
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

3-2007

Malicious KGC attacks in certificateless cryptography Malicious KGC attacks in certificateless cryptography

Man Ho AU

Jing CHEN

Joseph K. LIU

Yi MU

Duncan S. WONG

See next page for additional authors

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Information Security Commons

Citation Citation
AU, Man Ho; CHEN, Jing; LIU, Joseph K.; MU, Yi; WONG, Duncan S.; YANG, Guomin; and YANG, Guomin.
Malicious KGC attacks in certificateless cryptography. (2007). Proceedings of the 2nd ACM Symposium
on Information, Computer and Communications Security, Singapore, 2007 March 20-22. 302-311.
Available at:Available at: https://ink.library.smu.edu.sg/sis_research/7384

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F7384&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Author Author
Man Ho AU, Jing CHEN, Joseph K. LIU, Yi MU, Duncan S. WONG, Guomin YANG, and Guomin YANG

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/7384

https://ink.library.smu.edu.sg/sis_research/7384

Malicious KGC Attacks in Certificateless Cryptography

Man Ho Au
School of Information

Technology and Computer
Science

University of Wollongong
Wollongong, Australia

mhaa456@uow.edu.au

Jing Chen
Department of Computer
Science and Technology

Tsinghua University
Beijing, China

jingchen@cityu.edu.hk

Joseph K. Liu
Department of Computer

Science
University of Bristol

Bristol, UK
liu@cs.bris.ac.uk

Yi Mu
School of Information

Technology and Computer
Science

University of Wollongong
Wollongong, Australia
ymu@uow.edu.au

Duncan S. Wong
∗

Department of Computer
Science

City University of Hong Kong
Hong Kong, China

duncan@cs.cityu.edu.hk

Guomin Yang
Department of Computer

Science
City University of Hong Kong

Hong Kong, China
csyanggm@cs.cityu.edu.hk

ABSTRACT
Identity-based cryptosystems have an inherent key escrow
issue, that is, the Key Generation Center (KGC) always
knows user secret key. If the KGC is malicious, it can al-
ways impersonate the user. Certificateless cryptography, in-
troduced by Al-Riyami and Paterson in 2003, is intended to
solve this problem. However, in all the previously proposed
certificateless schemes, it is always assumed that the ma-
licious KGC starts launching attacks (so-called Type II at-
tacks) only after it has generated a master public/secret key
pair honestly. In this paper, we propose new security models
that remove this assumption for both certificateless signa-
ture and encryption schemes. Under the new models, we
show that a class of certificateless encryption and signature
schemes proposed previously are insecure. These schemes
still suffer from the key escrow problem. On the other side,
we also give new proofs to show that there are two generic
constructions, one for certificateless signature and the other
for certificateless encryption, proposed recently that are se-
cure under our new models.

1. INTRODUCTION
Certificateless cryptography, introduced by Al-Riyami and

Paterson in 2003 [1], is intended to solve the key escrow
problem which is inherent in identity-based (ID-based) cryp-
tography [18, 7], while at the same time, eliminate the use of
certificates as in the conventional Public Key Infrastructure

∗The author was supported by a grant from CityU (Project
No. 7001844).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07, March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003 ...$5.00.

(PKI), which is generally considered to be costly to use and
manage.

In a certificateless cryptosystem, a Key Generation Center
(KGC) is involved in issuing user partial key to user whose
identity is assumed to be unique in the system. The user also
independently generates an additional user public/secret key
pair. Cryptographic operations can then be performed suc-
cessfully only when both the user partial key and the user
secret key are known. Knowing only one of them should not
be able to impersonate the user, that is, carrying out any
cryptographic operations as the user. There are two types of
attacks that are generally considered in certificateless cryp-
tography:

Type I - Key Replacement Attack. A third party tries
to impersonate a user after compromising the user se-
cret key and/or replacing the user public key with
some value chosen by the third party. However, it
does not know the user partial key.

Type II - Malicious KGC Attack. The KGC, who knows
the partial key of a user, is malicious and tries to im-
personate the user. However, the KGC does not know
the user secret key or being able to replace the user
public key.

A defense against Type II attacks is for solving the key es-
crow issue that is an inherent problem in ID-based cryp-
tography. That is, even if the KGC is malicious, the KGC
should not be able to perform any cryptographic operation
as the user, provided that the KGC cannot replace the user
public key or find out the user secret key, but the KGC
knows the user partial key. In addition to this, even though
we say that the KGC is malicious, we actually assume that
the KGC is passive, in the sense that the KGC would not
actively replace the user public key (which would have been
published on a bulletin board in some real implementation)
or corrupt the user secret key. For certificateless encryption
as example, the malicious KGC may passively eavesdrop the
ciphertexts sent to a user and try to decrypt them using its
knowledge of the user partial key. In the rest of the paper,
we refer to this KGC as malicious-but-passive KGC.

302

Of course, if the malicious KGC is active, that is, the
KGC not only knows the user partial key but is also able
to replace user public key or compromise user secret key,
then the KGC is always able to impersonate the user. This
situation also happens in PKI. A malicious and active CA
(Certification Authority) can do similar damage to a user
in PKI by generating a certificate on a contradictory public
key for impersonating the user. With this comparison in
mind, for certificateless cryptography, we target to alleviate
damage caused by malicious-but-passive KGC rather than
eliminate any trust to the KGC.

Now if we take a look at all previously proposed certifi-
cateless encryption and signature schemes and adversarial
models [1, 20, 21, 19, 2, 6, 3, 9, 15, 22, 12, 17, 10], we will
notice that all of them have an implicit assumption that
this malicious-but-passive KGC always generates its master
public/secret key pair honestly according to scheme specifi-
cation. In other words, all of them assume that the KGC is
originally benign, but once after setting up its own key pair,
it suddenly becomes malicious and gets ready to imperson-
ate users.

It seems to be more natural if we consider this malicious-
but-passive KGC to have already been malicious at the very
beginning of the setup stage of the system. This KGC may
generate its master public/secret key pair maliciously so that
it can launch the Type II attack more easily in the later stage
of the system. The KGC may even have already targeted a
particular victim, say the president, when choosing its mas-
ter key pair. For example, in the Al-Riyami-Paterson cer-
tificateless encryption scheme [1], we find that the KGC can
have its master key pair specifically generated so that all the
encrypted messages for the president can also be decrypted
by the KGC. This is because the KGC is able to derive the
user secret key generated by the president once after the
president has published the user public key (details are in
Sec. 3 of this paper). In addition, this specifically generated
master public key is computationally indistinguishable from
an honestly generated master public key. Therefore, it is
infeasible for the president to find out that he is the target
of the Type II attack.

1.1 Our Results
In the example above, the KGC can find out the user

secret key if the KGC maliciously generates its master public
key which is computationally indistinguishable from a key
generated honestly according to the master key generation
specification of the underlying scheme. This means once
we remove the assumption that the KGC must generate its
master key pair honestly, the key escrow problem reappears
in some of the previously proposed certificateless schemes.

