
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

1-2008

Enhancing recursive supervised learning using clustering and Enhancing recursive supervised learning using clustering and

combinatorial optimization (RSL-CC) combinatorial optimization (RSL-CC)

Kiruthika RAMANATHAN
Singapore Management University, kiruthikar@smu.edu.sg

Sheng Uei GUAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Artificial Intelligence and Robotics Commons, and the Databases and Information Systems

Commons

Citation Citation
RAMANATHAN, Kiruthika and GUAN, Sheng Uei. Enhancing recursive supervised learning using clustering
and combinatorial optimization (RSL-CC). (2008). Engineering Evolutionary Intelligent Systems. 157-176.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7394

This Book Chapter is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7394&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Enhancing Recursive Supervised Learning
Using Clustering and Combinatorial
Optimization (RSL-CC)

Kiruthika Ramanathan and Sheng Uei Guan

Summary. The use of a team of weak learners to learn a dataset has been shown
better than the use of one single strong learner. In fact, the idea is so successful
that boosting, an algorithm combining several weak learners for supervised learn-
ing, has been considered to be one of the best off-the-shelf classifiers. However, some
problems still remain, including determining the optimal number of weak learners
and the overfitting of data. In an earlier work, we developed the RPHP algorithm
which solves both these problems by using a combination of genetic algorithm, weak
learner and pattern distributor. In this paper, we revise the global search component
by replacing it with a cluster-based combinatorial optimization. Patterns are clus-
tered according to the output space of the problem, i.e., natural clusters are formed
based on patterns belonging to each class. A combinatorial optimization problem
is therefore formed, which is solved using evolutionary algorithms. The evolution-
ary algorithms identify the “easy” and the “difficult” clusters in the system. The
removal of the easy patterns then gives way to the focused learning of the more com-
plicated patterns. The problem therefore becomes recursively simpler. Overfitting is
overcome by using a set of validation patterns along with a pattern distributor. An
algorithm is also proposed to use the pattern distributor to determine the optimal
number of recursions and hence the optimal number of weak learners for the prob-
lem. Empirical studies show generally good performance when compared to other
state-of-the-art methods.

1 Introduction

Recursive supervised learners are a combination of weak learners, data de-
composition and integration. Instead of learning the whole dataset, different
learners (neural networks, for instance) are used to learn different subsets
of the data, resulting in several sub solutions (or sub-networks). These sub-
networks are then integrated together to form the final solution to the system.
Figure 1 shows the general architecture of such learners.

K. Ramanathan and S.U. Guan: Enhancing Recursive Supervised Learning Using Clustering

and Combinatorial Optimization (RSL-CC), Studies in Computational Intelligence (SCI) 82,

157–176 (2008)

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

158 K. Ramanathan and S.U. Guan

Fig. 1. Architecture of the final solution of recursive learners

In the design of recursive learners, several factors come into play in deter-
mining the generalization accuracy of the system. Factors include

1. The accuracy of the sub networks
2. The accuracy of the integrator
3. The number of subnetworks

The choice of subsets for training each of the subnetworks plays an impor-
tant part in determining the effect of all these factors. Various methods have
been used for subset selection in literature. Several works, including topology
based selection [17], and recursive pattern based training [6], use evolutionary
algorithms to choose subsets of data.

Algorithms such as active data selection [23], boosting [21] and multi-
sieving [19] implement this subset choice using neural networks trained with
various training methods. Multiple weak learners have also been used and the
best weak learner given the responsibility of training and solving a subset [9].
Other algorithms make use of more brute force methods such as the use of
the Mahalanobhis distance [3]. Even other algorithms such as the output
parallelism algorithm manually decompose their tasks [5], [7], [10]. Clustering
has also been used to decompose datasets in some cases [2].

The common method used in these algorithms (except the manual de-
composition), is to allow a network to learn some patterns and declare these
patterns as learnt. The system then creates other networks to deal with the
unlearnt patterns. The process is done recursively and with successively de-
creasing subset size, allowing the system to concentrate more and more on
the difficult patterns.

While all these methods work relatively well, the hitch lies in the fact that,
with the exception of manual partitioning, most of the techniques above use

RSL Using Clustering and Combinatorial Optimization 159

some kind of intelligent learner to split the data. While intelligent learners
and algorithms such as neural networks [12], genetic algorithms [13] and such
are effective algorithms, they are usually considered as black boxes [1], with
little known about the structure of the underlying solution.

