key 𝑠𝑘.

Figure 5: Generic construction of PoAPS

submits a (𝑚,𝜎) pair that (1) is not in 𝒬 and (2) can pass
the verify algorithm, 𝒞 declares failure and aborts.

Analysis. 𝒞 randomly chooses a public key 𝑦 and forwards it
to 𝒜. 𝒜 specifies some policy description descΓ and issues the
subjects {𝑠𝑢𝑏𝑗} it is going to query. 𝒞 details Γ by assigning
polynomials to each node and simulates the public parameters
besides 𝑦.

Define satisfied node as 𝑆𝑎𝑡(𝑁) and unsatisfied node as
𝑈𝑛𝑆𝑎𝑡(𝑁), where 𝑆𝑎𝑡(𝑁) is the node that the subtree 𝒯𝑁
with root𝑁 is satisfied with the queried subjects and 𝑈𝑛𝑆𝑎𝑡(𝑁)
is the node where the subtree is not met. For 𝑆𝑎𝑡(𝑁), define
PolySat(𝒯𝑁 , 𝑠𝑢𝑏𝑗, 𝜆𝑁) to set up the polynomials in the satis-
fied node 𝑁 , which takes the sub-tree 𝒯𝑁 , the queried subject
set, and an integer 𝜆𝑁 as input. Denote the degree of the
polynomial as 𝑑𝑁 . Specifically, from the root 𝑅, for the first
𝑆𝑎𝑡(𝑁), set 𝑞𝑁 (0) = 𝜆𝑁 and choose the other 𝑑𝑁 random-
ness as the coefficients to fix the polynomial 𝑞𝑁 . And then
set polynomials for each child node 𝑁 ′ of 𝑁 recursively as
PolySat(𝒯𝑁′ , 𝑠𝑢𝑏𝑗, 𝑞𝑁 (𝑖𝑛𝑑𝑒𝑥(𝑁 ′))) until the leaf nodes. Pub-

lish the public parameters in 𝑆𝑎𝑡(𝑁) as 𝑔𝑎
(𝑁)
𝑖 , where 𝑎

(𝑁)
𝑖 are

the coefficients in the polynomials of satisfied node 𝑁 . For
the leaf nodes 𝑖 in 𝑆𝑎𝑡(𝑁), the shares are 𝑞𝑝𝑟𝑡(𝑖)(𝐻(𝑠𝑢𝑏𝑗)).

1The subject 𝑠𝑢𝑏𝑗 is uniquely mapped to an integer, e.g., by using a
collision resistance hash function

And the auxiliary information is set accordingly with the
randomly chosen coefficients. For 𝑈𝑛𝑆𝑎𝑡(𝑁), the parameters
should be simulated using randomness, the public key and
the Lagrange Interpolation. Define PolyUnSat(𝒯𝑁 , 𝑠𝑢𝑏𝑗, 𝑔𝜆𝑁)
to set up polynomials in unsatisfied node 𝑁 , which takes the
sub-tree 𝒯𝑁 , the queried subject set 𝑠𝑢𝑏𝑗 and an element 𝑔𝜆𝑁

as input. For an unsatisfied node 𝑁 , there are at most 𝑑𝑁
satisfied children nodes 𝑁 ′. Let ℎ𝑁 be the number of satisfied
children nodes of 𝑁 . For the satisfied child node 𝑁 ′ of 𝑁 ,
choose a random 𝜆𝑁′ and set 𝑞𝑁 (𝑖𝑛𝑑𝑒𝑥(𝑁 ′)) = 𝜆𝑁′ . Choose
𝑑𝑅 − ℎ𝑅 randomness to fix 𝑞𝑁 . The root node must be an
unsatisfied node. Thus, 𝒞 firstly define the polynomial in node
𝑅. 𝑞𝑅(0) is implicitly set as 𝑥, where 𝑦 = 𝑔𝑥. For the satisfied
child node 𝑁 , call PolySat(𝒯𝑁 , 𝑠𝑢𝑏𝑗, 𝜆𝑁) to determine the
other coefficients. Otherwise, call PolyUnSat(𝒯𝑁 , 𝑠𝑢𝑏𝑗, 𝑔𝜆𝑁) to
implicitly fix the polynomial until the parent nodes of the

leaf nodes. Thus for these nodes, 𝑔𝑎
(𝑁)
𝑖 , where 𝑎

(𝑁)
𝑖 are the

coefficients for the node 𝑁 , can be published as part of the
public parameters. Now we simulate the polynomial for the
parent node of the leaf nodes in the 𝑈𝑛𝑆𝑎𝑡(𝑁). For such

