
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

7-2016

Edit distance based encryption and its application Edit distance based encryption and its application

Tran Viet Xuan PHUONG

Guomin YANG
Singapore Management University, gmyang@smu.edu.sg

Willy SUSILO

Kaitai LIANG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons, and the OS and Networks Commons

Citation Citation
PHUONG, Tran Viet Xuan; YANG, Guomin; SUSILO, Willy; and LIANG, Kaitai. Edit distance based encryption
and its application. (2016). Proceedings of the 21st Australasian Conference, Melbourne, Australia, 2016
July 4–6. 9723, 103-119.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7397

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7397&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7397&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7397&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Edit Distance Based Encryption
and Its Application

Tran Viet Xuan Phuong1(B), Guomin Yang1, Willy Susilo1, and Kaitai Liang2

1 Centre for Computer and Information Security Research,
School of Computing and Information Technology, University of Wollongong,

Wollongong, Australia
tvxp750@uowmail.edu.au, {gyang,wsusilo}@uow.edu.au

2 Department of Computer Science, Aalto University, Espoo, Finland
kaitai.liang@aalto.fi

Abstract. Edit distance, also known as Levenshtein distance, is a very
useful tool to measure the similarity between two strings. It has been
widely used in many applications such as natural language processing and
bioinformatics. In this paper, we introduce a new type of fuzzy public key
encryption called Edit Distance-based Encryption (EDE). In EDE, the
encryptor can specify an alphabet string and a threshold when encrypting
a message, and a decryptor can obtain a decryption key generated from
another alphabet string, and the decryption will be successful if and only
if the edit distance between the two strings is within the pre-defined
threshold. We provide a formal definition and security model for EDE,
and propose an EDE scheme that can securely evaluate the edit distance
between two strings embedded in the ciphertext and the secret key. We
also show an interesting application of our EDE scheme named Fuzzy
Broadcast Encryption which is very useful in a broadcasting network.

Keywords: Edit distance · Fuzzy encryption · Dynamic programming ·
Viète’s Formulas

1 Introduction

Measuring the similarity between two strings is an important task in many appli-
cations such as natural language processing, bio-informatics, and data mining.
One of the common similarity metrics that has been widely used in the above
applications is the Edit Distance (a.k.a. Levenshtein distance), which counts the
minimum number of operations (namely, insertion, deletion, and substitution)
required to transform one string into the other. In this paper, we investigate a
challenging problem of building fuzzy public key encryption schemes based on
edit distance.

Our work is motivated by an open problem raised by Sahai and Waters in
[21], where the notion of Fuzzy Identity-Based Encryption (IBE) was proposed.
The Fuzzy IBE scheme introduced in [21] can be regarded as the first Attribute-
Based Encryption (ABE) scheme with a threshold access policy. To be more
c© Springer International Publishing Switzerland 2016
J.K. Liu and R. Steinfeld (Eds.): ACISP 2016, Part II, LNCS 9723, pp. 103–119, 2016.
DOI: 10.1007/978-3-319-40367-0 7

104 T.V.X. Phuong et al.

precise, it allows to use a private key corresponding to an identity string I ′ to
decrypt a ciphertext encrypted with another identity string I if and only if the
“set overlap” between I and I ′ (i.e., |I∩I ′|) is larger than a pre-defined threshold.
One of the open problems raised in [21] is to construct fuzzy encryption schemes
based on other similarity metrics.

We should note that edit distance is very different from the “set overlap”
distance used in Fuzzy IBE. For example, consider the biometric identity appli-
cation of Fuzzy IBE described in [21], given two strings I = “ATCG” and
I ′ = “GACT”, we have |I ∩ I ′| = 4 (i.e., the distance is 0). However, the edit
distance between I and I ′ is 3. It is easy to see that the order of the alphabets
in those strings will affect the edit distance, but not the set overlap distance.
This simple example shows that to a certain extent edit distance provides better
accuracy than the set overlap distance in measuring the similarity of two strings.
As another example, given an encryption string I = “admirer” and a threshold
distance d = 1, for edit distance, we can allow a decryption key associated
with I ′ = “admirers” to decrypt the message; while for set overlap distance, we
can have some totally unrelated anagrams of I, such as I ′ = “married”, whose
corresponding secret key can also decrypt the message. Due to the difference
between the two distances (or similarity metrics), we cannot easily extend the
technique used in [21] to construct a fuzzy encryption scheme for edit distance.
Also, in order to distinguish our fuzzy encryption scheme based on edit distance
from the Fuzzy IBE proposed in [21], we name our new encryption scheme Edit
Distance-based Encryption (or EDE, for short).

1.1 This Work

In this paper, we introduce the notion of Edit Distance-based Encryption (EDE),
formalize its security, and propose a practical scheme in the standard model.

Edit distance can be measured in polynomial time using different techniques,
such as dynamic programming or recursion. However, in an EDE scheme, the
two strings I and I ′ are embedded in the ciphertext CT and the user secret key
SK, respectively. Hence, the problem becomes how to measure the distance of
I and I ′ using CT and SK. We observe that the most important operation in
the edit distance algorithms is the equality test between two alphabets I[x] and
I ′[y]. Based on this observation, our proposed EDE scheme uses bilinear map [6]
to solve this issue. We illustrate our idea using the following example.

Suppose we have two strings I = “ATTGA” and I ′ = “AGTA”. We first
encode each alphabet as a group element. Then in the encryption process, we
create a randomized vector I = (As, T s, T s, Gs, As) using the same random
number s. Similarly, we create another randomized vector I′ = (Ar, Gr, T r, Ar)
in the key generation process. Then we apply bilinear map to conduct equality
test between I and I ′ using the two vectors I and I′ which are included in the
ciphertext and the secret key respectively. The crux of the idea is illustrated in
Fig. 1. In order to deal with the threshold problem, we apply the technique of
Viète’s formulas [22] to solve the problem. In the encryption process, we create
a vector d = (1, 2, . . . , d, 0, . . . , 0) for the threshold distance d and embed the

Edit Distance Based Encryption and Its Application 105

vector d in the ciphertext. Also, based on the edit distance d′ between I and I ′,
we create another vector d′ = (1, 2, . . . , d′, ∗, . . . , ∗) where ∗ denotes the wildcard
(i.e., don’t care) symbol. Then based on d and d′, we ensure that the decryption
can be successful if and only if d′ ≤ d. Also, we overcome the issue of malleability
by using the composite order group in constructing the EDE scheme. We prove
that our proposed scheme is selectively secure under the L-composite Decisional
Diffie-Hellman (L-cDDH) assumption.