In this chapter, our aim is to reduce, by a certain degree, this black box
nature of recursive data decomposition and training. Like in previous works,
genetic algorithms are used to select subsets, however, unlike previous works;
genetic algorithms are not used to select the patterns for a subset, but to
select clusters of patterns for a subset. By using this approach, we hope to
group patterns into subsets and derive a more optimal partitioning of data.
We also aim to gain a better understanding of optimal data partitioning and
the features of well partitioned data.

The system proposed consists of a pre-trainer and a trainer. The pre-
trainer is made up of a clusterer and a pattern distributor. The clusterer
splits the data set into clusters of patterns using Agglomerative hierarchi-
cal clustering. The pattern distributor assigns validation patterns to each of
these clusterers. The trainer now solves a combinatorial optimization problem,
choosing the clusters that can be learnt with best training and validation accu-
racy. These clusters now form the easy patterns which are then learnt using a
gradient descent with the constructive backpropagation algorithm [18] to cre-
ate the first subnetwork (a three layered percepteron). The remaining clusters
form the difficult patterns. The trainer now focuses attention on the diffi-
cult patterns, thereby recursively isolating and learning increasingly difficult
patterns and creating several corresponding subnetworks.

The use of genetic algorithms in selecting clusters is expected to be more
efficient than their use in the selection of patterns for two reasons

1. The number of combinations is now nCk as opposed to T CL, where
the number of available clusters n, is less than the number of training
patterns T . Similarly, the number of clusters chosen k is smaller than the
number of training patterns chosen L. The solution space is now smaller,
therefore increasing the probability of finding a better solution.

2. The distribution of validation information is performed during pre-
training, as opposed to during the training time. Validation pattern
distribution is therefore a one-off process, thereby saving training time.

The rest of the paper is organized as follows. We begin with some pre-
liminaries and related work in section 2. In section 3, we present a detailed
description of the proposed Recursive supervised learning with clustering and
combinatorial optimization (RSL-CC) algorithm. To increase the practical
significance of the paper, we include pseudo code, remarks and parame-
ter considerations where appropriate. More details and specifications of the
algorithm are then presented in section 4. In section 5, we present some
heuristics and practical guidelines for making the algorithm perform better.
Section 5.4 presents the results of the RSL-CC algorithm on some benchmark
pattern recognition problems, comparing them with other recursive hybrid

160 K. Ramanathan and S.U. Guan

and non-hybrid techniques. In section 6, we complete the study of the RSL-
CC algorithm. We summarize the important advantages and limitations of
the algorithm and conclude with some general discussion and future work.

2 Some preliminaries

2.1 Notation

m : Input dimension
n : Output dimension
K : Number of recursions
I : Input
O : Output
Tr : Training
V al : Validation
P : Ensemble of subsets
S : Neural network solution
E : Error
T : Number of training patterns
r : Recursion index
Nchrom : Number of chromosomes
Nc : Number of clusters

2.2 Problem formulation for recursive learning

Let Itr = {I1, I2,..., IT} be a representation of T training inputs. Ij is defined,
for any j ∈ T over an m dimensional feature space, i.e, Ij ∈ Rm. Let Otr =
{O1, O2,...,OT} be a representation of the corresponding T training outputs.
Oj is a binary string of length n. Tr is defined such that Tr = {Itr,Otr}.

Similarly Iv = {Iv,1, Iv,2,..., Iv,Tv} and Ov = {Ov,1, Ov,2,...,Ov,Tv} rep-
resent the input and output patterns of a set of validation data, such that
Val = {Iv,Ov}. We wish to take Tr as training patterns to the system and
V al as the validation data and come up with an ensemble of K subsets. Let
P represent this ensemble of K subsets:

P =
{
P1,P2,...PK

}
, where, for i ∈ K

Pi =
{
Tri,Vali

}
,Tri =

{
Iitr,O

i
tr

}
,Vali =

{
Iiv,Oi

v

}
Here, Iitr and Oi

tr are mxTi and nxTi matrices respectively and Ii
v and

Oi
v are mxTvi and nxTvi matrices respectively, such that

∑K
i=1 Ti = T and∑K

i=1 Tvi = Tv. We need to find a set of neural networks S =
{
S1, S2,...SK

}
,

where S1 solves P1, S2 solves P2 and so on.