In this paper, we propose to capture the malicious-but-
passive KGC attacks by specifying extension and new Type
II adversarial models. The new models (one for certifi-
cateless encryption schemes and another one for signature
schemes) remove the assumption that the KGC must be be-
nign during the master key generation step and when per-
forming user partial key generation. The models also allow
the KGC to choose a user to attack during the master key
generation stage. We also adopt the notion of simplifying
the definition and strengthening the adversarial models of
certificateless signature schemes due to Hu, Wong, Zhang
and Deng [14] to simplify the definition and strengthen the
two adversarial models for certificateless encryption schemes.

Our simplified definition of certificateless encryption schemes
is composed of five algorithms, while all previous definitions
require seven algorithms. The unique feature of certificate-
less encryption is also maintained, that is, the partial key
generation and the user public/secret key pair generation
can be carried out by the KGC and the user independently.
Our new adversarial models also allow the adversary to com-
promise the target user secret key in Type I model and to re-
place non-target users’ public keys in Type II model. These
capabilities are not captured in previously proposed models
for certificateless encryption schemes.

We show that the schemes proposed in [1] are vulnerable
to malicious-but-passive KGC attacks (i.e. Type II attack)
in our new models. The same attack technique can also be
applied to schemes in [15, 16] as they share the same key
structure and generation procedures as that of [1]. On the
other side, we give new proofs for the generic certificateless
signature scheme proposed by Hu, Wong, Zhang and Deng
[14] and the generic encryption scheme proposed by Libert
and Quisquater in [17] to show its security under our new
models.

1.2 Related Work
Certificateless encryption schemes and signature schemes

were first defined and proposed by Al-Riyami and Paterson
[1] in 2003. Each of the definitions for certificateless en-
cryption and signature schemes consists of seven algorithms.
This definition approach has then been adopted by all oth-
ers [20, 21, 19, 2, 6, 3, 9, 15, 22, 12, 17, 10] until a simplified
definition for certificateless signature schemes was proposed
by Hu, Wong, Zhang and Deng in [14] this year1. Their
definition consists of only five algorithms and is shown to be
more versatile than the previous one while maintaining the
unique feature of certificateless cryptography, that is, the
user public/secret key pair can be generated independently
by the user even before obtaining the user partial key from
the KGC. In Sec. 2, we adopt their approach and give a five-
algorithm definition for certificateless encryption schemes.

In [3], Baek et al. proposed a certificateless encryption
scheme that fits in a slightly different model that does not
maintain the unique feature of certificateless cryptosystems.
In their scheme, the user has to obtain a partial public/private
key pair first before being able to generate a user public
key. In this paper, we focus ourselves on constructing secure
schemes which support the unique feature of certificateless
cryptography.

On the security of certificateless encryption schemes and
signature schemes, various kinds of security models have
been defined. In [17, 14, 10], nice survey and discussions
can be found and therefore, we skip the details in this pa-
per, and only emphasize that all the current security models
have the assumption that the KGC starts launching Type II
attacks only after it has honestly generated a master pub-
lic/secret key pair. In Sec. 2, we propose new Type II ad-
versarial models for capturing malicious-but-passive KGC
attacks that remove this assumption.

1Recently, Dent in [10] also mentioned that the Set-Secret-
Value and Set-Public-Key algorithms in the original seven-
algorithm definition can be replaced with a single Set-User-
Keys algorithm. The approach is the same as one of the two
simplifications proposed by Hu, Wong, Zhang and Deng in
[14] and can reduce the number of algorithms in the certifi-
cateless encryption definition to six.

303

Paper organization. In Sec. 2, the simplified five-algorithm
definition for certificateless signature schemes of [14] is re-
viewed and by following the approach, a new five-algorithm
certificateless encryption scheme is defined. New security
models for capturing malicious-but-passive KGC are also
proposed. In Sec. 3, malicious-but-passive KGC attacks
against some previously proposed schemes are described.
In Sec. 4, the Hu-Wong-Zhang-Deng generic certificateless
signature construction [14] is reviewed. A new proof is
given to show its security under our new security model.
In Sec. 5, the Libert-Quisquater generic certificateless en-
cryption scheme [17] is also proven secure in our new certifi-
cateless encryption security model.

2. DEFINITIONS AND SECURITY MODELS
In this section, we first give the definitions of certificateless

encryption and certificateless signature schemes. Then, we
propose security models for both types of the schemes. The
models corresponding to Type II attacks will capture those
launched by the malicious-but-passive KGC.

In the definitions, we adopt the notion introduced by Hu,
Wong, Zhang and Deng in [14] for defining schemes as sets of
five algorithms rather than seven. As shown in [14], the new
approach of defining certificateless signature schemes is more
versatile than the original seven-algorithm definition [1, 20,
15], and still maintains the unique feature of certificateless
signature schemes, that is, user partial key generation and
user key generation can be done independently by the KGC
and the user, respectively. In particular, a user with identity
ID can generate a user public key denoted by upkID even
before the KGC generates a user partial key denoted by
partial keyID for the user. In the following, we apply their
notion on defining a certificateless encryption scheme.

As the certificateless signature and certificateless encryp-
tion schemes are sharing the same set of key generation algo-
rithms, in the following, we first define these key generation
algorithms, and then define the specific algorithms for each
of signature and encryption schemes.

A certificateless cryptosystem has three key generation al-
gorithms: MasterKeyGen, PartialKeyGen, UserKeyGen. All of
them are polynomial-time and may be randomized.

1. MasterKeyGen (Master Key Generation): On input
1k where k ∈ N is a security parameter, it gener-
ates a master public/secret key pair (mpk, msk). Let
MPK(k) be set of all possible master public keys gener-
ated by MasterKeyGen(1k). Without loss of generality,
we assume that it is computable to determine if a mas-
ter public key mpk is in MPK(k).

2. PartialKeyGen (User Partial Key Generation): On in-
put msk and user identity ID ∈ {0, 1}∗, it generates
a user partial key partial key.

3. UserKeyGen (User Key Generation): On input mpk
and user identity ID, it generates a user public/secret
key pair (upk, usk).

A certificateless signature (CL-SIG) scheme has
two additional polynomial-time algorithms: CL-Sign and CL-Ver.

1. CL-Sign (Signature Generation): On input user secret
key usk, user partial key partial key and message m,
it generates a signature σ.

2. CL-Ver (Signature Verification): On input mpk, user
identity ID, user public key upk, message m and sig-
nature σ, it returns 1 or 0 for accept or reject, respec-
tively.

Both of them may be randomized but the second one is
usually not, but for generality, we do not mandate that
the verification algorithm must be deterministic. Boneh
and Franklin [8] described a generic method for converting
any ID-based encryption scheme into a standard signature
scheme. The transformed signature scheme has a random-
ized verification algorithm. When this standard signature
scheme is used in the construction of a CL-SIG scheme,
for example, in the Hu-Wong-Zhang-Deng generic CL-SIG
construction, the CL-SIG verification algorithm will also be
randomized.

