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In Information Processing Letters (2006), Tan pointed out that the anonymous signcryption scheme
proposed by Yang, Wong and Deng (YWD) in ISC 2005 provides neither confidentiality nor anonymity.
However, no discussion has been made on how a secure scheme can be made and there is no secure
scheme available to date. In this paper, we propose a modification of YWD scheme which resolves the
security issues of the original scheme without sacrificing its high efficiency and simple design. Indeed, we
show that our scheme achieves confidentiality, existential unforgeability and anonymity with more precise
reduction bounds. We also give a variation of our scheme and extend it to a ring signcryption scheme by
using the technique due to Boneh, Gentry, Lynn and Shacham.

Keywords: Signcryption, ring signcryption, privacy, anonymity

1. Introduction

Signcryption, introduced by Zheng in 1997 [25], is a cryptographic primitive
targeting to provide unforgeability and confidentiality simultaneously as typical
signature-then-encryption technique does but with less computational complexity
and lower communication cost. Due to these advantages, signcryption is suitable for
many applications which require secure and authenticated message delivery using
resource limited devices.

There have been many signcryption schemes proposed after Zheng’s publication
(e.g. [2,9–11,13–16,20,24]). In 2002, Baek et al. [3] first formally defined the se-
curity notions of signcryption, which are similar to the traditional semantic security
against adaptive chosen ciphertext attack (IND-CCA2) [17] and existential unforge-
ability against adaptive chosen message attack (EUF-CMA) [12]. The notion of in-

*A preliminary version appears in the Proc. of the 4th European PKI Workshop – Theory and Practice
(EuroPKI 2007). The work was supported by a grant from CityU (Project No. 7002001).
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sider security1 was first defined by An et al. [1]. The notion allows an adversary to
not only access the public keys of both sender and receiver but also know the sender’s
private key. For example, a signcryption scheme is said to be “insider secure” if the
adversary cannot compromise the confidentiality of a ciphertext even the adversary
knows the sender’s private key. Similar notion has later been extended to other se-
curity properties for signcryption [9,13,14]. Those properties include unforgeability,
anonymity, etc.

In [9], Boyen proposed a new set of security models for signcryption schemes (un-
der the identity-based setting [19]). In particular, a new requirement called ciphertext
anonymity was proposed. It requires that a ciphertext should appear anonymous to
anyone except the actual recipient. It hides the identities of both the sender and the
recipient of the ciphertext. This notion can be viewed as an extension of key privacy
introduced by Bellare et al. [4] for public key encryption. A signcryption scheme
with ciphertext anonymity or key privacy protects the identities of both sender and
recipient from being known from a ciphertext.

In [14], Libert and Quisquater proposed a signcryption scheme with ciphertext
anonymity. However, [21] and [23] independently demonstrated that it is neither
semantically secure nor anonymous under chosen plaintext attack. In [23], Yang,
Wong and Deng also proposed an improvement (hereinafter referred as the YWD
scheme) based on [14]. However, a recent result by Tan [22] showed that the YWD
scheme is not semantically secure and does not satisfy ciphertext anonymity, under
insider chosen-ciphertext attack. However, no improved scheme was proposed by
Tan.

Our contributions. It is still unknown if the YWD scheme can be improved to a
secure one, while maintaining the advantages of the original scheme being highly
efficient and simple. In this paper, we propose a modification of the YWD scheme.
The modified scheme not only solves the security issues of the original scheme,
but also maintains its efficiency. In particular, we show that our scheme achieves
confidentiality, existential unforgeability and anonymity with more precise reduction
bounds.

To consider anonymity one step further, we define the notion of ring signcryp-
tion. In a ring signcryption scheme, after decrypting the ciphertext, the recipient will
obtain a ring signature instead of a standard signature, and the recipient cannot tell
which party inside the ring generated the ciphertext. We also give a variation of our
improved signcryption scheme and show that it can be extended to a ring signcryp-
tion scheme by using the technique of [7].

Organization. We give the definition and security models of a signcryption scheme
with ciphertext anonymity (or key privacy) in Section 2. It is then followed by the
review and discussion of YWD signcryption scheme and Tan’s attacks in Section 3.
This leads us to the description of our method for solving the security issues of

1The original paper of An et al. [1] only presents the insider attack against the integrity of a signcryp-
tion. The idea has later been extended to confidentiality and other security properties [9,14].



C.K. Li et al. / An efficient signcryption scheme 453

the YWD scheme. Our construction and its security analysis are given in Section 4.
Based on our construction, we define and construct a ring signcryption scheme in
Section 5. We conclude the paper in Section 6.

2. The definition and security models of signcryption with key privacy

A signcryption scheme is a quadruple of probabilistic polynomial time (PPT) al-
gorithms (Keygen, Signcrypt, De-signcrypt, Verify).

(sk, pk) ← Keygen(1k) is the key generation algorithm which takes a security
parameter k ∈ N and generates a private/public key pair (sk, pk).

σ ← Signcrypt(1k, m, skU, pkR) takes k, a message m, a private key skU and a
public key pkR, outputs a ciphertext σ. m is drawn from a message space M which
is defined as {0, 1}n where n is some polynomial in k.

(m, s, pkU)/reject ← De-signcrypt(1k, σ, skR) takes k, σ and a private key
skR, outputs either a triple (m, s, pkU) where m ∈ M , s is a signature and pkU is a
public key, or reject which indicates the failure of de-signcryption.
true/false ← Verify(1k, m, s, pkU) takes k, m ∈ M , a signature s and a

public key pkU, outputs true for a valid signature or false for an invalid signature.
For simplicity, we omit the notation of 1k from the inputs of Signcrypt, De-

signcrypt and Verify in the rest of this paper. Note that the specification above re-
quires the corresponding signcryption scheme to support the “unwrapping” option
introduced in [15]. The “unwrapping” option allows the receiver of a ciphertext to
release the message and derive the embedded sender’s signature from the ciphertext
for public verification. Early schemes such as [25] do not support the “unwrapping”
option and therefore not satisfy this definition.

Definition 2.1 (Completeness). For any m ∈ M , (skU, pkU) ← Keygen(1k) and
(skR, pkR) ← Keygen(1k) such that skU �= skR, we have

(m, s, pkU) ← De-signcrypt(Signcrypt(m, skU, pkR), skR)

and true ← Verify(m, s, pkU).

Informally, we consider a secure signcryption scheme with key privacy to be se-
mantically secure against adaptive chosen ciphertext attack, existentially unforgeable
against chosen message attack, and anonymous in the sense that a ciphertext should
contain no information in the clear that identifies the author or the recipient of the
message and yet be decipherable by the intended recipient. We capture these no-
tions in the following definitions. They are similar to those defined by Libert and
Quisquater in [14].
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Definition 2.2 (Confidentiality). A signcryption scheme is semantically secure
against insider chosen ciphertext attack (SC-IND-CCA) if no PPT adversary has
a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skU, pkU). skU is kept secret
while pkU is given to adversary A.

2. In the first stage, A makes a number of queries to the following oracles:

(a) Signcryption oracle: A prepares a message m ∈ M and a public key pkR,
and queries the signcryption oracle (simulated by the challenger) for the
result of Signcrypt(m, skU, pkR). The result is returned if pkR �= pkU and
pkR is valid in the sense that pkR is in the range of Keygen with respect to
the security parameter. Otherwise, a symbol “⊥” is returned for rejection.