RSL Using Clustering and Combinatorial Optimization 161

P should fulfill two conditions:

Condition set 1 Conditions for a good ensemble

1. The individual subsets can be trained with a small mean square training
error, i.e., Ei

tr = Oi
tr − Si(Iitr) → 0.

2. None of the subsets Tr1 to TrK are overtrained, i.e,∑j
i=1 Ei

val <
∑j+1

i=1 Ei
val; j, j + 1 ∈ K

2.3 Related work

As mentioned in the introduction, several methods are used to select a suitable
partition P =

{
P1,P2,...PK

}
that fulfills the conditions 1 and 2 above. In

this section we shall discuss some of them in greater detail and discuss their
pros and cons.

Manual decomposition

Output parallelism was developed by Guan and Li [5]. The idea involves split-
ting a n-class problem into n two-class problems. The idea behind the decom-
position is that a two class problem is easier to solve than an n-class problem
and hence is more efficient. Each of the n sub problem consists of two outputs,
class i and class i. Guan et al. [7] later added an integrator in the form of a
pattern distributor to the system. The Output parallelism algorithm essen-
tially develops a set of n sub-networks, each catering to a 2-class problem and
integrates them using a pattern distributor.

While the algorithm is shown to be effective in terms of both training time
and generalization accuracy, a major drawback of the algorithm is its class
based manual decomposition. In fact, research has been carried out [7] shows
empirically that the 2-class decomposition is not necessarily the optimum
decomposition for a problem. This optimum decomposition is a problem de-
pendent value. Some problems are better solved when decomposed into three
class sub problems, others when decomposed into sub-problems with a vari-
able number of classes. While automatic algorithms have been developed to
overcome this problem of manual decomposition [8], the net result is an algo-
rithm which is computationally expensive. The other concern associated with
the output parallelism is that it can only be applied to classification problems.

Genetic algorithm based partitioning algorithms

GA based algorithms are shown to be effective in partitioning the datasets
into simpler subsets. One interesting observation was that using GA for par-
titioning leads to simpler and easily separable subsets [6].

However, the problem with these approaches is that the use of GA is
computationally costly. Also, a criterion has to be established, right at the

162 K. Ramanathan and S.U. Guan

beginning, to separate the difficult patterns from the easy ones. In the case of
various algorithms, criterions used include the history of difficulty, the degree
of learning [17] and so on.

In the Recursive Pattern based hybrid supervised learning (RPHS) algo-
rithm [6], the problem of the degree of learning is overcome by hybridizing the
algorithm and adapting the solution to the problem topology by using a neu-
ral network. In this algorithm, GA is only a pattern selection tool. However,
the problem of computational cost still remains.

Brute force methods

Brute force mechanisms include the use of a distance or similarity measure
such as the Mahalanobhis distance [3]. Subsets are selected to ensure good
separation of patterns in one output class from another, resulting in good
separation between classes in each subset. A similar method, bounding boxes,
has been developed [9] which clusters patterns based on their Euclidean dis-
tances and overlap from patterns of other classes.

While the objective of the approach is direct, much effort in involved in
pretraining as it involves brute force distance computation. In [9], the authors
have shown that the complexity of the brute force distance measure increases
almost exponentially with the problem dimensionality. Also, a single distance
based criterion may not be the most suitable for different problems, or even
different classes.

Neural network approaches

Neural network approaches to decomposition are similar to genetic algorithms
based approaches. Multisieving [19], for instance, allows a neural network to
learn patterns, after which it isolates the network and allows another network
to learn the “unlearnt” patterns. The process continues until all the patterns
are learnt.

Boosting [21] is similar in nature, except that instead of isolating the
“learnt” patterns, a weight is assigned to them. An unlearnt pattern has more
weight and is thus concentrated on by the new network. Boosting is a success-
ful method and has been regarded as “one of the best off the shelf classifiers”
in the world [11].

However, the system uses neural networks to select patterns, which solves
the problem, but results in the black box like structure. The underlying reason
for the solution formation is unknown i.e., we do not know why some patterns
are better learnt. While one can solve the dataset with these approaches,
not much information is gained about the data in the solving process. Also,
the multisieving algorithm, for instance, does not talk about generalization,
which is often an issue in task decomposition approaches. Subsets which are
too small can result in the overtraining of the corresponding subnetwork.