Signature Correctness. For all k ∈ N, m ∈ {0, 1}∗, ID ∈
{0, 1}∗, if (mpk, msk) ← MasterKeyGen(1k), partial key ←
PartialKeyGen(msk, ID), (upk, usk)← UserKeyGen(mpk, ID),
and σ ← CL-Sign(usk, partial key, m), we require that

CL-Ver(mpk, ID, upk, m, σ) = 1.

A certificateless encryption (CL-ENC) scheme has
two polynomial-time algorithms in addition to the three key
generation algorithms: CL-Encrypt and CL-Decrypt. Similar
to the case of signature schemes, both of these algorithms
may be randomized but usually the second one is not.

1. CL-Encrypt: On input mpk, user identity ID, user
public key upk, message m, it returns a ciphertext c.

2. CL-Decrypt: On input user secret key usk, user partial
key partial key and ciphertext c, it returns a message
m.

Cipher Correctness. For all k ∈ N, m ∈ {0, 1}∗, ID ∈
{0, 1}∗, if (mpk, msk) ← MasterKeyGen(1k), partial key ←
PartialKeyGen(msk, ID), (upk, usk)← UserKeyGen(mpk, ID),
then we require that

m← CL-Decrypt(usk, partial key,

CL-Encrypt(mpk, ID, upk, m)).

Case of invalid input: For each of the algorithms above,
we implicitly assume that there is a domain for each of its
inputs if it is not specified. An input is said to be valid if it
falls in its corresponding domain. For example, the domain
of msk is defined by the set of all possible output values of
master secret key of MasterKeyGen for each given security
parameter k ∈ N. Hence if any of the inputs of an algorithm
above is invalid, then the algorithm will output a symbol ⊥
indicating that the execution of the algorithm is halted with
failure.

In practice, the KGC (Key Generation Center) could be
the one who performs MasterKeyGen and PartialKeyGen. The
master public key mpk will then be published and assumed
that everyone in the system has got a legitimate copy of
it. The partial key is also assumed to be issued securely
to the intended user so that no one except the intended
user can get the partial key. For each user in the system,
the user is supposed to be able to carry out UserKeyGen,
and also CL-Sign and CL-Ver for CL-SIG or CL-Encrypt and

304

CL-Decrypt for CL-ENC. It is the user’s responsibility to
forward the user public key upk to the intended signature
verifier(s)/encryptor(s) and announces the user’s identity.

In the rest of the paper, we denote the user partial key
of a user with identity ID as partial keyID and the user
public/secret key pair as (upkID, uskID).

2.1 Adversarial Model for Certificateless Sig-
nature (CL-SIG)

There are two types of adversaries, AI and AII . Ad-
versary AI simulates attacks when user secret key usk has
been compromised or user public key upk has been replaced.
However, AI is not given master secret key msk nor user
partial key partial key. Adversary AII simulates attacks
when the adversary controls msk and partial key. But AII

cannot get access to usk nor replace upk. Different from [14]
or any other old models [1, 20, 15], in our model, AII con-
trols the key generation of the KGC while in all the previous
models, the adversary is not allowed to do so. Informally,
AI models a third party launching key replacement attack
and AII models attacks launched by a malicious-but-passive
KGC.

There are five oracles which can be accessed by the ad-
versaries according to the game specifications which will be
given shortly. For simulating signing oracle, we assume that
the game simulator keeps a history of “query-answer” while
interacting with adversaries.

1. CreateUser: On input an identity ID ∈ {0, 1}∗, if ID
has already been created, nothing is to be carried out.
Otherwise, the oracle generates

partial keyID ← PartialKeyGen(msk, ID)

and

(upkID, uskID)← UserKeyGen(mpk, ID).

In this case, ID is said to be created . In both cases,
upkID is returned.

2. RevealPartialKey: On input an identity ID, it returns
partial keyID if ID has been created. Otherwise, a
symbol ⊥ is returned.

3. RevealSecretKey: On input an identity ID, it returns
the corresponding user secret key uskID if ID has been
created. Otherwise, a symbol ⊥ is returned.

4. ReplaceKey: On input an identity ID and a user pub-
lic/secret key pair (upk∗, usk∗), the original user pub-
lic/secret key pair of ID is replaced with (upk∗, usk∗)
if ID has been created. Otherwise, no action will be
taken.

5. Sign: On input an identity ID and a message m ∈
{0, 1}∗, the signing oracle proceeds in one of the three
cases below.

(a) A valid signature σ is returned if ID has been cre-
ated and (upkID, uskID) has not been replaced.
Signature σ is valid (with respect to ID and
upkID) if CL-Ver(mpk, ID, upkID, m, σ) = 1.

(b) If ID has not been created, a symbol ⊥ is re-
turned.

(c) If the pair (upkID, uskID) has been replaced by,
say (upk∗, usk∗), the oracle returns

σ ← CL-Sign(usk∗, partial keyID, m)

if σ is valid (with respect to ID and upk∗). If σ
is not valid, the oracle runs a special “knowledge
extractor” to obtain a valid signature and returns
it to the adversary. Note that the construction of
knowledge extractor is specific to each CL-SIG
scheme.

Remark 1: When querying oracle ReplaceKey, usk∗ can be
an empty string. In this case, it means that the user secret
key is not provided. If the user secret key of an identity ID
is replaced with an empty string, then the empty string will
be returned when the RevealSecretKey oracle is queried on
ID. Also note that even if usk∗ is not an empty string, it
does not mean that usk∗ is the corresponding secret key of
upk∗. Hence as mentioned, the signature generated by the
signing oracle Sign using usk∗ for case (c) may not be valid.

Remark 2: The definition of signing oracle above follows
the original idea of the model for CL-ENC in [1], that is,
an adversary is expected to obtain valid decryption from a
decryption oracle, even after the corresponding user pub-
lic key has been replaced. This means that the simulator
of the model should be able to correctly answer decryption
queries for public keys where the corresponding secret keys
may not be known to the simulator. To do this, a scheme-
specific knowledge extractor [1] will be used by the game
simulator to decrypt a requested ciphertext. In our signing
oracle, case (c) above, we adopt this idea. We would also
like to emphasize that case (c) of the signing oracle is a very
strong security requirement. In addition, it is unclear on
how realistic this requirement is. As later adopted and ar-
gued by many other researchers [20, 14, 22, 6, 9, 10], the
game simulator is not obliged to provide valid signatures or
correct decryption of ciphertexts (for the case of CL-ENC)
after the corresponding user public key has been replaced.
Instead, they only require that valid signatures are gener-
ated or ciphertexts can be decrypted if the user public key
has been replaced while the corresponding user secret key
has also been supplied by the adversary. We suggest that if
this strong security requirement is not needed, one may use
the signing oracle defined in [14] to replace the definition
above.

We define two games, one for AI and the other one for
AII . The game for AI below is the same as the correspond-
ing game defined in [14], except that the signing oracle is
specified differently. The game for AII is new. It captures
malicious-but-passive KGC attacks discussed in Sec. 1.

Game Sign-I: Let SI be the game simulator and k ∈ N be
a security parameter.