parent node 𝑃 of a leaf node, 𝑔𝑞𝑃 (0) is implicitly fixed with
its index and the polynomial in its parent node. To simulate
other coefficients, choose random secret shares for the queried
subject set as {(𝑠𝑢𝑏𝑗𝑖, 𝑠𝑖)}(1≤𝑖≤ℎ𝑃), where ℎ𝑃 is the number
of the queried leaf node under node 𝑃 . Choose 𝑑𝑃 − ℎ𝑃 ran-
domness to determine the polynomial in node 𝑃 , where 𝑑𝑃
is the degree of the polynomial in node 𝑃 . Thus, with these
𝑑𝑃 secret share {(𝑠𝑢𝑏𝑗𝑖, 𝑠𝑖)} and 𝑔𝑞𝑃 (0), with the equation
3.1.1, the public parameters in node 𝑃 can be simulated. The
simulation of Γ is perfect with the secrecy of the underlying
PBVSS. Thus, the above setting is identical from 𝒜’s view.
𝒞 maintains a secret share list 𝒫, which records the sub-

ject in {𝑠𝑢𝑏𝑗} and the corresponding secret shares. After
the simulation, 𝒞 completes the secret share list 𝒫 with the
settings above. Now, 𝒜 adaptively issues a query with mes-
sage 𝑚 = (𝑠𝑢𝑏𝑗𝑚,𝑚𝑠𝑔𝑚) on its will, but is restricted to the
subjects in {𝑠𝑢𝑏𝑗}. 𝒞 first responds with the secret share and
then simulates the signature on 𝑚. To simulate the secret
share, 𝒞 checks the corresponding subject 𝑠𝑢𝑏𝑗𝑚 the mes-
sage 𝑚 is related to. If 𝑠𝑢𝑏𝑗𝑚 /∈ {𝑠𝑢𝑏𝑗}, 𝒞 aborts. Otherwise,
𝒞 looks up the list 𝒫 and finds the corresponding record
𝑠𝑚 as the secret share. And return the subset of the public
parameters on the path from the leaf node to the root as
the auxiliary information 𝑎𝑢𝑥𝑚.To simulate the signature,
𝒞 checks whether 𝑚 is in the signed list 𝒬. If 𝑚 is in 𝒬,
𝒞 responds with the corresponding signature. Otherwise, 𝒞
checks whether 𝑚 together with the other messages in 𝒬
satisfy the policy Γ. If so, 𝒞 aborts. Otherwise, 𝒞 answers
signing queries by calling the challenger 𝒞′ in the underlying
signature scheme with 𝑚𝑠𝑔𝑚‖𝑠𝑢𝑏𝑗𝑚‖𝑠𝑚‖𝑎𝑢𝑥𝑚 and 𝑦 as the
input and returns the signature 𝜎′ to 𝒜. Then 𝒞 updates
(𝑚,𝜎′) in 𝒬.

The setting in Game 1 is identical with that in Game 0
from 𝒜’s view. If 𝒜 causes 𝒞 to abort with non-negligible
probability, then we can use 𝒜 to construct a sub-algorithm

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

865

𝒮 ′ that can break the unforgeability of the underlying digital
signature scheme.

�

Theorem 3.7. If there is an adversary 𝒜 who breaks the
extractability of our proposed PoAPS under PSE* model, then
we can construct another algorithm ℬ to break the correctness
of the underlying digital signature or the verifiability of the
policy-based verifiable secret sharing scheme.

Proof. We show a heuristic analysis of extractability in
the following two steps. Firstly, if a message-signature pair
(𝑚,𝜎) in PoAPS can pass the verify algorithm, then a valid
secret share can be parsed from 𝜎. Secondly, perfect verifia-
bility guarantees that the secret key can be extracted from
the secret sharing scheme if sufficient shares are collected
in a recursive way. Thirdly, according to the PBVSS in 3.1,
𝑝𝑘 is bound with the root 𝑅 of the policy, which guarantees
that the shares allow the correct 𝑠𝑘 corresponding to pk to
be extracted. �

Figure 6: Policy instance in the instantiation

3.6 Instantiation of PoAPS

We show an instantiation with the extract structure in
Fig. 6 together with ECDSA signature and our proposed
PoAPS, which is perfectly compatible to blockchain system.
ECDSA = (EKeyGen, ESign, EVerify) denote the ECDSA sig-
nature and PBVSS = (PSSPolicyGen, PSSShareGen, PSSVerify,
PSSReconstruct) be a secure PBVSS scheme. We show an
instantiation with the policy specified in Fig. 6. This is a
three-level tree-based structure with the root node 𝑅. W.l.o.g,
we define the root node 𝑅 and node 𝐴 as AND gates, and
𝐵 as a 3-out-of-4 gate. The details of the instantiation of
PoAPS are as follows.