RSL Using Clustering and Combinatorial Optimization 163

Clustering based approaches

Clustering based approaches to task decomposition for supervised learning
are many fold [2]. Most of them divide the dataset into clusters and solve
individual clusters separately. However, this particular approach is not very
good as it creates a bias. Many subsets have several patterns in one class
and few patterns in other classes. The effect of this bias has been observed
in the PCA reduced visualizations of the data and also in the generalization
accuracy of the resulting network. Therefore, the networks created are not
sufficiently robust.

Separability

For the purpose of this chapter, we are interested in subsets which fulfill the
following conditions:

Condition set 2 Separability conditions for good subset partitioning

1. Each class in a subset must be well separated from other classes in the
same subset

2. Each subset must be well separated from another subset

Intuitively, we can observe that the fulfilling of these two conditions is
equivalent to fulfilling condition set 1

3 The RSL-CC algorithm

The RSL-CC algorithm can be described in two parts, pre-training and
training. In this section, we explain these two aspects of training in detail.

3.1 Pre-training

1. We express Itr, Otr, Iv and Ov as a combination of m classes of patterns,
i.e.,

Itr = {IC1, IC2,..., ICn}
Otr = {OC1,OC2,...,OCn}
Iv = {IC1

v , IC2
v ,..., ICn

v }
Ov = {OC1

v ,OC2
v ,...,OCn

v }

2. The datasets Itr, Otr, Iv and Ov are split into n subsets,{
IC1,OC1, IC1

v ,OC1
v

}
,
{
IC2,OC2, IC2

v ,OC2
v

}
,
{
ICn,OCn, ICn

v ,OCn
v

}
(1)

where each subset in expression 1 consists of only patterns from one class.

164 K. Ramanathan and S.U. Guan

3. Each subset,
{
ICi,OCi, ICi

v ,OCi
v

}
, i ∈ n, now undergoes a clustering

treatment as below:
• Cluster ICi into kCi partitions or natural clusters. Any clustering al-

gorithm can be used, including SOMs, K-means [14], Agglomerative
Hierarchical clustering [15], Bounding Boxes [9].

• Using a pattern distributor, patterns in IvCi are assigned to one of
the kCi patterns. In this paper, we implement the pattern distributor
using the nearest neighbor algorithm [22].

• Each pattern, validation or training, in a given cluster jCi, j ∈ k , has
the same output pattern.

4. The total number of clusters is now the sum of the natural clusters formed
in each class.

Nc =
n∑

i=1

kci (2)

3.2 Training

1. Number of recursions r = 1.
2. A set of binary chromosomes are created, each chromosome having Nc

elements, where Nc is defined in equation 2. An element in a chromosome
is set at 0 or 1, 1 indicating that the corresponding cluster will be selected
for solving using recursion r.

3. A genetic algorithm is executed to minimize Etot, the average of the train-
ing and validation errors Etr and Eval

Etot =
1
2

(ETr + EV al) (3)

4. The best chromosome Chrombest is a binary string with a combination of
0s and 1s, with the size Nc. The following steps are executed:
a) N r

c = 0, Trr = [],Valr = []
b) For e = 1 to Nc

c) if Chrombest(e) == 1
N r

c + +
Trr = Trr + Trchrombest(e)

Valr = Valr + Valchrombest(e)

d) The data is updated as follows:

Tr = Tr − Trr

Val = Val − Valr

Nc = Nc − N r
c

r + +
e) Trr and Valr are used to find Sr, the solution network corresponding

to the subset of data in recursion r.
5. Steps 2 to 4 are repeated with the new values of Tr, Val, Nc and r.

RSL Using Clustering and Combinatorial Optimization 165

Fig. 2. Using a KNN distributor to test the RSL-CC system

3.3 Simulation

Simulating and testing the RSL-CC algorithm is implemented using a Kth
nearest neighbor (KNN) [22] based pattern distributor. KNN was used to
implement the pattern distributor due to the ease of its implementation. At
the end training, we have K subsets of data. A given test pattern is matched
with its nearest neighbor. If the neighbor belongs to subset i, the pattern is
also deemed as belonging to subset i. The solution for subset i is then used
to find the output of the pattern. A multiplexer is used for this function.
The KNN distributor provides the select input for the multiplexer, while the
outputs of subnetworks 1 to K are the data inputs. This process is illustrated
by figure 2.