Fig. 1. Edit distance evaluation using bilinear map

We also show an interesting application of our EDE scheme named Fuzzy
Broadcast Encryption (FBE), which is very useful in broadcasting networks. An
FBE scheme allows the encryptor (i.e., message sender) to specify a set of receiver
identities during the encryption process, and a user can decrypt the message if
and only if the minimum edit distance between his/her identity and all the
identities chosen by the encryptor is below a threshold that is also specified by
the encryptor during the encryption process.

1.2 Related Work

Since the seminal work of Sahai and Waters [21], many Attribute Based Encryp-
tion (ABE) schemes with the threshold access structure have been proposed
(e.g., [5,8,9,11]). In [9], Goyal et al. extended the work of Sahai and Waters to
construct more expressive Key-Policy (KP) ABE where the access structure is
defined via a tree of threshold gates. Bethencourt et al. [5] proposed the first
Ciphertext-Policy (CP) ABE using the same access structure. Under the motiva-
tion of reducing the ciphertext size, which is linear in the size of the encryption
attribute set in most of the existing ABE schemes, Herranz et al. [11] proposed
a constant-size ABE scheme for the threshold access structure, which is essen-
tially the same as the set overlap distance metric used in Fuzzy IBE [21]. In [8],
Ge et al. proposed another constant-size ABE scheme with the same threshold
access structure but under a relatively weaker assumption. As of independent
interest, some interesting fuzzy encryption techniques have been proposed in the
literature, such as [15–17].

Another type of fuzzy identity-based encryption is the Wildcarded IBE (or
WIBE for short) proposed by Abdalla et al. [1–3]. A WIBE allows wildcard
symbols to appear in an identity string used in the encryption process, and the

106 T.V.X. Phuong et al.

wildcard positions will be ignored when measuring the equality of two identity
strings. Another notion that is similar to WIBE is the Hidden Vector Encryption
(HVE) [12,14,18,19,22], which also allows wildcards to appear in either the
encryption string or the key generation string. However, both WIBE and HVE
are based on the fuzzy equality test between two strings, which is different from
the problem we aim to solve in this paper.

There are also a few works on the privacy-preserving edit distance evaluation
between two strings [4,7,13,20,23]. These works mainly focused on finding the
edit distance of two (perhaps encrypted) strings in a privacy-preserving manner,
and hence is completely different from this work.

2 Preliminaries

2.1 Edit Distance

Consider a finite alphabet set A whose elements are used to construct strings.
Let ZI , ZD and ZS be finite sets of integers. Let the function I : A → ZI be
the insertion cost function, i.e., I(a) is the cost of inserting the element a ∈ A
into a given string. Similarly, define the deletion cost function as D : A → ZD so
that D(a) is the cost of deleting the element a ∈ A from a given string. Finally,
define the substitution cost function S : A×A → ZS so that for a, b ∈ A, S(a, b)
is the cost of replacing the element a by the element b in a given string.

Given two strings of length m and n, denoted by X ∈ Am and Y ∈ An

respectively, consider the sequence of insertion, deletion and substitution oper-
ations needed to transform X into Y and the corresponding aggregate cost of
the transformation.

Definition 1. The edit distance between X and Y is defined as the minimum
aggregate cost of transforming X into Y .

The general definition of edit distance given above considers different weights
for different operations. In this paper we will consider a simpler definition which
is given below.

Definition 2. For all a, b ∈ A, let I(a) = D(a) = 1, S(a, b) = 1 when a �= b,
and S(a, a) = 0. Then, the edit distance is defined as the minimum number of
insertion, deletion and substitution operations required to convert X into Y .

Dynamic Programming for Edit Distance. Let X = X1X2...Xm ∈ Am and
Y = Y1Y2...Yn ∈ An be two strings. We use M(i, j) to denote the edit distance
between the two sub strings X1X2...Xi and Y1Y2...Yj . The problem of finding
the edit distance between X and Y can be solved in O(mn) time via dynamic
programming [10], which will be used in our scheme.

Let M(0, 0) = 0. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, define M(i, 0) =
i∑

k=1

I(xk), and

M(0, j) =
j∑

k=1

D(yk).

Edit Distance Based Encryption and Its Application 107

Then, the edit distance M(m,n) is defined by the following recurrence rela-
tion for 1 ≤ i ≤ m, 1 ≤ j ≤ n: M(i, j) = min{M(i − 1, j) + D(Yj),M(i, j − 1) +
I(Xi),M(i − 1, j − 1) + S(Xi, Yj)}.

2.2 The Viète’s Formulas

Consider two vectors:−→v = (v1, v2, . . . , vL),−→z = (z1, z2, . . . , zL) where −→v con-
tains both alphabets and wildcard symbols (*) and −→z only contains alpha-
bets. Let J = {j1, . . . , jn} ⊂ {1, . . . , L} denote the wildcard positions in −→v .
Then according to [22], the statement (vi = zi ∨ vi = ∗ for i = 1 . . . L) can be
expressed as:

L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
L∑

i=1

zi

∏

j∈J

(i − j). (1)

Expand
∏

j∈J

(i−j) =
n∑

k=0

λkik, where λk are the coefficients dependent on J , then

(1) becomes:

L∑

i=1,i/∈J

vi

∏

j∈J

(i − j) =
n∑

k=0

λk

L∑

i=1

zii
k. (2)

To hide the computation, we choose random group element Hi and put
vi, zi as the exponents of group elements: Hvi

i ,Hzi
i . Then (2) becomes:

L∏

i=1,i/∈J

H
vi

∏
j∈J (i−j)

i =
n∏

k=0

(
L∏

i=1

Hzii
k

i)λk .