(b) De-signcryption oracle: A produces a ciphertext σ and queries for the re-
sult of De-signcrypt (σ, skU). The result is made of a message, a signature
and the sender’s public key if the de-signcryption is successful and the sig-
nature is valid under the recovered sender’s public key. Otherwise, a symbol
“⊥” is returned for rejection.

These queries can be asked adaptively: each query may depend on the answers
of previous ones.

3. A produces two plaintexts m0, m1 ∈ M of equal length and a valid private
key skS such that skS is in the range of Keygen with respect to the security
parameter. The challenger flips a coin b̌

R← {0, 1} and computes a signcryption
σ∗ = Signcrypt(mb̌, skS, pkU) of mb̌ with the sender’s private key skS under
the receiver’s public key pkU. σ∗ is sent to A as a challenge ciphertext.

4. A makes a number of new queries as in the first stage with the restriction that
it cannot query the de-signcryption oracle with σ∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b̌.

A’s advantage is defined as Advind−cca(A) = Pr[b′ = b̌] − 1
2 and the probability that

b′ = b̌ is called the probability that A wins the game.

The definition above captures the advantage of an active adversary over an eaves-
dropper. That is, the adversary knows and has the full control of the signing key. This
also gives us insider-security for confidentiality [1,9,14].

Definition 2.3 (Unforgeability). A signcryption scheme is existentially unforgeable
against chosen-message insider attack (SC-EUF-CMA) if no PPT forger has a non-
negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skU, pkU). skU is kept secret
while pkU is given to forger F .

2. The forger F adaptively makes a number of queries to the signcryption oracle
and the de-signcryption oracle as in the confidentiality game.
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3. F produces a ciphertext σ and a valid key pair (skR, pkR) in the sense that the
key pair is in the range of Keygen and wins the game if

(a) De-signcrypt(σ, skR) returns a tuple (m, s, pkU) such that true ←
Verify(m, s, pkU), and

(b) σ is not the output of the signcryption oracle.

We allow the forger to have the full control of the de-signcryption key pair
(skR, pkR). This also captures the notion of insider-security for unforgeability.

Definition 2.4 (Ciphertext anonymity). A signcryption scheme is ciphertext anony-
mous against chosen-ciphertext insider attack (SC-ANON-CCA) if no PPT distin-
guisher has a non-negligible advantage in the following game:

1. The challenger generates two distinct public key pairs (skR,0, pkR,0) and
(skR,1, pkR,1) using Keygen, and gives pkR,0 and pkR,1 to the distinguisher D.

2. In the first stage, D adaptively makes a number of queries in the form of Sign-
crypt(m, skR,c, pkR) or De-signcrypt(σ, skR,c), for c = 0 or c = 1. pkR is some
arbitrary but valid recipient key such that pkR �= pkR,c.

3. After completing the first stage, D outputs two valid and distinct private keys
skS,0 and skS,1, and a plaintext m ∈ M .

4. The challenger then flips two coins b, b′ R← {0, 1} and computes a challenge
ciphertext σ = Signcrypt(m, skS,b, pkR,b′ ) and sends it to D.

5. D adaptively makes a number of new queries as above with the restriction that
it is not allowed to ask the de-signcryption oracle of the challenge ciphertext σ.

6. At the end of the game, D outputs bits d, d′ and wins the game if (d, d′) =
(b, b′).

D’s advantage is defined as Advanon−cca(D) = Pr[(d, d′) = (b, b′)] − 1
4 .

The ciphertext anonymity definition above follows that of Libert and Quisquater
in [14], Definition 4, which is considered to be an extension of the “key privacy”
notion of public key encryption [4]. We only consider this definition for key privacy
in this paper rather than also considering an additional one called key invisibility
[14], Definition 5. We believe that the definition above is more intuitive. With only a
few differences, one can also consider it as a non-identity based version of Boyen’s
definition [9] of ciphertext anonymity in the identity-based setting.

3. Preliminaries

Bilinear map. Let k be a system-wide security parameter. Let q be a k-bit prime.
Let G1 be an additive cyclic group of order q and G2 be a multiplicative cyclic
group of the same order. Let P be a generator of G1. A bilinear map is defined as
e : G1 × G1 → G2 with the following properties:
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1. Bilinear: For all U , V ∈ G1 and a, b ∈ Z, we have e(aU , bV ) = e(U , V )ab.
2. Non-degenerate: e(P , P ) �= 1.
3. Computable: there is an efficient algorithm to compute e(U , V ) for any U ,

V ∈ G1.

Modified pairings [6] obtained from the Weil or the Tate pairing provide admissible
maps of this kind.

The Computational Diffie–Hellman Problem. The Computational Diffie–Hellman
Problem (CDH) in G1 is to compute abP from 〈P , aP , bP 〉 where a, b are random
in Zq .

3.1. YWD signcryption scheme [23]

Suppose each element in G1 can be represented distinctly using l bits. Let
H1 : {0, 1}n+2l → G1, H2 : G

3
1 → {0, 1}l and H3 : G

3
1 → {0, 1}n+l be crypto-

graphic hash functions where n denotes the length of a plaintext in binary represen-
tation and is in some polynomial of k. The scheme is described as follows:

Keygen: A private key is generated by picking a random xu ← Zq and the corre-
sponding public key is computed as Yu = xuP . In the following, the sender
and the receiver are denoted by u = S and u = R, and their private/public key
pairs are denoted by (xS, YS) and (xR, YR), respectively.

Signcrypt: To signcrypt a message m ∈ {0, 1}n for receiver R, sender S carries out
the following steps:

1. Pick a random r ← Zq and compute U = rP .
2. Compute V = xSH1(m, U , YR).
3. Compute W = V ⊕ H2(U , YR, rYR) and Z = (m‖YS) ⊕ H3(U , YR, rYR).

The ciphertext is σ = (U , W , Z).

De-signcrypt: When a ciphertext σ = (U , W , Z) is received, receiver R performs
the following steps:

1. Compute V = W ⊕ H2(U , YR, xRU ).
2. Compute (m‖YS) = Z ⊕ H3(U , YR, xRU ).
3. If YS /∈ G1, outputs reject. Otherwise, compute H = H1(m, U , YR) and

check if e(YS, H) = e(P , V ).
4. If the equation holds, output 〈m, (U , YR, V ), YS 〉; otherwise, output

reject.

Verify: For a message–signature pair (m, (U , YR, V )) and a signer’s public key YS,
the algorithm checks if e(YS, H1(m, U , YR)) = e(P , V ). If the condition holds,
it outputs true. Otherwise, it outputs false.
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3.2. Tan’s attacks against the YWD scheme

Adaptive chosen ciphertext attack. Based on the SC-IND-CCA game stated in
Definition 2.2, Tan’s attack [22] is carried out as follows.

Given the receiver’s public key YR, the adversary A first chooses a sender’s private
key xS and two same length messages m0 and m1, and sends them to the challenger.
Then the challenger randomly picks b ∈ {0, 1} and computes the challenge cipher-
text of mb as C ∗ = (U ∗, W ∗, Z∗). After receiving C ∗, A makes a guess of b to be 0
and computes a new ciphertext with a random message m̄ which has the same length
as m0 and a random x̄S ← Zq . A computes the ciphertext C̄ as follows:

• ȲS = x̄SP ,
• V ∗ = xSH1(m0, U ∗, YR),
• V̄ = x̄SH1(m̄, U ∗, YR),
• W̄ = (V̄ ⊕ V ∗) ⊕ W ∗,
• Z̄ = ((m0 ⊕ m̄)‖(ȲS ⊕ YS)) ⊕ Z∗.