4 Details of the RSL-CC algorithm

Figure 3 summarizes the data decomposition of the RSL-CC algorithm. Hy-
pothetically, we can observe the algorithm as finding the simpler subset of
data and developing a subnetwork to solve the subset. The size of the “com-
plicated” subset becomes smaller as training proceeds, thereby allowing the
system to focus more on the “complicated” data. When the size of the re-
maining dataset becomes too small, we find that there is no motivation for
further decomposition and the remaining data is trained in the best possible

166 K. Ramanathan and S.U. Guan

Fig. 3. Illustration of the data decomposition of the RSL-CC algorithm

way. Later in this paper, we observe how the use of GA’s combinatorial opti-
mization automatically takes care of when to stop recursions. The use of GAs
to select patterns [17], [6] requires extensive tests for detrimental decomposi-
tion and overtraining. The proposed RSL-CC algorithm eliminates the need
for such tests. As a result, the resulting algorithm is self sufficient and very
simple, with minimal adaptations.

RSL Using Clustering and Combinatorial Optimization 167

4.1 Illustration

Figure 4 shows a hypothetical condition where the RSL-CC algorithm is
applied to create a system to learn the dataset shown. The steps performed
on the dataset are traced below. With the data in Figure 4, the best
chromosome selected at the end of the first recursion has the configuration:
“0 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 1”, the chromosome selected at the end
of the second recursion has a configuration: “1 0 1 0 1 1 1 1 1”. And at the
end of the third recursion, the chromosome has the configuration “1 1”. All
the remaining data is selected and the training is considered complete.

Note:

1. Hypothetical data pre-training: Patterns are clustered according to 1: class
labels and

2. Natural clusters within the class. Clusters 1, 3, 5, 8, 12, 14, 15 and 17 con-
tain patterns from class 1 and the rest of the clusters contain patterns
from class 2.

3. The combinatorial optimization procedure of the 1st recursion selects the
above clusters as the “easy” patterns. They are isolated and separately
learnt.

4. These patterns are the “difficult” patterns of the 1st recursion, they are
focused on in the second recursion.

5. The above patterns are considered “easy” by the combinatorial optimiza-
tion of the second recursion and are isolated and learnt separately.

6. The remaining “difficult” patterns of the second recursion are solved by
the 3rd recursion.

4.2 Termination criteria

The grouping of patterns means that clusters of patterns are selected for each
subset. Further, in contrast with any other method, the GA based recursive
subset selection proposed selects the optimal subset combination. Therefore,
we can assume that the decomposition performed is optimal. We prove this
by using apogage

Proof. Apogage is used:
If the subset chosen at recursion i is not optimal, an alternative subset will
be chosen. The largest possible alternative subset is the training set for the
recursion, Trr = Tr −∑r−1

i=1 Tri. Therefore if decomposition at a particular
recursion is suboptimal, no decomposition will be performed and the training
will be completed.

We therefore have the following termination conditions:

Condition set 3 Termination conditions

1. No clusters of patterns are left in the system

168 K. Ramanathan and S.U. Guan

a.

b. c.

d. e.

Fig. 4. RSL-CC decomposition illustration

RSL Using Clustering and Combinatorial Optimization 169

2. Only one cluster is left in the remaining data
3. More than one cluster is present in the remaining data, but all the clusters

belong to the same class

Condition 1 above occurs when the optimal choice in a system is to choose
all the clusters as decomposition is not favorable. Conditions 2 and 3 describe
dealing with cases when it is not necessary to create a classifier due to the
homogeneity of output classes.

Fitness function for combinatorial optimization In equation 3, we defined
the fitness function as an average of the training and validation errors obtained
when training the subset selected by the chromosome, 1

2 (ETr + EV al). The
values of Etr and Eval are calculated as follows:

1. Design a three layered neural network with an arbitrary number of hidden
nodes (we use 10 nodes, for the purpose of this paper).

2. Use the training and validation subsets selected by the corresponding
chromosome to train the network.

The best performing network is chosen as Chrombest.

5 Heuristics for improving the performance
of the RSL-CC algorithm

The design of a neural network system “is more an art than a science in the
sense that many of the numerous factors involved in the design are as a result
of one’s personal experience.” [12]. While the statement is true, we wish to
make the RSL-CC system as less artistic and as much scientific as possible.
Therefore, we propose here several methods which will improve and make the
algorithm “to the point” as far as implementation is concerned.