Using the Viète’s formulas we can construct the coefficient λk in (2) by: λn−k =
(−1)k

∑

1≤i1<i2<...<ik≤n

ji1ji2 . . . jik
, 0 ≤ k ≤ n. where n = |J |. For example,

if we have J = {j1, j2, j3}, the polynomial is (x − j1)(x − j2)(x − j3), then
λ3 = 1, λ2 = −(j1 + j2 + j3), λ1 = (j1j2 + j1j3 + j2j3), λ0 = −j1j2j3.

2.3 Bilinear Map on Composite Order Groups
and Its Assumption

Let p, q be two large prime numbers and n = pq. Let G,GT be cyclic groups of
order n. We say e : G×G → GT is bilinear map over composite order groups if e
satisfies the following properties: (1) Bilinearity : e(ua, vb) = e(ub, va) = e(u, v)ab

for all u,v ∈ G and a,b ∈ Zp; (2)Non-degeneracy : e(g, g) �= 1.
Let Gp and Gq be two subgroups of G of order p and q, respectively. Then

G = Gp × Gq, GT = GT,p × GT,q. We use gp and gq to denote generators of Gp

and Gq, respectively. It is easy to see that e(hp, hq) = 1 for all elements hp ∈ Gp

and hq ∈ Gq since e(hp, hq) = e(ga
p , gb

q) = e(gqa, gpb) = e(g, g)pqab = 1 for a
generator g of G.

108 T.V.X. Phuong et al.

The Decisional L−cBDHE assumption:

Let gp, h
R←− Gp, gq

R←− Gq, α
R←− Zn, Z = (gp, gq, h, gα

p , . . . , gαL

p , gαL+2

p , . . . , gα2L

p),
T = e(gp, h)αL+1

, and R ← GT,p

We say that the decisional L−cBDHE assumption holds if for any probabilistic
polynomial-time algorithm A:|Pr[A(Z, T) = 1] − Pr[A(Z,R) = 1]| ≤ ε(k), where
ε(k) denotes an negligible function of k.

3 Edit Distance Based Encryption

An Edit Distance Based Encryption (EDE) scheme consists of the following four
probabilistic polynomial-time algorithms:

• Setup(1n, Σ): on input a security parameter 1n, an alphabet Σ, the algorithm
outputs a public key PK and a master secret key MSK.

• Encrypt(PK,−→v ,M, d): on input a public key PK, a message M , a vector−→v ∈ Σn and a distance d, the algorithm outputs a ciphertext CT .
• KeyGen(MSK,−→x): on input a master secret key MSK, a vector −→x ∈ Σm,

the algorithm outputs a decryption key SK.
• Decrypt(CT, SK): on input a ciphertext CT and a secret key SK, the algo-

rithm outputs either a message M if EditDistance(−→v ,−→x) ≤ d, or a special
symbol ⊥.

Security Model. The security model for an EDE scheme is defined via the
following game between an adversary A and a challenger B.

• Setup: The challenger B run Setup(1n, Σ) to generate the PK and MSK.
PK is then passed to A.

• Query Phase 1: The challenger answers all private key queries for a vector−→σ by returning: skσ ← KeyGen(MSK,−→σ).
• Challenge: A submits two equal-length messages M0 and M1, a target vector−→v ∗ ∈ Σn and threshold τ such that EditDistance(−→v ∗,−→σ) > τ for any vector−→σ that has been queried in Phase 1. The challenger then flips a coin β ←

{0, 1} and computes the challenge ciphertext C∗ ← Encrypt(PK,−→v ∗,Mβ , τ),
which is given to A.

• Query Phase 2: same as Query Phase 1 except that EditDistance
(−→v ∗,−→σ) > τ for any vector σ queried in this phase.

• Output: A outputs a bit β′ as her guess for β.

Define the advantage of A as AdvEDE
A (k) = |Pr[β′ = β] − 1/2|.

Selective Security. In the selective security model, the adversary A is required
to submit the target vector −→v ∗ ∈ Σn and threshold τ before the game setup,
and A is only allowed to make private key queries for any vector −→σ that satisfies
EditDistance(−→v ∗,−→σ) > τ throughout the game.

Edit Distance Based Encryption and Its Application 109

4 Edit Distance Based Encryption Scheme

In this section, we introduce our EDE scheme, which is based on the Dynamic
Programming [10] algorithm for calculating edit distance.

– Setup(1n, Σ): The setup algorithm first chooses L = poly(n) as the maximum
number of length of a word that would appear in the encryption and key
generation. It then picks large primes p, q, generates bilinear groups G,GT of
composite order n = pq, and selects generators gp ∈ Gp, gq ∈ Gq. After that,
generate:

v0, v
′
0, b0, g, f, ω, h1, . . . , hL, u1, . . . , uL ∈R Gp, x1, . . . , xL, x′

1, . . . , x
′
L ∈R Zn,

v1 = vx1
0 , . . . , vL = vxL

0 , v′
1 = (v′

0)
x1 , . . . , v′

L = (v′
0)

xL , b1 = b
x′
1

0 , . . . , bL = b
x′

L
0 ,

Rg, Rf , Rv0 , . . . , RvL
, Rv′

0
, . . . , Rv′

L
,

Rb0 , . . . , RbL
, Rh1 , . . . , RhL

, Ru1 , . . . , RuL
∈ Gq,

G = gRg, F = fRf , Y = e(g, ω),
V0 = v0Rv0 , . . . , VL = vLRvL

, V ′
0 = v′

0Rv′
0
, . . . , V ′

L = v′
LRv′

L
, B0 = b0Rb0 , . . . ,

BL = bLRbL
,H1 = h1Rh1 , . . . , HL = hLRhL

, U1 = u1Ru1 , . . . , UL = uLRuL
,

and set the public key and secret key as:

