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Recursive Pattern based Hybrid Supervised
Training

Kiruthika Ramanathan and Sheng Uei Guan

Summary. We propose, theorize and implement the Recursive Pattern-based
Hybrid Supervised (RPHS) learning algorithm. The algorithm makes use of the
concept of pseudo global optimal solutions to evolve a set of neural networks, each
of which can solve correctly a subset of patterns. The pattern-based algorithm uses
the topology of training and validation data patterns to find a set of pseudo-optima,
each learning a subset of patterns. It is therefore well adapted to the pattern set
provided. We begin by showing that finding a set of local optimal solutions is theo-
retically equivalent, and more efficient, to finding a single global optimum in terms
of generalization accuracy and training time. We also highlight that, as each local
optimum is found by using a decreasing number of samples, the efficiency of the
training algorithm is increased. We then compare our algorithm, both theoretically
and empirically, with different recursive and subset based algorithms. On average,
the RPHS algorithm shows better generalization accuracy, with improvement of up
to 60% when compared to traditional methods. Moreover, certain versions of the
RPHS algorithm also exhibit shorter training time when compared to other recent
algorithms in the same domain. In order to increase the relevance of this paper
to practitioners, we have added pseudo code, remarks, parameter and algorithmic
considerations where appropriate.

1 Introduction

In this chapter we study the Recursive Pattern Based Hybrid Supervised
(RPHS) learning System, a hybrid evolutionary-learning based approach to
task decomposition. Typically, the RPHS system consists of a pattern distrib-
utor and several neural networks, or sub-networks. The input signal propagates
through the system in a forward direction, through the pattern distributor,
which chooses the best sub-network to solve the problem, which then outputs
the corresponding solution.

RPHS has been applied successfully to solve some difficult and diverse
classification problems by training them using a recursive hybrid approach to
training. The algorithm is based on the concept of pseudo global optima. This
concept is based on the idea of local optima and the gradient descent rule.
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Basically, RPHS learning involves four steps: evolutionary learning [19], de-
composition, gradient descent [26], and integration. During evolutionary learn-
ing, a set of T patterns is fed to a population of chromosomes to decide the
structure and weights of a preliminary pseudo global optimal solution (also
known as a preliminary subnetwork). Decomposition identifies the learnt and
unlearnt patterns of the preliminary subnetwork. A gradient descent approach
works on the learnt patterns and optimizes the preliminary subnetwork using
the learnt patterns. This process produces a pseudo-global optimal solution or
a final subnetwork. The whole process is then repeated recursively with the
unlearnt patterns. Integration works by creating a pattern distributor, a clas-
sification system which helps associate a given pattern with a corresponding
subnetwork.

The RPHS system has two distinctive characteristics

1. Evolutionary algorithms are used to find the vicinity of a pseudo global
optimum and gradient descent is used to find the actual optimum. The
evolutionary algorithms therefore aim to span a larger area of the search
space and to improve the performance of the gradient descent algorithm

2. Two validation algorithms are used in training the system, to identify
the correct stopping point for the gradient descent [26] and to identify
when to stop the recursive decomposition. These two validation algorithms
ensure that the RPHS system is completely adapted to the topology of
the training and validation data. It is through a combination of these
characteristics, together with the ability to unlearn old information and
adapt to new information, that the RPHS system derives its high accuracy.

1.1 Motivation

The RPHS system performs task decomposition. Task decomposition is founded
based on the strategy of divide and conquer [3, 20]. Given a large problem,
it makes more sense to split the task into several subtasks and hand them
over to specialized individuals to solve. The job is done more efficiently than
it would be when one individual is given the complete responsibility. Yet the
splitting of the tasks into subtasks is a challenge by itself, and many factors
need to be determined, such as the method of decomposition, the number of
decompositions etc. In order to motivate the RPHS system, we look at other
divide-and-conquer approaches proposed in the literature.

Some recent task decomposition work proposed the output parallelism and
output partitioning [9, 10] algorithms. The algorithm decomposes the task
according to class labels. The assumption is that a two class problem is easier
to solve than an n class problem. An n class problem is therefore divided into
n two-class problems and a subnetwork applied to solve each problem. While
this approach is shown to be effective on various benchmark classification
problems, the class-based decomposition approach is limited, as it means that
the algorithm can be applied to classification problems only. Further, the
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assumption that a two-class problem is easier to solve than a K-class problem
does not necessarily hold, in which the effectiveness of output parallelism is
questionable.

Recursive algorithms overcome this dependency on class labels. One of
the earliest recursive algorithms is the decision tree algorithm [2, 25] which
develops a set of rules based on the information presented in the training
data. Incremental neural network based learning algorithms [9,10,13,14] also
attempt to overcome the dependency on class labels, but this time, the de-
composition is done based on the input attributes. Another set partitioning
algorithm is the multisieving algorithm [24] which uses a succession of neural
networks to train the system until all the patterns are learnt.

While these approaches are efficient, there is a problem of getting trapped
in local optima in the neural network based or decision tree based divide
and conquer approaches to learning. Further, the recursive algorithms are
focused on optimal training accuracy, but do not target explicitly for optimal
generalization accuracy.

To overcome the problem of being trapped in local optima, genetic algo-
rithm based counterparts were proposed for divide and conquer algorithms.
[16] proposed the class based decomposition for GA-based classifiers, which
encoded the solution in a rule-based system. They also proposed the input
attribute based decomposition using genetic algorithms [17]. Topology-based
subset selection algorithms [22, 32] provide a genetic algorithm counterpart
to the multisieving algorithm.

However, while these approaches solve the local optima problem, the
problem of training time still remains, and the long training time of the
genetic algorithms is one of the bottlenecks to their adaptation in real world
applications.

