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As can be represented by neurons and their synaptic connections, attractor networks are widely believed to underlie biological
memory systems and have been used extensively in recent years to model the storage and retrieval process of memory. In this
paper, we propose a new energy function, which is nonnegative and attains zero values only at the desired memory patterns. An
attractor network is designed based on the proposed energy function. It is shown that the desired memory patterns are stored as
the stable equilibrium points of the attractor network. To retrieve a memory pattern, an initial stimulus input is presented to the
network, and its states converge to one of stable equilibrium points. Consequently, the existence of the spurious points, that is, local
maxima, saddle points, or other local minima which are undesired memory patterns, can be avoided. The simulation results show
the effectiveness of the proposed method.

1. Introduction

Memory is a fundamental component of our human brain;
how to simulate the human memory process has attracted
many scientists attention in the research of cognitive systems
and architectures [1, 2]. Attractor networks [3–6] have been
one of the most popular models for memory storage and
retrieval in recent decades since the hypothesis of attractor
dynamics is supported and observed in the neocortex and
hippocanpus in various memory experiments [6–9]. In gen-
eral, an attractor network is a network of recurrently con-
nected nodes in a biological network, whose states may settle
to some stable patterns. One distinguish advantage is that the
network can be represented by neurons and their synaptic
connections. The particular pattern of such a recurrent net-
work, which is called its “attractor” [10–13], can be stationary,
time varying, or even stochastic. In theoretical neuroscience,
different kinds of attractor neural networks have been associ-
ated with different functions, such as memory, motor behav-
ior, and classification. In this paper, we consider the patterns
or the so-called attractors as the stationary memory patterns
stored in the dynamic system, which allows us to employ
methods in dynamical systems to quantitatively analyze

the characteristics such as the stability and robustness of the
network.

Usually researchers design an attractor network and then
propose its energy function, often called Lyapnov function, to
analyze the network [14–16], since the energy function plays
a very important role in analyzing the network stability and
robustness. In this paper, we design the memory dynamics
in an opposite direction. We first propose an energy function
and then design the attractor network. The energy function
actually contains the desired memory patterns we wish to
store. Different fromHopfield networks [10, 14], we introduce
multiplicative algebra into the attractor network. This is
biologically possible since both addition algebra and multi-
plication algebra are the simplest and the most widespread
of all operations in the nervous system [17]. In addition, the
value of our proposed energy function is nonnegative and
attains zero values only at the patterns stored in the network.
Thismakes it easy to distinguish the desiredmemory patterns
from some other possible undesired patterns which are called
spurious points [18]. It is shown that the memory patterns
are stored as the stable equilibrium points of the dynamical
attractor networks, which are also the local minimum points
of the energy function. Compared with existing results in
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attractor networks [7, 10, 14], the patterns are not necessarily
binary and uncorrelated in this paper. Binary patterns sim-
plify the network design significantly as seen in [14]. Also,
the uncorrelated patterns give a minimum interactions of the
interactions of the network,whichmakes its behavior analysis
much easier as seen in [7, 19].

On the other hand, when a stimulus pattern is presented
as an initial input of the dynamic system, the states of
the system will converge to a particular stored attractor
iteratively.This process is called associativememory retrieval.
The “associative” means that the memory we retrieved was by
its informational content rather than by names, addresses, or
relative positions. One very touchy problem in the retrieval
process is how to overcome the problem that the system
states may converge to spurious points; see, for example,
[18, 20]. Usually, there are two kinds of equilibrium points
for a dynamic system, the stable ones and unstable ones. It is
shown that only the stable equilibriumpoints, that is, the local
minimumpoints, of the energy function exist in the proposed
designed system. We also prove that those local minima are
only the memory patterns stored in the network. Thus, the
spurious points, that is, local maxima, saddle points, or other
local minima which are the undesired memory patterns, can
be avoided.

The contributions of this paper are summarized as fol-
lows. Firstly, we have proposed a new energy function dif-
ferent from the energy function in Hopfield networks. This
makes it easy to differentiate memory patterns from possible
spurious points. Secondly, we have presented an attractor
network design based on the proposed energy function. The
patterns stored in the attractor network can be nonbinary
and either correlated or uncorrelated. Finally, we have proven
that, when an arbitrary input stimulus is presented to the
designed attractor network, the states converge to one of the
stored patterns.This implies that there are no spurious points
in the designed dynamical systems.