At last, A sends C̄ = (U ∗, W̄ , Z̄) to the de-signcryption oracle which computes the
following:

• m̂‖ŶS = Z̄ ⊕ H3(U ∗, YR, xRU ∗), here ŶS = ȲS,
• V̂ = W̄ ⊕ H2(U ∗, YR, xRU ∗),
• H = H1(m̂, U ∗, YR).

If A’s guess is correct, the de-signcryption oracle returns m̄ with probability 1.
Otherwise, the de-signcryption oracle returns “⊥” with overwhelming probability.
A similar attack can be carried out to break the Ciphertext Anonymity, readers may
refer to [22] for the details of the attack.

Discussions. The YWD scheme is not secure against Tan’s attacks because the
component V can easily be reconstructed with the sender’s secret. Since the inputs
of H1 do not involve any secret value, the adversary under the notion of “insider
security” can easily make use of the malleability property of W and Z to construct a
related but different ciphertext. In the next section, we proposed an efficient solution
of this problem.

4. Simple and efficient signcryption with key privacy

Our scheme is based on Boneh–Lynn–Shacham’s (BLS) short signature [8] and
ElGamal encryption. The recipient can decrypt without knowing who the sender
is. Both the sender’s public key and the related signature are recovered from the
ciphertext such that the recipient can verify its authenticity.
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4.1. Our construction

Suppose each element in G1 can uniquely be represented using an l-bit long binary
string. Let H1 : {0, 1}n × G

3
1 → G1 and H2 : G

3
1 → {0, 1}n+2l be hash functions

where n denotes the length of a plaintext and is in some polynomial of k. For security
analysis, all hash functions are viewed as random oracles [5]. Our proposed scheme
is described as follows.

Keygen. The same as that of the YWD scheme.

Signcrypt. To signcrypt a message m ∈ {0, 1}n for receiver R, sender S carries out
the following steps:

1. Pick a random r ← Zq and compute U = rP .
2. Compute V = xSH1(m, U , YR, rYR) and Z = (m‖YS ‖V ) ⊕ H2(U ,

YR, rYR).

The ciphertext is σ = (U , Z).

De-signcrypt. When a ciphertext σ = (U , Z) is received, receiver R performs the
following steps:

1. Compute D = xRU .
2. Compute (m‖YS ‖V ) = Z ⊕ H2(U , YR, D).
3. If YS /∈ G1, output reject. Otherwise, compute H = H1(m, U , YR, D)

and check if (P , YS, H , V ) is a Diffie–Hellman tuple by e(YS, H)
?=

e(P , V ).
4. If the check passes, output 〈m, (U , YR, D, V ), YS 〉; otherwise, output re-

ject.

Verify. For a message–signature pair (m, (U , YR, D, V )) and a signer’s public key
YS, the algorithm checks if e(YS, H1(m, U , YR, D)) = e(P , V ). If the condi-
tion holds, it outputs true. Otherwise, it outputs false.

Discussions. In our scheme, the signature V is signed on the value D which cannot
be computed without the recipient’s private key. Even with the knowledge of the
sender’s private key, the adversary cannot reconstruct V if D remains unknown. On
the other hand, the signcryption oracle does not offer much help since no adaptive
choice is available to make a signature of D. These give us semantic security under
adaptive insider’s chosen-ciphertext attack. The adversary needs to know the value of
D to come up with a valid ciphertext, which renders the decryption oracle “useless”
and explains why we get chosen-ciphertext security from chosen-plaintext secure
ElGamal encryption.
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4.2. Security analysis

Theorem 4.1. Let k be a security parameter. Under the random oracle model, if
there exists a PPT algorithm which can break the SC-IND-CCA security of the pro-
posed signcryption scheme with advantage at least ρ(k), then there exists a PPT
algorithm which can solve the Computational Diffie–Hellman Problem with proba-
bility at least 2(1 − p2−poly(k))ρ(k) where poly(·) is some polynomial and p is the
maximum number of de-signcryption queries made in the model of SC-IND-CCA.

Proof. For contradiction, we assume that there exists an adversary A who wins the
game given in Definition 2.2 with non-negligible advantage. In the following, we
construct an algorithm B to solve the CDH problem in G1 with the help of a DDH
solver due to the bilinear pairing.

Suppose B is given a random instance of the CDH problem (P , aP , bP ) ∈ G
3
1, B

runs A as a subroutine to find the solution abP . B sets up a simulated environment
of SC-IND-CCA model for A as follows:

B gives bP to A as the challenging public key Yu.
B maintains two lists L1 and L2 for simulating hash oracles H1 and H2, respec-

tively. When a hash query H1(m, P1, P2, P3) is received, where m ∈ {0, 1}n and
P1, P2, P3 ∈ G1, B checks if the query tuple (m, P1, P2, P3) is already in L1. If it ex-
ists, the existing result in L1 is returned. If it does not exist but e(P1, P2) = e(P , P3)
and (P1, P2, �) is in L1, where “�” is a special symbol, then B replaces “�” in the
entry with P3 and returns the existing result in the entry. For all other cases, B ran-
domly chooses t ← Zq and returns tP to A. The query tuple and return value are
then saved in L1. For enabling the retrieval of t possibly at some later time of the
simulation, the value of t is also stored in L1 along the entry. Hash queries to H2 are
handled similarly.

For a signcryption query on a message m with a receiver’s public key YR, B checks
if YR ∈ G1. If it is incorrect or YR = Yu, B returns a symbol “⊥” for rejec-
tion. Otherwise, B randomly picks r ← Zq , computes U = rP and simulates
H1(m, U , YR, rYR) described as above. Suppose H1(m, U , YR, rYR) is set to t′P .
B then simulates H2(U , YR, rYR), and computes the ciphertext σ = (U , Z) where
Z = (m‖Yu‖t′(Yu)) ⊕ H2(U , YR, rYR).

De-signcryption query on σ = (U , Z) is answered as follows:

1. B looks for a tuple of the form (U , Yu, λ) in L2 such that e(P , λ) = e(U , Yu)
or λ = �.

• If the tuple (U , Yu, λ) is not in L2, B adds a new entry into L2 by storing
(U , Yu, �) as the query tuple and a value randomly drawn from the range
of H2 as the oracle return. The special symbol “�” is used as a marker
for denoting that the real value should be the solution of the CDH problem
instance (U , Yu). This step ensures that the value of H2(U , Yu, λ) is fixed
before σ is de-signcrypted.
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• If the tuple (U , Yu, λ) is already in L2, the existing result will be used as the
value of H2(U , Yu, λ).

2. B computes m‖YS ‖V = Z ⊕ H2(U , Yu, λ) and looks for a tuple of the form
(m, U , Yu, λ) in L1 such that e(P , λ) = e(U , Yu) or λ = �.