∙ PKeyGen(1𝜆)→(𝑥, 𝑦). Call EKeyGen(1𝜆) to set up the
system with some security parameter 𝜆 and return a
key pair (𝑥, 𝑦).
∙ PPolicyGen(𝑥, desc)→(Γ, 𝑝𝑝). On input the application-
based policy description as the tree in Fig. 6, generate
the extract policy Γ and the public parameters 𝑝𝑝 by

calling PSSPolicyGen(𝑥, desc). Specifically, the polyno-

mial for 𝑅 is 𝑓𝑅(𝑧)=𝑎
(𝑅)
1 𝑧+ 𝑥, where 𝑎

(𝑅)
1 is a random

number and 𝑥 is the secret key. The polynomial for 𝐴

is 𝑓𝐴(𝑧)=𝑎
(𝐴)
1 𝑧 + 𝑎

(𝐴)
0 , where 𝑎

(𝐴)
1 is a random num-

ber and 𝑎
(𝐴)
0 is 𝑓𝑅(𝑖𝑛𝑑𝑒𝑥𝐴). For node 𝐵, the degree of

the polynomial should be 2. Thus, the polynomial is

𝑓𝐵(𝑧)=𝑎
(𝐵)
2 𝑧2 + 𝑎

(𝐵)
1 𝑧 + 𝑎

(𝐵)
0 , where 𝑎

(𝐵)
2 and 𝑎

(𝐵)
1 are

random numbers and 𝑎
(𝐴)
0 is 𝑓𝑅(𝑖𝑛𝑑𝑒𝑥𝐵). The public

parameters are 𝑝𝑝 = (𝑔𝑎
(𝑅)
1 , 𝑔𝑎

(𝐴)
1 , 𝑔𝑎

(𝐵)
2 , 𝑔𝑎

(𝐵)
1 , 𝑦).

∙ PSign(𝑥,𝑚,Γ)→(𝜎). To sign a message 𝑚=(𝑠𝑢𝑏𝑗,𝑚𝑠𝑔),
first check the message is binding to some subject
in the leave node 𝑁 . Then generate a secret share
for the leaf node by calling PSSShareGen(𝑥,Γ) with
the random input as 𝐻(𝑠𝑢𝑏𝑗) and return the share
𝑠 and the corresponding 𝑎𝑢𝑥. To generate a signa-
ture, 𝑚 is set as 𝑚′ = 𝑠𝑢𝑏𝑗‖𝑚𝑠𝑔‖𝑠‖𝑎𝑢𝑥 and calls
ESign(𝑥,𝑚′) to return 𝜎′ = (𝑟, 𝑠). Then the signature
is 𝜎 = 𝜎′‖𝑠𝑢𝑏𝑗‖𝑚𝑠𝑔‖𝑠‖𝑎𝑢𝑥.
∙ PVerify(𝑦,𝑚, 𝜎,Γ)→(0/1). The verifier first parses𝑚′ =
𝑠𝑢𝑏𝑗‖𝑚𝑠𝑔‖𝑠‖𝑎𝑢𝑥 from 𝜎 and calls EVerify(𝑦,𝑚′, 𝜎′) to
check the validity of the signature and then parses
the embedded 𝑠 and 𝑎𝑢𝑥 to validate the shares 𝑠 by
calling PSSVerify(𝑠, 𝑎𝑢𝑥,Γ). If the two callings return
1 simultaneously, it outputs 1; otherwise, output 0.
∙ PExtract (𝑦,{(𝑚𝑖, 𝜎𝑖)},Γ)→(𝑠). If the message-signature
pairs satisfy the policy, then with the shares embedded
in the signature, call the PSSReconstruct({(𝑥𝑖, 𝑠𝑖)}𝑖⊆𝑆 ,Γ)
to recover the signing key 𝑥.

3.7 Extension to a designated beneficiary

The protocol in the previous sections is with public ver-
ifiability and public extractability for the secret. However,
some scenarios require public verifiability with private ex-
tractability by a designated beneficiary. Thus, in this section,
we introduce PoAPS with public verifiability and private
extractability by a designated beneficiary integrating to the
blockchain.

For the system model of the PoAPS with a designated
beneficiary, besides the system roles in PoASS, another ben-
eficiary is also involved. To be more specific, the signature
can be verified by anyone in the system, but only a desig-
nated beneficiary can recover the secret when the structure
is satisfied. To achieve the new security requirement, some
new techniques are required, including public-key encryp-
tion schemes [15] and zero-knowledge proofs [19, 31]. The
basic idea of the PoAPS with public verifiability and private
extractability is as follows. The signer and the beneficiary
hold public-secret key pairs (𝑝𝑘𝑠, 𝑠𝑘𝑠) and (𝑝𝑘𝑏, 𝑠𝑘𝑏), respec-
tively. Upon receiving a message 𝑚, the signer binds 𝑚 by
some subject in the structure Γ. And then the signer gen-
erates a secret share 𝑠 according to the Γ and encrypts the
share with an encryption scheme with the beneficiary’s public
key 𝑝𝑘𝑏 and gets 𝑒 = 𝐸𝑛𝑐𝑝𝑘𝑏(𝑠‖𝑎𝑢𝑥). And then generate a
zero-knowledge proof to prove that 𝑒 is a correct form of
encryption under 𝑝𝑘𝑏 and the corresponding plaintext is a
valid secret share that can be verified with 𝑝𝑘𝑠. After that,

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

866

the signer sets 𝑚 = 𝑚‖𝑠𝑢𝑏𝑗‖𝑒 and signs the message 𝑚 to
obtain a signature. Upon receiving the signature, all the users
can check the validity of the signature and the embedded
encrypted shares while gets nothing about the share. Only
the beneficiary can decrypt 𝑒 with the corresponding secret
key 𝑠𝑘𝑏. After collecting all the shares, the beneficiary can
extract the secret key.