Algorithm 1. Edit distance evaluation via dynamic programming
input : CT, SK
output: d′, pos

lenv = n + 1; lenz = m + 1;
Creat cost[lenv]; Creat newcost[lenv]; Creat pos[2][];
//setup two arrays to store the position matching pos[0][] for vector v, pos[1][] for
vector z ;
for i ← 0 to lenv do

cost[i] = i;
end
k = 0;
for j ← 1 to lenz do

newcost[0] = j;
for i ← 1 to lenv do

// matching current letters in both strings
match = (e(K2, C3,i−1) == e(C1, K3,j−1))?0 : 1 (1);
// store the i match in array pos[0], j match in array pos[1]
if i /∈ pos[0], j /∈ pos[1] then

pos[0][k ++] = i, pos[1][k ++] = j, ;
end
// computing cost for each transformation
replace = cost[i − 1] + match; insert = cost[i] + 1; delete = newcost[i − 1] + 1;
// keep minimum cost
newcost[i] = Math.min(Math.min(cost− insert, cost−delete), cost−replace);

end
// swap cost-newcost arrays
swap[] = cost; cost = newcost;newcost = swap;

end
// return the cost for transforming all letters in both strings and array list pos
including pos[0], pos[1]
return cost[lenv − 1], pos;

110 T.V.X. Phuong et al.

PK = {Y, G, F, (V0, . . . , VL), (V ′
0 , . . . , V ′

L), (B0, . . . , BL), (H1, . . . , HL), (U1, . . . , UL)},
MSK = {g, f, ω, (v0, . . . , vL), (v′

0, . . . , v′
L), (b0, . . . , bL), (h1, . . . , hL), (u1, . . . , uL)}.

– Encrypt(PK,−→v = (v1, . . . , vn1) ∈ Σn1 ,M, d): On input the public key
PK, a vector −→v = (v1, . . . , vn1) with n1 ≤ L, it first generates for
each alphabet vi a vector xi = (vi, 1, . . . , 1L), and expands −→v to −→v =
(v1, v2, . . . , vn1 , . . . , 1L) and sets

−→
d = (1, . . . , d, 0d+1, . . . , 0L). Then choose

s ∈R Zn, and Z1, Z2, Z3, Z4, Z5 ∈R Gq, and compute:

C0 = MY s, C1 = GsZ1, C2 = F sZ2, C3,i = (Vi

L∏

j=1

H
xij

i)sZ3,

C4 = (V ′
0

L∏

i=1

Hvi
i)s · Z4, C5,k,t = (V ′

t (Bk

L∏

i=1

(Ui)dii
k

)(
L∏

j=1

(Hj)vjjt

))s · Z5.

Set the ciphertext as: CT = (n1, C0, C1, C2, {C3,i}n1
i=1, C4, {{C5,k,t}L

k=0}L
t=0).

– KeyGen(MSK,−→z = (z1, . . . , zm) ∈ Σm): Given a key vector −→z =
(z1, . . . , zm), it generates yi = (zi, 1, . . . , 1L) for each alphabet zi, and creates−→σ = (1, 2, ..., L) and expands −→z to −→z = (z1, z2, . . . , zm, . . . , 1L). Then choose
r1, r2 ∈R Zn, and compute:

K1 = gr1 ,K2 = gr2 ,K3,i = (vi

L∏

j=1

h
yij

i)r2 ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K4,0,0 = ω(v′
0

L∏

i=1
h

zi
i)r2

((b0
L∏

i=1
(u

σi
i))(v′

0

L∏

j=1
h

zj
j))r1fr1

K4,1,0 = (b1
L∏

i=1
(u

σi
i)i(v′

0

L∏

j=1
h

zj
j))r1

. . . ,

K4,L,0 = (bL

L∏

i=1
(u

σi
i)iL

(v′
0

L∏

j=1
h

zj
j))r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K4,0,t = (b0
L∏

i=1
(u

σi
i)(v′

t

L∏

j=1
h

zj
j)jt

)r1

K4,1,t = (b1
L∏

i=1
(u

σi
i)i(v′

t

L∏

j=1
h

zj
j)jt

)r1

. . . ,

K4,L,t = (bL

L∏

i=1
(u

σi
i)iL

(v′
t

L∏

j=1
h

zj
j)jt

)r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(t = 1, . . . , L). Then set the user secret key as SK =
(m,K1,K2, {K3,i}m

i=1, {{K4,k,t}L
k=0}L

t=0).

– Decrypt(CT, SK): The decryption algorithm first executes the dynamic pro-
gramming algorithm for edit distance by following Algorithm1 which returns
a distance d′ = cost[lenv − 1], the matching indices array pos[0][] for −→v and
pos[1][] for −→z . It sets τ = L−d′, and applies the Viète’s formulas to compute

• for the index set

Ωv = {L\{pos[0][0], . . . , pos[0][d′ − 1]}} = {ω1, . . . , ωL−d′},

then

aτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ωi1ωi2 . . . ωik
(0 ≤ k ≤ τ), (3)

Edit Distance Based Encryption and Its Application 111

• for the index set

Ωz = {L\{pos[1][0], . . . , pos[1][d′ − 1]}} = {ω̄1, . . . , ω̄L−d′},

then

āτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ω̄i1 ω̄i2 . . . ω̄ik
(0 ≤ k ≤ τ), (4)

• for the threshold index set

J = {j1, . . . , jτ} with j1 = d′ + 1, . . . , jτ = L,

then

âτ−k = (−1)k
∑

1≤i1<i2<...<ik≤τ

ji1ji2 . . . jik
(0 ≤ k ≤ τ). (5)

Then recover M as:

M =
e(K2, C4) · e(K1, C2)

τ∏

k=0

e(K
1

ā0â0
1 ,

τ∏

t=0
Cat

5,k,t)
âk

τ∏

k=0

e(
τ∏

t=0
K āt

4,k,t, C
1

ā0â0
1)âk

· C0.