• If the tuple (m, U , Yu, λ) is not in L1, B adds a new entry into L1 by storing
(m, U , Yu, λ) as the query tuple and setting r′P as the oracle return, where
r′ ← Zq . Note that λ can be a value such that e(P , λ) = e(U , Yu). This is
because, the value may have been obtained from L2 above.

• If the tuple (m, U , Yu, λ) is in L1 and e(P , λ) = e(U , Yu), then besides
using the existing result of L1 as the value for H1(m, U , Yu, λ), the value of
λ should also be used to update the corresponding entry in L2.

• If the tuple (m, U , Yu, �) is in L1, then the existing result in L1 will be
used as the value for H1(m, U , Yu, �). Also if the value of λ can be ob-
tained from L2, then the entry (m, U , Yu, �) in L1 should also be updated to
(m, U , Yu, λ).

3. B checks if e(P , V ) = e(H1(m, U , Yu, λ), YS) holds.

• If the equation holds and e(P , λ) = e(U , Yu), (m, (U , Yu, λ, V ), YS) are re-
turned as the message–signature pair and the sender’s public key.

• If the equation holds but λ = �, then B halts with failure.
• Otherwise, the symbol “⊥” is returned for rejection.

After completing the first stage of the game, A chooses two n-bit plaintexts m0 and
m1 together with a sender’s private key x∗

S, and requests B for a challenge ciphertext
built under the receiver’s challenging public key Yu. Suppose the associated signer’s
public key is Y ∗

S = x∗
SP .

B sets the challenge ciphertext to σ∗ = (U ∗, Z∗) where U ∗ = aP and Z∗ is
randomly drawn from {0, 1}n × G

2
1. B also randomly picks b̌ ← 1/0, and updates

L1 by adding in (mb̌, aP , Yu, �), randomly picking t∗ ← Zq , and setting the result
of H1(mb̌, aP , Yu, �) to t∗P . Note that this entry will only be added in L1 if it is
not in L1 yet. Similarly, L2 will also be updated with (aP , Yu, �) and the value of
H2(aP , Yu, �) is set to Z∗ ⊕ (mb̌‖Y ∗

S ‖t∗Y ∗
S ). Let V ∗ = t∗Y ∗

S .
After that, B answers A’s queries as in the first stage. If A queries H1 or H2 with

(aP , Yu, λ) such that e(aP , Yu) = e(λ, P ), then B outputs λ and halts. If A halts
without making this query, B outputs a random point in G1 and halts.

Analysis. The running time of B is in polynomial of A’s running time. To see that
the simulated game is computationally indistinguishable from a real game, we note
that H1, H2 and signcryption oracle are simulated perfectly. For de-signcryption
queries, except the following case, are carried out perfectly too.

The exceptional case is at step 3 of the de-signcryption oracle simulation
above when (U , Yu, �) is in L2 and (m, U , Yu, �) is in L1, while e(P , V ) =
e(H1(m, U , Yu, �), YS) where m‖YS ‖V = Z ⊕ H2(U , Yu, �) (i.e. the equation at
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step 3 holds). This case implies that A has never queried H1 on (m, U , Yu, λ) nor
H2 on (U , Yu, λ) such that e(P , λ) = e(U , Yu), while Z3 = W3 ⊕ V where Z =
(Z1, Z2, Z3) ∈ {0, 1}n × G2

1 and (W1, W2, W3) = H2(U , Yu, �) ∈ {0, 1}n × G2
1.

Also note that the de-signcryption oracle would never leak any of H1(m, U , Yu, �)
and W3 to A at step 3 of the de-signcryption oracle simulation above, since B either
fails or rejects. Therefore, we have

Pr[Z3 = W3 ⊕ V ] � p/|G1 | = p2−poly(k),

where p is the maximum number of de-signcryption queries made by A and poly(·)
is some polynomial function. Hence with probability at least 1 − p2−poly(k), B does
not fail and carries out the simulation perfectly.

Let E be the event that (aP , Yu, aYu) is queried on H1 or H2. Ē denotes the event
that (aP , Yu, aYu) is not queried on H1 or H2. Note that B solves the CDH problem
instance in event E.

We claim that for event Ē, A does not have any advantage in winning the game
over random guessing. Let Vb̌ = x∗

SH1(mb̌, aP , Yu, aYu). Then σ∗ = (aP , Z∗) is
the signcryption of mb̌ if we have

(mb̌‖Y ∗
S ‖Vb̌) = Z∗ ⊕ H2(aP , Yu, aYu).

If we focus on the output portion of H2(aP , Yu, aYu) that is corresponding to Vb̌,
we can see that, in event Ē, although (aP , Yu, �) is in L2 and (mb̌, aP , Yu, �)
is in L1, as argued above, B does not leak any information of these values to A.
Also due to the randomness assumption of H1 and H2, A does not have any ad-
vantage in determining the oracle return of H1(mb̌, aP , Yu, aYu) and the output
portion of H2(aP , Yu, aYu) corresponding to Vb̌ in the equation above. Hence,
Pr[A wins the game |Ē] = 1

2 . From the assumption,

Pr[A wins the game] =
1
2

+ ρ(k) � Pr[E] +
1
2

(1 − Pr[E]),

where ρ is A’s non-negligible advantage in winning the game defined in Defini-
tion 2.2 and k is the system-wide security parameter. Therefore, Pr[E] � 2ρ(k). We
have Pr[E ∧ B does not fail] � 2(1 − p2−poly(k))ρ(k). �

Theorem 4.2. Let k be the security parameter. Under the random oracle model,
if there exists a PPT algorithm which can break the SC-EUF-CMA security of the
proposed scheme with advantage at least ρ(k), then there exists a PPT algorithm
which can solve the Computational Diffie–Hellman Problem with probability at least
(1−p2−poly(k))(1−q1qS2−poly(k))ρ(k) where poly(·) is some polynomial, and p, q1, qS
are the maximum number of de-signcryption, H1 and signcryption queries made in
the model of SC-EUF-CMA.



462 C.K. Li et al. / An efficient signcryption scheme

Proof. We prove it also by contradiction, we assume that there exists a forger F
who can win the game stated in Definition 2.3. In the following, we construct an
algorithm B that can solve the CDH problem in G1.

Suppose B is given a random instance of the CDH problem (P , aP , bP ) ∈ G
3
1,

B runs F as a subroutine to find abP . B sets up a simulated environment of SC-
EUF-CMA as follows:

B gives bP to F as the challenge public key Yu.
B maintains two lists L1 and L2 to simulate the hash oracles H1 and H2, respec-

tively. In each entry of the lists, it keeps the query and the corresponding return of
the oracle. Hash oracles H2 is simulated as in the proof of Theorem 4.1.

When a hash query H1(m, P1, P2, P3) is asked by F , B first checks if the query
tuple (m, P1, P2, P3) is already in L1. If it exists, the existing result in L1 is returned.
If it does not exist but e(P1, P2) = e(P , P3) and (P1, P2, �) is in L1, where “�” is
a special symbol, then B replaces “�” in the entry with P3 and returns the existing
result in the entry. For all other cases, B randomly chooses t ← Zq and returns t(aP )
to F . The query tuple and return value are then saved in L1. For enabling the retrieval
of t possibly in some later time of the simulation, the value is also saved in L1.