The rest of the paper is organized as follows. Some
background knowledge is reviewed in Section 2. Section 3
introduces the main design method of the proposed attrac-
tor network. The convergence properties are analyzed in
Section 4. The simulation examples are shown in Section 5.
Finally, the paper is concluded in Section 6.

2. Background Knowledge

2.1. Multiplication Algebra in Nervous Systems. Addition
algebra is both the simplest and one of the most widespread
of all operations in nervous systems. However, as pointed in
[17], a number of biological mechanisms could, in theory,
implement a multiplication algebra. Actually multiplication
can be implemented based on addition. For example, when
wemultiply two signals𝑥 and𝑦, we can logarithmically trans-
form the two, add the result,and then apply an exponential:

𝑥𝑦 = exp(log(𝑥)+log(𝑦)). (1)

Thus, later it can be seen that the memory dynamics in
our proposed attractor network could be implemented in a
network with neurons and synapses.

2.2. Notations and Definitions. Denote a nonlinear function
𝑓(x) and a pattern x = [𝑥1 ⋅ ⋅ ⋅ 𝑥𝑚]

𝑇
∈ 𝑅
𝑚 where 𝑚 is the

dimension. For a nonlinear dynamical system ẋ = −𝑓(x), we
have the following definitions.

Definition 1. A pattern x0 ∈ 𝑅𝑚 is called an equilibrium point
of ẋ = −𝑓(x), if 𝑓(x) is a zero vector at x = x0, which is
denoted as 𝑓(x0) = 0.

Definition 2. A pattern x0 ∈ 𝑅𝑚 is called a stable equilibrium
point of ẋ = −𝑓(x), if 𝑓(x) = 0 at x0 and the Jacobian matrix
at x0 is a positive definite matrix.

Definition 3. A pattern x0 ∈ 𝑅𝑚 is called an unstable equilib-
rium point (saddle point) of ẋ = −𝑓(x), if 𝑓(x) = 0 at x0
while the Jacobian matrix at x0 is a negative semidefinite or
an indefinite matrix.

3. A New Energy Function and
the Attractor Network

A classical energy based attractor network is the Hopfield
network invented byHopfield [10, 14], which serves as content
addressable memory systems with binary threshold nodes.
Although Hopfield networks are guaranteed to converge to
a local minimum, they may converge to a spurious point
(undesired memory pattern) rather than a stored pattern
(desired memory pattern). To solve this problem, we propose
a new energy function, and an attractor network is then
designed based on the proposed energy function, in which
the patterns are not necessarily binary and uncorrelated.
Finally it is concluded that the memory patterns are the
stable equilibriumpoints of the dynamic system and spurious
points can be avoided.

Assume that x1, . . . , x𝑘, . . . , x𝑛 with x𝑘 = [𝑥𝑘1 ⋅ ⋅ ⋅ 𝑥
𝑘
𝑚]
𝑇
∈

𝑅
𝑚 are 𝑛 different stationary patterns that we wish to store.

Our objective is to design an attractor network to store these
patterns such that x𝑘 for 𝑘 = 1, . . . , 𝑛 can be retrieved when
an input stimulus is located around the neighborhood of x𝑘.
Before presenting our proposed method, we would like to
point out that an ideal attractor network should preserve the
following two properties.

Property 1. x1, . . . , x𝑘, . . . , x𝑛 are stable equilibrium points of
the attractor network.

Property 2. x1, . . . , x𝑘, . . . , x𝑛 are the only stable equilibrium
points of the attractor network.

The energy function is designed as the following form:

𝐹 (x) =
𝑘=𝑛

∏

𝑘=1

𝑑𝑘 (x) =
𝑘=𝑛

∏

𝑘=1

[(x − x𝑘)
𝑇
(x − x𝑘)] , (2)

where 𝑑𝑘(x) = (x − x𝑘)𝑇(x − x𝑘) is an Euclidian squared
distance between x and x𝑘.The energy function is the product
of the distance 𝑑𝑘(x) for 𝑘 = 1, . . . , 𝑛. For the energy function
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𝐹(x), it can be checked that ∀x ∈ 𝑅𝑚, 𝐹(x) > 0, and 𝐹(x) = 0
if and only if x = x𝑘 for 𝑘 = 1, . . . , 𝑛.