To be more specific, we show the detailed construction
on top of the proposed PoAPS in Fig. 7 with the help of
ElGamal encryption [15] and zero-knowledge proofs [19, 31].

PKeyGen(1𝜆)→(𝑥, 𝑦). The signer calls EKeyGen(1𝜆)
to set up the system with some security parame-
ter 𝜆 and return a key pair (𝑥𝑠, 𝑦𝑠). The beneficia-
ry calls EKeyGen (1𝜆) to generate a key pair (𝑥𝑏, 𝑦𝑏).

PPolicyGen(𝑥𝑠, desp)→(Γ, 𝑝𝑝). Call PSSPolicyGen(𝑥𝑠,

desp) to generate an application-based extract
structure and the necessary public parameters 𝑝𝑝.

PSign(𝑥𝑠,𝑚,Γ)→(𝜎). To sign a message 𝑚, the signer
needs to do the following steps.

(1) First check the message is binding to some
subjects in the leaf node 𝑁 .

(2) Then generate a secret share for the leaf node
by calling PSSShareGen(𝑥𝑠,Γ) and return the share 𝑠
and the corresponding 𝑎𝑢𝑥.

(3) To encrypt the share, the signer first chooses a
random number 𝛼, and calculates

𝐸 = (𝐴,𝐵) = (ℎ𝛼, 𝑠−1 · 𝑦𝛼
𝑏).

(4) To generate a zero-knowledge proof for the
encryption, the signer needs to prove

𝑆𝑃𝐾{(𝛼) : 𝑉 𝐵 = 𝑔𝑦
𝛼

}.
The instantiation of such proof can be easily obtained
following the techniques in [27].

(5) To generate a signature, 𝑚 is set as 𝑚 = 𝑚‖
𝑠𝑢𝑏𝑗‖𝑠‖𝑎𝑢𝑥‖𝐸‖𝜋, where 𝜋 is the proof, and calls
ESign(𝑥𝑠,𝑚) to return a signature 𝜎 = (𝑟, 𝑠).

PVerify(𝑦,𝑚, 𝜎)→(0/1). The verifier first calls

EVerify(𝑦,𝑚, 𝜎) to check the validity of the signa-
ture and then parses the embedded 𝑚𝑖, 𝑠𝑖 and 𝑎𝑢𝑥𝑖 to
check the validity of the shares 𝑠𝑖 by calling PSSVeri-
fy(𝑠𝑖, 𝑎𝑢𝑥𝑖). Verify the embedded zero-knowledge proof.
If the all the verification return 1 simultaneously, it
outputs 1; otherwise, output 0.

PExtract(𝑦𝑠, 𝑥𝑏, {(𝑚𝑖, 𝜎𝑖)}). If the message-signature
pairs satisfy the policy, then decrypt the shares
embedded in the signature 𝜎𝑖 as 𝑠𝑖 = 𝐴𝑥𝑏/𝐵, call the
PSSReconstruct({(𝑥𝑖, 𝑠𝑖)}𝑖⊆𝑆) to recover the signing key
𝑥𝑠.

Figure 7: PoAPS with designated beneficiary

Remarks. We show three remarks for the proposed PoAPS.

(1) A blockchain-based non-equivocation with public veri-
fiability and private extractability can be designed by inte-
grating the deposit mechanism borrowed from [37] together
with the above PoAPS by the designated beneficiary.

(2) The proofs of forgeability and private extractability
can be obtained directly from the underlying PoAPS (c.f.
section 3.5).

(3) Additionally, this protocol also needs to satisfy another
security requirement, privacy, which shows the ciphertexts do
not reveal the information about the encrypted shares. This
property indicates that even if collecting enough transactions
(satisfying the extract structure) containing encrypted shares,
the outsiders are not able to recover the corresponding secret
key. In the model, this can be reduced to the security of the
underlying encryption scheme.

4 POLICY-BASED NON-EQUIVOCA-
TION IN BLOCKCHAIN

Putting everything together, in this section, we introduce
policy-based non-equivocation in the blockchain.

Three entities are involved in the system, as shown in Fig. 8,
namely an authority, a set of users and a blockchain. We show
the way to achieve non-equivocation in the blockchain by
integrating the proposed PoAPS. The workflow is as follows.