We therefore have the neural network based, divide-and-conquer ap-
proaches, which are fast, while having a risk of being stuck in a local op-
timum and the evolutionary based approaches which solve this problem, but
take much more time. There is, further, the problem of generalization accu-
racy. How do we guarantee that we obtain the best possible generalization
accuracy? Can there be a different configuration of decomposition that can
result in better generalization accuracy? In Output parallelism [10, 15], for
instance, the best partitioning of outputs is a problem dependant variable and
plays a significant part in the generalization accuracy of the system.

Solving these problems encountered in divide and conquer approaches is
the goal of the RPHS system. Two validation procedures are incorporated to
solve the problem of generalization accuracy. The problem of local optima and
training time is overcome by the use of hybrid Genetic Algorithm based neural
networks or GANNs [11,30] and gradient descent training [26]. However, the
hybridization algorithm proposed is not the same as implemented in earlier
works. On the other hand, we use the genetic algorithm to simply find the
best possible partial solution before the gradient descent algorithm can take
over to optimize the partial solution.
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The use of a hybrid combination of genetic algorithms and neural networks
is widespread in literature. An efficient combination of GAs and backpropa-
gation has been shown effective in various problems including forecasting ap-
plications [1], classification [11,31] and image processing [4]. A comprehensive
review of GANN based hybridization methods can be found in [30].

In RPHS, we make use of GA-based neural networks to serve a dual pur-
pose: to evolve the structure and (partially) the weights of the subnetwork.

1.2 Organization of the chapter

In this chapter, we study the Recursive Pattern based Hybrid Supervised
(RPHS) learning system, as well as the associated validation and pattern dis-
tribution algorithms. The chapter is organized as follows: We begin with some
preliminaries and related work in section 2 and pave the way for the intro-
duction of the RPHS system and training algorithm. In section 3, we present
a detailed description of the algorithm. To increase the practical significance
of the paper, we include pseudo code, remarks and parameter considerations
where appropriate. A summary of the algorithm is then presented in sec-
tion 4. In section 5, we illustrate the use of the RPHS system by solving the
two-spiral problem and the gauss problem, which are difficult to solve with
non recursive approaches. In section 6, we present some heuristics and prac-
tical guidelines for making the algorithm perform better. Section 7 presents
the results of the RPHS algorithm on some benchmark pattern recognition
problems, comparing them with non hybrid and non recursive approaches.
In section 8, we complete the study of the RPHS algorithm. We summarize
the important advantages and limitations of the algorithm and conclude with
some general discussion and future work.

2 Some preliminaries

2.1 Notation

m : Input dimension
n : Output dimension
K : Number of RPHS recursions
I : Input
O : Output
Tr : Training
V al : Validation
P : Ensemble of subsets
S : Neural network solution
E : Error
NH : Number of hidden nodes in the 3-layered percepteron
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Fig. 1. The architecture of the RPHS system

ε : Mean square error
ξ : Error tolerance for defining learnt patterns
T : Number of training patterns
i : Recursion index
λ : Number of epochs of gradient descent training
t : Time taken
Npop : Number of chromosomes

2.2 Simplified architecture

Figure 1 shows a simplified architecture of the RPHS system executed with
K recursions. The input constitutes an m-dimensional pattern vector. The
output is an n-dimensional vector. The integrator provides the select inputs
to the multiplexer which then outputs the corresponding data input. The
data inputs to the multiplexer are the outputs or each of the subnetworks.
Each subnetwork is therefore a neural network (in this case, a three layered
percepteron [26] with m inputs and n outputs. The integrator is a nearest
neighbor classifier [29] with m inputs and K outputs.

2.3 Problem formulation

Let Itr = {I1, I2,..., IT} be a representation of T training inputs. Ij is defined,
for any j ∈ T over an m dimensional feature space, i.e, Ij ∈ Rm. Let Otr =
{O1, O2,...,OT} be a representation of the corresponding T training outputs.
Oj is a binary string of length n. Tr is defined such that Tr = {Itr, Otr}.
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Further, let Iv = {I1, I2,..., ITv} and Ov = {O1, O2,...,OTv} represent the
input and output patterns of a set of validation data, such that Val = {Iv, Ov}.
We wish to take Tr as training patterns to the system and V al as the valida-
tion data and come up with an ensemble of K subsets. Let P represent this
ensemble of K subsets:

P =
{
P1, P2,...PK

}
, where, for i ∈ K

Pi =
{
Tri, Vali

}
, Tri =

{
Iitr, O

i
tr

}
,Vali =

{
Iiv, O

i
v

}
Here, Ii

tr and Oi
tr are mT i and nT i matrices respectively and Ii

v and Oi
v are

mT v and nT v matrices respectively, such that
K∑

i=1

Ti = T and
K∑

i=1

Tvi = Tv.

We need to find a set of neural networks S =
{
S1, S2,...SK

}
, where S1

solves P 1, S2 solves P 2 and so on.
P should fulfill two conditions:

1. The individual subsets can be trained with a small mean square training
error, i.e, Ei

tr = Oi
tr − Si(Iitr) −→ 0,

2. None of the subsets Tri to TrK are overtrained, i.e,
j∑

i=1

Ei
val <

j+1∑
i=1

Ei
val; j, j + 1 ∈ K

The first property implies that each of the neural networks is a global optimum
with respect to their training subset. The second property implies two things:
firstly, each individual network should not be over trained, and secondly, none
of the decompositions should be detrimental to the system

2.4 Variable length genetic algorithm

In RPHS, we make use of the GA based neural networks to serve a dual
purpose: to evolve the structure and (partially) the weights of the subnetwork.
For this purpose, a variable length genetic algorithm is employed.