For a signcryption query on a message m with a receiver’s public key YR both
chosen by F , B first checks if YR ∈ G1. If it is incorrect or YR = Yu, B returns
the symbol “⊥” for rejection. Otherwise, B picks a random r ← Zq and computes
U = rP . If the tuple m, U , YR, rYR is already in L1 and the corresponding hash
value is in the form of taP for some t ∈ Zq , B fails and aborts. Note that, if such a
case happens, m, U , YR, rYR can only occur in an H1 hash query before. Otherwise,
B selects a random t′ ← Zq and returns t′P as the value of H1(m, U , YR, rYR).
The query tuple, oracle return and the value of t′ are then saved in L1. After ob-
taining t′ such that t′P = H1(m, U , YR, rYR), B computes V = t′(Yu) which is
equal to bH1(m, U , YR, rYR). B then simulates H2 as in the proof of Theorem 4.1
for obtaining H2(U , YR, rYR), and computes the result ciphertext σ = (U , Z) where
Z = (m‖Yu‖t′(Yu)) ⊕ H2(U , YR, rYR).

When F performs a De-signcrypt(σ, sku) query, where σ = (U , Z), the following
steps are carried out:

1. B looks for a tuple of the form (U , Yu, λ) in L2 such that e(P , λ) = e(U , Yu)
or λ = �.

• If the tuple (U , Yu, λ) is not in L2, B adds a new entry into L2 by storing
(U , Yu, �) as the query tuple and a value randomly drawn from the range
of H2 as the oracle return. The special symbol “�” is used as a marker
for denoting that the real value should be the solution of the CDH problem
instance (U , Yu). This step ensures that the value of H2(U , Yu, λ) is fixed
before σ is de-signcrypted.

• If the tuple (U , Yu, λ) is already in L2, the existing result will be used as the
value of H2(U , Yu, λ).
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2. B computes m‖YS ‖V = Z ⊕ H2(U , Yu, λ) and looks for a tuple of the form
(m, U , Yu, λ) in L1 such that e(P , λ) = e(U , Yu) or λ = �.

• If the tuple (m, U , Yu, λ) is not in L1, B adds a new entry into L1 by storing
(m, U , Yu, λ) as the query tuple and setting t′(aP ) as the oracle return, where
t′ ← Zq . Note that λ can be a value such that e(P , λ) = e(U , Yu). This is
because, the value may have been obtained from L2 above.

• If the tuple (m, U , Yu, λ) is in L1 and e(P , λ) = e(U , Yu), then besides
using the existing result of L1 as the value for H1(m, U , Yu, λ), the value of
λ should also be used to update the corresponding entry in L2.

• If the tuple (m, U , Yu, �) is in L1, then the existing result in L1 will be
used as the value for H1(m, U , Yu, �). Also if the value of λ can be ob-
tained from L2, then the entry (m, U , Yu, �) in L1 should also be updated to
(m, U , Yu, λ).

3. B checks if e(P , V ) = e(H1(m, U , Yu, λ), YS) holds.

• If the equation holds and e(P , λ) = e(U , Yu), (m, (U , Yu, λ, V ), YS) are re-
turned as the message–signature pair and the sender’s public key.

• If the equation holds but λ = �, then B halts with failure.
• Otherwise, the symbol “⊥” is returned for rejection.

When F produces a ciphertext σ = (U , Z) and a receiver’s key pair (xR, YR),
B de-signcrypts the ciphertext as the simulation of de-signcrypt query above. If the
forgery is valid, which means e(Yu, H1(m, U , YR, λ)) = e(P , V ) = e(bP , taP ),
B gets V = tabP and solves the CDH problem from computing abP = t−1V . Then
B outputs abP and halts.

Analysis. From the simulation of the de-signcrypt query above, we can see that
there must be an entry in L1 for H1(m, U , YR, λ). We also claim that the correspond-
ing oracle return in the entry must be in the form t(aP ) for some t ∈ Zq , which
can be retrieved from L1. Notice that if H1(m, U , YR, λ) is equal to t′P , which is
generated in a signcryption query, the values of Z would also have been determined
in that signcryption query, which contradicts the restriction of the game defined in
Definition 2.3.

Obviously, The running time of B is also in polynomial of F ’s running time.
As proven in Theorem 1, the simulated game is also computationally indistinguish-
able from a real game if B does not fail during the simulation. There are two cases
in which B may fail: the first case is that in a signcryption query, B happens to
choose r ∈ Zq such that m, U = rP , YR, rYR is queried in an H1 query, and it
happens with probability at most q1qS/|G1 |, so B does not fail with probability at
lease 1 − q1qS2−poly(k). Also, as in Theorem 1, B does not fail in de-signcryption
queries with probability at lease 1 − p2−poly(k).

So, if B does not fail and F can win the game, then B can solve the CDH
problem. Hence, Pr[F wins the game ∧ B does not fail] � (1 − p2−poly(k))(1 −
q1qS2−poly(k))ρ(k). �
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Theorem 4.3. Let k be a security parameter. Under the random oracle model, if
there exists a PPT algorithm which can break the SC-ANON-CCA security of the
proposed signcryption scheme with advantage at least ρ(k), then there exists a PPT
algorithm which can solve the Computational Diffie–Hellman Problem with proba-
bility at least 4

3 (1 − p2−poly(k))ρ(k) where poly(·) is some polynomial and ρ is the
maximum number of de-signcryption queries made in the model of SC-ANON-CCA.

Proof. The proof follows that of Theorem 1. Suppose B is given (aP , cP ) as a ran-
dom instance of the CDH problem, B runs D to find the solution acP .

B picks two random elements x, y ∈ Zq and sets the two challenge public keys as
pkR,0 = x(cP ) and pkR,1 = y(cP ). B then simulates all the hash queries, signcryp-
tion queries and de-signcryption queries as in the proof of Theorem 1.

After the completion of the first stage, D chooses two private keys skS,0, skS,1 and
a plaintext m ∈ {0, 1}n and requests a challenge ciphertext built under skS,b and

pkR,b′ where b, b′ R← {0, 1}.
B sets the challenge ciphertext to σ′ = (U ′, Z ′) where U ′ = aP and Z ′ is ran-

domly drawn from {0, 1}n × G
2
1. B updates L1 by adding in (m, aP , pkR,0, �) and

(m, aP , pkR,1, �), randomly picking t′, t′ ′ ∈ Zq and setting t′P , t′ ′P as the result
of H1(m, aP , pkR,0, �) and H1(m, aP , pkR,1, �) respectively. Note that those en-
tries will only be added in L1 if they are not in L1 yet. Similarly, L2 will also be
updated with (aP , pkR,0, �) and (aP , pkR,1, �), the value of H2(aP , pkR,0, �) and
H2(aP , pkR,1, �) are set to Z ′ ⊕ (m‖Y ′

s ‖t′Y ′
s ) and Z ′ ⊕ (m| |Y ′

s | |t′ ′Y ′
s ) respectively,

where Y ′
s = pkS,b.

B answers D’s queries as in the first stage. If D queries H1 or H2 with
(aP , pkR,0, λ) such that e(aP , pkR,0) = e(P , λ), B halts and outputs x−1λ; If D
queries H1 or H2 with (aP , pkR,1, λ) such that e(aP , pkR,1) = e(P , λ), B halts and
outputs y−1λ. B output a random point in G1 and halts, if D halts without making
those queries.