1. SI executes MasterKeyGen(1k) to get (mpk, msk).

2. SI runs AI on 1k and mpk. During the simula-
tion, AI can make queries onto CreateUser, Re-
vealPartialKey, RevealSecretKey, ReplaceKey and
Sign.

3. AI is to output (ID∗, m∗, σ∗).

AI wins if CL-Ver(mpk, ID∗, upkID∗ , m∗, σ∗) = 1 for
some created ID∗ and the oracle Sign has never been

305

queried with (ID∗, m∗). One additional restriction is
that AI has never queried RevealPartialKey(ID∗) to
get the user partial key partial keyID∗ .

A CL-SIG scheme is secure in Game Sign-I if for all proba-
bilistic polynomial-time (PPT) algorithm AI , it is negligible
for AI to win the game.

Game Sign-II: Let SII be the game simulator and k ∈
N be a security parameter. There are two phases of
interactions between SII and adversary AII .

Phase 1. SII executes AII on 1k and a special tag
master-key-gen. AII returns a master public key
mpk ∈ MPK(k). Note that AII is not allowed to
query any oracle in this phase2.

Phase 2. This phase starts when SII invokes AII

with 1k and a special tag forge. During the sim-
ulation, AII can make queries onto oracles Re-
vealSecretKey, ReplaceKey and Sign. AII can also
make queries to CreateUser. However, the oracle
is changed to the following.

CreateUser: On input identity ID ∈ {0, 1}∗
and user partial key partial keyID, if ID
has been created, nothing is to be car-
ried out. Otherwise, the oracle generates
(upkID, uskID)← UserKeyGen(mpk, ID).
In this case, ID is said to be created .
Also, SII associates partial keyID and
(upkID, uskID) to ID. In both cases,
upkID is returned.

Note that oracle RevealPartialKey is not accessible
and no longer needed as all the user partial keys
are now generated by AII .

At the end of this phase, AII is to output a triple
(ID∗, m∗, σ∗).

AII wins if CL-Ver(mpk, ID∗, upkID∗ , m∗, σ∗) = 1 for
some created ID∗ and oracle Sign has never been queried
with (ID∗, m∗). One additional restriction is that AII

has never queried RevealSecretKey(ID∗) to get the user
secret key uskID∗ nor queried ReplaceKey(ID∗, ·, ·) to
replace the user public key upkID∗ .

A CL-SIG scheme is secure in Game Sign-II if for all PPT
algorithm AII , it is negligible for AII to win the game. Note
that AII in the game above can not only generate master
key pair maliciously, but also generate user partial key ma-
liciously.

2.2 Adversarial Model for Certificateless En-
cryption (CL-ENC)

Similar to the adversarial model for CL-SIG above, there
are two types of adversaries, BI and BII . Adversary BI mod-
els a third party launching key replacement attack and BII

models attacks launched by a malicious-but-passive KGC.
Five oracles can be accessed by the adversaries: CreateUser,
RevealPartialKey, RevealSecretKey, ReplaceKey and Decrypt.
The first four oracles are defined in the same way as that in
Sec. 2.1. Below is the definition of oracle Decrypt.

2The exception is that if the security analysis is done un-
der some model such as random oracle model [5], then the
adversary is allowed to access the specific random oracles of
the underlying scheme at any stage of the game.

Decrypt: On input an identity ID and a cipher-
text c, the decryption oracle proceeds in one of
the three cases below.

1. A message m is returned if ID has been
created and the pair (upkID, uskID) has not
been replaced, where

m← CL-Decrypt(uskID, partial keyID, c).

2. If ID has not been created, a symbol ⊥ is
returned.

3. If the user public/secret key pair of ID has
been replaced by, say (upk∗, usk∗), the ora-
cle returns m which is generated as

m← CL-Decrypt(usk∗, partial keyID, c)

if m 6= ⊥. However, if m = ⊥, the oracle
runs a special “knowledge extractor” to de-
crypt the ciphertext c and returns the mes-
sage to the adversary. Note that the con-
struction of knowledge extractor is specific
to each CL-ENC scheme.

Again, as a remark similar to Remark 2 on page , if we
do not require the simulator to correctly answer a query to
Decrypt oracle when the user secret key is not known, we
should modify item 3 of Decrypt oracle above accordingly.

Game Enc-I: Let CI be the game challenger and k ∈ N be
a security parameter.

1. CI executes MasterKeyGen(1k) to get (mpk, msk).

2. CI runs adversary BI on 1k and mpk. During the
simulation, BI can make queries onto CreateUser,
RevealPartialKey, RevealSecretKey, ReplaceKey and
Decrypt. At the end of this phase, BI outputs
two equal-length messages (M0, M1) and a target
identity ID∗.

3. CI picks a bit b ∈ {0, 1} at random and gives a
challenge ciphertext c∗ to BI where

c∗ ← CL-Encrypt(mpk, ID∗, upkID∗ , Mb).

4. BI makes queries as in step 2. At the end of the
game, BI outputs its guess b′ ∈ {0, 1}.

BI wins if b′ = b. The restrictions are:

• BI has never queried RevealPartialKey(ID∗) to get
partial keyID∗ ; and

• BI has never queried Decrypt on the pair (ID∗, c∗).

A CL-ENC scheme is secure in Game Enc-I if for all proba-
bilistic polynomial-time (PPT) algorithm BI , it is negligible
for BI to win the game.

Note that in Game Enc-I above, BI may have queried
RevealSecretKey(ID∗) before any key replacement queries
made on ID∗. To the best of our knowledge, this adver-
sarial capability has never been captured in any Type II
adversarial models for CL-ENC before. In previous models,
although the adversary corresponding to BI is able to re-
place user public/secret key pairs, the adversary is not able
to retrieve the ‘original’ user secret key generated by the
honest user with identity ID∗.

306

Game Enc-II: Let CII be the game simulator and k ∈ N
be a security parameter.

1. CII runs adversary BII on 1k and a special tag
master-key-gen. BII returns a master public key
mpk ∈ MPK(k). In this phase, BII is not allowed
to query any oracle with one exception specified
in footnote 2 on page .

2. CII invokes BII again with 1k but with another
tag choose. During the simulation, BII can make
queries onto oracles RevealSecretKey, ReplaceKey
and Decrypt. BII can also make queries to Cre-
ateUser as described in Game Sign-II. At the
end of this phase, BII outputs two equal-length
messages (M0, M1) and a target identity ID∗.

3. CII picks a bit b ∈ {0, 1} at random and runs BII

on input a challenge ciphertext c∗ and a tag guess
where c∗ ← CL-Encrypt(mpk, ID∗, upkID∗ , Mb).

4. BII makes queries as in step 2. At the end of the
game, BII outputs its guess b′ ∈ {0, 1}.

BII wins if b′ = b. The restrictions are:

• BII has never queried RevealSecretKey(ID∗) to
get the user secret key uskID∗ ;

• BII has not queried ReplaceKey(ID∗, ·, ·) before
c∗ is received; and

• BII has never queried Decrypt on the pair (ID∗, c∗).