Remark 4. Asmentioned in the Introduction, comparedwith
the energy function in the Hopfield network [10, 14], the
value of the proposed energy function 𝐹(x) is nonnegative
and attains zero value only on the memory patterns stored in
the network. This makes it easy to distinguish the memory
patterns from spurious points [18] which may exist in an
attractor network.

Note that the energy function attains its minimum only
on the memory patterns x1, . . . , x𝑛. This inspires us to design
a dynamical system which can make the energy function
decrease iteratively. The gradient ∇𝐹(x) and the Hessian
matrix ∇2𝐹(x) are given by

∇𝐹 (x) = 2
𝑗=𝑛

∑

𝑗=1

[

[

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑗

𝑑𝑘 (x)]
]

(x − x𝑗)

∇
2
𝐹 (x) = 2

𝑗=𝑛

∑

𝑗=1

[

[

𝑖=𝑛

∏

𝑘=1,𝑘 ̸=𝑗

𝑑𝑘 (x)]
]

⋅ 𝐼

+ 4

𝑗=𝑛

∑

𝑗=1

{

{

{

𝑘
󸀠
=𝑛

∑

𝑘󸀠=1,𝑘󸀠 ̸=𝑗

[

[

𝑖=𝑛

∏

𝑘=1,𝑘 ̸=𝑗,𝑘 ̸=𝑘󸀠

𝑑𝑘 (x)]
]

⋅ (x − x𝑘
󸀠

) (x − x𝑗)
𝑇}

}

}

,

(3)

where 𝐼 is a 𝑚 dimensional identity matrix. Let k =

[V1 ⋅ ⋅ ⋅ V𝑚]
𝑇 be a random noise vector such that

max (|k|) = max ( 󵄨󵄨󵄨
󵄨
V1
󵄨
󵄨
󵄨
󵄨
⋅ ⋅ ⋅
󵄨
󵄨
󵄨
󵄨
V𝑚
󵄨
󵄨
󵄨
󵄨
} < kmax, (4)

where kmax is a chosen small positive constant. Now an
attractor network that decreases the energy function 𝐹(x)
iteratively is represented as

ẋ = −∇𝐹 (x) + 𝜅 ⋅ 𝐹 (x) ⋅ k, (5)

where the scalar constant 𝜅 is chosen as

𝜅 =

{

{

{

0 if max (|∇𝐹 (x)|) > 0

1 if max (|∇𝐹 (x)|) ≤ 0.
(6)

We rewrote the differential equation for each neuron 𝑥𝑖 as

𝑥̇𝑖 = −

𝑛

∑

𝑗=1

𝜔𝑖𝑗 (𝑥𝑖 − x
𝑗

𝑖
) + 𝜅 ⋅ 𝐹 (x) ⋅ V𝑖 (7)

for 𝑖 = 1, . . . , 𝑚 with

𝜔𝑖𝑗 = 2
[

[

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑗

𝑑𝑘 (x)]
]

. (8)

Equations (7) and (8) imply that 𝑖th neuron updates its state𝑥𝑖
according to the synaptic inputs collected fromother neurons
via synaptic connection strength 𝜔𝑖𝑗, in the presence of a
random noise V𝑖.

Remark 5. The Hopfield model has the advantage that it
can be represented by neurons and their synaptic connec-
tions. Through carefully observing (5)–(8), we note that
our proposed attractor network can also be represented by
neurons and their synaptic connections by introducing the
multiplication algebra in Section 2.1. In addition, the value
of our proposed energy function is nonnegative and attains
zero values only at the patterns stored in the network. This
makes it easy to distinguish the memory patterns from
some other possible undesired patterns which are called
spurious points [18]. It is shown that the memory patterns
are stored as the stable equilibrium points of the dynamical
system, which are also the local minimum points of the
energy function. Compared with existing results in attractor
networks [7, 10, 14], the patterns are not necessarily binary
and uncorrelated in this paper. Binary patterns simplify
the network design significantly as seen in [14]. Also, the
uncorrelated patterns give a minimum interaction of the
interactions of the network,whichmakes its behavior analysis
much easier as seen in [7, 19].