Correctness. In Algorithm 1:

e(gr2 , (Vi

L∏

j=1

H
xij

i)sZ3)
?= e(GsZ1, (vi

L∏

j=1

h
yij

i)r2).

e(g, vi)sr2e(g,
L∏

j=1

h
xij

i)sr2
?= e(g, vi)sr2e(g,

L∏

j=1

h
yij

i)sr2

We then illustrate an example:

Input: “AAGTA”, “AAAGG”
Output:

– d′ = 2
– pos =< pos[0][], pos[1][] >, with pos[0][] = {1, 2}, pos[1][] = {1, 2}

In message recovery:

C0 = M · e(g, ω)s

e(K2, C4) = e(gr2 , (V ′
0

L∏
i=1

Hvi
i)s · Z4)

= e(g, v′
0)

sr2e(g,
L∏

i=1

(hvi
i)sr2)

e(K1, C2) = e(gr1 , F sZ2) = e(g, f)sr1

112 T.V.X. Phuong et al.

τ∏
k=0

e(K
1

ā0â0
1 ,

τ∏
t=0

Cat
5,k,t)

âk =

τ∏
k=0

e(g
r1
ā0 ,

τ∏
t=0

(V ′
t (Bk

L∏
i=1

(Ui)
diik

)(

L∏
j=1

(Hj)
vjjt

))sat)âk

= e(g, v′
0)

sr1
τ∑

t=0
xtat

τ∑

k=0
âk

ā0â0
e(g, b0)

sr1
τ∑

t=0
at

τ∑

k=0
x′

kâk

ā0â0

L∏
i=1

e(g, ui)

sr1
τ∑

t=0
at

τ∏

k=1
(i−dk)

ā0â0

L∏
j=1

e(g, hj)

vjsr1
τ∏

t=1
(i−ωt)

τ∑

k=0
âk

ā0â0 .

τ∏
k=0

e(

τ∏
t=0

K āt
4,k,t, C

1
ā0â0
1)âk = e(ωā0â0(v′

0

L∏
i=1

(hzi
i))r2ā0â0

τ∏
k=1

((

τ∏
t=1

(v′
t(bk

L∏
i=1

(ui)
σiik

)

(
L∏

j=1

(hj)
zjjt

))r1āt)âkfr1ā0â0 , G
s

ā0â0 Z1)

= e(g, ω)se(g, v′
0)

sr2e(g,
L∏

i=1

(hzi
i)sr2)

e(g, v′
0)

r1s
τ∑

t=0
xtāt

τ∑

k=1
âk

ā0 e(g, b0)

sr1
τ∑

t=0
āt

τ∑

k=0
x′

kâk

ā0â0

L∏
i=1

e(g, ui)

sr1
τ∑

t=0
āt

τ∏

k=1
(i−σk)

ā0â0)
L∏

j=1

e(g, hj)

sr1zj

τ∏

t=1
(i−ω̄t)

τ∑

k=0
âk

ā0â0

e(g, f)sr1 .

5 Security Analysis for the Proposed EDE Scheme

Theorem 1. Assume that the Decisional L−cBDHE assumption holds, then for
any PPT adversary, our EDE scheme is selectively secure.

Let B denote the algorithm to solve the Decisional L−cBDHE prob-
lem. B is given a challenge instance Z, T ′ of the problem, where Z =
(gp, gq, h, gα

p , . . . , gαL

p , gαL+2

p , . . . , gα2L

p) and T ′ is either T = e(gp, h)αL+1
or

R ∈R GT,p. B simulates the game for A as follows:

• Init: A submits a target vector −→v ∗ ∈ Σn, and target threshold τ . Let
−→
d =

(1, . . . , τ, τ + 1, . . . , L) denote a vector of length L. We denote ind(
−→
d) =

{1 ≤ i ≤ L|di = 0} and ind(
−→
d) = {1 ≤ i ≤ L|di �= 0}, and ind(

−→
d)|φj as

{i ∈ ind(
−→
d)|j ≤ i ≤ φ}.

Edit Distance Based Encryption and Its Application 113

• Setup: In this phase, B generates:

γ, ψ, v0, v
′
0, b0, g, f, h′

1, . . . , h
′
L, u′

1, . . . , u
′
L ∈R Gp, x1, . . . , xL, x′

1, . . . , x
′
L ∈R Zn,

v1 = vx1
0 , . . . , vL = vxL

0 , v′
1 = (v′

0)
x1 , . . . , v′

L = (v′
0)

xL , b1 = b
x′
1

0 , . . . , bL = b
x′

L
0 ,

Ry, Rg, Rf , Rv0 , . . . , RvL
, Rv′

0
, . . . , Rv′

L
, Rb0 , . . . , RbL

, Rh′
1
, . . . , Rh′

L
, Ru′

1
, . . . ,

Ru′
L

∈R Gq,

G = gpRg, F = gψ
p Rf , Y = e(gα

p , gαL

p gγ
p),

Vt = gv0xt
p Rvt

, V ′
t = g

v′
0xt

p Rv′
t
, with t = 1, . . . , L,

Bk = g
b0x′

k
p

∏

k∈ind(
−→
d)

g
αL+1−id

i
ik

p Rbk
, with k = 1, . . . , L,

Hi = g
h′

i
p Rhi

, {Ui = g
u′

i−αL+1−i

p Ru′
i
}

i∈ind(
−→
d)

, {Ui = g
u′

i
p Ru′

i
}

i∈ind(
−→
d)

The corresponding master secret key components are: g = gp, f =

gψ
p , hi = g

h′
i

p , {ui = g
u′

i−αL+1−i

p }
i∈ind(

−→
d)

, {ui = g
u′

i
p }

i∈ind(
−→
d)

, vt = vxt
0 , v′

t =

v′
0
xt , with t = 1, . . . , L, bk = b

x′
t

0

∏

i∈ind(
−→
d)

gαL+1−idi
p , with k = 1, . . . , L. Notice

that the master key component ω is gαL+1+αγ
p . Since B does not have gαL+1

p ,
B cannot compute ω directly.

• Query Phase 1: A queries the user secret key for a string −→z =
(z1, z2, . . . , zm) under the constraint that EditDistance(−→v ∗,−→z) > τ . Assume
EditDistance(−→v ∗, −→z) = σ and denote −→σ = (1, 2, . . . , σ, 0, . . . , 0) and−→
d = (1, 2, . . . , τ, 0, . . . , 0). Note that since σ > τ , there exists at least one
position i such that di = 0 and σi �= 0. Let φ ∈ ind(

−→
d) be the smallest

integer such that σφ �= dφ. B simulates the user key generation process as
follows:

K4,0,0 = ω(v′
0

L∏

i=1

hw̄i
i)r2(b0

L∏

i=1

(uσi
i))r1(v′

0

L∏

i=1

hw̄i
i))r1fr1

= gαL+1+αγ
p (v′

0

L∏

i=1

hw̄i
i)r2(gb0

p

∏

i∈ind(
−→
d)

gαL+1−idi
p

∏

ind(−→σ)

(gu′
i−αL+1−i

)σi

· ∏

ind(−→σ)

(gu′
i)σi)r1(v′

0

L∏

j=1

h
w̄j

j)r1fr1

def
= gαL+1+αγ

p (v′
0

L∏

i=1

uw̄i
i)r2(gX

p)r1(v′
0

L∏

i=j

h
w̄j

j)r1fr1

where X =
∑

ind(
−→
d)

αn+1−idi + b0 +
∑

ind(−→σ)(u
′
i −αL+1−i)σi +

∑
ind(−→σ) u′

iσi.