A CL-ENC scheme is secure in Game Enc-II if for all PPT
algorithm BII , it is negligible for BII to win the game.

In previous models corresponding to Game Enc-II, the
adversary cannot replace the user public key of any user in
the system. In Game Enc-II above, we relax this restric-
tion and allow the adversary to access ReplaceKey as long
as the user public key corresponding to ID∗ has not been
replaced before c∗ is received. We allow the user public key
of ID∗ to be replaced after c∗ is received though.

3. MALICIOUS-BUT-PASSIVE KGC ATTACK
In [1], Al-Riyami and Paterson proposed a CL-ENC scheme

and also a CL-SIG scheme. These schemes share the same
set of key generation algorithms, which we will show to be
vulnerable to malicious-but-passive KGC attack. In the fol-
lowing, we first review these schemes using the definitions
in Sec. 2, then we describe how the malicious-but-passive
KGC attack works.

1. MasterKeyGen: On input 1k, choose a bilinear group
pair (G1, G2) of prime order q with pairing operation
e : G1 × G1 → G2, where q is of k bits long. Choose
a random generator g of G1. Set the master secret
key msk as s ∈R Z∗

q . Compute W = gs, and choose
two hash functions H1 : {0, 1}∗ → G1 and H2 : G2 →
{0, 1}n, where n is the bit-length of message. The
master public key mpk is (G1, G2, e, g, W, H1, H2). For
the signature scheme, an additional hash function H3 :
{0, 1}∗ ×G2 → Z∗

q is needed.

2. PartialKeyGen: On input s and user identity ID ∈
{0, 1}∗, compute QID = H1(ID) and output user par-
tial key partial keyID as DID = Qs

ID.

3. UserKeyGen: On input mpk and user identity ID,
randomly select x ∈R Z∗

q , compute user secret key
uskID = Dx

ID, and set user public key upkID as (XID =
gx, YID = W x).

In [1], a basic encryption system is first described, followed
by a final system which possesses security against chosen-
ciphertext attack (CCA). The final system is obtained by
transforming the basic one using the Fujisaki-Okamoto con-
version [11]. In the following, we only review their basic
system since the malicious-but-passive KGC attack to be
described allows the KGC to compromise all the secret in-
formation of a user, and therefore the attack can be applied
directly to the final system.

• CL-Encrypt: On input mpk, user identity ID, user
public key (XID, YID), message m ∈ {0, 1}n,

1. check if XID, YID ∈ G1 and also e(XID, W) =
e(YID, g), abort otherwise;

2. compute QID = H1(ID) and randomly choose
r ∈R Z∗

q ; and

3. output ciphertext c = 〈gr, m⊕H2(e(QID, YID)r)〉.

• CL-Decrypt: On input user secret key uskID = Dx
ID,

user partial key partial keyID = DID and ciphertext
c = 〈U, V 〉, return a message m = V⊕H2(e(uskID, U)).

• CL-Sign: On input user (with identity ID) secret key
uskID = Dx

ID, user partial key DID, and message m,

1. choose a random a ∈R Z∗
q , compute r = e(g, g)a;

2. compute v = H3(m, r) and U = (uskID)vga; and

3. output signature σ = 〈U, v〉.

• CL-Ver: On input mpk, identity ID, user public key
(XID, YID), message m and signature σ,

1. Check if XID, YID ∈ G1 and also e(XID, W) =
e(YID, g), abort otherwise;

2. compute r = e(U, g)e(QID, YID)−v; and

3. check if v = H3(m, r) holds, output 1 for accept
if yes and output 0 for reject otherwise.

3.0.1 Malicious-but-passive KGC Attack.
We now show how a malicious-but-passive KGC can

obtain the user secret key of the victim user of the KGC’s
choice. Also note that this attack is not captured in the orig-
inal security model in [1], but only in the models proposed
in Sec. 2.

In order to obtain the user secret key of an arbitrarily cho-
sen identity ID∗ (not necessarily to be random), the KGC
randomly chooses α ∈R Zq and computes g = H(ID∗)α.
The rest follows the original MasterKeyGen and PartialKey-
Gen.

Suppose the user public key published by the user with
identity ID∗ is (XID∗ = gx∗ , YID∗ = gsx∗), where x∗ ∈R Zq.
From the user public key, the KGC can compute the user

secret key by uskID∗ = Y α−1

ID∗ . Since the user partial key is
generated by the KGC, after obtaining the user secret key
of the victim, the KGC can then decrypt all the ciphertexts
for or generate any signature on behalf of the victim.

Several other certificateless cryptosystems [15, 16], em-
ploying the same key structure as [1], are also vulnerable to
this attack.

307

4. A GENERIC CL-SIG
In [14], Hu, Wong, Zhang and Deng proposed a generic

composition of CL-SIG (HWZD-CL-SIG scheme for short),
that is based on a standard signature scheme denoted by
ΠSS = (SetupSS , SignSS , V erSS) and an ID-based signa-
ture scheme denoted by ΠIBS = (SetupIBS , ExtractIBS ,
SignIBS , V erIBS). The HWZD-CL-SIG generic composi-
tion is proven secure in the Type I and Type II games de-
fined in [14] provided that ΠSS is existentially unforgeable
against chosen message attack (euf-cma) [13] and ΠIBS is
existentially unforgeable against chosen message and iden-
tity attack (euf-cma-ida) [4]. For detailed definitions of ΠSS

and ΠIBS , please refer to Appendix A.
If we replace the signing oracle defined in Sec. 2.1 with the

signing oracle defined in [14], we can see that Game Sign-I
(that is the Type I game) is identical to that in [14]. Hence
HWZD-CL-SIG scheme is secure in our Game Sign-I pro-
vided that we use the signing oracle of [14]. However, being
secure in the Type II game defined in [14] does not imply
that HWZD-CL-SIG generic composition is also secure in
Game Sign-II because the game in [14] does not capture
the malicious-but-passive KGC attack. In the following, we
review the HWZD-CL-SIG scheme and show that it is se-
cure in Game Sign-II provided that the signing oracle of
[14] is used.

(mpk, msk)←MasterKeyGen(1k)
Run (mpkIBS , mskIBS)← SetupIBS(1k);
set mpk := mpkIBS and msk := mskIBS .

partial keyID ← PartialKeyGen(msk, ID)
Run uskIBS ← ExtractIBS(msk, ID);
set partial keyID := 〈uskIBS‖ID‖mpk〉.

(upkID, uskID)← UserKeyGen(mpk, ID)
Run (upkSS , uskSS)← SetupSS(1k);
set upkID := upkSS and uskID := 〈uskSS ‖ upkSS〉.

σ ← CL-Sign(uskID, partial keyID, m)
Run σSS ← SignSS(uskSS , m‖mpk‖ID‖upkSS);
σIBS ← SignIBS(uskIBS , m‖mpk‖ID‖upkSS‖σSS);
and set σ := 〈 σSS ‖ σIBS 〉.