Remark 6. As mentioned earlier, there are two kinds of equi-
librium points for a dynamic system: stable ones and unstable
ones. In the next section, it will be shown that only the
stable equilibriumpoints exist in the above dynamical system.
For an arbitrary initial stimulus, the states of the dynamical
system converge to one of its stable equilibrium points, that
is, the local minimum points of the energy function, which
cannot be its local maximum points or saddle points of
the energy function. Thus, Property 1 can be achieved in
the design. In the next section, it will also be proven that
Property 2 can also be achieved in the design; that is, x1, . . . ,
x𝑛 are the only local minimum points of 𝐹(x).

4. Convergence Analysis

Lemma 7. For square matrix 𝐴 ∈ 𝑅
𝑚×𝑚, assume that the

eigenvalues of 𝐴 are not all the same. If tr(𝐴) ≤ 0, 𝐴 cannot
be a positive semidefinite or positive definite matrix.

Proof. Denote the eigenvalues of 𝐴 as 𝜆1, . . . , 𝜆𝑚. Note that
tr(𝐴) = ∑𝑖=𝑚𝑖=1 𝜆𝑖. If tr(𝐴) = ∑

𝑖=𝑚

𝑖=1 𝜆𝑖 < 0, then ∃𝜆𝑖 such that
𝜆𝑖 < 0. If tr(𝐴) = ∑

𝑖=𝑚

𝑖=1 𝜆𝑖 = 0, there also exists ∃𝜆𝑖 such that
𝜆𝑖 < 0 since 𝜆1, . . . , 𝜆𝑚 cannot be identically equal. Then this
lemma holds.

Lemma 8. For conformable matrices 𝐴, 𝐵, and 𝐶, tr(𝐴𝐵𝐶) =
tr(𝐵𝐶𝐴) = tr(𝐶𝐴𝐵). Also, if matrices 𝐴 and 𝐵 are addable,
tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵) [21].

Proof. To prove tr(𝐴𝐵𝐶) = tr(𝐵𝐶𝐴) = tr(𝐶𝐴𝐵), actually
we only need to prove that tr(𝐴𝐵) = tr(𝐵𝐴). As tr(𝐴𝐵) =
Σ𝑖Σ𝑖𝐴 𝑖𝑗𝐵𝑗𝑖 = tr(𝐵𝐴) and tr(𝐴 + 𝐵) = Σ𝑖(𝐴 𝑖𝑖 + 𝐵𝑖𝑖) = Σ𝑖(𝐴 𝑖𝑖) +
Σ𝑖(𝐵𝑖𝑖) = tr(𝐴) + tr(𝐵), this lemma holds.

Theorem 9. The states of the attractor network in (5)–(8)
converge to an stable equilibrium point x∗ ∈ {x1, . . . , x𝑚} such
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that ∇𝐹(x∗) = 0, 𝐹(x∗) = 0, and ∇2𝐹(x∗) is positive definite
which is denoted as ∇2𝐹(x∗) > 0.

Proof. By Definition 1, the equilibrium points of system (7)
are such that

−∇𝐹 (x) + 𝜅 ⋅ 𝐹 (x) ⋅ k = 0. (9)

As k is a random vector and 𝜅 is chosen by (6), a point is an
equilibrium point of system (7) if and only if

∇𝐹 (x) = 0,

𝐹 (x) = 0.
(10)

𝐹(x) = 0 gives us that all the possible equilibriumpoints of (7)
are those points at which the values of energy function 𝐹(x)
are zero; that is, x∗ ∈ {x1, . . . , x𝑚}. In addition, the Jacobian
matrix at a point x𝑖 is the Hessian matrix ∇2𝐹(x𝑖). Then, it is
easy to obtain that

∇𝐹 (x𝑖) = 0,

∇
2
𝐹 (x𝑖) = 2 [

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑖

𝑑𝑘 (x
𝑖
)] ⋅ 𝐼 > 0.

(11)

So x∗ is a stable equilibrium point of the attractor network in
(5) to (8) based on Definition 2.