The use of variable length Genetic Algorithms was inspired by the concept
of messy genetic algorithms. Messy genetic algorithms (mGAs) [7] allow the
use of variable length strings which may be over specified or underspecified
with respect to the problem being solved. The original work by Goldberg
shows that mGAs obtain tight building blocks and are thus more explorative
in solving a given problem.

The variable length Genetic Algorithms used in this paper are also aimed
at building blocks that are more explorative in solving the given problem. In
a three-layered neural network, the number of free parameters, NP , is given
by a product of the number of inputs, the number of outputs and the number
of hidden nodes (NH).

NP = mNH + NHn + n + NH (1)
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Each of these free parameters is one element of the chromosome and represents
one of the weights or the biases in the network.

According to equation 1, a chromosome is therefore defined by the value of
NP which in turn depends on the value of NH . Initialization of the population
is done by generating a random number of hidden nodes for each individual
and a chromosome based on this number.

2.5 Pseudo global optima

The performance of the RPHS algorithm can be attributed to the fact that
RPHS aims to find several pseudo-global solutions as opposed to a single
global solution. We define a pseudo-global optimal solution as follows:

Definition 1. A pseudo-global optima is a global optimum when viewed from
the perspective of a subset of training patterns, but could be a local (or global)
optimum when viewed from the perspective of all the training patterns.

In this section, we highlight the difference among the multisieving algo-
rithm [24], single staged GANN training algorithms [11, 31], and the RPHS
algorithm, based on the concept and simplified model of pseudo-global op-
tima. Consider the use of the RPHS algorithm to model a function Si such
that Oi

tr = Si(w, Ii
tr). where w is the weight vector of values to be optimized.

The training error at any point of time is given by

Etr = Ei
tr + Eunlearnt ≈ Tiεi

tr + (T − Ti)εunlearnt (2)

We know that at any given point, the training error can be split into the
error of the learnt patterns T i and the error of the unlearnt patterns (T −T i).
Definition 2: A pattern is considered learnt if its output differs from the ideal
output by a value no greater than an error tolerance ξ. The number of total
patterns learnt is therefore

Ti =
T∑

i=0

δ

⎧⎨⎩
⎡⎣ 1

O

O∑
j=0

φ
[
ξ −
∣∣∣Oi,j − Ôi,j

∣∣∣]
⎤⎦− 1

⎫⎬⎭ (3)

where δ(.) is the unit impulse function and φ(.) is the unit step function and
Ôi,j is the network approximation to Oi,j .

By definition of learnt and unlearnt patterns εtr ≤ ξ < εunlearnt. Also, as
we approach the optimal points, Etr

i → 0. Also, consider that at the end of
evolutionary training, all the learnt patterns have an error less than the error
tolerance ξ, i.e.

Etr = Ei
tr + Eunlearnt < ξT i + Eunlearnt (4)

RPHS splits up the training patterns after evolutionary training of recur-
sion k Gk such that the gradient descent training Lk of recursion k is carried
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Fig. 2. Illustration of solutions found by (i) RPHS(SRPHS), (ii) Single staged hybrid
search (Sss), (iii) Multisieving algorithm (Sm)

out with T i patterns and the step Gk+1 with T −
k∑

i=1

T i patterns. The value of

Eunlearnt is therefore a constant during Lk, i.e. for any given gradient descent
epoch,

Etr = Ei
tr + C (5)

Figure 2 illustrates how the RPHS algorithm, a single-staged training al-
gorithm, and the multisieving algorithm [24] find their solutions. The graph
shows a hypothetical one-dimensional error surface to be optimized with re-
spect to w. Assume that at the end of the evolutionary training phase, solution
Sg has an error value Eg computed according to equation 3. A single-staged
algorithm such as backpropagation or GA classifiers will either try to search
for an optimum at this stage or, if the probability of finding the optimum is
too small, climb the hill and reach the local optima marked by Sss.

However, by virtue of equation 5, Eunlearnt is a constant value C. The
error curve (represented by the dotted line), is just a vertically translated
copy of the part of the original curve, which is of interest to us.

Now, if we consider the multisieving algorithm [24] or the topology-based
selection algorithm [22], the data splitting occurs with learnt patterns being
classified with those with

∣∣∣Oj − Ôj

∣∣∣ < ξ. The splitting of the data therefore
depends on the error tolerance of learnt patterns ξ, as defined in equation 3.
With respect to figure 2, we can think of this algorithm as finding the solution
Sg using a gradient descent algorithm. The solution Sg, in itself, is found by
gradient descent. The final solution Sm is a vertically translated Sg. However,
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Sm, can only be equal to the translated local optima if the error tolerance ξ is
set to optimum values. This is because the solution to the multisieving algo-
rithm is considered found when the pattern is learnt to the error tolerance ξ.

On the other hand, we can see from 2, that the translated local optima due
to the splitting of patterns is more optimal than the other optimal solutions,
i.e.,

ETLO ≤ Eglobal (6)

This is by virtue of the fact that Etr
i ← 0 as we approach the optimal

point. Further, from equation 5, ∂Etr/∂w
→ 0 as ∂Ei

tr
/
∂w

→ 0. Therefore,
the solution found by the RPHS algorithm is a pseudo global optima, i.e, it
could be a local optimum but it appears global from the perspective of a pattern
subset.

In contrast to the multisieving algorithm, the RPHS solution, adapts it-
self accordingly, regardless of the error tolerance ξ, to the problem topology
due to gradient descent at the end of each recursion. Finding a pseudo global
optimum therefore reduces the dependence of the algorithm on the error tol-
erance of learnt patterns ξ. It is also the natural optima based on the data
subset. Note: Since early stopping is implemented during backpropagation
so as to prevent overtraining, the optima found by RPHS may not necessarily
be SRPHS , but in the vicinity of SRPHS .