Figure 8: System model of policy-based non-
equivocation in blockchain

∙ Setup. This phase involves the authority and the users.
The authority is not a fully trusted party, who can
be offline after initiation. The authority initiates the
whole system and specifies the policy with some policy
description desc that the users in the system need to

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

867

follow. Each participant who involves in the system
calls PKeyGen(1𝜆) to return a key pair (𝑝𝑘𝑈 , 𝑠𝑘𝑈). The
user who conducts transactions in the system details
the extract structure according to the pre-defined poli-
cy by calling PPolicyGen(𝑠𝑘𝑈 , desc) and return Γ and
𝑝𝑝. Γ is stored in blockchain publicly. The user who
engages in the system creates deposit 𝑣 in time 𝑇 on
the blockchain.
∙ Sign. In this phase, we suppose user 𝐴 as a signer, who
will be penalized in case of equivocation, and user 𝐵
as a verifier, who can detect the misbehaviour of 𝐴 by
validating the transactions. 𝐴 generates a transaction
with necessary information and signs the transaction by
calling PSign(𝑠𝑘𝐴, 𝑡𝑥,Γ), where 𝑡𝑥 contains the trans-
action details. The transaction will be validated by the
miners by calling PVerify(𝑝𝑘𝐴, 𝑡𝑥, 𝜎,Γ). If the trans-
action is invalid, it will be discarded. Otherwise, the
transaction will be published on the blockchain with
the consensus protocol, which is publicly accountable
by all the users in the system. 𝐵 collects the transac-
tions from the blockahin and the embedded shares for
future extractability.
∙ Extract. In this phase, if 𝐵 detects equivocation accord-
ing to Γ, 𝐵 calls PExtract(𝑝𝑘, {𝑚𝑖}, {𝑡𝑥𝑖},Γ) to recover
𝐴’s secret key in the deposit and transfers the money
to 𝐵’s account. The users in the system compete to
extract the secret and only the first one who works it
out will get the reward. If 𝐴 honestly performs in the
system, 𝐴 can redeem the deposit after time 𝑇 without
any loss.

5 IMPLEMENTATION

We evaluate the proposal in this section. Firstly, we theo-
retically analyze the computation complexity and the commu-
nication overhead of the proposed PoAPS. Then we test the
time costs of these algorithms. The gas costs of the functions
are also provided together with the actual monetary costs.
We present the implementation result in this section.

5.1 Complexity analysis

We analyze the computation complexity and the commu-
nication overhead of the proposed PoAPS based on ECDSA
[21] and the proposed PBVSS (section 3.1). We focus only
on the expensive operations, including the exponentiation
and multiplication in the group and ignore the cheap ones.
The results are listed in Table 1.

The parameters in Table 1 are explained as follows. 𝑛 is
the number of the nodes in the extract structure (tree). ℎ is
the height of the extract structure (tree). 𝑑 is the degree in
a tested polynomial. 𝑒𝑥𝑝𝐺 and 𝑒𝑥𝑝𝑃 are the exponentiation
operations in group 𝐺 and 𝑍𝑝, respectively. 𝑚𝑢𝑙𝑡𝐺 and 𝑚𝑢𝑙𝑡𝑃
are the multiplication operations in the group 𝐺 and 𝑍𝑝,
respectively.

Algorithm
Computation Communication

complexity overhead

PKeygen 𝑒𝑥𝑝𝐺 𝑂(𝑛)|𝐺|

PPolicyGen 𝑂(𝑛)𝑚𝑢𝑙𝑡𝑝 𝑂(𝑛)|𝑍𝑝|

PSign 𝑒𝑥𝑝𝐺 + (𝑑+ 2)𝑚𝑢𝑙𝑡𝑝 3|𝑍𝑝|+𝑂(ℎ)|𝐺|

PVerify
2𝑚𝑢𝑙𝑡𝑝 + 2𝑒𝑥𝑝𝐺+

1
𝑚𝑢𝑙𝑡𝐺 +𝑂(ℎ)𝑒𝑥𝑝𝑝

PExtract 𝑂(𝑛)(𝑚𝑢𝑙𝑡𝑝 + 𝑒𝑥𝑝𝑝) |𝑍𝑝|

Table 1: The theoretical analysis of each algorithm
in PoAPS

5.2 Implementation results.

We implement the algorithms to evaluate the time con-
sumption. The projects are written in C++ language with
Miracl Library [33] to achieve the cryptographic operations
and the Barreto-Naehrig curve [14] was chosen in the evalua-
tion. The evaluation of the algorithms was first conducted
on a laptop with Intel(R) Core(TM) i7-8550 CPU @1.8 GHz
Win 10 operating system. Then we test the algorithms in
a Raspberry Pi to simulate a thin client. The Raspberry
Pi 3 Model B+ is equipped with 64-bit quad-core ARM v7
processor rev 4 and 1 GB LPDDR2 SDRAM. The operating
system is Ubuntu Mate 16.04.6 LTS. We implement the ex-
tract structure in Fig. 6 and the time costs for each algorithm
are shown in the table below.