Theorem 10. For the case that the dimension𝑚 ≤ 2, x1, . . . , x𝑛
are the only local minimum points of 𝐹(x).

Proof. Obviously, x1, . . . , x𝑛 are local minimum points (and
also globalminimumpoints) of𝐹(x).We now prove that𝐹(x)
has no other local minimum points. Let

𝐴 = 2

𝑗=𝑛

∑

𝑗=1

[

[

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑗

𝑑𝑘 (x)]
]

⋅ 𝐼,

𝐵 = 4

𝑗=𝑛

∑

𝑗=1

{

{

{

𝑘
󸀠
=𝑛

∑

𝑘󸀠=1,𝑘󸀠 ̸=𝑗

⋅
[

[

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑗,𝑘 ̸=𝑘󸀠

𝑑𝑘 (x)]
]

⋅ (x − x𝑘
󸀠

) (x − x𝑗)
𝑇}

}

}

.

(12)

It can be obtained that ∇2𝐹(x) = 𝐴 + 𝐵. It is also known that
the dimension of diagonal matrix 𝐴 is𝑚 × 𝑚; then

tr (𝐴) = 𝑚 ⋅ 2
𝑗=𝑛

∑

𝑗=1

[

[

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑗

𝑑𝑘 (x)]
]

. (13)

Also, Lemma 8 gives that

tr (𝐵) = 4
𝑗=𝑛

∑

𝑗=1

{

{

{

𝑘
󸀠
=𝑛

∑

𝑘󸀠=1,𝑘󸀠 ̸=𝑗

[

[

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑗,𝑘 ̸=𝑘󸀠

𝑑𝑘 (x)]
]

⋅ (x − x𝑘
󸀠

)

𝑇

(x − x𝑗)
}

}

}

.

(14)

Now we assume that there is a point which is different from
x1, . . . , x𝑛 but satisfies that ∇𝐹(x∗) = 0. This implies that
(∇𝐹(x∗))𝑇∇𝐹(x∗) = 0. This is to say that

𝐺 (x∗) ⋅
𝑘=𝑛

∏

𝑘=1

(x − x𝑘)
𝑇
(x − x𝑘) = 0, (15)

where

𝐺 (𝑋
∗
) = 4

𝑗=𝑛

∑

𝑗=1

[

[

𝑘=𝑛

∏

𝑘=1,𝑘 ̸=𝑗

𝑑𝑘 (x)]
]

+ 4

𝑗=𝑛

∑

𝑗=1

{

{

{

𝑘
󸀠
=𝑛

∑

𝑘󸀠=1,𝑘󸀠 ̸=𝑗

[

[

𝑖=𝑛

∏

𝑘=1,𝑘 ̸=𝑗,𝑘 ̸=𝑘󸀠

𝑑𝑘 (x
∗
)
]

]

⋅ (x∗ − x𝑘
󸀠

)

𝑇

(x∗ − x𝑗)
}

}

}

.

(16)

Thus, we have 𝐺(x∗) = 0 if x∗ is different from x1, . . . , x𝑛. Let
𝐴
∗ and 𝐵∗ be 𝐴 and 𝐵 at x = x∗. Combining (13)-(14) and

(16), it can be obtained that

𝐺 (x∗) = tr( 2
𝑚

⋅ 𝐴
∗
+ 𝐵
∗
) = 0. (17)

Since x1, . . . , x𝑛 are all different from each other, the eigen-
values of ∇2𝐹(x∗) cannot be all the same. When 𝑚 = 1, we
have 𝐺(x∗) = tr(2𝐴∗ + 𝐵∗) = 0, which implies tr(𝐴∗ +
𝐵
∗
) < 0 since 𝐴∗ is a positive definite matrix. Similarly,

we have tr(∇2𝐹(x∗)) = 0 when 𝑚 = 2. From Lemma 7,
matrix ∇2𝐹(x∗) cannot be a positive definite matrix. It is a
seminegative definite or an indefinite matrix. This implies
that x∗ cannot be a local minimum point though∇𝐹(x∗) = 0.
It can be a localmaximumpoint or a saddle point of𝐹(x).