5.1 Minimal coded genetic algorithms

The implementation of Minimal coded Genetic Algorithms (MGG) [4], [20]
was considered because the bulk of the training time of an evolutionary neural
network is due to the evaluation of the fitness of a chromosome. In Minimal
coded GAs however, only a minimal number of offspring is generated at each
stage. The algorithm is outlined briefly below.

1. From the population P , select u parents randomly.
2. Generate θ offspring from the u parents using recombination/mutation.
3. Choose two parents at random from u.
4. Of the two parents, one is replaced with the best from θ and the other is

replaced by a solution chosen by a roulette wheel selection procedure of a
combined population of θ offspring and two selected parents.

170 K. Ramanathan and S.U. Guan

In order to make the genetic algorithm efficient timewise, we choose the
values of u = 4 and θ = 1 for the GA based neural networks. Therefore,
except for the initial population evaluation, the time taken for evolving one
epoch using MGG is equivalent to the forward pass of the backpropagation
algorithm.

5.2 Population size

The number of elements in each chromosome depends on the total number of
cluster formed. However, the number of chromosomes in the population, in
this paper, is evaluated as follows

Nchrom = min(2Nc , POP SIZE) (4)

This means that the population size is either POPSIZE, a constant for
the maximal population size, or if Nc is small, 2NC .

The argument behind the use of a smaller population size is so that when
there are 4 clusters, for example, it does not make much efficiency to evaluate
a large number of chromosomes. So only 16 chromosomes are created and
evaluated.

5.3 Number of generations

In the case where the number of chromosomes is 2NC , only one generation is
executed. This step is to ensure efficiency of the algorithm.

5.4 Duplication of chromosomes

Again, with efficiency in mind, we ensure that in the case where the population
size is 2NC , we ensure that all the chromosomes are unique. Therefore, when
the number of clusters is small, the algorithm is a brute force technique.

sectionExperimental results

5.5 Problems Considered

The table below summarizes the three classification problems considered in
this paper. The problems were chosen such that they varied in terms of input
and output dimensions as well as in the number of training, testing and val-
idation patterns made available. All the datasets, other than the two-spiral
dataset, were obtained from the UCI repository.

The results of the two-spiral dataset were compared with constructive
backpropagation, multisieving and the topology based subset selection algo-
rithms only. This was because the SPAM and two spiral problems were two-
class problems. Therefore implementing the output parallelism will not make
a difference to the results obtained by CBP.

RSL Using Clustering and Combinatorial Optimization 171

The two spiral dataset consists of 194 patterns. To ensure a fair comparison
to the Dynamic subset selection algorithm [17], test and validation datasets of
192 patterns were constructed by choosing points next to the original points
in the dataset as mentioned in the paper.

5.6 Experimental parameters and control algorithms implemented

Table 2 summarizes the parameters used in the experiments. As we wish for
the RSL-CC technique to be as problem independent as possible, we make
all the experimental parameters constant for all problems and as given below.
Each experiment was run 40 times, with 4-fold cross validation.

For comparison purposes, the following algorithms were designed and im-
plemented. The constructive backpropagation algorithm [18] was implemented
as a single staged (non hybrid) algorithm which conducts gradient descent
based search with the possibility of evolutionary training by the addition of a
hidden node. The Multisieving algorithm [19] (recursive non hybrid pattern
based selection) was implemented to show the necessity to find the correct
pseudo global optimal solution.

Table 1. Summary of the problems considered

Problem Name Vowel Letter recognition Two spiral

Training set size 495 10000 194
Test set size 248 5000 192
Validation set size 247 5000 192
Number of inputs 10 16 2
Number of outputs 11 26 2

Table 2. Summary of parameters used

Parameter Value

Evolutionary search
parameters

Population size 20

Crossover probability 0.9

Small change mutation probability 0.1

MGG parameters
µ = 4,

θ = 1

Neural network
parameters

Generalization loss tolerance for validation 1.5

Backpropagation learning rate 10−2

Number of neighbors in the KNN pattern
distributor

1

172 K. Ramanathan and S.U. Guan

The following control experiments were carried out based on the multi-
sieving algorithm and the dynamic topology based subset finding algorithm.
Both the versions of output parallelism implemented also show the effect of
hybrid selection.

In order to illustrate the effect of the GA based combinatorial optimization,
we also implement the single cluster algorithm explained in section 2 [2]. The
algorithm, in contrast to the RSL-CC algorithm, simply divides the data into
clusters and develops a network to solve each cluster separately.