PoAPS

Algorithm Laptop Raspberry Pi

execution time execution time

PKeygen 1 ms 9.113 ms

PPolicyGen 0.002 ms 0.075 ms

PSign 2 ms 12 ms

PVerify 18 ms 79.26 ms

PExtract 28 ms 98 ms

Designated beneficiary

Algorithm Laptop Raspberry Pi

execution time execution time

PKeygen 1 ms 9.3 ms

PPolicyGen 0.001 ms 0.083 ms

PSign 18 ms 92 ms

PVerify 30 ms 160 ms

PExtract 34 ms 124 ms

Table 2: The time costs of each algorithms in PoAPS

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

868

As we can see from Table 2, the execution on Raspberry Pi
is much slower than that on a laptop, as the processing ability
of an Raspberry Pi is lower than that of a laptop. Among
the algorithms, PPolicyGen is the cheapest, as the cost to
initialize an access structure is for generating some polynomi-
als with random coefficients without other time-consuming
operations. The most expensive algorithm is PExtract, as this
algorithm needs to traverse all the nodes from the leaves to
the root level by level. Nevertheless we need to note that
the sub-tree on the same level can be processed in parallel,
which would save much time. While the sub-tree at different
levels can only be conducted serially. For example, in our
example, the extraction in subtree 𝐴 and 𝐵 can be conducted
meanwhile, which saves 6 ms. In this way, the time cost of
PExtract based on a multi-level tree structure can be approx-
imately estimated. We provide a benchmark of the time cost
of PExtract algorithm on a single-level structure, which is
shown in Fig. 9. We can tell from this figure that the time
cost in a single-level structure is linear with the number of
nodes, which also complies with the theoretical analysis, as
the more nodes in the level, the more exponent operations
are needed. And the algorithm is practical in the sense that
for 30 nodes, it costs 173 ms.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

Number of nodes

Ti
m

e
(m

s)

Figure 9: Time costs of PExtract algorithm on laptop
in single level

We then test the efficiency of the construction with desig-
nated beneficiaries. As we can see from Table 2, the time costs
for PKeyGen and PPolicyGen are almost the same as those
in the publicly verifiable one. PSign, PVerify and PExtract
are more costly since more operations are needed to achieve
privacy, which is in accordance with the empirical analysis.
The additional overhead in PSign is to encrypt the share and
generate the zero-knowledge proofs, as the proof is to prove
witness for double discrete logarithms. And the overhead for
PVerify and PExtract are to verify a zero-knowledge proof and

decrypt the ciphertext, respectively. The additional overhead
is 16 ms, 12 ms and 6 ms, which is acceptable.

Algorithm Gas costs USD costs

Verify a signature 2199 gas 0.0079 USD

Verify a share 1415 gas 0.0051 USD

Table 3: The gas costs in Ethereum

For the implementation in blockchain, we use Solidity
[11] to test the gas costs of the algorithms based on the
ECC library by A. Olofsson to achieve the cryptographic
computation and evaluate the corresponding actual USD
costs. The gas price is 0.02 Ether per million gas and the Ether
price is $180.75 (Jan. 2020. https://coinmarketcap.com/),
which is acceptable.

6 OTHER APPLICATION EXAMPLES

In this section, we show more examples in which our system
provides tracing/extract ability by the equivocation condi-
tions.

Accountable delegation of signing ability. In traditional
signing delegation schemes, the original signer issues an au-
thorization to the proxy signer. The proxy signer can sign
on behalf of the original signer when the original signer is
unavailable. It is reasonable that the original signer makes
some constraints to limit the proxy signer’s signing ability,
in a way that if the proxy signer violates the rules, it can
be traced by revealing the proxy signing key and the proxy
thus can not sign anymore. Specifically, the original signer
issues an authorization together with a tracing policy to the
proxy signer. The proxy signer makes deposits with his/her
secret key. The proxy signer also needs to initiate the tracing
policy with the secret key and make it publicly verifiable
(i.e., put it on the blockchain). Then the proxy signer can
sign (i.e., generate transactions) instead of the original signer.
The proxy signer will be punished by losing all the deposit
if he/she does not follow the policy specified by the original
signer.

Disincentivizing contractual (policy-based) spending.Double-
spending is one of the most common equivocation in e-cash
and cryptocurrencies, in which it requires a single digital cur-
rency cannot be spent more than once. Policy-based spending,
with a policy linking to the currency, is essential for organi-
zations to guide the investment tradeoff 2. For example, the
money raised for the charity should be regulated by some rule.
If the charitable spending breaks the rule, then the secret
key of the money can be revealed and the money will be con-
fiscated by the government. In a cryptocurrency system, the
developer could specify spending rules based on a tree-based
policy structure, in which more than double-spending can be
considered. Then by applying the mechanisms provided in

2https://russellinvestments.com/-/media/files/ca/en/insights/institutions/
understanding-effects-of-spending-policies.pdf?la=en

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

869

https://coinmarketcap.com/

Sect. 4, it satisfies more general regulation requirements in
the system.