Analysis. Obviously, the running time of B is in polynomial of D’s running time.
The simulated game is computationally indistinguishable from a real game with the
failure probability p2−poly(k) as proven in Theorem 1. In the following, we analyze
B’s success rate.

Let E be the event that (aP , pkR,0, a(pkR,0)) or (aP , pkR,1, a(pkR,1)) has been
queried on H1 or H2. Ē denotes event E does not happen. Note that B solves the
CDH problem instance in event E.

We claim that for event Ē, D does not have any advantage in winning the game
over random guessing: Let V(b,b′ ) = skS,bH1(m, aP , pkR,b′ , apkR,b′ ). Then σ′ =
(aP , Z ′) is the signcryption of m under skS,b and pkR,b′ if we have

m‖skS,bP ‖Vb,b′ = Z ′ ⊕ H2(aP , pkR,b′ , apkR,b′ ).

In event Ē, since H1 and H2 are not queried with (aP , pkR,0, a(pkR,0)) or
(aP , pkR,1, a(pkR,1)), due to the random oracle assumption, D does not have any
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Table 1

Efficiency comparison for signcryption schemes with key privacy

Scheme Security Efficiency: G1 Mul, G2 Exp, MapToPoint, Pairing

Signcrypt De-signcrypt verify

Boyen ID-SC [9] C, N, A 3, 1, 2, 1 2, 0, 3, 4 1, 0, 1, 2

LQ [14] –, N, – 3, 0, 1, 0 1, 0, 1, 2 0, 0, 1, 2

YWD [23] –, N, – 3, 0, 1, 0 1, 0, 1, 2 0, 0, 1, 2

This paper C, N, A 3, 0, 1, 0 1, 0, 1, 2 0, 0, 1, 2

advantage in determining the oracle returns of H1 and H2 on these query tuples.
Hence, Pr[D wins the game |Ē] = 1

4 . From the assumption,

Pr[D wins the game] =
1
4

+ ρ(k) � Pr[E] +
1
4

(1 − Pr[E]),

where ρ is D’s non-negligible advantage in winning the game defined in Defini-
tion 2.4 and k is the system-wide security parameter. Therefore, Pr[E] � 4

3ρ(k).
We have Pr[E ∧ B does not fail] � 4

3 (1 − p2−poly(k))ρ(k). �

4.3. Performance

We compare our scheme with other signcryption schemes with key privacy in
Table 1. We consider the costly operations which include point scalar multiplication
on G1 (G1 Mul), exponentiation on G2 (G2 Exp), Map-To-Point hash operation [6]
(MapToPoint) and pairing operation (Pairing).

In Table 1, C denotes confidentiality, N denotes non-repudiation and A denotes
ciphertext anonymity. We can see that our scheme solves the security issues of the
LQ and YWD schemes but maintaining their high efficiency.

5. Variation and extension

Rivest, Shamir and Tauman defined the notion of ring signature in [18]. A ring
signature allows a party to sign messages on behalf of a group without leaking its
identity. To consider key privacy for signcryption schemes one step further, we define
and construct a ring signcryption scheme in this paper. In a ring signcryption scheme,
after decrypting the ciphertext, the recipient will obtain a ring signature instead of a
standard signature, and the recipient cannot tell which party inside the ring generated
the ciphertext.

Before defining ring signcryption, we first give a variation of our signcryption
scheme. This variant is the basis of our ring signcryption construction.
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5.1. Signcryption variation

Keygen. The same as the original scheme.
Signcrypt. To signcrypt a message m ∈ {0, 1}n for receiver R, sender S carries out

the following steps:

1. Pick a random r ← Zq and compute U = rP .
2. Compute V = x−1

S H1(m, U , YR, rYR) and Z = (m‖YS ‖V ) ⊕ H2(U ,
YR, rYR).

The ciphertext is σ = (U , Z).
De-signcrypt. When a ciphertext σ = (U , Z) is received, receiver R performs the

following steps:

1. Compute D = xRU .
2. Compute (m‖YS ‖V ) = Z ⊕ H2(U , YR, D).
3. If YS /∈ G1, output reject. Otherwise, compute H = H1(m, U , YR, D)

and check e(YS, V )
?= e(P , H).

4. If the check passes, output 〈m, (U , YR, D, V ), YS 〉; otherwise, output re-
ject.

Verify. For a message–signature pair (m, (U , YR, D, V )) and a signer’s public key
YS, the algorithm checks if e(YS, V ) = e(P , H1(m, U , YR, D)). If the condi-
tion holds, it outputs true. Otherwise, it outputs false.

The differences between the variation and the original scheme are in the gen-
eration of V and the signature verification. In the variation, V is generated as
x−1

S H1(m, U , YR, rYR) rather than xSH1(m, U , YR, rYR), and the signature verifi-
cation becomes e(YS, V ) = e(P , H) rather than e(YS, H) = e(P , V ).

Note that we do not give a security proof here for the variation as we only make use
of it as an intermediate step towards the construction of our final ring signcryption
scheme. In addition, we can see that the complete security proofs of the ring sign-
cryption scheme below will have also covered the confidentiality (Definition 2.2) and
unforgeability (Definition 2.3) of this variation, when we consider the case that the
ring size is equal to one.

In the next section, we construct a ring signcryption scheme based on this varia-
tion.

5.2. Ring signcryption

A ring signcryption scheme is a quadruple of probabilistic polynomial time (PPT)
algorithms (Keygen, Signcrypt, De-signcrypt, Verify).

(sk, pk) ← Keygen(1k) is the key generation algorithm which takes a security
parameter k ∈ N and generates a private/public key pair (sk, pk).
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σ ← Signcrypt(m, pkS = (pk1
S, pk2

S, . . . , pkj
S), ski

S, pkR) takes a message m

drawn from the message space M , a group of distinct public keys pkS = (pk1
S, pk2

S,

. . . , pkj
S) and a private key ski

S whose corresponding public key pki
S ∈ pkS, and a

public key pkR such that pkR /∈ pkS, outputs a ciphertext σ.
(m, s, pkS = (pk1

S, pk2
S, . . . , pkj

S))/reject ← De-signcrypt(σ, skR) takes σ and

a private key skR, outputs either a triple (m, s, pkS = (pk1
S, pk2

S, . . . , pkj
S)) where

m ∈ M , s is a ring signature and pkS is a group of distinct public keys, or reject
which indicates the failure of de-signcryption.
true/false ← Verify(m, s, pkS = (pk1

S, pk2
S, . . . , pkj

S)) takes m ∈ M , a sig-

nature s and a group of distinct public keys pkS = (pk1
S, pk2

S, . . . , pkj
S), outputs true

for a valid ring signature or false for an invalid ring signature.

Our proposed ring signcryption scheme
Keygen. The same as the original signcryption scheme.
Signcrypt. To signcrypt a message m ∈ {0, 1}n for receiver R, sender Ŝ carries out

the following steps:

1. Choose a random index 1 � i � j where j is the size of the sender group,
and choose j − 1 distinct public keys pk1

S, . . . , pki−1
S , pki+1

S , . . . , pkj
S. Set

the sender group as pkS = (pk1
S, . . . , pki−1

S , pk
Ŝ

, pki+1
S , . . . , pkj

S).
2. Pick a random r ← Zq and compute U = rP . Choose random aω ← Zq

for 1 � ω � j and ω �= i.
3. Compute H = H1(m, U , pkR, rpkR) and set si = x−1

Ŝ
(H −

∑
ω �=i aωpkω

S ).
For ω �= i, set sω = aωP .