Since
∑

ind(−→σ)(u
′
i − αL+1−i)σi +

∑
ind(−→σ) u′

iσi = −∑
ind(−→σ) αL+1−iσi +

∑L
i=1 u′

iσi, and recall σi = di for i ∈ ind(
−→
d)|φ−1

1 and σφ �= dφ. Hence, we
have:
X =

∑
ind(

−→
d)|φ1

αL+1−i(di − σi) +
∑L

i=1 u′
iσi + b0 = αL+1−φΔφ +

∑L
i=1 u′

iσi + y

where Δφ = (dφ − σφ). Then we choose r̂, r′
2 randomly in Zn, and set r1 =

−αφ

Δφ
+ r′

1, r2 = r′
2. Then K4,0,0 can be represented as:

114 T.V.X. Phuong et al.

K4,0,0 = gαL+1+αγ
p (v′

0

L∏

i=1
(hi)

w̄i)r′
2 · (gαL+1−φΔφ+

∑L
i=1 u′

iσi
p)

−αφ

Δφ
+r′

1

(v′
0

L∏

j=1
h

w̄j
j))

−αφ

Δφ
+r′

1
f

−αφ

Δφ
+r′

1

= gαL+1+αγ
p (v′

0

L∏

i=1
h

w̄i
i)r′

2 · g−αL+1
p (g

αL+1−φΔφ
p)r′

1 (g
∑L

i=1 u′
iσi

p)
−αφ

Δφ
+r′

1

(v′
0

L∏

j=1
h

w̄j
j))

−αφ

Δφ
+r′

1
f

−αφ

Δφ
+r′

1

= (v′
0

L∏

i=1
h

w̄i
i)r′

2 · (gαL+1−φΔφ
p)r′

1 (g
∑L

i=1 u′
iσi

p)
−αφ

Δφ
+r′

1
(v′

0

L∏

j=1
h

w̄j
j))

−αφ

Δφ
+r′

1
f

−αφ

Δφ
+r′

1

Then we simulate T4,k,t with k, t �= 0 as:

T4,k,t = ((bk

L∏

i=1

(uiLσi
i)(v′

t

L∏

j=1

hw̄ii
t

i))r1

= (gbk
p

∏

φ∈ind(
−→
d)|Lφ+1

g
αL+1−φdφ
p

∏

φ∈ind(−→σ)|Lφ+1

(gu′
φ−αL+1−φ

)σφ

· ∏

φ∈ind(−→σ)

(gu′
φ)σφ)

−αφ

Δφ
+r′

1 · (v′
t

L∏

j=1

h
w̄jit

j))
−αφ

Δφ
+r′

1

Next, it generates for each alphabet in −→z :

⎧
⎪⎨

⎪⎩

y1 = (z1, 1, . . . , 1L)
. . . ,

ym = (zm, 1, . . . , 1L)
, then

computes K3,i = (vi

L∏

j=1

h
yij

i)r′
2 . Other elements in the key can also be simu-

lated: K1 = gr1 = g
−αφ

Δφ
+r′

1 ,K2 = gr′
2 .

• Challenge: A sends two message M0,M1 to B. The challenger then flips a
coin β ← {0, 1}.

First, B generates for each alphabet in −→v ∗:

⎧
⎪⎨

⎪⎩

x∗
1 = (v1, 1, . . . , 1L)

. . . ,

x∗
m = (vm, 1, . . . , 1L)

, then

generates Z1, Z2, Z3, Z4, Z5
R←− Gq and sets:

C0 = Mb · T ′ · e(gα
p , h)γ , C1 = hZ1, C2 = hψZ2, C3,i = h

v0xi+
L∑

j=1
h′

ix
∗
i,j

Z3,

C4 = h
v′
0+

L∑

i=1
h′

iv
∗
i

Z4, C5,k,t = h
bkx′

k

L∑

i=1
u′

idii
k+v′

t

L∑

j=1
v∗

j h′
jjt

Z5

where h = gc
p for some unknown c ∈ Zp. B returns the challenge ciphertext

CT ∗ = (n1, C1, C2, {C3,i}n1
i=1, C4, {{C5,k,t}L

k=0}L
t=0)

Edit Distance Based Encryption and Its Application 115

to A. If T ′ = T = e(gp, h)αL+1, then:

C0 = Mb · e(gp, gc
p)αL+1 · e(gα

p , gc
p)γ = Mb · e(gp, gαL+1

p)c · e(gα
p , gγ

p)c = Mb · Y c

C1 = (gc
p) · Z1 = Gc · Z′

1, C2 = (gc
p)ψ · Z2 = F c · Z′

2,

C3,i = (gc
p)

v0xi+
L∑

j=1
h′

ix∗
i,j

Z3 = (g
v0xi+

L∑

j=1
h′

ix∗
i,j

p)cZ3 = (Vi

L∏
j=1

H
x∗

ij

i)c · Z′
3,

C4 = (gc
p)

v′
0+

L∑

i=1
h′

iv∗
i · Z4 = ((gp)

v′
0+

L∑

i=1
h′

iv∗
i
)c · Z4 = (V ′

0

L∏
i=1

H
v∗

i
i)c · Z′

4.

C5,k,t = (gc
p)

bkx′
k

L∑

i=1
u′

idiik+v′
t

L∑

j=1
v∗

j h′
jjt

· Z5 = ((gp)
bkx′

k

L∑

i=1
u′

idiik+v′
t

L∑

j=1
v∗

j h′
jjt

)c · Z5.