Internet censorship. Internet censorship is to control the
resources published or accessed on the Internet by the reg-
ulators or the administrators of the web site. Suppose an
online content sharing web site, in which each user has a
public-secret key pair when they registered, is allowed their
users to upload and share their data. The subscribers can pay
for the material to share the data or donate to the publisher
if they like the material the publisher shares. The reward
will be put in the account controlled by the secret key. Each
time the publisher uploads a content, a signature should be
generated for future regulation. The web site management
team defines the uploading conditions based on some tracing
structure. If any user breaks the rules, the secret key will be
revealed, and the account will be placed in the blacklist. The
money in their account can be transferred to the user who
finds the violation first as a reward.

Policy-based insurance pension scheme. This example is
for the condition with public verifiability and a designated
beneficiary. Suppose a private pension scheme is designed
by an insurance company. The scheme is a contributory one
based on a policy structure where there are many conditions,
for example, the age of the participation, the health con-
dition, a fixed amount of the salaries received, etc. When
each condition is met, the insurance company generates a
signature for the participants. If the pre-defined policy is met,
then the participant can retrieve the account and acquire the
corresponding pension inside.

7 CONCLUSION

Non-equivocation is a basic security requirement for dis-
tributed systems including blockchain. In this paper, we
came up with some new primitives to deal with equivocation
in blockchain-based applications. Specifically, we present-
ed PoAPS on top of PBVSS with a black-box construction
and an instantiation based on ECDSA. Security proofs are
presented to demonstrate the unforgeability and extractabil-
ity. We also integrated our proposal with blockchain-based
cryptocurrencies to detail the punishment by losing the de-
posit. We evaluated the algorithms to test the time costs
and the gas costs, which show the practicality of the scheme.
Some potential applications were also discussed. Future work
includes exploring more expressive policy to design more
general spending rules.

8 ACKNOWLEDGMENTS

The authors would like to thank the anonymous review-
ers who led to the improvement of this paper. Yong Yu is
supported by the National Natural Science Foundation of
China under Grant 61872229, Grant U19B2021, the Key Re-
search and Development Program of Shaanxi under Program
2020ZDLGY09-06 and the Blockchain Core Technology S-
trategic Research Program of Ministry of Education of China
under Grant 2020KJ01030.

REFERENCES
[1] Muneeb Ali, Jude Nelson, Ryan Shea, and Michael J Freedman.

2016. Blockstack: A global naming and storage system secured
by blockchains. In 2016 USENIX Annual Technical Conference.
181–194.

[2] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski,
and Lukasz Mazurek. 2014. Secure multiparty computations on
bitcoin. In 2014 IEEE Symposium on Security and Privacy.
IEEE, 443–458.

[3] Henry Aspegren. 2018. b verify: scalable non-equivocation
for verifiable management of data. Ph.D. Dissertation. Mas-
sachusetts Institute of Technology.

[4] Michael Backes, Fabian Bendun, Ashish Choudhury, and Aniket
Kate. 2014. Asynchronous MPC with a strict honest majority
using non-equivocation. In Proceedings of the 2014 ACM sympo-
sium on Principles of distributed computing. 10–19.

[5] Mihir Bellare, Bertram Poettering, and Douglas Stebila. 2017.
Deterring certificate subversion: efficient double-authentication-
preventing signatures. In IACR International Workshop on Pub-
lic Key Cryptography. Springer, 121–151.

[6] Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to
design fair protocols. In Annual Cryptology Conference. Springer,
421–439.

[7] Dan Boneh, Sam Kim, and Valeria Nikolaenko. 2017. Lattice-
based DAPS and generalizations: Self-enforcement in signature
schemes. In International Conference on Applied Cryptography
and Network Security. Springer, 457–477.

[8] Vitalik Buterin et al. 2014. A next-generation smart contract and
decentralized application platform. white paper 3 (2014), 37.

[9] Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine
fault tolerance. In OSDI, Vol. 99. 173–186.

[10] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awer-
buch. 1985. Verifiable secret sharing and achieving simultaneity
in the presence of faults. In 26th Annual Symposium on Founda-
tions of Computer Science (sfcs 1985). IEEE, 383–395.

[11] Chris Dannen. 2017. Introducing Ethereum and Solidity.
Springer.

[12] David Derler, Sebastian Ramacher, and Daniel Slamanig. 2018.
Generic double-authentication preventing signatures and a post-
quantum instantiation. In International Conference on Provable
Security. Springer, 258–276.

[13] David Derler, Sebastian Ramacher, and Daniel Slamanig. 2018.
Short double-and n-times-authentication-preventing signatures
from ECDSA and more. In 2018 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE, 273–287.

[14] Augusto Jun Devegili, Michael Scott, and Ricardo Dahab. 2007.
Implementing cryptographic pairings over Barreto-Naehrig curves.
In International Conference on Pairing-Based Cryptography.
Springer, 197–207.