4. Set V = (s1, s2, . . . , sj) and compute Z = (m‖V ) ⊕ H2(U , pkR, rpkR).

The ciphertext is σ = (pkS, U , Z).
De-signcrypt. When a ciphertext σ = (pkS, U , Z) is received, receiver R performs

the following steps:

1. Compute D = xRU .
2. Compute (m‖V ) = Z ⊕ H2(U , pkR, D).

3. Compute H = H1(m, U , pkR, D) and check
∏j

ω=1 e(sω , pkω
S )

?= e(P , H).
4. If the check passes, output 〈m, (U , pkR, D, V ), pkS 〉; otherwise, output re-

ject.

Verify. For a message–signature pair (m, (U , pkR, D, V )) and a group of j pub-
lic keys pkS = (pk1

S, . . . , pkj
S), the algorithm checks if

∏j
ω=1 e(sω , pkω

S ) =
e(P , H). If the condition holds, it outputs true. Otherwise, it outputs false.

5.3. Security analysis

We also consider confidentiality, unforgeability and key privacy for ring signcryp-
tion. However, we separate sender anonymity and receiver anonymity here, for the
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former, we consider a notion similar to the signer ambiguity for ring signature [18],
while for the latter, we define it similarly to Definition 2.4.

Definition 5.1 (RSC confidentiality). A ring signcryption scheme is semantically
secure against insider chosen ciphertext attack (RSC-IND-CCA) if no PPT adversary
has a non-negligible advantage in the following game:

1. The challenger runs Keygen to generate a key pair (skU, pkU). skU is kept secret
while pkU is given to adversary A.

2. In the first stage, A makes a number of queries to the following oracles:

(a) Signcryption oracle: A prepares a message m ∈ M , a polynomial j which
indicates the size of the signer ring, and a number i which indicates the
position for pkU, and a public key pkR, and queries the signcryption or-
acle (simulated by the challenger). If pkR �= pkU, the challenger runs
Keygen to generate j − 1 key pairs, and runs σ ← Signcrypt(m, pkS =
(pk1

S, pk2
S, . . . , pkj

S), ski
S, pkR) where (pki

S, ski
S) = (pkU, skU) to generate a

ciphertext σ and returns it to A. Otherwise, a symbol “⊥” is returned for
rejection.

(b) De-signcryption oracle: A produces a ciphertext σ and queries for the re-
sult of De-signcrypt(σ, skU). The result is made of a message, a ring signa-
ture and a group of public keys if the de-signcryption is successful. Other-
wise, a symbol “⊥” is returned for rejection.

These queries can be asked adaptively: each query may depend on the answers
of previous ones.

3. A produces two plaintexts m0, m1 ∈ M of equal length, j−1 valid public keys,
a valid public/private key pair (pk

Ŝ
, sk

Ŝ
) and an index i which indicates the

position of pk
Ŝ

in pkS = (pk1
S, . . . , pkj

S). The challenger flips a coin b̌
R← {0, 1}

and computes a signcryption σ∗ = Signcrypt(mb̌, pkS, sk
Ŝ

, pkU) of mb̌. σ∗ is
sent to A as a challenge ciphertext.

4. A makes a number of new queries as in the first stage with the restriction that
it cannot query the de-signcryption oracle with σ∗.

5. At the end of the game, A outputs a bit b′ and wins if b′ = b̌.

A’s advantage is defined as Advrsc−ind−cca(A) = Pr[b′ = b̌] − 1
2 and the probability

that b′ = b̌ is called the probability that A wins the game.

Definition 5.2 (RSC unforgeability). A ring signcryption scheme is existentially un-
forgeable against chosen-message insider attack (RSC-EUF-CMA) if no PPT forger
has a non-negligible advantage in the following game for any polynomial j:

1. The challenger runs Keygen to generate j key pairs (sk1, pk1), . . . , (skj , pkj).
The public keys are given to forger F .
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2. The forger F has access to a ring signcryption oracle: F provides a message
m, a valid receiver’s public key pkR such that pkR �= pki (1 � i � j), and
an index ω, the challenger generates a ciphertext σ ← Signcrypt(m, pkS =
(pk1, pk2, . . . , pkj), skω , pkR) and returns it to F .

3. F produces a ciphertext σ and a valid key pair (skR, pkR) and wins the game if

(a) De-signcrypt(σ, skR) returns a tuple (m, s, (pk1, pk2, . . . , pkj)) such that
true ← Verify(m, s, (pk1, pk2, . . . , pkj)), and

(b) σ is not the output of the signcryption oracle.

Definition 5.3 (RSC perfect sender anonymity). Consider the following game
against any unbounded adversary A:

A runs Keygen to generate j + 1 key pairs (sk1, pk1), . . . , (skj , pkj), (skR, pkR)
where j is any polynomial of k, and gives them to the challenger, together
with a message m. The challenger randomly selects 1 � i � j and generates
σ ← Signcrypt(m, pkS = (pk1, pk2, . . . , pkj), ski, pkR).

The adversary’s goal is to guess the real signer among pkS = (pk1, pk2, . . . , pkj).
A ring signcryption scheme is sender anonymous if the probability that A guesses
correctly is at most 1/j.

Definition 5.4 (RSC receiver anonymity). A ring signcryption scheme has receiver
anonymity if no PPT distinguisher has a non-negligible advantage in the following
game:

1. The challenger generates two distinct public key pairs (skR,0, pkR,0) and
(skR,1, pkR,1) using Keygen, and gives pkR,0 and pkR,1 to the distinguisher D.

2. In the first stage, D adaptively makes a number of ring signcrypt and de-
signcrypt as in the RSC Confidentiality game, with either skR,0 or skR,1 in-
volved.

3. After completing the first stage, D outputs a message m, j − 1 valid public
keys, a valid public/private key pair (pk

Ŝ
, sk

Ŝ
) and an index i which indicates

the position of pk
Ŝ

in pkS = (pk1
S, . . . , pkj

S).

4. The challenger then flips a coin b′ R← {0, 1} and computes a challenge cipher-
text σ = Signcrypt(m, pkS = (pk1, . . . , pkj), ski, pkR,b′ ) and sends it to D.

5. D adaptively makes a number of new queries as above with the restriction that
it is not allowed to ask the de-signcryption oracle of the challenge ciphertext σ.

6. At the end of the game, D outputs a bit d′ and wins the game if d′ = b′.

D’s advantage is defined as Advr−anon(D) = Pr[d′ = b′] − 1
2 .

Theorem 5.5. Our ring signcryption scheme achieves perfect sender anonymity.

The proof follows the same probability argument as in the proof of Theorem 5.1
of [7].
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Theorem 5.6. If there exists a PPT algorithm which can break the RSC-IND-CCA
security of the proposed ring signcryption scheme with advantage ρ(k), then there
exists a PPT algorithm which can solve the Computational Diffie–Hellman Problem
with probability at least 2(1 − p2−poly(k))ρ(k) where poly(·) is some polynomial and
p is the maximum number of de-signcryption queries made in the model of RSC-IND-
CCA.

Proof. Assume there exists an adversary A, who makes at most p de-signcryption
queries, wins the game in Definition 5.1 with non-negligible probability ρ(k), we
construct another algorithm B who solve the CDH problem with non-negligible
probability.