= (V ′
t (Bk

L∏
i=1

(Ui)
diik

)(

L∏
j=1

(Hj)
v∗

j jt

))c · Z′
5.

the challenge ciphertext is a valid encryption of Mb. On the other hand, when
T ′ is uniformly distributed in GT,p, the challenge ciphertext is independent
of b.

• Query Phase 2: Same as Phase 1.
• Guess: A output b′ ∈ {0, 1}. If b′ = b then B outputs 1; otherwise outputs 0.

If b′ = 0, then the simulation is the same as in the real game. Hence, A will have
the probability 1

2 + ε to guess b correctly. If b′ = 1, then T ′ is random in GT,p,
then A will have probability 1

2 to guess b correctly.
Therefore, B can solve the Decisional L−cBDHE assumption also with

advantage ε. �

6 Extension - Fuzzy Broadcast Encryption (FBE)

We demonstrate an extension of the proposed EDE scheme to achieve Fuzzy
Broadcast Encryption. To illustrate how the scheme works, let’s consider the
following example. Suppose we encrypt a message under a keyword vector
W = {Labour Party,Defence Unit} and a threshold distance d = 2. Subsequently,
people who have the attributes related to the keyword w = Labor Party or
w′ = Defense Unit can decrypt the message since the minimum edit distance
between w (w′, respectively) and all the keywords in W is 1, which is less than
the threshold d = 2.

6.1 Definition

A Fuzzy Broadcast Encryption (FBE) scheme consists of the following four prob-
abilistic polynomial-time algorithms:

• Setup(1n, Σ): on input a security parameter 1n, an alphabet Σ, the algorithm
outputs a public key PK and the corresponding master secret key MSK.

116 T.V.X. Phuong et al.

• Encrypt(PK,M,W = (w1,l1 , w2,l2 , . . . , wk,lk) ∈ Σn1 , d): on input a public
key PK, a list of k keywords W = (w1,l1 , w2,l2 , . . . , wk,lk) in which each
keyword wi,li has li characters, and a threshold distance d, the algorithm
outputs a ciphertext CT .

• Key Gen(MSK,w ∈ Σm): on input the master secret key MSK and a
keyword w of length m, the algorithm outputs a secret key SKw.

• Decrypt(CT, SKw): on input a ciphertext CT with keywords W =
(w1,l1 , w2,l2 , . . . , wk,lk) and a secret key SKw with keyword w, the algorithm
outputs M if Min{EditDistance(wi,li , w)}k

i=1 ≤ d, or ⊥ otherwise.

6.2 FBE Scheme

Below we present a FBE scheme based on our EDE scheme.

– Setup(1n, Σ): The setup algorithm is generated similar to the original EDE
scheme.

– Encrypt(PK,W = (w1,l1 , w2,l2 , . . . , wk′,lk′),M, d): On input the public key
PK, a list of k keywords W = (w1,l1 , w2,l2 , . . . , wk′,lk′) in which each keyword
wi,li has li alphabets, it first generates for each alphabet wi,j in keyword wi,li
a vector

⎧
⎪⎨
⎪⎩

x11 = (w11, 1, . . . , 1L), . . . ,x1l1 = (w1l1 , 1, . . . , 1L),

. . .

xk′1 = (wk′1, 1, . . . , 1L), . . . ,xk′l′
k

= (wk′lk′ , 1, . . . , 1L).

Algorithm 2. Multi-keyword Edit Distance Evaluation via Dynamic
Programming

input : CT, SK
output: distance d′, index posw, array pos[2][]

Create Array[len(W)]; Create pos[2][]; Create Array < pos > aPos;
for θ ← 1 to len(W) do

lenv = nθ + 1; lenz = m + 1;
Creat cost[lenv]; Creat newcost[lenv];
for i ← 0 to lenv do

cost[i] = i;
end
k = 0;
for j ← 1 to lenz do

newcost[0] = j;
for i ← 1 to lenv do

match = (e(K1, C3,θ,i−1) == e(C1, K3,j−1))?0 : 1;
if i /∈ pos[0], j /∈ pos[1] then

pos[0][k + +] = i, pos[1][k + +] = j, ;
end
aPos.add(pos);
cost − replace = cost[i − 1] + match; cost − insert =
cost[i] + 1; cost − delete = newcost[i − 1] + 1;
newcost[i] =
Math.min(Math.min(cost − insert, cost − delete), cost − replace);

end
swap[] = cost; cost = newcost;newcost = swap;

end
Array[t + +] = cost[lenv − 1];Refreshpos;

end
return Min(Array[]), posw = index[Array[i] == Min(Array[])], pos = aPos[posw];

Edit Distance Based Encryption and Its Application 117

Define ⎧
⎪⎨

⎪⎩

w1 = (w11, w1,2, . . . , w1,l1 , . . . , 1L),
. . . ,

wk′ = (wk′1, wk′2, . . . , wk′,lk′ , . . . , 1L),

and
−→
d = (1, . . . , d, 0d+1, . . . , 0L). Then choose s ∈R Zn, and Z1, Z2, Z3,

Z4, Z5 ∈R Gq, and compute:

C0 = MY s, C1 = GsZ1, C2 = F sZ2, C3,δ,i = (Vi

L∏

j=1

H
xδij

i)sZ3,

C4,δ = (V ′
0

L∏

i=1

Hwδi
i)s · Z4, C5,k,δ,t = (V ′

t (Bk

L∏

i=1

(Ui)dii
k

)(
L∏

j=1

(Hj)vδjjt

))s · Z5.

Set the ciphertext as: CT = ({lδ}k′
δ=1, C0, C1, C2, {{C3,δ,i}k′

δ=1}lδ
i=1, {C4,δ}k′

δ=1,

{{{C5,k,δ,t}L
k=0}k′

δ=1}L
t=0).