Remark 11. If the dimension 𝑚 > 2, tr((2/𝑚) ⋅ 𝐴∗ +
𝐵
∗
) = 0 does not directly imply that ∇2𝐹(x∗) is a negative

semidefinite or an indefinite matrix. Let 𝑃𝑓 ∈ 𝑅
2×𝑛 be a full-

row rank projection matrix, which projects a vector into a
two-dimensional plane. The following theorem shows that
x1, . . . , x𝑛 are still the only local minimum points of 𝐹(x).

Theorem 12. For the case that 𝑚 > 2, x1, . . . , x𝑛 are also the
only local minimum points of 𝐹(x).

Proof. Let x̃ = 𝑃𝑓x and x̃1, . . . , x̃𝑛 be the corresponding
projection of the local minimum points x1, . . . , x𝑛 in the two-
dimensional plane. Then, 𝐹(x) and ∇𝐹(x) become 𝐹(x̃) and
∇𝐹(x̃), respectively, on this two-dimensional plane. It can be
obtained that

∇𝐹 (x̃) = 𝑃𝑓∇𝐹 (x)

∇
2
𝐹 (x̃) = 𝑃𝑓∇

2
𝐹 (x) 𝑃𝑇𝑓 .

(18)

If ∇𝐹(x) = 0 and ∇2𝐹(x) > 0, then ∇𝐹(x̃) = 0 and
∇
2
𝐹(x̃) > 0, which means that the local minimum points
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of 𝐹(x) in a higher dimensional space must be also the local
minimumpoints of 𝐹(𝑋) in the two-dimensional plane while
the converse is not true. Obviously, x1, . . . , x𝑛 are the local
minima of 𝐹(x̃).

Assume that there is a point x∗ which is different from
x1, . . . , x𝑛 but a local minimum of 𝐹(x). There exists a full-
row rank projection matrix 𝑃∗𝑓 ∈ 𝑅

2×𝑛 such that x̃∗ = 𝑃∗𝑓x
∗.

The full-row rank of 𝑃∗𝑓 implies that x̃∗ is different from
x̃1, . . . , x̃𝑖, . . . , x̃𝑛, where x̃𝑖 = 𝑃∗𝑓x𝑖 for 𝑖 = 1, . . . , 𝑛 are the
local minimum points of 𝐹(x̃) = 𝐹(𝑃

∗
𝑓x). However, this

is impossible by Theorem 10. Thus, there is no other local
minimum point of 𝐹(x). If a point x∗ satisfies that ∇𝐹(x∗) =
0 but it is different from x1, . . . , x𝑛, it can be only a local
maximumpoint or a saddle point. So this theoremholds.

5. Simulation Results

Example 1. Design a nonlinear dynamical system whose
attractors are x1, . . . , x𝑛 ∈ 𝑅𝑚 with 𝑛 = 2,𝑚 = 1.

This corresponds to the one-dimensional case. The
energy function is constructed as 𝐹(x) = (x − x1)2(x − x2)2

from (2) with ∇𝐹(𝑋) and ∇2𝐹(𝑋) being given by

∇𝐹 (x) = 2 (x − x1)
2
(x − x2)

+ 2 (x − x2)
2
(x − x1) ,

∇
2
𝐹 (x) = 2 (x − x1)

2
+ 2 (x − x2)

2

+ 4 (x − x2) (x − x1)

+ 4 (x − x1) (x − x2) ,

(19)

respectively.Thedynamic systemcanbe thendesigned in (5)–
(8). By solving ∇𝐹(x∗) = 0, we have x∗ = x1, x∗ = x2, or
x∗ = (x1 + x2)/2 as analyzed in Section 3. From

∇
2
𝐹 (x)󵄨󵄨󵄨󵄨

󵄨x=x∗=(x1+x2)/2
< 0, (20)

x∗ = (x1 + x2)/2 is a local maximum point of 𝐹(x). So x1
and x2 are the only two local minimum points of 𝐹(x). The
energy function is shown in Figure 1 where “∗” denotes the
local minimum point and “Δ” denotes the local maximum
or the saddle point. From Figure 1, when the initial stimulus
x < (x1+x2)/2, the states converge to x1; when x > (x1+x2)/2,
the states converge to x2. If the initial stimulus x = (x1+x2)/2,
the states can converge to either x1 or x2, which depends on
the random noise V1 in (7).