1/0← CL-Ver(mpk, ID, upkID, m, σ)
Parse σ into 〈 σSS ‖ σIBS 〉;
b1 ← V erIBS(mpk, ID, m‖mpk‖ID‖upkSS‖σSS , σIBS);
b2 ← V erSS(upkSS , m‖mpk‖ID‖upkSS , σSS);
and set output to b1 ∧ b2.

Theorem 1. The HWZD-CL-SIG scheme is secure in the
Game Sign-II if the standard signature scheme ΠSS is euf-
cma secure and the signing oracle in Game Sign-II is re-
placed by the one defined in [14].

Proof. We construct a PPT forger SII which breaks the
euf-cma security of the signature scheme ΠSS by running
AII and answering AII ’s queries as defined in Game Sign-
II. Consider a game for euf-cma [13] simulated by a simulator
S ′. S ′ gives a challenge public key upk∗ to SII and simulates
a signing oracle with respect to upk∗. SII is to forge a
message-signature pair such that the signature is valid with
respect to upk∗.

At the beginning of Game Sign-II, AII is executed and
a master public key mpk is returned. Note that AII may
not run MasterKeyGen to get mpk. Below are the oracle
simulations.

1. CreateUser: On input an identity ID and a user par-
tial key partial keyID, SII executes SetupSS of ΠSS

to generate (upkSS , uskSS). SII returns upkSS as user
public key upkID. SII also maintains the restriction
that each identity ID can only be created once. The
above is carried out every time when CreateUser is
queried except one:

SupposeAII creates at most qc distinct iden-
tities. Among all the distinct identities, SII

randomly picks one, say the i-th query with
identity ID∗, and answers the query with
upk∗, that is, SII sets upkID∗ := upk∗.

2. RevealSecretKey: If ID is not created, ⊥ is returned.
Otherwise, if ID 6= ID∗, SII returns the correspond-
ing user secret key; if ID = ID∗, SII halts with failure.

3. ReplaceKey: If ID is not created, no action will be
taken. Otherwise, if ID 6= ID∗, SII replaces its copy
of user public/secret key pair with the query inputs
denoted by (upk∗, usk∗); if ID = ID∗, SII halts with
failure.

4. Sign: If ID 6= ID∗, SII executes CL-Sign according
to the scheme specification. If ID = ID∗, SII sets
m′ := 〈m ‖mpk ‖ ID∗ ‖ upkID∗ 〉, queries the signing
oracle of ΠSS with m′ to get σSS , and generates σIBS

using SignIBS . Finally, 〈 σSS ‖ σIBS 〉 is returned.

When AII outputs (ˆID, m̂, σ̂) where σ̂ = 〈σ̂SS ‖ σ̂IBS〉, SII

outputs (m̂′, σ̂SS), where m̂′ := 〈 m̂ ‖ mpk ‖ ˆID ‖ upk ˆID 〉.
When AII halts, SII halts.

For the event that SII does not fail, we can see that the
simulation is correct as all the operations involving ΠIBS

are carried out according to the scheme specification and
the game specification, and all the operations involving ΠSS

are carried out accordingly as well provided that ID 6= ID∗.
If ID∗ is involved, the Sign query can still be performed
correctly with the help of the signing oracle simulated by
S ′. In addition, the running time of SII is in polynomial of
that of AII . If SII does not fail, all queries simulated by
SII will be indistinguishable from that of a real game.

If AII wins the game and ˆID = ID∗, this implies that
oracle Sign has never been queried with (ˆID, m̂). In ad-
dition, the corresponding user secret key of ID∗ is neither
revealed via RevealSecretKey nor replaced via ReplaceKey.
Since ID∗ is randomly chosen among at most qc identities,
the probability that ˆID = ID∗ is at least 1/qc. Since the
only case that the signing oracle simulated by S ′ may be
queried by SII is when simulating the Sign oracle. Without
querying Sign with (ˆID, m̂), it is impossible for SII to have
queried the signing oracle simulated by S ′ with m′ where m′

is an encoding of the form 〈 m̂ ‖ mpk ‖ ˆID ‖ · · · 〉. There-
fore, (m̂′, σ̂SS) must be a valid forgery with respect to the
signature scheme ΠSS under the public key upk∗.

5. A GENERIC CL-ENC
Libert and Quisquater [17] proposed a generic CL-ENC

construction secure against chosen ciphertext attack (CCA).
The construction is based on conventional Public Key En-
cryption (PKE) and ID-Based Encryption (IBE). In the fol-
lowing, we use ΠPKE = (KPKE , EPKE ,DPKE) and ΠIBE

= (SetupIBE , ExtractIBE , EIBE , DIBE) to denote a PKE

308

scheme and an IBE scheme, respectively. For their complete
definitions, please refer to Appendix A. We now review the
Libert-Quisquater generic CL-ENC scheme.

• MasterKeyGen: Run SetupIBE(1k) to generate (mpkIBE ,
mskIBE) and set master public/secret key pair (mpk, msk)
:= (mpkIBE , mskIBE).

• PartialKeyGen: Run uskIBE ← ExtractIBE(mskIBE , ID)
and set partial keyID := uskIBE .

• UserKeyGen: Run (upkPKE , uskPKE) ← KPKE(1k)
and set (upkID, uskID) := (upkPKE , uskPKE). The
message space is defined as the message space of ΠPKE

with respect to upkPKE . It is required that the cipher-
text space of ΠPKE with respect to upkPKE is a subset
of the message space of ΠIBE with respect to mpk.

• CL-Encrypt: To encrypt a message m under identity
ID and upkID, the algorithm computes

C = EIBE(
mpk, ID, EPKE(upkID, m)

)
• CL-Decrypt: To decrypt a ciphertext C, the algorithm

computes

1. m̃ ← DIBE(partial keyID, ID, C). If m̃ = ⊥,
output ⊥ and halt.

2. Otherwise, compute m′ ← DPKE(uskID, m̃) and
output m′.

This scheme has been shown to be semantically secure (i.e.
CPA secure) [17] provided that the underlying ΠPKE and
ΠIBE are CPA secure. The following theorem shows that it
is also CPA secure in our new models.

Theorem 2. The scheme above is secure in Game Enc-I
and Game Enc-II as defined in Sec. 2 provided that the
Decrypt oracle cannot be accessed and also ΠPKE and ΠIBE

are CPA secure.

Proof. Without access to the decryption oracle Decrypt,
the games Game Enc-I and Game Enc-II only capture
the CPA (chosen plaintext attack) security.

We first show how an attacker CI uses adversary BI (i.e.
Type I adversary) to break the CPA security of ΠIBE . We
omit the review of the security model of IBE schemes and
refer readers to [7] for details. CI obtains ID-based master
public key mpkIBE from its simulator SIBE and forwards
mpkIBE to BI as mpk. In CI ’s interaction with BI , we de-
note IDi as the ith distinct identity among the queries made
by BI . Let qID be the total number of distinct identities in-
volved among all the queries. CI randomly chooses an index
` ∈R {1, · · · , qID}. CI simulates the following oracles:

• CreateUser: on input IDi, CI runs KPKE to gener-
ate user public/secret key pair (upkPKE

i , uskPKE
i). If

i 6= `, CI queries SIBE for IDi’s user partial key
uskIBE

i , otherwise, uskIBE
` is set to ⊥. CI stores

(IDi, uskPKE
i , upkPKE

i , uskIBE
i) in its database and

returns upkPKE
i .