– KeyGen(MSK, w̄ = (w̄1, . . . , w̄m) ∈ Σm): given a keyword w̄ of length
m, it generates yi = (w̄i, 1, . . . , 1L) for each alphabet w̄i, and creates−→σ = (1, 2, ..., L) and expands w̄ to w̄ = (z1, z2, . . . , zm, . . . , 1L). Then choose
r1, r2 ∈R Zn, and compute:

K1 = gr1 ,K2 = gr2 ,K3,i = (vi

L∏

j=1

h
yij

i)r2 ,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K4,0,0 = ω(v′
0

L∏

i=1
h

w̄i
i)r2

((b0
L∏

i=1
(u

σi
i))(v′

0

L∏

j=1
h

w̄j
j))r1fr1

K4,1,0 = (b1
L∏

i=1
(u

σi
i)i(v′

0

L∏

j=1
h

w̄j
j))r1

. . . ,

K4,L,0 = (bL

L∏

i=1
(u

σi
i)iL

(v′
0

L∏

j=1
h

w̄j
j))r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K4,0,t = (b0
L∏

i=1
(u

σi
i)(v′

t

L∏

j=1
h

w̄j
j)jt

)r1

K4,1,t = (b1
L∏

i=1
(u

σi
i)i(v′

t

L∏

j=1
h

w̄j
j)jt

)r1

. . . ,

K4,L,t = (bL

L∏

i=1
(u

σi
i)iL

(v′
t

L∏

j=1
h

w̄j
j)jt

)r1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

for t = 1, . . . , L. Then set the secret key as SK = (m,K1,K2, {K3,i}m
i=1,

{{K4,k,t}L
k=0}L

t=0).

– Decrypt(CT, SK): The decryption algorithm first executes the dynamic pro-
gramming algorithm for edit distance by following Algorithm2 which returns
a minimum distance d′, the index posw of the corresponding keyword w in W ,
the matching indices array pos[0][] for w and pos[1][] for w̄. It sets τ = L−d′,
and applies the Viète’s formulas to compute
We then set aτ−k, āτ−k, âτ−k similar to (3), (4), (5).
Then recover M as:

M =
e(K2, C4,posw

) · e(K1, C2)e(K
1

ā0
1 ,

τ∏

t=0
Cat

5,k,posw,t)

e(
τ∏

t=0
K āt

4,k,t, C
1

ā0
1)

· C0.

118 T.V.X. Phuong et al.

Theorem 2. Assume that the Decisional L−cBDHE assumption holds, then for
any PPT adversary, our FBE scheme is selectively secure.

We give the security definition in the full version since the limited space. The
security proof follows that of Theorem 1 and is omitted here.

7 Conclusions and Future Work

We introduced a new type of fuzzy public key encryption in this paper. Our
new encryption scheme, called Edit Distance-based Encryption (EDE), allows
a user associated with an identity or attribute string to decrypt a ciphertext
encrypted under another string if and only if the edit distance between the two
strings are within a threshold specified by the encrypter. We provide the formal
definition, security model, and a concrete EDE scheme in the standard model.
We also showed an extension of our EDE scheme for fuzzy broadcast encryption.
We leave the construction of an anonymous EDE scheme, which implies a Fuzzy
Public-key Encryption with Keyword Search scheme to preserve the privacy of
the matching keyword by the dynamic programming algorithm.

Acknowledgement. Kaitai Liang is supported by privacy-aware retrieval and mod-
elling of genomic data (PRIGENDA, No. 13283250), the Academy of Finland.

References

1. Abdalla, M., Birkett, J., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G.,
Schuldt, J.C.N., Smart, N.P.: Wildcarded identity-based encryption. J. Cryptol.
24(1), 42–82 (2011)

2. Abdalla, M., Caro, A.D., Phan, D.H.: Generalized key delegation for wildcarded
identity-based and inner-product encryption. IEEE Trans. Inf. Forensics Secur.
7(6), 1695–1706 (2012)

3. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006)

4. Atallah, M.J., Kerschbaum, F., Du, W.: Secure and private sequence comparisons.
In: ACM Workshop on WPES, pp. 39–44 (2003)

5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (S&P 2007), pp. 321–334
(2007)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

7. Cheon, J.H., Kim, M., Lauter, K.: Homomorphic computation of edit distance.
Cryptology ePrint Archive, Report 2015/132 (2015)

8. Ge, A., Zhang, R., Chen, C., Ma, C., Zhang, Z.: Threshold ciphertext policy
attribute-based encryption with constant size ciphertexts. In: Susilo, W., Mu, Y.,
Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 336–349. Springer, Heidelberg
(2012)

Edit Distance Based Encryption and Its Application 119

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: 13th ACM Conference on Computer
and Communications Security, CCS 2006, pp. 89–98 (2006)

10. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press, New York (1997)

11. Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in thresh-
old attribute-based encryption. In: 13th International Conference-PKC 2010,
pp. 19–34 (2010)

12. Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88.
Springer, Heidelberg (2008)

13. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic com-
putation. In: 2008 IEEE Symposium on Security and Privacy (S&P 2008),
pp. 216–230 (2008)

14. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

15. Liang, K., Liu, J.K., Wong, D.S., Susilo, W.: An efficient cloud-based revoca-
ble identity-based proxy re-encryption scheme for public clouds data sharing.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712,
pp. 257–272. Springer, Heidelberg (2014)

16. Liang, K., Susilo, W.: Searchable attribute-based mechanism with efficient data
sharing for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 10(9),
1981–1992 (2015)

17. Liang, K., Susilo, W., Liu, J.K.: Privacy-preserving ciphertext multi-sharing con-
trol for big data storage. IEEE Trans. Inf. Forensics Secur. 10(8), 1578–1589 (2015)

18. Park, J.H.: Efficient hidden vector encryption for conjunctive queries on encrypted
data. IEEE Trans. Knowl. Data Eng. 23(10), 1483–1497 (2011)

19. Phuong, T.V.X., Yang, G., Susilo, W.: Efficient hidden vector encryption with
constant-size ciphertext. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014,
Part I. LNCS, vol. 8712, pp. 472–487. Springer, Heidelberg (2014)

20. Rane, S., Sun, W.: Privacy preserving string comparisons based on levenshtein
distance. In: 2010 IEEE WIFS, pp. 1–6 (2010)

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

22. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords
with wildcards on encrypted data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010)

23. Wang, X.S., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-
wide, privacy-preserving similar patient query based on private edit distance. In:
22nd ACM CCS 2015 (2015)

	Edit distance based encryption and its application
	Citation

	tmp.1665645478.pdf.hcpUv