3 The RPHS training algorithm

3.1 Hybrid recursive training

The RPHS training algorithm can be summarized as a hybrid, recursive algo-
rithm. While hybrid combinations of Genetic algorithms and neural networks
are used in various works to improve the accuracy of the neural network, the
RPHS hybrid algorithm is a novel recursive hybrid and works as outlined
below.

The hybrid algorithm uses Genetic Algorithms to find a partial solution
with a set of learnt and unlearnt patterns. Neural networks are used to learn
“to perfection” the learnt patterns and Genetic Algorithms are used again
to tackle the unlearnt patterns. The process is repeated recursively until an
increase in the number of recursion leads to overfitting. The training process
is described in detail below.

1. As we are only looking for a partial solution fast, we use GANNs to
perform the global search across the solution space with all the available
training patterns.

2. We continue training until one of the following two conditions are sat-
isfied: a). There is stagnation or b) A percentage of the patterns are
learnt.
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3. In this stage, we use a condition similar to that in [22] and the multisiev-
ing network [24] to identify learnt patterns, i.e., a pattern is considered
learnt if

∣∣∣Oj − Ôj

∣∣∣ < ξ. More formally, we can define the percentage of
total patterns learnt as in equation 3 Note that, similar to the multi-
sieving algorithm, a tolerance ξ is used to identify learnt patterns; the
arbitrarily set value of ξ for RPHS does not affect the performance of
the algorithm as explained in section 2.

4. The dataset is now split into learnt and unlearnt patterns. With the
unlearnt patterns, we repeat steps 1 to 3.

5. Since the learnt patterns are only learnt up to a tolerance ξ, we use
gradient descent to train the learnt patterns. The aim of gradient descent
is to best adapt the solution to the data topology. Backpropagation is
used in all the recursions except the last one for which constructive
backpropagation is used. The optimum thus found is called the pseudo-
global optimal solution, and is found using a validation set of data to
prevent over training and to overcome the dependence of the algorithm
on ξ.

As the number of patterns in a data subset is small, especially as the number
of recursions increases, it is possible for the pseudo global optimal solution
to over fit the data in the subset. In order to avoid this possibility, we use
a validation dataset. The validation dataset is used along with the training
data to detect generalization loss using an algorithm in [10].

The data decomposition technique of the RPHS algorithm can be best
described by figure 3. During the first recursion, the entire training set (size
T ) is learnt using evolutionary training until stagnation occurs. Only the learnt
patterns are learnt further using backpropagation, with measures to prevent
overtraining. This ensures the finding of a pseudo global optimal solution.

Legend:
BP: Backpropagation
CBP: Constructive backpropagation
GANN: genetic algorithm evolved neural nets
Si: Solution corresponding to the dataset Tri

Fig. 3. Recursive data decomposition employed by RPHS
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Fig. 4. The two-level RPHS problem solver

The second recursion repeats the same procedure with the unlearnt patterns.
The process repeats until the total number of patterns in a given recursion
(Recursion K) is too small, in which case, constructive backpropagation is
applied to the whole dataset to learn the remaining patterns to the best
possible extent.

3.2 Testing

Testing in the RPHS algorithm is implemented using a Kth nearest neighbor
(KNN) [29] based pattern distributor. KNN was used to implement the pattern
distributor due to the ease of its implementation. At the end of the RPHS
training phase, we have K subsets of data. A given test pattern is matched
with its nearest neighbor. If the neighbor belongs to subset i, the pattern is
also deemed as belonging to subset i. The solution for subset i is then used
to find the output of the pattern. A multiplexer is used for this function.
The KNN distributor provides the select input for the multiplexer, while the
outputs of subnetworks 1 to K are the data inputs. This process is illustrated
by figure 4.

4 Summary of the RPHS algorithm

Figure 5 presents the pseudo code for training the RPHS system. Train is
initially called with i = 1 and Tr and V al as the whole training and validation
set. In addition to the algorithm described in the previous section, Figure 5
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Train (Tr,V al,i,)
{ Use Genetic algorithms to learn the dataset Tr using a new set of

chromosomes
IF stagnation occurs
{ 1. Identify the learnt patterns

2. Split Tr into Tri (consisting of the learnt patterns) and
(Tr − Tri) (consisting of the unlearnt patterns). Find corresponding
V ali and (V al − V ali)
3. Tri is now trained with the existing solution using the

backpropagation algorithm.
The procedure is validated using dataset V ali

4. IF local training is complete (stagnation OR generalization loss)
IF (Tr − Tri) has too few patterns
{ a. Tri = Tr − Tri

b. Locally train Tri until Generalization loss OR
stagnation
c. STORE network
d. END Training

}
ELSE
{ FREEZE

Train ((Tr − Tri), (V al − V ali), i + 1)
}}}

Fig. 5. The pseudo code for training the RPHS system

also introduces the two validation procedures used in terminating the system
(indicated in bold). Step 2 uses the validation subset to train the patterns in
a given recursion to ensure that the neural network does not over represent
the patterns in question. Step 4 uses the validation procedure to ensure when
the recursions should be stopped and to determine whether a subsequent
decomposition is detrimental to the RPHS system.

5 The two spiral problem

The two spiral problem (part of whose data is shown in figure 6a is considered
to be complicated, since there is no obvious separation between the two spirals.
Further more, it is difficult to solve this problem with a 3-layered neural
network, and even with more than one hidden layer, information such as the
number of neurons and number of hidden layers play an important part in
distinguishing the spirals apart [21]. The problem gets more complicated when
the spirals are distorted by noise. In this section, we illustrate how the use of
evolutionary algorithms in the RPHS algorithm splits the two spiral data into
easily separable subsets.