Example 2. Example 1, analyze the dynamic systemwhen 𝑛 =
2,𝑚 = 2 and 𝑛 = 2,𝑚 = 3, respectively.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

x1 x2
Δ

∗∗

(x1 − x2)/2

Figure 1: Energy function for one-dimensional case.

Case 1. x1 = [−0.5 − 0.5]
󸀠 and x2 = [0.5 0.5]󸀠. Similar

to Example 1, the energy function is constructed as 𝐹(x) =
𝑑1(x)𝑑2(x) with ∇𝐹(x) and ∇2𝐹(x) being given by

∇𝐹 (x) = 2𝑑1 (x) (x − x
2
) + 2𝑑2 (x) (x − x

1
) ,

∇
2
𝐹 (x) = 2 (x − x1)

𝑇
(x − x1) ⋅ 𝐼

+ 2 (x − x2)
𝑇
(x − x2) ⋅ 𝐼

+ 4 (x − x2) (x − x1)
𝑇

+ 4 (x − x1) (x − x2)
𝑇
.

(21)

Solving ∇𝐹(x∗) = 0 gives x∗ = x1, x∗ = x2, or 𝑋∗ = (x1 +
x2)/2. When𝑋∗ = (x1 + x2)/2, we have

∇
2
𝐹 (x∗) = [

0 −2

−2 0

] . (22)

The two eigenvalues of ∇2𝐹(x∗) are 𝜆1 = 2 and 𝜆2 = −2. This
is consistent with Theorem 10, which gives tr(∇2𝐹(x∗)) = 0.
Figure 2 shows the contour map of the energy function in
a two-dimensional space. The contour lines around a saddle
point look like a horse saddle. It can be concluded that x1 and
x2 are two attractors while (x1 + x2)/2 is not an equilibrium
point of system (5)–(8) by Theorem 9. The term 𝜅 ⋅ 𝐹(x)k
guarantees that the attractor network (5)–(8) cannot stay at
the point (x1 + x2)/2. But from Theorem 10, we know that
(x1 + x2)/2 is a saddle point of 𝐹(x).

Case 2. x1 = [−0.5 − 0.5 − 0.5]
󸀠 and x2 = [0.5 0.5 0.5]󸀠.

In this case, 𝑛 = 2,𝑚 = 3. When x∗ = (x1 + x2)/2, we have

∇
2
𝐹 (x∗) = [[

[

1 −2 −2

−2 1 −2

−2 −2 1

]

]

]

. (23)
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Saddle point
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−0.5
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0.4
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∗

Δ
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Figure 2: The contours of the energy function for Example 2.

Then x∗ is still not an equilibrium point of system (5)–(8) but
a saddle point of 𝐹(x) as the eigenvalue of ∇2𝐹(x∗) is now
𝜆1 = −3, 𝜆2 = 3, and 𝜆3 = 3. But in this case, we have
tr(∇2𝐹(x∗)) > 0. So we cannot determine whether x∗ is a
saddle point or a local minimum point of 𝐹(x) only based
on Theorem 10. However, we can determine that it is also a
saddle point by Theorem 12. This is consistent with what we
observed in simulation, as the eigenvalues of above ∇2𝐹(x∗)
is 3, 3, −3, and thus x∗ is a saddle point and cannot be a local
minimum point of 𝐹(x).

Example 3. Design a nonlinear dynamic system whose
attractors are x1 = [2 0]󸀠, x2 = [−1 √3]󸀠, and x3 = [−√3 −

1]
󸀠
∈ 𝑅
2.