B is given P , aP , bP and aims to compute abP , where a, b
R← Zq . B sets pkU =

aP and gives it to A.
Hash queries are handled similarly as in the proof of Theorem 4.1, except that for

a hash query on H1, B picks random t
R← Zq , and returns taP .

When A asks a ring signcrypt query with m, j, i, pkR, B picks x1, . . . , xi−1,
xi+1, . . . , xj at random from Zq and sets xi = 1. Then B sets pki

S = xiaP . B picks

random r
R← Zq , and computes U = rP . B simulates the H1 oracle, the hash re-

turned is taP for some t. Then B chooses random a1, . . . , ai−1, ai+1, . . . , aj
R← Zq

and computes ai = t −
∑

ω �=i aωxω , and computes V = a1P , . . . , ajP . B then
simulates H2(U , pkR, rpkR) and computes the ciphertext (pkS, U , Z) where Z =
m‖V ⊕ H2(U , pkR, rpkR). The de-signcryption queries are handled similarly as in
the proof of Theorem 4.1.

After completing the first stage, A gives m0, m1, (pk1
S, . . . , pki−1

S , pki+1
S , . . . ,

pkj
S), pk

Ŝ
, sk

Ŝ
, i to B. B sets U ∗ = bP , and selects random Z∗ R← {0, 1}n × G

j
1.

B also randomly picks b̌
R← {0, 1}, and sets H1(mb̌, bP , pkU, �) = t∗aP for random

t∗ ∈ Zq . Here � denotes the (unknown) value of abP . Then B generates V ∗ accord-
ing to the signcrypt algorithm and sets H2(bP , pkU, �) = Z∗ ⊕ mb̌‖V ∗. The chal-
lenging ciphertext is σ∗ = (pkS, U ∗, Z∗).

After that, B answers A’s queries as in the first stage. If A queries H1 or H2
with (bP , pkU, λ) such that e(bP , pkU) = e(P , λ), B outputs λ and halts. If A halts
without making such a query, B outputs a random point in G1 and halts.

By following a similar security analysis as in the proof of Theorem 4.1, B breaks
the CDH assumption with probability at least 2(1 − p2−poly(k))ρ(k). �

Theorem 5.7. If there exists a PPT algorithm which can break the RSC-EUF-CMA
security of the proposed ring signcryption scheme with advantage ρ(k), then there
exists a PPT algorithm which can solve the Computational Diffie–Hellman Problem
with probability at least ρ(k)

e(qS+1) where qS is the maximum number of ring signcrypt
queries made in the model of RSC-EUF-CMA, and e is the base of the natural loga-
rithm.
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Proof. Assume there is an adversary A, which takes at most qS ring signcrypt
queries, wins the game in Definition 5.2 with non-negligible advantage ρ(k), we
construct another algorithm B which solves the CDH problem with non-negligible

probability. B is given P , abP , aP and aims to compute bP , where a, b
R← Zq .

Initially, B picks x2, . . . , xj at random from Zq and sets x1 = 1. B sets pki =
xiaP for 1 � i � j.

Hash queries are handled similarly as in the proof of Theorem 4.1, except that for
a hash query on H1, B flips a coin that shows 1 with probability p and 0 otherwise

(p shall be determined later), then B pick random t
R← Zq , and if the coin shows 0,

B returns tabP , otherwise, it returns taP .

When A asks a ring signcrypt query with m, pkR, i, B picks random r
R← Zq , and

computes U = rP . B simulates the H1 oracle, if the coin flipped for this hash query
shows 0, B fails and aborts, otherwise, the hash returned is taP for some t. Then

B chooses random a2, . . . , aj
R← Zq and computes a1 = t −

∑
2�ω�j aωxω , and

computes V = a1P , . . . , ajP . B then simulates H2(U , pkR, rpkR) and computes the
ciphertext (pkS = (pk1, . . . , pkj), U , Z) where Z = m‖V ⊕ H2(U , pkR, rpkR).

Eventually A outputs a forgery σ∗ = (pkS, U ∗, Z∗) and a key pair (sk∗
R, pk∗

R).
B decrypts the ciphertext by following the de-signcrypt algorithm. If the decryp-
tion is successful, B gets m‖V = (s1, . . . , sj). If the coin flipped for the H1 query
shows 1, B fails and aborts, otherwise, B outputs t−1(s1 + s2x2 + · · · + sjxj).

Analysis. Due to the perfect sender anonymity of our ring signcryption scheme,
the simulation is perfect if B does not abort the game. Also, given a valid forgery,
the H1 query with respect to A’s forgery must not appear in any signcrypt query,
since otherwise, (pkS, U ∗, Z∗) is the same as the ciphertext returned by that signcrypt
query. B’s success probability is ρ(k)pqS (1 − p) which is maximized when p =
qS/(qS + 1), giving a bound of ρ(k)

e(qS+1) . �

Theorem 5.8. If there exists a PPT algorithm which can break the RSC receiver
anonymity of the proposed ring signcryption scheme with advantage ρ(k), then there
exists a PPT algorithm which can solve the Computational Diffie–Hellman Problem
with probability at least 2(1 − p2−poly(k))ρ(k) where poly(·) is some polynomial and
p is the maximum number of de-signcryption queries made in the model of RSC
receiver anonymity.

Proof. The proof follows that of Theorem 5.6. B is given P , aP , bP and aims to
compute abP .

B randomly selects x, y
R← Zq , and sets the two challenging public keys as pkR,0 =

xbP , pkR,1 = ybP . Hash queries, ring signcrypt queries and de-signcrypt queries are
simulated as in the proof of Theorem 5.6.
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After completing the first stage, A gives m, (pk1
S, . . . , pki−1

S , pki+1
S , . . . , pkj

S),

pk
Ŝ

, sk
Ŝ

, i to B. B sets the challenging ciphertext to pkS = (pk1
S, . . . , pkj

S), U ∗, Z∗,

where U ∗ = aP and Z∗ is selected at random from {0, 1}n × G
j
1. B also randomly

picks b′ R← {0, 1}, sets H1(m, aP , pkR,b′ , �) = taP for random t
R← Zq . Then

B generates V ∗ according to the signcrypt algorithm and sets H2(aP , pkR,b′ , �) =
Z∗ ⊕ m‖V ∗. The challenging ciphertext is σ∗ = (pkS, U ∗, Z∗).

B answers A’s queries as in the first stage. If A queries H1 or H2 on (aP , pkR,0, λ)
such that e(P , λ) = e(aP , pkR,0), B outputs x−1λ and halts. If A queries H1 or H2

on (aP , pkR,1, λ) such that e(P , λ) = e(aP , pkR,1), B outputs y−1λ and halts. If A
halts without making such queries, B outputs a random point in G1 and halts.

By following a similar security analysis as in the proof of Theorem 4.3, B breaks
the CDH assumption with probability at least 2(1 − p2−poly(k))ρ(k). �

6. Conclusion

We propose a solution to solve the security weaknesses of the YWD signcryption
scheme. Our scheme not only achieves confidentiality, unforgeability and ciphertext
anonymity under the Computational Diffie–Hellman assumption, but also is very
efficient. We also define the notion of ring signcryption, and give an efficient con-
struction based on our basic signcryption scheme.
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