The training data (50%) of the two spiral dataset is as shown in figure 6a.
With the use of the RPHS algorithm, evolutionary training is used to split
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Fig. 6. The two spiral data set and an example of how it can be decomposed into
several smaller datasets that are more easily separable

the data into easily learnable subsets. Backpropagation is used to further
optimize the error in the EA trained data. The data points in Tr1, Tr2 and
Tr3 are shown in figures 6b to 6d. We can observe that the two spiral data
is split such that while the original dataset is not easy to classify, each of the
decomposed datasets are far simpler and can be classified by a simple neural
network. This is remarkable improvement from the data decomposition that
is employed by the multisieving algorithm [24], where genetic algorithms are
not used in decomposition. The subsets found in each recursion are not as
separable as the subsets in figure 6.

6 Heuristics for making the RPHS algorithm better

Haykins [18] says that the design of a neural network system is more an art
than a science in the sense that many of the numerous factors involved in
the design are as a result of ones personal experience. While the statement is
true, we wish to make the RPHS system as less artistic as possible. Therefore,
we propose here several methods which will improve and make the algorithm
more focused implementation wise.
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6.1 Minimal coded genetic algorithms

The implementation of Minimal coded Genetic Algorithms (MGG) [8,27] was
considered because the bulk of the training time of an evolutionary neural
network is due to the evaluation of the fitness of a chromosome. In Minimal
coded GAs however, only a minimal number of offspring is generated at each
stage. The algorithm is outlined briefly below. 1. From the population P ,
select u parents randomly. 2. Generate θ offspring from the u parents using
recombination/mutation. 3. Choose 2 parents at random from u. 4. Of the
two parents, 1 is replaced with the best from θ and the other is replaced
by a solution chosen by a roulette wheel selection procedure of a combined
population of θ offspring and 2 selected parents. In order to make the genetic
algorithm efficient timewise, we choose the values of u = 4 and θ = 1 for
the GA based neural networks. Therefore, except for the initial population
evaluation, the time taken for evolving one epoch using MGG is equivalent to
the forward pass of the backpropagation algorithm.

6.2 Seperability

In section 3, we have described the RPHS testing algorithm as a Kth nearest
neighbor based pattern distributor. If the data solved by recursion i and re-
cursion j are well separated, then the Kth nearest neighbor will give error-free
pattern distribution.

However, the RPHS algorithm described so far does not guarantee that
data subsets from two recursions are well separated. Error can therefore be
introduced into the system because of the pattern distributor. In this section
we discuss the efforts made to increase the separation between data subsets.
Empirically, there is some improvement in experimental results when the sep-
aration criterion is implemented, although there is a tradeoff in time. We
outline below the algorithm proposed to implement subset separability.

Definition 2. Inter-recursion separation is defined as the separation between
the learnt data of recursion k, (Trk) and the data learnt by other recursions
(Trk). The two data subsets are mutually exclusive.

Definition 3. Intra-recursion separation represents the separation of the data
in the same subset of RPHS. If M classes of patterns are present in the subset i
(patterns learnt by the solution of recursion i), then intra recursion separation

is expressed by 1/
M2

M∑
j=1

M∑
k=1

sep(ωj, ωk)1, where sep(ωj , ωk) is the separation

between patterns of class ωj and ωk.

1 It is noted that in the case of learning with neural networks, the MSE error of
the k classes can be used as a substitute for the intra-recursion substitution
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Separability criterion

The separability criterion is a mathematical expression that evaluates the
separation between two sets of data. In this work, we will use the Battacharya
criterion of separability for a 2-class problem [6].

DBatt = 1
8 (µ(l) − µ(u))′

(∑
(l) +

∑
(u)

2

)−1 (
µ(l) − µ(u)

)
+ 1

2 log | 12 (∑ (l) +
∑

(u))|
|∑ (l)| 12 +|∑ (u)| 12

(7)

In the equation above, µ is the data mean,
∑

is the covariance matrix and
the subscripts (l) and (u) represent the learnt and unlearnt patterns of the
current recursion. It should be noted that the selection of the Bhattacharya
criterion is purely arbitrary. Other criterion that can be used are Fisher’s
criterion [6], Mahalanobhis distance [5], and so on.

Objective function for evolutionary training

In order to increase the inter recursion separation, we modify the fitness func-
tion for GANNs as given by the equation below.

g(x) = w1ε(x) − (1 − w1)DBatt(x) (8)

The fitness g(x) of the chromosome x is therefore dependent on both the
inter recursion separation between the learnt and unlearnt data of the chromo-
some x, DBatt(x), and the intra recursion separation, which can be expressed
by the MSE error, ε(x), of the chromosome. w1 is the importance of the in-
tra recursion separation with respect to the chromosome fitness. In the next
section, we present our results with w1 = 0.5.

6.3 Computation intensity and population size

Here we present an argument to the computational complexity of the RPHS
algorithm. Let the time taken to forward pass a single pattern through a
neural network be t and the number of training patterns be T . For simplicity,
we assume the following.

1. The neural network architecture is the same throughout.
2. The time required for other computations (backpropagation, crossover,

mutation, selection, etc.) is negligible when compared to the evaluation
time.

The second assumption is valid as the exp function of the forward pass
stage is more computationally intensive than the other functions. Therefore
the total time required for λ epochs of CBP is therefore tCBP = λPt.
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The total time required for RPHS with MGG can also be expressed as a

summation of the time taken in each recursion i, tRPHS = tPD +
R∑
i

ti. The

time taken for each recursion is given as below.

ti = λgiTit + λli(Ti − αi)t + NpopTit (9)

where λgi and λli refer to the number of epochs required for evolutionary
and backpropagation training in recursion i. alphai is the number of learnt
patterns at the end of the recursion. The last term refers to the initialization
of the recursion population with Npop chromosomes (as explained in figure 5).