The RSL-CC algorithm was also compared to our earlier work on RPHS [6],
which uses a hybrid algorithm to recursively select patterns, as opposed to
clusters.

In a nutshell, the following algorithms were implemented to compare with
the various properties of the RSL-CC algorithm

1. Constructive Backpropagation
2. Multisieving1

3. Dynamic topology based subset finding
4. Output parallelism without pattern distributor [5]
5. Output parallelism with pattern distributor [7]
6. Single clustering for supervised learning
7. Recursive pattern based hybrid supervised learning

Table 2 summarizes the parameters used. For clustering, the agglomerative
hierarchial clustering is employed with complete linkage and cityblock distance
mechanism. Using thresholding, the natural clusters of patterns in each class
were obtained. AHC was preferred to other clustering methods such as K-
means or SOMs due to its parametric nature and since the number of target
clusters is not required beforehand.

5.7 Results

We divide this section into two parts. In the first part, we compare the mean
generalization accuracies of the various recent algorithms described in this
paper with the generalization accuracy of the RSL-CC algorithm. In the sec-
ond part, we present the clusters and data decomposition employed by RSL-
CC, illustrating the finding of simple subsets. Comparison of generalization
accuracies.

From the tables above, we can observe that the generalization error of
the RSL-CC is comparable to the generalization error of the RPHS algorithm
and is a general improvement over other recent algorithms. A particularly
significant improvement can be observed in the vowel dataset.

There is some tradeoff observed in terms of training time. The training
times for the RSL-CC algorithm for the vowel and two-spiral problems are
1 The multisieving algorithm [19] did not propose a testing system. We are testing

the generalization accuracy of the system using the KNN pattern distributor,
similar to the RSL-CC pattern distributor.

RSL Using Clustering and Combinatorial Optimization 173

Table 3. Summary of the results obtained from the VOWEL problem (38 clusters,
12 recursions)

Algorithm used Training Classification
time (s) error (%)

Constructive backpropagation 237.9 37.16
Multisieving with KNN pattern distributor 318.23 39.43
Output Parallelism 418.9 25.54
Output parallelism with pattern distributor 534.3 24.89
RPHS 473.88 17.733
Single clustering 458.43 25.24
RSL-CC 547.37 9.84

Table 4. Summary of the results obtained from the LETTER RECOGNITION
problem (100 clusters, 16 recursions)

Algorithm used Training Classification
time (s) error (%)

Constructive Backpropagation 20845.05 21.672
Multisieving with KNN pattern
distributor

55349 65.04

Output Parallelism 42785.4 20.06
Output parallelism with pattern
distributor

45625.4 18.636

RPHS- MGGD 29701 12.42
RSL-CC 12682 13.04

higher than other methods. However, it is interesting to note that the train-
ing time for the Letter Recognition problem is 50% less than any of the recent
algorithms. It is felt that this reduction is training time comes from the re-
duction of the problem space from the selection of patterns to the selection
of clusters, where clusters are selected from 100 possible clusters while RPHS
has to select patterns out of 10,000, thereby reducing the solution space by
100 fold.

On the other hand, for the vowel problem, the problem space is reduced
by only about 13 fold. The performance of RSL-CC is more efficient when
the reduction of the problem space is more significant than the GA-based
combinatorial optimization. The RSL-CC decomposition figures

Figures 5 and 6 illustrate the data decomposition for the letter recognition
and the vowel problems. Only one instance of decomposition is presented
in the figures. From the figures, we can observe the data being split into
increasingly smaller subsets, thereby increasing focus on the difficult patterns.
The decomposition presented is the 2 dimensional projections on the principal
component axis (PCA) [3] of the input space.

174 K. Ramanathan and S.U. Guan

Table 5. Summary of the results obtained from the TWO-spiral problem (4 clusters,
2 recursions)

Algorithm used Training Classification
time (s) error (%)

Constructive Backpropagation 15.58 49.38
Multisieving with KNN pattern distributor 35.89 23.61
Dynamic Topology Based subset selection (TSS) – 28.0
RPHS 59.97 11.08
Single clustering 14.35 10.82
RSL-CC 30.61 10.82

Fig. 5. Decomposition of data for the Letter recognition problem

Fig. 6. Decomposition of data for the vowel problem

RSL Using Clustering and Combinatorial Optimization 175

6 Conclusions and future directions

In this chapter, we present the RSL-CC algorithm which divides the problem
space into class based clusters, where a combination of clusters will form a
subset. Therefore, the problem becomes a combinatorial optimization prob-
lem, where the clusters chosen for the subset becomes the parameter to be
optimized. Genetic algorithms are used to solve this problem to select a good
subset.