• RevealPartialKey: on input IDi, if i = `, CI aborts.
Otherwise it looks up its database for IDi’s user par-
tial key uskIBE

i and returns to BI if there exists. Oth-
erwise, ⊥ is returned.

• RevealSecretKey: on input IDi, CI returns uskPKE
i if

there exists. Otherwise, ⊥ is returned.

• ReplaceKey: on input IDi and (upk∗, usk∗), CI re-
places the user public key of IDi with upk∗ and the
user secret key with usk∗ if IDi has been created. Oth-
erwise no action will be taken. Note that usk∗ could
be an empty string.

At the challenge step, BI outputs two equal-length mes-
sages (m0, m1) and a target identity ID∗. CI aborts if
ID∗ 6= ID`. Otherwise, it encrypts m0 and m1 into c0 =
EPKE(upkPKE

` , m0) and c1 = EPKE(upkPKE
` , m1), respec-

tively, which are then sent to SIBE together with the target
identity ID` as part of the challenge request. The challenge
c∗ = EIBE(mpk, ID`, cb), b ∈R {0, 1}, prepared by SIBE is
relayed to BI .
BI ’s output b′ ∈ {0, 1} is output by CI as its guess for the

hidden bit b of SIBE . If BI is successful, CI is also successful.
The latter has a probability of at least 1/qID to successfully
guess the identity on which BI produces its attack. Also
note that in the case that ID∗ = ID`, BI is not allowed to
query RevealPartialKey on ID`, hence, the simulation is not
going to abort in this case.

Next, we show that the scheme is CPA secure against
Type II adversary (in particular, against malicious-and-pas-
sive KGC). We describe how an attacker CII uses adver-
sary BII to break the CPA security of ΠPKE . In the first
step of Game Enc-II, BII is executed and BII returns a
master public key mpk. Note that BII may not execute
SetupIBE to generate mpk. CII then randomly selects an
index ` ∈R {1, · · · , qID}, where qID is the total number of
distinct identities involved among all the queries, and ob-
tains a challenge public key pk∗ from its simulator SPKE .
CII simulates the following oracles.

• CreateUser: on input IDi and partial keyi, if i = `,
it sets upkPKE

i := upk∗. Otherwise, it runs KPKE to
generate (upkPKE

i , uskPKE
i) and stores

(IDi, partial keyi, upkPKE
i , uskPKE

i)

in its database. upkPKE
i is returned.

• RevealSecretKey: on input IDi, if i = `, CII aborts.
Otherwise it looks up its database for IDi’s user se-
cret key uskPKE

i and returns it to BII if there exists.
Otherwise, ⊥ is returned.

• ReplaceKey: on input IDi and (upk∗, usk∗), if i = `,
CII aborts. Otherwise, CII replaces the user public key
of IDi as upk∗ and the user secret key as usk∗ if IDi

has been created. Otherwise no action will be taken.

At the challenge step, BII outputs two messages (m0, m1)
and a target identity ID∗. CII aborts if ID∗ 6= ID`. Other-
wise, it forwards (m0, m1) as a challenge query to SPKE

which responds with c∗ = EPKE(pk∗, mb) for a random
bit b ∈R {0, 1}. This ciphertext is further encrypted into
C∗ = EIBE(mpk, ID∗, c∗) and is given as a challenge to
BII .
BII ’s final result b′ ∈ {0, 1} is output by CII as a guess

for the hidden bit of SPKE . If BII is successful, CII is also
successful. The latter has a probability of at least 1/qID

to successfully guess the identity on which BII produces its
attack.

309

Let C = CL-EncryptCPA(mpk, ID, upkID, m; coin) be the
encryption algorithm of the CL-ENC above, where coin
is the randomness involved in the generation of C. Let
the decryption algorithm described above be denoted by
CL-DecryptCPA(uskID, partial keyID, C). To transform this
CPA-secure CL-ENC scheme to a CCA-secure one, the fol-
lowing modifications are proposed by Libert and Quisquater
[17], where the superscripts of CL-Encrypt and CL-Decrypt
are replaced with CCA.

CL-EncryptCCA(mpk, ID, upkID, m)

:= CL-EncryptCPA(mpk, ID, upkID, m‖coin; r)

where r = H(m‖coin‖upkID‖ID) where H is a hash func-
tion. For security analysis, it is considered to behave as a
random oracle [5]. The decryption algorithm is modified as
follows:

1. Compute

(m′‖coin′)
← CL-DecryptCPA(uskID, partial keyID, C).

2. If the output is ⊥, output ⊥ and halt. Otherwise,
compute

C′ ← CL-EncryptCPA(mpk, ID, upkID, m′‖coin′; Ω)

where Ω = H(m′‖coin′‖upkID‖ID).

3. If C′ = C, output m′, otherwise, output ⊥.

Corollary 1. The modification above is secure in Game
Enc-I and Game Enc-II as defined in Sec. 2 under the
random oracle model.

By following the proof of [17, Theorem 1] to simulate the
additional random oracle H and decryption oracle Decrypt,
we can obtain the results that BI and BII win Game Enc-I
and Game Enc-II, respectively, with negligible probabili-
ties.

Acknowledgements
We would like to thank Qiong Huang for his valuable com-
ments and suggestions.

6. ADDITIONAL AUTHORS

7. REFERENCES
[1] S. S. Al-Riyami and K. G. Paterson. Certificateless

public key cryptography. In Proc. ASIACRYPT 2003,
pages 452–473. Springer-Verlag, 2003. LNCS 2894.

[2] S. S. Al-Riyami and K. G. Paterson. CBE from
CL-PKE: A generic construction and efficient
schemes. In 8th International Workshop on Theory
and Practice in Public Key Cryptography (PKC 2005),
pages 398–415. Springer, 2005. LNCS 3386.

[3] J. Baek, R. Safavi-Naini, and W. Susilo.
Certificateless public key encryption without pairing.
In 8th Information Security Conference (ISC’05),
pages 134–148. Springer, 2005. LNCS 3650.

[4] M. Bellare, C. Namprempre, and G. Neven. Security
proofs for identity-based identification and signature
schemes. In Proc. EUROCRYPT 2004, pages 268–286.
Springer-Verlag, 2004. LNCS 3027 (Full paper is
available at Bellare’s homepage URL:
http://www-cse.ucsd.edu/users/mihir).

[5] M. Bellare and P. Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In First ACM Conference on Computer and
Communications Security, pages 62–73, Fairfax, 1993.
ACM.

[6] K. Bentahar, P. Farshim, J. Malone-Lee, and N. P.
Smart. Generic construction of identity-based and
certificateless KEMs. Cryptology ePrint Archive,
Report 2005/058, 2005.
http://eprint.iacr.org/2005/058.