The bulk of the time in the equation above depends on the third term,
i.e., the initial evaluation of the chromosome population in each recursion.
The justification of the above claim follows from the properties of RPHS and
evolutionary search:

1. As the patterns in each backpropagation epoch are already learnt, fewer
epochs are required than when compared to the training of modules in
the output parallelism, i.e λli,RPHS < λi,OP .

2. From the experimental results observed and due to the capability of ge-
netic algorithms to find partial solutions faster, we can also say that
λgi,RPHS is small. In the experiments carried out, the value of λgi is
usually less than 20 epochs.

The location of the pseudo global optimal solution found by GA is relatively
unimportant as the pseudo global optima is always globally optimal in terms
of the patterns selected. This implies that with a small population size, the
RPHS algorithm is likely to be faster than the output parallelism algorithm.

In order to observe the effect of the number of chromosomes Npop on
the training time and the generalization accuracy of the RPHS system, we
performed a set of experiments using the MGG based RPHS algorithm with
a varying number of chromosomes. The graphs in figure 7 show the trend in
training time and generalization accuracy for initial population sizes between
5 and 30. The population size of 5 chromosomes was chosen so that MGG
can be implemented with 4 chromosomes for mating and still retains the best
fitness values.

It is interesting to note that the number of chromosomes Npop in the initial
population of each recursion does not play a big role in the generalization
accuracy of the system. This is, once again, an expected property of the RPHS
algorithm as it is the backpropagation algorithm that completes the training
of the system according to the validation data. The part played by the genetic
algorithm is only partial training and it is the presence of the local optima, not
its relative position that is important for the RPHS algorithm. Therefore, if
training time is an issue, using the minimal requirement of 5 chromosomes and
implementing MGG can solve the problem to certain accuracy comparable to
that using a larger population.
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Fig. 7. The effect of using different sized initial populations for RPHS with the
(a) SEGMENTATION, (b) VOWEL, (c) SPAM datasets. Graphs show the training
time ( ) and generalization error(...) against the number of chromosomes in the
initial population.

Therefore, the most efficient training time for the RPHS algorithm will be
as given by equation 10, which is based on equation 9,

tRPHS = tPD +
R∑

i=1

ti = tPD +
R∑

i=1

KgiTit + Kli(Ti − αi)t + 5T it (10)

6.4 Validation data

For optimal training, it is necessary to use suitable validation data for each
decomposed training sets. In this section we propose and justify the algorithm
for choosing the optimal validation data for each subset of training data.

Consider the distribution of data shown in figure 8. Each colored zone
represents data from a different recursion. The patterns learnt by solution i
are explicitly exclusive of the patterns learnt by solution j, ∀i 
= j. The RPHS
decomposition tree in figure 3 can therefore be expressed as shown in figure 9.
According to figure 9 and the RPHS training algorithm described in 4, the
first recursion begins with Tr, the data to be trained using EAs, At the end of
the recursion, Tr is split into Tr1 (data to be trained with backpropagation)
to give S1(the network representing the data Tr1, and (Tr − Tr1)(data to
be trained using EAs to give solutions 2 to n). We represent all the networks
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Fig. 8. Sample data distribution

Fig. 9. The data distribution of the RPHS recursion tree

that represent (Tr − Tr1) as S1, i.e., the data that is represented by S1 can
never be represented by S1. We therefore propose the following pseudo code
for validation.

Do until stagnation or early stopping
Optimize MSE criterion locally()
Validate ()

End Validate()
FindVi()
Use the validation set V ali to validate the solution Si for recursion i

FindVi()
For each validation pattern

Use KNN (or intermediate pattern distributor)
If pattern ∈ Tri

Add pattern to V ali

Given a set of patterns, FindV i() finds out which patterns can possibly be
solved by the solutions that exist. Patterns that can be solved are isolated and
used as specific validation sets. Besides a more accurate validation dataset,
it is also possible to obtain the intermediate generalization capability of the
system, which is useful is stopping recursions, as described in the next section.



Recursive Pattern based Hybrid Supervised Training 147

The intermediate pattern distributor is similar to that described in Section
3 except that it only has two outputs. Its responsibility is to decide whether
a pattern is suitable for validating the subset of patterns in question or not.

6.5 Early stopping

Decompositions of data in the RPHS algorithm are done as follows: An in-
termediate pattern distributor with two outputs is implemented after each
recursion as described in the previous section. Using the intermediate pattern
distributor, we obtain the validation error (Ei

val) and training error (Ei
tr)2 of

a recursion i. at the end of each recursion. If (Ei
val > Ei−1

val ), the recursion i is
overtraining the system. Therefore only the results of i−1 recursions only are
considered. The overall RPHS training algorithm can therefore be described
as shown in figure 10.

7 Experiments and results

7.1 Problems considered

The table below summarizes the five classification problems considered in this
paper. The problems were chosen such that they varied in terms of input and
output dimensions as well as in the number of training, testing and validation
patterns made available. All the datasets, other than the two-spiral dataset,
were obtained from the UCI repository.

The results of the SPAM and the two-spiral datasets were compared with
constructive backpropagation, multisieving and the topology based subset se-
lection algorithms only. This was because the SPAM and two spiral problems
were two-class problems. Therefore implementing the output parallelism will
not make a difference to the results obtained by CBP.

The two spiral dataset consists of 194 patterns. To ensure a fair comparison
to the Dynamic subset selection algorithm [22], test and validation datasets of
192 patterns were constructed by choosing points next to the original points
in the dataset as mentioned in the paper.

Table 1. Summary of problems considered

Problem name Segmentation Vowel Letter Two-spiral Spam
recognition

Training set size 1155 495 10000 194 2301
Test set size 578 248 5000 192 1150
Validation set size 577 247 5000 192 1150
Number of inputs 18 10 16 2 57
Number of outputs 7 11 26 2 2

2 Both (Ei
val) and (Ei

tr) represent the percentage of (training and validation) pat-
terns in error of the RPHS system with i recursions
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Note: In the above flowchart, the following process is described.