We have 𝑛 = 3 and 𝑚 = 2 in this example. The energy
function is constructed as 𝐹(x) = 𝑑1(x)𝑑2(x)𝑑3(x) with

∇𝐹 (x) = 2𝑑1 (x) 𝑑2 (x) (x − x
3
)

+ 2𝑑1 (x) 𝑑3 (x) (x − x
2
)

+ 2𝑑2 (x) 𝑑3 (x) (x − x
1
) ,

∇
2
𝐹 (x) = 2𝑑1 (x) 𝑑2 (x) ⋅ 𝐼 + 2𝑑1 (x) 𝑑3 (x) ⋅ 𝐼

+ 2𝑑2 (x) 𝑑3 (x) ⋅ 𝐼

+ 4 (x − x3) (x − x1)
𝑇
(x − x2)

𝑇
(x − x2)

+ 4 (x − x3) (x − x2)
𝑇
(x − x1)

𝑇
(x − x1)

+ 4 (x − x2) (x − x1)
𝑇
(x − x3)

𝑇
(x − x3)

+ 4 (x − x2) (x − x3)
𝑇
(x − x1)

𝑇
(x − x1)

+ 4 (x − x1) (x − x2)
𝑇
(x − x3)

𝑇
(x − x3)

+ 4 (x − x1) (x − x3)
𝑇
(x − x2)

𝑇
(x − x2)

(24)

with its dynamical property described by the attractor net-
work in (5)–(8). Theorem 9 tells us that x1, x2, and x3 are the
stable equilibrium points of 𝐹(x) and the attractor network
in (5)–(8). However, 𝐹(x) has more saddle points but these
saddle points are not equilibrium points (saddle points) of
(5)–(8). To illustrate this, firstly, we find all the points such
that ∇𝐹(𝑋∗) = 0. If ∇𝐹(𝑋∗) = 0, then (∇𝐹(𝑋∗))𝑇∇𝐹(𝑋∗) =
0, which means

𝐺 (x∗) ⋅
𝑘=3

∏

𝑘=1

𝑑𝑘 (x
∗
) = 0, (25)

where

𝐺 (x∗) = 2𝑑1 (x
∗
) 𝑑2 (x

∗
) + 2𝑑1 (x

∗
) 𝑑3 (x

∗
)

+ 2𝑑2 (x
∗
) 𝑑3 (x

∗
)

+ 4 (x∗ − x3)
𝑇
(x∗ − x1) 𝑑2 (x

∗
)

+ 4 (x∗ − x3)
𝑇
(𝑋
∗
− x2) 𝑑1 (x

∗
)

+ 4 (x∗ − x2)
𝑇
(x∗ − x1) 𝑑3 (x

∗
)

+ 4 (x∗ − x2)
𝑇
(x∗ − x3) 𝑑1 (x

∗
)

+ 4 (x∗ − x1)
𝑇
(x∗ − x2) 𝑑3 (x

∗
)

+ 4 (x∗ − x1)
𝑇
(x∗ − x3) 𝑑2 (x

∗
) .

(26)

We know that (∇𝐹(x∗))𝑇∇𝐹(x∗) = 0 gives x∗ = x1, x∗ =
x2, x∗ = x3 or 𝐺(x∗) = 0. But 𝐺(x∗) = 0 implies that

tr (∇2𝐹 (x∗)) = 0. (27)

Thus, x∗ will be a saddle point of 𝐹(x) but not the attractor
network in (5)–(8) if ∇𝐹(x∗) = 0 while x∗ is different from
x1, . . . , x𝑛. As the attractor network in (5)–(8) does not have
any saddle points from Theorem 9, usually, a saddle point
of 𝐹(x) is located in between two local minimum points. As
seen from Figure 3, two saddle points of 𝐹(x) are in between
the three local minimum points on the plane. One is located
about (−1.05, 0.22) and the other is about (0.58, 0.31).

6. Conclusion

The contributions of this paper are summarized as follows.

(1) We have proposed a new energy function which
includes the information of the stored patterns, and it
is different from the energy function in Hopfield net-
work. The proposed energy function makes it easy to
differentiate memory patterns from possible spurious
points.

(2) We have presented an attractor network design based
on the proposed energy function.The patterns stored
in the attractor network can be nonbinary and either
correlated or uncorrelated. The memory patterns are
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Figure 3: The contours of the energy function for Example 3.

the attractors of the network and the equilibrium
points of the dynamic system.

(3) When an arbitrary input stimulus is presented to
the designed attractor network, it has been proved
that the states converge to one of the stored patterns.
There are no spurious states in the designed dynamic
systems.

Our future work is to construct a biological plausible dynam-
ical system in hardware (neuromorphic chip) which can
stimulate the behavior of the designed network. This sheds
new lights on the research towards the realization of artificial
cognitive memory.
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