The subset chosen is then trained separately, and the combinatorial opti-
mization problem is repeated with the remaining clusters. The situation pro-
gresses recursively until all the patterns are learnt. The sub networks are then
integrated using a KNN based pattern distributor and a multiplexer.

Results show that reducing the problem space into clusters simplifies the
problem space and produces generalization accuracies which are either com-
parable to or better than other recent algorithms in the same domain.

Future directions would include parallelizing the RSL-CC algorithm and
exploring the use of other clustering methods such as K-means or SOMs on
the algorithm. The study of the effect of various clusteringalgorithms will
help us determine better the algorithm simplicity and the robustness. Also
to be studied and determined are methods to further reduce the training
time of combinatorial optimization, alternative fitness functions and ways to
determine the robustness of class based clustering.

References

1. Dayhoff JE, DeLeo JM (2001) Artificial neural networks: Opening the black
box. Cancer 91(8):1615–1635

2. Engelbrechet AP, Brits R (2002) Supervised training using an unsupervised
approach to active learning. Neural Process Lett 15(3):247–260

3. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic,
Boston

4. Gong DX, Ruan XG, Qiao JF (2004) A neuro computing model for real
coded genetic algorithm with the minimal generation gap. Neural Comput Appl
13:221–228

5. Guan SU, Li S (2002) Parallel growing and training of neural networks using
output parallelism. IEEE Trans Neural Netw 13(3):542–550

6. Guan SU, Ramanathan K (2004) Recursive percentage based hybrid pattern
training. In: Proceedings of the IEEE conference on cybernetics and intelligent
systems, pp 455–460

7. Guan SU, Neo TN, Bao C (2004) Task decomposition using pattern distributor.
J Intell Syst 13(2):123–150

8. Guan SU, Qi Y, Tan SK, Li S (2005) Output partitioning of neural networks.
Neurocomputing 68:38–53

9. Guan SU, Ramanathan K, Iyer LR (2006) Multi learner based recursive training.
In: Proceedings of the IEEE conference on cybernetics and intelligent systems
(Accepted)

176 K. Ramanathan and S.U. Guan

10. Guan SU, Zhu F (2004) Class decomposition for GA-based classifier agents – a
pitt approach. IEEE Trans Syst Man Cybern B Cybern 34(1):381–392

11. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning:
Data mining, inference, and prediction. Springer, New York

12. Haykins S (1999) Neural networks, a comprehensive foundation. Prentice Hall,
Upper Saddle River, NJ

13. Holland JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM
J Comput 2(2):88–105

14. MacQueen JB (1967) Some methods for classification and analysis of multi-
variate observations. In: Proceedings of 5th Berkeley symposium on mathemat-
ical statistics and probability, vol 1. University of California Press, Berkeley,
pp 281–297

15. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: A review, ACM Comput
Surv 31(3):264–323

16. Kohonen T (1997) Self organizing maps. Springer, Berlin
17. Lasarzyck CWG, Dittrich P, Banzhaf W (2004) Dynamic subset selection based

on a fitness case topology. Evol Comput 12(4):223–242
18. Lehtokangas M (1999) Modeling with constructive backpropagation. Neural

Netw 12:707–714
19. Lu BL, Ito K, Kita H, Nishikawa Y (1995) Parallel and modular multi-sieving

neural network architecture for constructive learning. In: Proceedings of the 4th
international conference on artificial neural networks, 409, pp 92–97

20. Satoh H, Yamamura M, Kobayashi S (1996) Minimal generation gap model
for GAs considering both exploration and exploitation. In: Proceedings of 4th
international conference on soft computing, Iizuka, pp 494–497

21. Schapire RE (1999) A brief introduction to boosting. In: Proceedings of the 16th
international joint conference on artificial intelligence, pp 1–5

22. Wong MA, Lane T (1983) A kth nearest neighbor clustering procedure. J Roy
Stat Soc B 45(3):362–368

23. Zhang BT, Cho DY (1998) Genetic programming with active data selection.
Lect Notes Comput Sci 1585:146–153

	Enhancing recursive supervised learning using clustering and combinatorial optimization (RSL-CC)
	Citation

	tmp.1665645540.pdf.qUhkQ