[15] Taher ElGamal. 1985. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE transactions on
information theory 31, 4 (1985), 469–472.

[16] Amos Fiat and Moni Naor. 1993. Broadcast encryption. In Annual
International Cryptology Conference. Springer, 480–491.

[17] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical
solutions to identification and signature problems. In Conference
on the Theory and Application of Cryptographic Techniques.
Springer, 186–194.

[18] Matthias Fitzi, Juan Garay, Shyamnath Gollakota, C Pandu
Rangan, and Kannan Srinathan. 2006. Round-optimal and efficient
verifiable secret sharing. In Theory of Cryptography Conference.
Springer, 329–342.

[19] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. 1989. The
knowledge complexity of interactive proof systems. SIAM Journal
on computing 18, 1 (1989), 186–208.

[20] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters.
2006. Attribute-based encryption for fine-grained access control
of encrypted data. In Proceedings of the 13th ACM conference
on Computer and communications security. Acm, 89–98.

[21] Jonathan Katz. 2010. Digital signatures. Springer Science &
Business Media.

[22] Aggelos Kiayias and Qiang Tang. 2013. How to keep a secret:
leakage deterring public-key cryptosystems. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications
security. 943–954.

[23] Ranjit Kumaresan and Iddo Bentov. 2014. How to use bitcoin
to incentivize correct computations. In Proceedings of the 2014

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

870

ACM SIGSAC Conference on Computer and Communications
Security. ACM, 30–41.

[24] Jinyuan Li, Maxwell Krohn, David Mazieres, and Dennis Shasha.
2004. SUNDR: Secure untrusted data repository. In USENIX
Symposium on Operating Systems Design and Implementation,
Vol. 4. 9–25.

[25] Yannan Li, Guomin Yang, Willy Susilo, Yong Yu, Man Ho Au, and
Dongxi Liu. 2019. Traceable monero: Anonymous cryptocurrency
with enhanced accountability. IEEE Transactions on Dependable
and Secure Computing (2019), 10.1109/TDSC.2019.2910058.

[26] Satoshi Nakamoto et al. 2008. Bitcoin: A peer-to-peer electronic
cash system. (2008).

[27] Torben Pryds Pedersen. 1991. Non-interactive and information-
theoretic secure verifiable secret sharing. In Annual International
Cryptology Conference. Springer, 129–140.

[28] Bertram Poettering. 2018. Shorter double-authentication pre-
venting signatures for small address spaces. In International
Conference on Cryptology in Africa. Springer, 344–361.

[29] Bertram Poettering and Douglas Stebila. 2014. Double-
authentication-preventing signatures. In European Symposium
on Research in Computer Security. Springer, 436–453.

[30] Bertram Poettering and Douglas Stebila. 2017. Double-
authentication-preventing signatures. International Journal of
Information Security 16, 1 (2017), 1–22.

[31] Charles Rackoff and Daniel R Simon. 1991. Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext attack. In
Annual International Cryptology Conference. Springer, 433–444.

[32] Tim Ruffing, Aniket Kate, and Dominique Schröder. 2015. Liar,
liar, coins on fire!: Penalizing equivocation by loss of bitcoins. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 219–230.

[33] Michael Scott. 2003. Multiprecision integer and rational arith-
metic C/C++ library (MIRACL). URL: http://www. shamus.
ie (2003).

[34] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11
(1979), 612–613.

[35] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky,
Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi,
and Bryan Ford. 2016. Keeping authorities “honest or bust” with
decentralized witness cosigning. In 2016 IEEE Symposium on
Security and Privacy (SP). Ieee, 526–545.

[36] Alin Tomescu and Srinivas Devadas. 2017. Catena: Efficient non-
equivocation via bitcoin. In 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 393–409.

[37] Xingjie Yu, Michael Thang Shiwen, Yingjiu Li, and Robert Deng
Huijie. 2017. Fair deposits against double-spending for bitcoin
transactions. In 2017 IEEE Conference on Dependable and Se-
cure Computing. IEEE, 44–51.

Session 8B: Blockchain and Distributed Systems ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

871

	Non-equivocation in blockchain: Double-authentication-preventing signatures gone contractual
	Citation
	Author

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Digital signature
	2.2 Elliptic curve digital signature algorithm
	2.3 Verifiable secret sharing

	3 Policy-authentication- preventing signatures
	3.1 Policy-based verifiable secret sharing
	3.1.1 Concrete construction of PBVSS
	3.1.2 Security analysis of PBVSS

	3.2 System components of PoAPS
	3.3 Security model
	3.4 Generic constructions of PoAPS
	3.5 Security analysis of PoAPS
	3.6 Instantiation of PoAPS
	3.7 Extension to a designated beneficiary

	4 Policy-based non-equivoca- tion in blockchain
	5 Implementation
	5.1 Complexity analysis
	5.2 Implementation results.

	6 Other Application examples
	7 Conclusion
	8 Acknowledgments
	References