[7] D. Boneh and M. Franklin. Identity-based encryption
from the Weil pairing. In Proc. CRYPTO 2001, pages
213–229. Springer-Verlag, 2001. LNCS 2139.

[8] D. Boneh and M. K. Franklin. Identity-based
encryption from the Weil pairing. SIAM J.
Computing, 32(3):586–615, 2003.

[9] Z. H. Cheng and R. Comley. Efficient certificateless
public key encryption. Cryptology ePrint Archive,
Report 2005/012, 2005.
http://eprint.iacr.org/2005/012.

[10] A. W. Dent. A survey of certificateless encryption
schemes and security models. Cryptology ePrint
Archive, Report 2006/211, 2006.
http://eprint.iacr.org/2006/211.

[11] E. Fujisaki and T. Okamoto. Secure integration of
asymmetric and symmetric encryption schemes. In
Proc. CRYPTO 99, pages 537–554. Springer-Verlag,
1999. LNCS 1666.

[12] D. Galindo, P. Morillo, and C. Ràfols. Breaking Yum
and Lee generic constructions of certificate-less and
certificate-based encryption schemes. In 3rd European
PKI Workshop: Theory and Practice (EuroPKI 2006),
pages 81–91. Springer, 2006. LNCS 4043.

[13] S. Goldwasser, S. Micali, and R. Rivest. A digital
signature scheme secure against adaptive
chosen-message attack. SIAM J. Computing,
17(2):281–308, Apr. 1988.

[14] B. C. Hu, D. S. Wong, Z. Zhang, and X. Deng. Key
replacement attack against a generic construction of
certificateless signature. In Information Security and
Privacy: 11th Australasian Conference, ACISP 2006,
pages 235–246. Springer-Verlag, 2006. LNCS 4058.

[15] X. Huang, W. Susilo, Y. Mu, and F. Zhang. On the
security of certificateless signature schemes from
Asiacrypt 2003. In Cryptology and Network Security,
4th International Conference, CANS 2005, pages
13–25. Springer-Verlag, 2005. LNCS 3810.

[16] X. Li, K. Chen, and L. Sun. Certificateless signature
and proxy signature schemes from bilinear pairings.
Lithuanian Mathematical Journal, 45(1):76–83, 2005.

[17] B. Libert and J.-J. Quisquater. On constructing
certificateless cryptosystems from identity based
encryption. In 9th International Conference on Theory
and Practice in Public Key Cryptography (PKC 2006),
pages 474–490. Springer, 2006. LNCS 3958.

[18] A. Shamir. Identity-based cryptosystems and

310

signature schemes. In Proc. CRYPTO 84, pages
47–53. Springer, 1984. LNCS 196.

[19] D. H. Yum and P. J. Lee. Generic construction of
certificateless encryption. In ICCSA’04, pages
802–811. Springer, 2004. LNCS 3043.

[20] D. H. Yum and P. J. Lee. Generic construction of
certificateless signature. In Information Security and
Privacy: 9th Australasian Conference, ACISP 2004,
pages 200–211. Springer-Verlag, 2004. LNCS 3108.

[21] D. H. Yum and P. J. Lee. Identity-based cryptography
in public key management. In EuroPKI’04, pages
71–84. Springer, 2004. LNCS 3093.

[22] Z. Zhang, D. Wong, J. Xu, and D. Feng. Certificateless
public-key signature: Security model and efficient
construction. In 4th International Conference on
Applied Cryptography and Network Security (ACNS
2006), pages 293–308. Springer, 2006. LNCS 3989.

APPENDIX
A. DEFINITIONS

In the following, we review the definitions of Standard Sig-
nature (SS) schemes, Public Key Encryption (PKE) schemes,
ID-based Signature (IBS) schemes and ID-based Encryption
(IBE) schemes.

Let ΠSS = (SetupSS , SignSS , V erSS) be an SS scheme,
where the three algorthms are polynomial-time and all of
them may be randomized although the last one is usually
not. SetupSS takes 1k for some security parameter k ∈ N,
outputs a public/secret key pair (upkSS , uskSS). SignSS

takes uskSS and message m, outputs a signature σSS . V erSS

takes upkSS , message m and signature σSS , and outputs 1
or 0 for accept or reject. For correctness, we require that
for any k ∈ N, (upkSS , uskPKE) ← SetupSS(1k) and any
message m in the message space defined by the public key,
V erSS(upkSS , m, SignSS(uskSS , m)) = 1.

Let ΠPKE = (KPKE , EPKE ,DPKE) be a PKE scheme
which consists of three polynomial-time algorithms. All of
them may be randomized although the last one is usually
not. KPKE takes 1k and outputs a public/secret key pair
(upkPKE , uskPKE). EPKE takes upkPKE and some mes-
sage m, and outputs a ciphertext C. DPKE takes uskPKE

and C, and outputs either a message m or a symbol ⊥mean-
ing that the decryption failed. For correctness, we require
that for any k ∈ N, (uskPKE , upkPKE) ← KPKE(1k) and
any message m in the message space defined by the public
key, m = DPKE(uskPKE , EPKE(upkPKE , m)).

Let an IBS scheme ΠIBS = (SetupIBS , ExtractIBS , SignIBS ,
V erIBS) be denoted by four polynomial-time algorithms.
All of these algorithms may be randomized although the last
one is usually not. SetupIBS takes 1k and outputs a mas-
ter public/secret key pair (mpkIBS , mskIBS). ExtractIBS

takes mskIBS and user identity ID ∈ {0, 1}∗, and outputs
a user secret key uskIBS . SignIBS takes uskIBS , ID and
a message m, and outputs a signature σIBS . V erIBS takes
mpkIBS , ID, a message m and a signature σIBS , and out-
puts 1 or 0 for accept or reject. For correctness, we require
that V erIBS(mpkIBS , ID, m, SignIBS(uskIBS , ID, m)) = 1
provided that (mskIBS , mpkIBS) ← SetupIBS(1k), uskIBS

← ExtractIBS(mskIBS , ID) and message m in the message
space according to the scheme specification.

Let ΠIBE = (SetupIBE , ExtractIBE , EIBE ,DIBE) be an
IBE scheme consisting of four polynomial-time algorithms.

All of them may be randomized although the last one is usu-
ally not. SetupIBE and ExtractIBE are similar to SetupIBS

and ExtractIBS , respectively. We use (mskIBE , mpkIBE) to
represent master secret/public key pair and use uskIBE to
represent user secret key. EIBE takes mpkIBE , ID and mes-
sage m, and outputs a ciphertext C. DIBE takes uskIBE ,
ID and ciphertext C, and outputs either a message m or a
symbol ⊥ meaning that the decryption failed. For correct-
ness, we require that the equation m = DIBE(uskIBE , ID,
EIBE(mpkIBE , ID, m)) holds as long as (mskIBE , mpkIBE)
← SetupIBE(1k), uskIBE ← ExtractIBE(mskIBE , ID) and
message m in the message space defined by the master pub-
lic key.

311

	Malicious KGC attacks in certificateless cryptography
	Citation
	Author

	tmp.1665646440.pdf.O2UoI