1. The unlearnt data for recursion i (All the data for i = 1) is used to train a
GANN subnetwork.

2. Based on the learnt and unlearnt data from the recursion i, the nearest
neighbor algorithm is used to decompose the validation data into validation
subset i, Vi (Patterns belonging to recursion i) and V i (Patterns belonging to
recursions other than i)

3. The training subset i and validation subset i are used together with the
GANN subnetwork to obtain the final subnetwork

4. If the validation accuracy of the first i subnetworks is lower than the
validation accuracy of the first i − 1 subnetworks, the final subnetwork i is
retrained using the remaining unlearnt data and the training subset i to the
best possible extent possible.

5. If 4 is not true, then 1, 2 and 3 are repeated with the remaining unlearnt
patterns.

Fig. 10. The overall RPHS training algorithm including training and validation set
decomposition, the use of backpropagation and constructive backpropagation and
the recursion stopping algorithm
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7.2 Experimental parameters and control algorithms implemented

Table 2 summarizes the parameters used in the experiments. As we wish for
the RPHS technique to be as problem independent as possible, we make all
the experimental parameters constant for all problems and as given below.
Each experiment was run 40 times, with 4-fold cross validation.

For comparison purposes, the following algorithms were designed and im-
plemented. The constructive backpropagation algorithm was implemented as
a single staged (non hybrid) algorithm which conducts gradient descent based
search with the possibility of evolutionary training by the addition of a hidden
node. The multisieving algorithm (recursive non hybrid algorithm) was imple-
mented to show the necessity to find the correct pseudo global optimal solution.

The following control experiments were carried out based on the multi-
sieving algorithm and the dynamic topology based subset finding algorithm.
Both the versions of output parallelism implemented also show the effect of
the hybrid RPHS algorithm.

1. Multisieving with KNN based pattern distributor
2. Dynamic topology based subset selection
3. Output parallelism without pattern distributor [10]
4. Output parallelism with pattern distributor [15]

Table 2. Summary of parameters used

Parameter Value

Evolutionary search
parameters

Population size 20

Crossover probability 0.9

Small change mutation probability 0.1

Large change mutation probability 0.7

Pattern learning tolerance of EA training
ξ. Also used for identifying learnt patterns
in TSS and multisieving

0.2

MGG parameters
µ = 4,

θ = 1

Neural network
parameters

Generalization loss tolerance for validation 1.5

Backpropagation learning rate 10−2

Number of stagnation epochs before CBP
increases one hidden node

25

Pattern distribution
related parameters

Number of neighbors in the KNN pattern
distributor

1

Weight of intra recursion separation in the
modified obj function (w1)

0.5
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7.3 Experimental results

The graphs in figure 11 below compare the Mean square training error for the
various datasets. The typical training curves for Constructive Backpropaga-
tion [23], and RPHS training are shown.

From Figure 11, we can observe that the training error obtained by RPHS
is lower than the training error that is obtained using CBP [23]. The empirical
comparison shows that typically, the RPHS training curve converges to a
better optimal solution when compared to the CBP curve. At this stage, a note
should be made on the shape of the RPHS curve. The MSE value increases at
the end of each recursion before reducing further. This is due to the fact that
RPHS algorithm reinitializes the population at the end of each recursion.

The reinitialization of the population at the end of each recursion benefits
the solution set reached. The new population is now focused on learning the
“unlearnt” patterns, thereby enabling the search to exit from the pseudo global
(local) optima of the previous recursion.

Tables 3 to 7 summarize the training time and generalization accuracy
obtained by CBP [23], Output Parallelism with [15] and without the pattern
distributor [10] and RPHS. The Output Parallelism algorithm is chosen so as
to illustrate the difference between manual choice of subsets and evolutionary
search based choice of subsets.

Fig. 11. The data distribution of the RPHS recursion tree
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Table 3. Summary of the results obtained from the Segmentation problem (average
number of recursions: 7.2)

Algorithm used Training Classification
time (s) error (%)

Constructive backpropagation 693.8 5.74
Multisieving with KNN pattern distributor 760.64 7.28
Output parallelism 1719.6 5.18
Output parallelism with pattern distributor 2219.2 5.44
RPHS-GAND 1004.8 5.62
RPHS-GAD 1151.8 4.32
RPHS-MGGND 545.8 5.27
RPHS-MGGD 688.34 4.41
RPHS-with separation 1435.6 4.17

Table 4. Summary of the results obtained from the Vowel problem (average number
of recursions: 6.425)

Algorithm used Training Classification
time (s) error (%)

Constructive backpropagation 237.9 37.16
Multisieving with KNN pattern distributor 318.23 39.43
Output parallelism 418.9 25.54
Output parallelism with pattern distributor 534.3 24.89
RPHS-GAND 812.95 25.271
RPHS-GAD 842.16 16.721
RPHS-MGGND 396.34 23.24
RPHS-MGGD 473.88 17.73
RPHS-with separation 884.55 14.82

Table 5. Summary of the results obtained from the Letter recognition problem
(average number of recursions: 21.3)

Algorithm used Training Classification
time (s) error (%)

Constructive backpropagation 20845 21.672
Multisieving with KNN pattern distributor 55349 65.04
Output parallelism 42785.4 20.06
Output parallelism with pattern distributor 45625.4 18.636
RPHS-GAND 38461 13.14
RPHS-GAD 47447 11.1
RPHS-MGGND 27282 13.08
RPHS-MGGD 29701 13.42
RPHS-with separation 94.898 10.12
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Table 6. Summary of the results obtained from the Spam problem (average number
of recursions: 2.475)

Algorithm used Training Classification
time (s) error (%)

Constructive backpropagation 43.649 27.92
Multisieving with KNN pattern distributor 123.12 21.06
RPHS-GAND 142.24 21.00
RPHS-GAD 156.81 20.75
RPHS-MGGND 58.721 22.11
RPHS-MGGD 82.803 20.97
RPHS-with separation 517.68 18.76

Table 7. Summary of the results obtained from the Two-spiral problem (average
number of recursions: 2.475)3

Algorithm used Training Classification
time (s) error (%)

Constructive backpropagation 15.58 49.38
Multisieving with KNN pattern distributor 35.89 23.61
Dynamic topology based subset selection (TSS) − 28.0
RPHS-GAND 76.25 15.42
RPHS-GAD 87.91 10.54
RPHS-MGGND 45.72 13.25
RPHS-MGGD 59.97 11.08
RPHS-with separation 129.24 10.31

To show the effect of the heuristics proposed, the RPHS training is carried
out with four options

1. Genetic Algorithms with no decomposition of validation patterns
(RPHS-GAND)

2. Genetic Algorithms with decomposition of validation patterns (RPHS-
GAD)

3. MGG with no decomposition of validation patterns (RPHS-MGGND)
4. MGG with decomposition of validation patterns (RPHS-MGGD)

The graphs in figure 11 compare CBP with the 4th training option (RPHS-
MGGD).

Based on the results presented, we can make the following observations
and classify them according to training time and generalization accuracy.

3 Results of the topology based subset selection algorithm [22]
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Generalization accuracy

• All the RPHS algorithms give better generalization accuracy when com-
pared to the traditional algorithms (CBP, Topology based selection and
multisieving).

• The algorithms which include the decomposition of validation data, al-
though marginally longer than that without decomposition, have better
generalization accuracy than output parallelism. As the algorithms imple-
menting output parallelism do so with a manual decomposition of valida-
tion data, it follows that a version of RPHS will be more accurate than a
similar corresponding algorithms based on output parallelism.

• Implementing RPHS with the separation criterion gives the best general-
ization accuracy although there is a large tradeoff in time. This is discussed
in greater detail in the following section.

• The RPHS algorithm that uses MGG with the decomposition of valida-
tion patterns (MGGD) provides the best tradeoff between training time
and generalization accuracy. When compared to RPHS-GAD and RPHS
with separation, the tradeoff in generalization accuracy is minimal when
compared to the reduction in training time.

• The number of recursions required by RPHS, on average, is lower than the
number of classes in a problem and gives better generalization accuracy.
This suggests that classwise decomposition of data is not always optimal.

Training time

• The training time required by CBP is the shortest of all the algorithms.
However, as seen from the graphs, this short training time is most likely
due to to premature convergence of the CBP algorithm.

• The training of RPHS is also more gradual. While premature convergence
is easily observed in the case of CBP, RPHS converges more slowly. The
recursions reduce the training error in small steps, learning a small number
of patterns at a time.

• Apart from the CBP algorithm, the RPHS algorithm carried out with
MGG has shorter training time than the output parallelism algorithms.
The training time of the multisieving algorithm is larger or less than the
RPHS-MGG based algorithms depending on the datasets. This is expected
as the nature of the dataset determines the number of levels that multi-
sieving has to be implemented and therefore influences the training time.

• The basic contribution of the Minimal coded genetic algorithms is the
reduction of training time. However, there is a small trade off in gener-
alization accuracy when MGGs are used. This can be observed across all
the problems.

• The use of the separation criterion with the RPHS algorithm increases the
training time by several fold. This is expected as the training time includes
the calculation of the inverse covariance matrix. This is the tradeoff for
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obtaining marginally better generalization accuracy. The time taken us-
ing the separation criterion may or may not be acceptable depending on
the problem dimension, the number of patterns, etc. However, when the
primary goal is to improve the generalization accuracy of the system and
the learning is done offline, the separability criterion can be included for
better results.

8 Conclusions

Task decomposition is a natural extension to supervised learning as it decom-
poses the problem into smaller subsets. In this paper, we have proposed the
RPHS algorithm, a topology adaptive method to implement task decomposi-
tion automatically. With a combination of automatic selection of validation
patterns and adaptive detection of decomposition extent, the algorithm en-
ables to decompose efficiently the data into subsets such that the generaliza-
tion accuracy of the problem is improved.

We have compared the classification accuracy and training time of the
algorithm with four algorithms, illustrating the effectiveness of (1) recursive
subset finding, (2) pattern topology oriented recursions, and (3) efficient com-
bination of gradient descent and evolutionary training. We discovered that the
classification accuracy of the algorithm is better than both the constructive
backpropagation algorithm and the output parallelism. The improvement in
classification error when compared to the constructive backpropagation is up
to 60% and 40% when compared to output parallelism. The training time of
the algorithm is also better than the time required by the output parallelism
algorithm.

On a conceptual level, the main contribution of this paper is twofold.
Firstly, the algorithm shows, both theoretically and empirically, that when
training is performed based on pattern topology using a combination of evo-
lutionary training and gradient descent, generalization is better than parti-
tioning the data based on output classes. It also shows that the combination
of EAs and gradient descent is better than the use of gradient descent only,
as in the case of the multisieving algorithm [24].

Secondly, the paper also presents a data separation method to improve
further the generalization accuracy of the system by consciously reducing
the pattern distributor error. While this is shown, both conceptually and
empirically, to reduce the generalization error, the algorithm incurs some cost
due to its increased training time. One future work would be how this training
time can be reduced without compromising the accuracy.

Another future work involves the investigation of the decomposition mech-
anism of the evolutionary algorithms and to improve its efficiency.
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